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RNA (Ribonuceic Acid) sequencing technology is a powerful technology used to give re-

searchers essential information about the functionality of genes. The transcriptomic study and

downstream analysis highlight the functioning of the genes associated with a specific biological

process/treatment. In practice, differentially expressed genes associated with a particular treatment

or genotype are subjected to downstream analysis to find some critical set of genes. This critical

set of genes/ genes pathways infers the effect of the treatment in a cell or tissue. This disserta-

tion describes the multiple stages framework of finding these critical sets of genes using different

analysis methodologies and inference algorithms.

RNA sequencing technology helps to find the differentially expressed genes associated with

the treatments and genotypes. The preliminary step of RNA-seq analysis consists of extracting

the mRNA(messenger RNA) followed by mRNA libraries’ preparation and sequencing using the

Illumina HiSeq 2000 platform. The later stage analysis starts with mapping the RNA sequencing

data (obtained from the previous step) to the genome annotations and counting each annotated



gene’s reads to produce the gene expression data. The second step involves using the statistical

method such as linear model fit, clustering, and probabilistic graphical modeling to analyze genes

and gene networks’ role in treatment responses.

In this dissertation, an R software package is developed that compiles all the RNA sequencing

steps and the downstream analysis using the R software and Linux environment.

Inference methodology based on loopy belief propagation is conducted on the gene networks

to infer the differential expression of the gene in the further step. The loopy belief propagation

algorithm uses a computational modeling framework that takes the gene expression data and the

transcriptional Factor interacting with the genes. The inference method starts with constructing a

gene-Transcriptional Factor network. The construction of the network uses an undirected proba-

bilistic graphical modeling approach. Later the belief message is propagated across all the nodes

of the graphs.

The analysis and inferencemethods explained in the dissertationwere applied to theArabidopsis

plant with two different genotypes subjected to two different stress treatments. The results for the

analysis and inference methods are reported in the dissertation.

Key words: Gene, RNA sequencing, networks, gene-Transcriptional Factor, Loopy belief Propa-
gation
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CHAPTER I

INTRODUCTION

1.1 Motivation

Pathogen (biotic) stress and chemical (abiotic) stress negatively affect crop productivity. There-

fore, there is a need to study the signaling landscape of plants using different technologies. Several

computational models based on experimental observations are used to understand the signaling

landscape of plants. Computational models give an insight into signaling networks and the prop-

erties that signaling networks possess [9].

The research explained in the dissertation presents some of the methodologies used for the

analysis and inference in studying the signaling networks of plants. The research also further helps

identify some significant genes and pathways in the plants. These genes and pathways are essential

to extract because they help examine the responses of plants to various environmental stresses

that further affect crop productivity. In this dissertation, the effect on plants is studied because of

pathogen treatment and salinity treatment. The chemical reaction caused due to pathogen treatment

has an adverse effect on the plant. The salinity is studied to investigate the effect of overirrigation

and saline water irrigation on plant biological processes.

This analysis framework consists of a computational model that included Ribonucleic acid

(RNA) sequencing technology, network analysis, and probabilistic graphical modeling technique

to perform data mining, data analysis, and modeling the inference. This dissertation presents

1



a network model approach for computational analysis to infer essential functions of the plant’s

signaling pathway.

The motivation of the dissertation is to study the gene expression data and characterize the

signaling network associated with biotic and abiotic stresses in Arabidopsis thaliana. figure 1.1 on

page 15 shows an image of Arabidopsis Thaliana. Gene expression data for Arabidopsis thaliana

associated with bacterial flagellin (biotic) and NaCl (abiotic stresses) was mined using different

bioinformatics tools.

The second fundamental aim of this dissertation is to design an advanced bioinformatics

computational pipeline using RNA sequencing technology and machine learning algorithms. This

pipeline could be used to infer useful information about the biological functionality of genes

expressed in our data. The methodology explained in the dissertation can help study the signaling

landscape in other plants and could be used to identify crucial genes and pathways.

1.2 Background and Literature Review

“Signaling network in a cellular organism is a function of molecules interacting and stimulating

surrounding proteins, lipids, and ions, resulting in cytoskeletal reorganization, modulation of

differentiation, and induction of gene expression” [65]. Previous research has gained insight into

several biochemical processes inferred by studying the Arabidopsis thaliana’s signaling network.

The short life cycle, small plant size, and efficient reproduction through self-pollination are reasons

to use Arabidopsis for genetic analysis [38].

In the research [17], the authors have used an information theory algorithm to investigate the

activation of the gene as an interference method to study signal transduction in the Arabidopsis

2



roots. The research performed a similar analysis on Arabidopsis Integrin Linked Kinases (ILK-1)

mutant to gain further insight into its effect. There have been several techniques used in previous

work to identify the function of signaling networks in plants. This section reviews most of the

techniques used in the network model approach to infer the gene signaling network. In one of the

previous work [53], the transcriptomic response of ILK-1 type mutant of Arabidopsis mutant has

been studied to learn the signaling response that is mediated by ILK1-1 type mutant in Arabidopsis.

The research carried out in this dissertation investigated the signaling network response on a

time-series transcriptome data of Arabidopsis thaliana wild-type (WT) and ILK-1 mutant. The

idea is to study the effects of treatments within the plant having the normal phenotype(Wild Type)

and on special ILK1 phenotype. The gene expression data used in the research was obtained using

RNA sequencing technology. Only recently, with the advent and increase of Next Gene Sequencing

(NGS) technology, the potential of using RNA sequencing technology for various other research

goals has increased [62]. The NGS is a collection of advanced technologies used for the mass

profiling of Deoxyribonucleic acid (DNA) and RNA sequences [31]. This technology includes

various software platforms utilized on different operating systems (mainly Linux) for quality check,

processing, and analysis of sequenced reads. Furthermore, RNAsequencing technology is also used

for many different aspects of RNA biology, including single-cell gene expression analysis [63]. The

overall methodology and steps required for RNA sequencing technology is presented in literature

[14]. A significant requirement in RNA sequencing technology is good experimental design.

The experimental design involves choosing the library type, sequencing depth, and replicating

appropriately for the sample under the study. Then it requires setting up a sufficient execution of

the sequencing experiment [14]. The first step after experimental setup is checking the quality of
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reads using software FastQC [7]. This software gives the quality of raw reads. Reads quality are

accessed using Phred score. Phred Score is estimated score which is related to the log of quality

of errors. Reads with good quality have a Phred score between 20 and 30 [56]. In the research

provided in this dissertation, the reads whose Phred score ≥ 30 were used for further analysis.

The next step to RNA sequencing technology is the mapping of the reads. Several read

alignment tools are used in the RNA sequencing step to find quantified counts for genes across

different samples. Some of them are STAR (Spliced Transcripts Alignment to a Reference),

HISAT (hierarchical indexing for spliced alignment of transcripts), and Kallisto (a program for

quantifying abundances of transcripts from bulk and single-cell RNA-Seq data). To get deeper

insight into the alignment software, comparison of different tools used for RNA sequencing were

studied in the previous work [55]. The article [51] discusses the use of software such as HISAT,

StringTie (a fast and highly efficient assembler of RNA-Seq alignments into potential transcripts),

and Ballgown (a software package designed to facilitate flexible differential expression analysis of

RNA-seq data).To study the transcript level analysis on gene expression data, the author in article

[68] discussed TopHat (a spliced read mapper for RNA-Seq) [35] for the differential gene, and

transcript expression analysis of RNA-seq data. HISAT is a fast spliced aligner with low memory

requirements, making it efficient for analysis of RNA sequencing data [34].

In chapter 4, two types of alignment methods: transcript-level analysis and genotypic level

analysis, have been presented. In the subsequent chapter, genotypic expression analysis was

carried out using the STAR aligner [22]. In the article [21], the functionality of the STAR aligner,

and how to set parameters to run STAR aligner on RNA seq data has been discussed. STAR

works on identifying the novel splice junction and aligning reads to the transcriptome. Thus it is
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dependent on the gene annotations for the placement of the aligned reads. The reason to use STAR

aligner is that it is time-saving and very sensitive to aligning reads to a reference genome than

the other alignment programs. The article [21] also provides a comparative analysis of STAR’s

performance with all the other aligners.

The next step in RNA sequencing technology is to quantify the gene expression data. This step

is performed using software that can count the number of reads mapped(aligned) to each gene.

Several software tools carry out this task; some of them are HTSeq-count [6], featureCounts [43],

Cufflinks [69], etc. These read quantification tools help the user produce a count matrix. This

matrix is used for further downstream analysis to discover the differentially expressed genes. The

next step is to find the differentially expressed gene out of the count’s matrix obtained, using the

gene quantification step.

The reason to identify differentially expressed genes is to find and observe the genes that

show statistically significant changes in expression level between two experimental conditions [8].

The article [76] highlights a comparative analysis of different analysis tools such as Cuffdiff 2

(finds significant changes in transcript expression, splicing, and promoter use.) [67]. To analyse

the counts data, DEseq (an R package to analyse count data from high-throughput sequencing

assays) [5] and EdgeR (a Bioconductor package for differential expression analysis of digital

gene expression data) have also been discussed [44] [58] that could be used to find differentially

expressed genes (DEGs). All three of the analysis tools are based on modeling the count’s data.

These analysis tools use negative binomial distribution and filter out the lowly expressed gene using

the relative log expression method. The relative log expression method is used to scale the counts

data into the log scale. Cuffdiff 2 [67] is part of the cufflink tool; it robustly identifies differentially
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expressed transcripts and genes and reveals differential splicing and promoter-preference changes

[67]. DEseq and EdgeR are the Bioconductor [25] packages developed on R and could be loaded

on the R using the Bioconductor. DEseq and EdgeR [58] model the gene expression data based on

the negative binomial distribution, with variance and mean linked by local regression [5]. In this

research R software package EdgeR [44] [58] was used to carry out the differential gene expression

analysis. The discussion on the differential gene expression analysis using this method is explained

in the later chapters. This dissertation also discusses the development of R software package

NetSeekR using the above mentioned tools in the later chapters.

The next step was to study the interaction pattern found in DEGs at different obtained time

points. The interaction pattern analysis was carried out by constructing the gene correlation

network and identifying gene modules/ clusters in the DEGs. The relationship between genes

is better described by the scale-free networks [54], so the Weighted Gene Correlation Network

Analysis (WGCNA) [41] software package was used. The idea was to identify key genes related

to specific biological processes using the Gene ontology process later. WGCNA has already

been used in several pieces of research, in one of the researches where it is applied to Proteomic

and Metabolomic Data Analysis [50]. WGCNA is also used as a tool to analyze metabolomic

profiling for tomato plant [18]. WGCNA could measure the robust association between the genes,

and it also accounts for the indirect association. WGCNA could also be used for other plant’s

gene expression data as well. Apart from using other popular correlation methodology used for

calculating correlation,WGCNAuses biweightmid correlation [70] to calculate a robust correlation

between DEGs.
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The hierarchical clustering method in WGCNA is deterministic, as each gene will be assigned

to only one cluster [74]. It consists of a set of function which works iteratively to assign a gene

to a cluster. Topological analysis on gene correlation network is conducted using several packages

available on R and Python. These packages are also used to create and analyze the co-expressed

network from gene expression data; some of them are igraph [15],tidygraph [49]. In addition,

these packages have been used to analyze various community structures in social and biological

networks [26].

The following process identified transcription factors (TF)-gene interaction for further genomic

analysis to infer valid biological processes related to the genes. Transcription factor gene regulatory

network is networks obtained from the technique, which involves finding the TF that activates the

genes based on the number of the binding site for each TF on the gene. The research in the

dissertation uses the database, International System for Agricultural Science and Technology

(AGRIS), and software tool Dynamic Regulatory Events Miner (DREM) [27] was used to obtain

the TF gene regulatory network.

After finding DEGs from differential gene expression analysis, clusters of DEGs from correla-

tion analysis, and some crucial genes from network analysis, the final task was to find the functional

annotation of DEGs and clusters of DEGs. This step is carried out using the gene ontology anal-

ysis step. Gene ontology helps find out if the selected gene is associated with specific biological

processes or molecular functions. There are several public database-related Gene ontology analy-

ses databases and tools such as Panther (protein analysis through evolutionary relationships) DB

(database) [45], DAVID (the database for annotation, visualization and integrated discovery) [29],

GSEA (Gene Set Enrichment Analysis) [64] are used; some of them are based on R packages like
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TopGO (Enrichment Analysis for Gene Ontology) [4]. The practical implications and benefits of

NetseekR are that it offers an easy framework for downstream data analysis of plants gene expres-

sion data with a varied number of bioinformatics tools used which could be used for a comparative

study of gene expression data.

Probabilistic graphical modeling is the most famous technique used today in the computational

analysis of biological data. Probabilistic graphical models are one technique where both biolog-

ical and mathematical modeling combine into a graphical architecture with a standard, intuitive

formalism [2]. The authors in the work [47], reviews the basics of different probabilistic graphical

models for network modeling. In this dissertation, a gene-TF regulatory network was converted

into a probabilistic graphical model to infer the differential expression of TF. There have been

several articles that have used a similar approach. In the research explained in the work [24],

different methods of inferring Cellular Networks using probabilistic graphical models have been

explained. In the article [1], the probabilistic modeling using Bayesian network models is used

in predicting types of hematological malignancies. This algorithm has earlier been used to solve

image denoising and image segmentation in medical imaging. There are various optimization

techniques used for energy optimization in probabilistic graphical modeling. One of them is loopy

belief propagation. Loopy belief propagation algorithm uses the methodology of passing belief

messages in the network which has loops to find the marginal probability of each node.The authors

in the research [3] discuss the use of the Loopy belief Propagation algorithm on a directed graph.

In the article [46], the authors explain application of the belief propagation algorithm to both the

directed and undirected graph. The application of belief propagation and its different derivatives

have been discussed in the article [73]. In the research [36] mean-field method and loopy belief
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propagation is applied to the pairwise Markov networking model to accomplish the task of image

processing.

1.3 Contributions

In chapter 2, datamining of differentially expressed genes at different time points and treatments

is discussed. The data generated from the data mining step was then further used for downstream

analysis (explained in Chapter 3) using correlation analysis, clustering, and network topology

analysis to find the critical set of genes responsible for a particular biological process flg22(Bacterial

Flagellin) treatment. The RNA seq data was divided for two different treatments and was checked

for low expression and data artifacts of the genes across all the samples. This data preprocessing

was performed using the Log-CPM filtering technique and TMM(TrimmedMean value) based and

Voom-based normalization using EdgeR and Limma packages. The Log-CPM filtering actually

converts the numeric counts of each reads into the form of log of counts per million. Later the

genes with the value lower than a set threshold of Log-CPM is filtered out. TMM is based on

normalizing Log-CPM counts with respect to mean of a reference sample and Voom is a variance

based normalization technique. The differentially expressed were investigated for many different

comparison analyses. The comparison analysis involved genotypic and time series analysis across

all the samples and NaCl and Flg22 treatments. The differentially expressed genes obtained across

different time points and different genotypes were further investigated for their biological function

using the second step in the downstream analysis mentioned in Chapter 3.

Chapter 3 follows the downstream analysis of the DEGs obtained from chapter 2. This chapter

discussed constructing a gene correlation network from DEGs and identifying gene modules/ clus-
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ters in the DEGs obtained from chapter 2. This analysis methodology helps us to find the essential

genes related to specific biological processes.The analysis methodology reported in chapter 3 was

used in reporting the effect of ILK1 expression (activated by the bacterial elicitor flg22) on the

cell wall integrity and immunity. The majority of 30 DEGs linked to cell wall biosynthesis and

modification, and the 20 DEGs encoding anchored membrane proteins, 18 immune response

DEGs, and 13 microtubule-associated DEGs had defective regulation in the ilk1-1 line.

Chapter 4 explains developing a novel data analysis pipeline for mining and analyzing different

types of gene expression data. The network analysis R package developed in Chapter 4 includes

the capacity to analyze the time series RNASeq data, perform correlation and regulatory network

inferences, and use network analysis methods to summarize the results of a comparative genomics

study. The pipeline compiles all the analysis methodology explained in chapter 2 and chapter 3 and

other methodologies and bioinformatics tools as an R software package. This software package

was called NetseekR. NetSeekR can be executed using arguments from an argument .tsv file, or a

.tsv file containing a set of argument files and could also be executed individually by entering the

parameters circumventing argument passing from argument files entirely.

Chapter 5 explains an inference algorithm for the TF-gene regulatory network using proba-

bilistic graphical modeling to find differential expression of genes for flg22 treatment. Most of the

software tools available for bioinformatics data analysis to find the differential expression of genes

assume that the gene expression data has a negative binomial distribution. The algorithm proposed

in this chapter, on the other hand, uses a probabilistic approach of interaction between genes to find

the differential expression of genes. The inference method used an undirected graphical modeling

technique to construct a factor graph. After modeling the factor graph, an inference algorithm
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based on a belief propagation algorithm was used to find the differential expression of gene and

TF. This algorithm could be used to find the expression of a set of the genes that act as TF without

considering the entire gene expression data distribution.

The different methodologies of analysis and inference explained in the thesis could be used for

performing analysis and inference on several other time series RNA sequencing data.

1.4 Overview

This dissertation focuses on performing analysis and inference of gene networks using gene

expression time-series data. It gives a detailed overview and methodology of various tools used

for RNA sequencing technology to obtain the data and further analyze it. The first two chapters

describe the steps to analyze gene expression data using different bioinformatics software tools.

The third chapter of the dissertation contains a description of the implementation of a network

bioinformatics software pipeline. Finally, the fourth chapter contains several machine learning

algorithms used to draw gene network inference on the gene expression data analyzed in the first

chapters. The framework of the dissertation is given in the figure 1.2 on page 15.

The analysis of time series RNASeq data starts with the data mining of gene expression

data. Gene expression data were obtained using the RNA sequencing technology following an

experimental design performed in a collaborating plant biochemistry laboratory. There aremultiple

workflows required in identifying and analyzing the gene (genomic loci) expression data. The

first workflow is an experimental method called sequencing of the genes, which starts from the

extraction of RNA followed by library preparation of the samples and finally producing the sequence

reads. The second workflow uses bioinformatics methods implemented in R to find differentially
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expressed genes. This workflow starts with the processing of reads sequence (quality check,

alignment, trimming, etc.), mapping reads to coding regions, followed by summarizing individual

expression of genes on each sample, normalizing the gene expression data, and finally identifying

the differentially expressed gene. After obtaining the DEG genes, the next task is to find the

gene expression correlations and perform network analysis of the DEG gene expression data.

This analysis employs network inference modeling, systems dynamics, stochastic modeling, and

simulation methods for time-series observations of gene expression dynamics. Finally, we draw

inference on gene networks using probabilistic graphical modeling and loopy belief propagation

message passing algorithm.

The experimental data we used in our work comes from an Arabidopsis thaliana study to

identify factors that modulate its responses to various biotic and abiotic stresses. The RNASeq

data was sequenced using the Illumina HiSeq 2000 platform to produce an average of 15M pair-end

reads per sample for each of the 96 samples in our dataset. These samples were collected for two

genotypes (WT or Col0 and ILK1-silenced mutant) on which two different stress treatments (NaCl

and Flg22) were carried out at four different time points (0 hrs., 3 hrs., 6 hrs. and 12 hrs.) in three

replicates per time point.

The work was divided into four stages to accomplish the goal of my research. Several bioinfor-

matics tools and software packages were used to perform the data mining, analysis, and inference

on the data. Each stage of my work is briefly described briefly here. The rest of the chapters give

a detailed description of the entire process step by step.

The first objective of this study is to identify the DEG genes obtained from the gene expression

data and find out their biological significance. In this stage of the work, mapping the reads from
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RNA seq data was done using the software STAR aligner [21]. The mapping of reads and then

processed the alignment using the software Samtools and finally software FeatureCounts was used

to find the mRNA counts for each gene obtained previously by mapping short reverse-transcribed

RNA fragments to a reference genome. Finally, R packages called Limma [57] and EdgeR [44]

[58] were used to perform the differential analysis on the RNA- seq data to obtain and identify

DEG associated with stress treatments.

In the second stage of work, correlation patterns amongst the genes were analyzed by construct-

ing gene co-expression networks using the R software packageWGCNA [41]. Gene prediction tool,

DREM [61] was also used to identify transcription factors that control gene expression dynamics

in time series data. Finally, this network analysis was integrated with the multiple bioinformatics

tools and studied the resulting gene network’s topology. After obtaining the correlation network of

the DEGs, the correlation networks were integrated with existing public gene networks and further

inferred and analyzed the dynamics of regulatory and signaling of A. thaliana gene networks in

our study.

The last part of the research is dedicated to identifying and inferring gene networks using belief

propagation algorithms. The algorithms for gene network inference uses input a gene expression

dataset (as described above) and can have many applications. Here undirected graphical modeling

was used to implement the method to draw inference on gene networks. Markov random field

and belief propagation algorithm were implemented to perform gene network inference using

gene expression time-series data as observations and TF- gene regulation data for the network

information. The concept of a belief message-passing algorithm called the sum-product algorithm

was used to find the marginal probabilities of individual genes in the network to finally obtained
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the normalized belief messages for all the genes in the network. Based on the final belief messages

the differential expression for the genes was set.

All the methodologies for analyzing the time series data and drawing inference from the time

series RNA seq data are explained in the subsequent chapters.

The analysis methodologies and the network analysis pipeline developed in the dissertation can

be used for mining and analyzing any kind of genomics data. The work in the dissertation discusses

the data mining and analysis performed on Arabidopsis. From the data mining and analysis of

DEGs (Differentially Expressed Genes), several genes responsible for several biological processes

were obtained. The analysis methodologies and tools used in the dissertation could also be used

for other plant’s gene expression data in order to retrieve useful information about the biological

processes related to a kind of stress treatment. The probabilistic graphical modeling gives a

different approach to carrying out the analysis than the one primarily used. This methodology of

inferring useful information from gene expression data could also be used for any kind of genetic

analysis involving RNA sequencing data.
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Figure 1.1

Arabidopsis Thaliana from [33]

Figure 1.2

Dissertation Framework
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CHAPTER II

MINING DIFFERENTIALLY EXPRESSED GENES USING RNA SEQUENCING

TECHNOLOGY

2.1 Introduction

This chapter studies the global transcriptional responses of A. thalianamediated by the biotic

and abiotic stresses using NGS technology. The idea is to study the transcriptomic data which helps

measure the mRNA transcripts expressed by the genome of the cell. In this research, Arabidopsis

plants’ transcriptomic response of ILK1-silenced and wild-type mutant was analyzed.

Sequenced mRNA were obtained from an experimental design performed in the controlled

environment. The experimental design was carried out to study two stress conditions across four

different time points. The data obtained from this previous experimental study contains an average

of 15 M pair-end reads per sample, for 48 different samples sequenced using the Illumina HiSeq

2000 platform. The samples consist of two types of mutants (Wild Type and ILK1) on which

two different stress treatment (NaCl and flg22) treatments were carried out at four different time

points ( 0 hrs., 3 hrs., 6 hrs. and 12 hrs.). The two stress treatment experiments used in the study

were: a) abiotic stress-induced through NaCl and b) biotic stress-induced through the bacterial

pathogen associates molecular pattern flg22, a bacterial flagellin peptide.The significance of the

experimental design was to study the effect of pathogen and salinity on the plant at different time

points.
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This chapter preprocesses the reads generated for the Arabidopsis plant using NGS technology

to find the counts of the genes present in each sample. It then analyses the data under different

stress conditions mentioned earlier across different time points to analyze the plant’s changes and

their impact on the different kinds of arabidopsis plant mutants at different time frames.

The analysis goal in this study is to identify and compare the differentially expressed genes

at different time points when two different genotypes (WT and ILK1-silenced) are subjected

to different stress conditions (biotic and abiotic stress). This chapter presents a computational

workflow to detect the differentially expressed genes from RNA-sequencing data obtained using

Illumina HiSeq 2000 sequencer.

2.2 Methodology

This section gives a detailed overview of the pipeline that followed for the analysis.

2.2.1 Alignment of Reads

Starting with the raw reads, the first task is to map millions of sequencing reads to the

corresponding A. thaliana gene loci; counts of mapped reads will then be used to estimate transcript

abundance present in the specific sample. The challenge involved in this task is to identify the

correct spliced junction as there is the possibility of the error involving the spliced alignment of

exon-exon spanning reads. Splice-aware aligners can estimate the abundance of multiple different

transcripts of the same gene. STAR aligner software was used to carry out the reads mapping task.

This alignment software has a high sensitivity , very good precision on the reads that were mapped

to the reference genome. Another advantage of STAR aligner is it is faster than other alignment

programs; its balanced performance represents an advantage over other alignment software. STAR
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The STAR alignment process consists of choosing the appropriate reference genome to map our

reads. STAR precision for placement of the aligned reads is dependent on the quality of gene

annotations. Here Araport 11 was used, which represents a significant improvement on A thaliana

annotations [13].

The input in the STAR aligner consists of the reference genome and the genome annotation

file. Initially, Arabidopsis genome and the annotation files were downloaded from Phytozome

[40] to carry out the task of alignment. The resultant trimmed FASTAQ files were then mapped

to the reference genome using STAR. The individual samples of the experimental data were then

mapped to the Arabidopsis genome. To perform STAR alignment, first genome indices were

generated using the gene annotation files [21]. The resultant genome index file comprises the

genome sequence, suffix array, information about the genes, e.g., the strand, chromosome names,

and length and splice junction coordinates. All these resultant files obtained after generating the

genome indices act as an input to the next step. The next step in STAR is to align reads from

FASTAQ files after genome indices files are generated. The results of our read alignment using

STAR are shown later in the chapter. The next task after the alignment is the processing of the

aligned reads obtained from STAR.

2.2.2 Processing Aligned Reads

After mapping the FASTAQ file to the reference genome, STAR stores the alignment file’s

result in a SAM (Sequencing Alignment mapping read) or BAM (Binary alignment mapping reads)

format. SAM format explains the sequencing’s alignment in the form of a nucleotide alignment

format. The SAM format needs to be converted to BAM format (Binary alignment/Map format). To
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accomplish this task, another software package called Samtools [42] was used. Samtools software

package allows us to read the SAM files and perform filtering on them. Samtools converts SAM

files to BAM files and then performs sorting on them. It also tries to remove duplicates, improper

and multi-paired reads. The SAM files were converted into BAM file format and performed the

sorting of reads using Samtools.

Next, the read summarizing program, FeatureCounts, was used, which counts the reads from

the RNA sequencing experiment completed in the previous task. Feature Counts is part of the

Subread software package [43]. Using this software, the number of reads mapped to each gene for

each sample were counted.

2.2.3 Differential Gene Expression Analysis

In our next step, EdgeR was used to analyze the read counts obtained from the FeatureCounts.

The edgeR software package is an R software package used for differential expression analysis

of RNA sequencing data [58]. This software implements various statistical methodologies for

carrying out operations on our gene counts data, such as filtering, normalization, multidimensional

plotting, clustering, etc. This R’s software packages use the negative binomial distribution for

data modeling, generalized linear models, and empirical Bayes estimation for differential gene

expression analysis. The gene expression data requires negative binomial distribution as the mean

and variance in the negative binomial distribution don’t vary too much as in Poisson’s distribution.

Some of the functions from the Limma package [57] were also used along with edgeR to carry out

the analysis.
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The data was into two different batches. The first batch of data contained NaCl samples treated

and three wild-types (WT) control samples at 0 hrs. and three samples of ILK1 control at 0 hrs.

The second batch of data contained samples that were Flg22 treated along with three samples of

Wild type (WT) control at 0 hrs. and three samples of ILK1 control at 0 hrs. We analyzed these

datasets separately. Since the data analysis was carried out in two batches NaCl and Flg22, different

groups in each batch were also based on the type, treatment, and number of hours.

In order to carry out the analysis, there was need to design the analysis in different groups using

design matrix. The design matrix records treatment conditions were applied to each sample, and it

also defines how the experimental effects are parametrized in the linear models. The design matrix

was formed using the following given groups in table 2.1 on page 32 and table 2.2 on page 33

below. table 2.1 on page 32 represents the groups for batch 1, while table 2.2 on page 33 represents

the group for batch 2. In the tables mentioned above, the groups’ column specifies the groups the

samples were grouped.

The differential gene expression analysis was carried out in the following steps:

1. Filtering of the data: In the data, there were approximately 24532 genes in batch 1 and
batch 2, after finding the logCPM and CPM of all our counts, the gene that had less than 0.5
counts per million of the gene counts were filtered out. The reason these genes were filtered
out was that these genes acted as the outlier for further analysis. Further, these genes lowly
expressed genes do not have any significance while finding differentially expressed genes.
After filtering the lowly expressed gene, 20854 genes were left in batch 1, and 19234 genes
were left in batch 2. These lowly expressed genes do not help provide any statistical evidence
that could be used to make a relevant judgment [12].

2. Normalization of the dataset: An essential task for our data’s downstream analysis is to
remove any data artifacts or batch effects in our dataset. Since the counts data varies across
different samples, so there was a need to normalize the data to a standard scale in order to fit
the linear model on the gene expression data. The data normalization in gene expression data
is done using scaling the library size of each sample of the gene expression data on a single
numerical scale. Normalization was performed using the calc_normfactors function in Edge
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R. Trimming the M-value (TMM) method was used to normalize the data. In addition, the
article [59] describes various other methods that could perform normalization on the data.

3. Forming the DGE List object of the remaining counts: Next, we create a DGElist object to
hold the read counts remaining after the filtering. The DGElist is a list used in the EdgeR
software package used for gene expression data manipulation.
Since the data analysis is carried out in two batches NaCl and Flg22, different groups are
present in every batch based on the type, treatment, and number of hours. The DGElist
contains the read counts and the associated metadata, including sample names, gene names,
and normalization factors once they are computed.

4. Exploratory data analysis: The data is studied using unsupervised clustering of gene expres-
sion to study the samples’ relationship. Multidimensional scaling plots were also used to
perform the analysis of the inter-sample relationships.

5. Setting up the Design matrix and voom normalization of the dataset: Next, the data model is
set up by taking the DGElist object and the groups and formed the design matrix. The data is
normalized again using the voom normalization technique. Voom is used on log-transformed
data because it uses mean-variance trend derived weighths from normalized logCPM value
for the dataset. It also removes some of the lowly expressed genes that were not filtered in
the previous filtering step. Voom plots were also used to analyze the mean-variance trend of
biological replicates before and after normalization.

6. Fitting the model: The next step is to fit the model. This step is carried out using the Limma
function lmfit and contrast.fit for contrast matrix. Empirical Bayes moderation is applied to
some of our contrast matrix, which is later implied across all the genes in the contrast matrix.

7. Examining the Differential expression genes: Upregulated and Down-regulated genes ob-
tained after fitting the model were summarised in the form of a table. The adjusted p-value
is set at 5% by default. However, a stricter significance was needed to define the proper
analysis and decisions performed in the next step.

8. Setting the threshold log-FC for stricter decisions: In this research, the log-FC (Log-Fold-
change) was needed to be above 1. The treat method was used by using the Treat function
provided by the Limma package to carry out this step. The treat method calculates the
p-value from the empirical Bayes moderator t- statistics with the desired threshold log-FC
value requirement.

9. Differentially expressed data: Upregulated (+1) and downregulated genes (-1) were found in
each sample and were stored in a CSV file for each comparison. Mean difference plot was
also plotted to study the upregulated and downregulated genes.
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2.3 Results and Discussions

The results of each of the pipelines, as mentioned above, and procedures are discussed in this

section. The first step in RNA sequencing was obtained from the Illumina HiSeq 2000 platform,

which generated 394 and 492million reads for NaCl and flg22 treatments, respectively. These reads

are 50 base pair long, pair-ended reads. These reads were obtained from three different biological

replicates of Wild Type-Control, and ILK1 knockouts plants for both stress responses (NaCl and

Flg22) carried out at four different time points, which resulted in an average of 15 M pair end reads

per sample for each of the 48 samples in our dataset. The 48 samples’ sequencing resulted in 96

FASTQ files because the sequencing was done using paired-end sequencing. These reads were

subjected to sequencing data quality checks by running those using FastQC. The base pairs below

the quality score of 28 were cut. Finally, the remaining low-quality reads were trimmed using

Trimmomatic to remove the adaptors and low-quality reads, increasing the quality score (≥30).

The last reads obtained were of about 36 base pairs. The resulting high-quality, pair-ended data

we obtained after quality check and trimming for each sample was about 15 million.

2.3.1 Alignment and mapping reads

The resultant trimmed FASTAQ files containing reads were then mapped against the Araport11

Arabidopsis reference genome using STAR. The samples were mapped to the Arabidopsis genome.

After generating indices, we then performed read alignment using STAR. The results obtained using

STAR aligner are below.

table 2.3 on page 34 and table 2.4 on page 35 represent the reads alignment results for NaCl

and Flg22 treated samples respectively. The first column in both the tables represents the library
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id and the total number of initial reads found in that particular sample. The next column represents

the reads that were uniquely mapped to the reference Arabidopsis genome.

Looking at the data,one can say there was on an average of 95% uniquely mapping of reads

in our data was obtained. This signifies that the reads were mapped to the reference genome

effectively.

After mapping the FASTAQ file to the reference genome, SAM alignment file was obtained as

the output. the file that were in SAM format was converted to BAM format to perform the next

sorting task, and then sorting of the BAM File was done to perform the downstream analysis in the

latter task. After processing reads, read summarization program FeatureCounts was used. Counts

of reads mapped to each gene for every 48 samples from the RNA sequencing experiment were

obtained. The output obtained from feature counts consisted of two files: in the form of the text file

containing the actual read counts per gene along with gene ID, genomic coordinates of the gene’s

information, including strand and length and a summary file that gives an overview of the genes

that could be assigned to the gene and some of the reason some of them could not be assigned

to the gene. Some data cleaning needed to be performed before we can use the data for further

analysis. This data cleaning was done using FeatureCounts “cut” operation.Cleaned text files were

obtained that could be directly loaded into R software as an R data frame and carry out the genes’

downstream analysis.
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2.3.2 Differential expression analysis

Getting started with the analysis, counts text files that FeatureCounts generated was loaded into

the R data frame and then combined into a matrix. The sample matrix for the analysis is shown

below in table 2.5 on page 35.

table 2.5 on page 35 contains the example of the gene expression data for samples 21, 22, 23,

24, 25, 26,27 and 28 (last two digits of sample’s id). The corresponding gene is represented as gene

ids. Our actual data frame matrix consists of 24532 rows, which denote the gene names, and the

columns indicate the sample library names by their respective numbers. The entries in each cell

of the table contains the entries for gene counts. The entire matrix’s sample-level information was

collected to further acquire the data into a specific matrix for the following downstream analysis.

The data according to the two batches were segregated. Batch 1 contained all the NaCl treatment

for both the types (wild and the ILK1 type) collected at all different time points and three control

type treatment at 0 hr. forWild type and three control type treatment 0 hr. for ILK1 type. Similarly,

batch 2 contained all the Flg22 treatment for both the types (wild and the ILK1 type) collected at

all different time points and three control type treatment at 0 hr. for Wild type and three control

type treatments 0 hr. for ILK1 type. Next, the essential libraries for the analysis were loaded.

2.3.2.1 Filtering and Normalization of the count data

In the data, there were approximately 24532 genes in batch 1 and batch 2; after finding the

logCPM and CPM of all our counts, the gene that had less than 0.5 counts per million of the gene

counts were filtered out. After Filtering the lowly expressed gene, we were left with 20854 genes

in batch 1 and 19234 genes in batch 2. The DGElist object of this remaining data after the filtering
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Figure 2.1

Library plot of batch 1 data before and after “TMM” normalization

was formed. Normalization was performed using calc_normfactors function in Edge R. We use

normalization by trimmed mean of M-value (TMM) method to normalize the data. Normalization

factors were checked for all the samples used in the analysis. Different normalization methods are

discussed in this review article [19]. The effect of TMM normalization on the dataset was mild as

the normalization factor for each sample was close to 1 for each sample. Figure 2.1 and figure 2.2

on the next page depict the change in the library size of the data before and after the normalization

in batch 1 and batch 2 respectively. The x axis in the plots represents the logCPM value of counts

of genes in each samples and the y axis represents the samples id.

2.3.2.2 Extrapolatory Data Analysis

Next, the exploratory data analysis was performed using the MDS plot. These plots are plotted

using Limma plots. MDS plots were plotted using the biological coefficient of variance distances
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Figure 2.2

Library plot of batch 2 data before and after “TMM” normalization

method as our dimensions. This method calculates the distance between the samples based on their

biological coefficient of variation.

Looking at the MDS plot in figure 2.3 on page 36 for batch 1 for all the samples, one can

say that there is a larger BCV (biological coefficient of variation) transcriptional difference along

with the axis BCV distance one between the samples consisting of both wild type and ILK1 type

collected at zero hours in the control treatment and the samples consisting both wild type and ILK1

at different time points treated with NaCl.

The almost similar effect can also be seen for Batch 2 in figure 2.4 on page 37, where there

is a larger BCV (biological coefficient of variation) transcriptional difference along the axis BCV

distance 1 between the samples consisting of both wild type and ILK1 type collected at zero hours

in control treatment and the samples consisting both wild type and ILK1 at different time points
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treated with flg22. Looking at both the plots for both the batches to study bcv transcriptional

difference along with axis BCV distance 2, one can find that the transcriptional difference is

dependent on the hours of the particular type is treated as we can see in batch 1 MDS plot, the wild

type and ILK1 type treated for 3 hours are clustered together separating the other cluster of wild

type and ILK1 type treated for 6 hours and the cluster containing wild type and ILK1 type treated

for 12 hours. A similar effect can again be seen in the batch 2 MDS plot. These clusters show the

difference as they are separated by the distance along axis 2, which is BCV distance 2.
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2.3.2.3 Estimating the dispersion

The analysis calculated the common and trend-wise dispersion of the data stored in the DGElist

object. The idea to calculate the estimated dispersion first is to find the dispersion value and

determine if the gene counts we are analyzing will fit the negative binomial model developed out

of the gene counts data. figure 2.5 on page 38 below shows the estimated common dispersion and

trend-wise dispersion plots for batch 1 and batch 2, respectively. The common dispersion is plotted

with the red line, while the Trend wise Dispersion is plotted with the blue line.

2.3.2.4 Voom plot

Further normalization of the data was performed using Voom. figure 2.6 on page 39 below

shows the Voom transformed log-CPM plot. Voom provides a significant normalization across

all the samples in our dataset to ensure the uniform distribution of the dataset. This normalized

data proves to be an essential step for the next downstream test and analysis to obtain differentially

expressed genes.

Voom normalized counts of the genes were used in the subsequent downstream analysis of

DEG genes in the next chapter for hierarchical clustering and correlation analysis. The idea is

to study patterns in the DEG genes and find the pathway analysis and gene ontology analysis of

selected genes.
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2.3.2.5 Examining Differentially Expressed Genes

For a quick look at the data, the analysis’s upregulated and downregulated genes were summa-

rized in the form of a table. The number of upregulated genes were summarized as "Up" and the

number downregulated genes were summarized as "Down". The number of genes that were not

significant were summarized as "Not Sign" for different comparison sets. These results were ob-

tained when the comparison analysis was carried on different comparison sets and set the required

log-FC value threshold. Linear model firring was performed for the comparison set of interest

using linear modeling in limma, which is carried out using contrast.fit function. Next, the empirical

Bayes moderation is carried out. To examine the DE genes, treat function was used to set the Log

FC value and then used decide function where we set the p-value using the p-value adjustment

method parameter set as "BH." The resultant differentially expressed genes are extracted using

the results from decideTests. The tables below list the down-regulated genes, the genes that were

not regulated, and upregulated genes, respectively, for each of the comparisons listed in the first

column for batch 1 and batch 2, respectively. table 2.6 on page 36 and table 2.8 on page 39 are the

tables for the summary of DEG genes obtained for batch 1. table 2.7 on page 37 and table 2.9 on

page 40 are the tables for the summary of DEG genes obtained for batch 2.

MD plot of our expression data results were also plotted to perform further analysis on our

results

figure 2.7 on page 41 shows the type comparison analysis of expression data results by com-

paring the types ILK1 vs. WT at different time points, 3 hrs., 6hrs., 12 hrs., and 0 hrs. respectively

under the NaCl stress treatment for batch 1. Similarly, figure 2.8 on page 42 shows the type com-

parison analysis of expression data results by comparing the types ILK1 vs. WT at different time
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points, 3 hrs., 6hrs., 12 hrs, and 0 hrs. respectively under the Flg22 stress treatment for batch 2.

These plots in figure 2.7 on page 41 and figure 2.8 on page 42 were obtained at the threshold value

of Log-FC set to 0.5 by performing treat function on lmfit model instead performing empirical

Bayes moderation on our lmfit model directly. Later empirical Bayes moderation was used on lmfit

model with no adjustment method and the p-value set to be less than equal to 0.05. figure 2.9

on page 43 shows gene expression comparison between WT type under NaCl treatment across all

different time points and WT under control treatment at 0hrs. figure 2.10 on page 44 shows gene

expression comparison between ILK1 type under NaCl treatment across all different time points

and ILK1 under control treatment at 0hrs. Similarly, figure 2.11 on page 45 shows gene expression

comparison betweenWT type under Flg22 treatment across all different time points andWT under

control treatment at 0hrs. figure 2.12 on page 46 shows gene expression comparison between ILK1

type under Flg22 treatment across all different time points and ILK1 under control treatment at

0hrs. These plots were obtained at the threshold value of Log-FC set to 1 by performing the treat

function on our lmfit. We used empirical Bayes moderation on our lmfitmodel.Here also, empirical

Bayes moderation was used on lmfit model with no adjustment method and the p-value set to be

less than equal to 0.05.

From the figures one can see that there were significantly larger difference in the number

of DEGs that were obtained for different comparison sets. To obtain a significant number of

differentially expressed genes, a stricter decision on our comparison fit was needed to be made.

For this, we tried changing different parameters. We found that the number of differentially

expressed genes showed a drastic change in numbers as the Log-FC threshold value is changed.

The decideTests function parameter “adjusted method” also plays a significant role in identifying
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and listing the differentially expressed gene. When we set this parameter to any method(provided

by the function), it adjusts the results and the decision according to the adjusted p-value; however,

if we keep it at value “none,” the adjustment is no more prominent, and thus the results and the

decision is obtained based on the p-value. This chapter summarized the finalized parameter’s

output that fit the data well and produced the desired results.

2.4 Conclusion

In this overall computational workflow, first reads were mapped to the reference Arabidopsis

genome, and the data preprocessing was performed. The differential gene expression analysis of

the following RNA sequencing Arabidopsis data shows a fair amount of differential expression

genes and the abiotic and biotic stress for both types (WT and ILK1 type) and in all different time

frames. The data were also checked for the batch effect and divided into two batches to analyze

further. There was no set parameter found to work for all the different comparison tests altogether in

the analysis. To obtain the significant level for differentially expressed genes, different parameters

were set, and methods were used for different types of comparison set analysis. For example, we set

different time series comparison set analysis parameters and different parameters for phenotypic

comparison set analysis.

A significant differencewas found in the number of differentially expressed genes in comparison

set analysis types. A considerable difference in the number of differentially expressed genes was

found in both comparison set analysis types. Consequently, in the next chapter, correlation and

network analysis were performed on the differentially expressed genes obtained in this project.
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Table 2.1

Grouping of samples according to the type, treatment, time for batch NaCl

Sample Names Type Treatment Time Groups
SL209921 WT CONTROL 0h WT CONTROL 0h
SL209922 WT CONTROL 0h WT CONTROL 0h
SL209923 WT CONTROL 0h WT CONTROL 0h
SL209924 WT NaCl 3h WT NaCl 3h
SL209925 WT NaCl 3h WT NaCl 3h
SL209926 WT NaCl 3h WT NaCl 3h
SL209927 WT NaCl 6h WT NaCl 6h
SL209928 WT NaCl 6h WT NaCl 6h
SL209937 WT NaCl 6h WT NaCl 6h
SL209938 WT NaCl 12h WT NaCl 12h
SL209939 WT NaCl 12h WT NaCl 12h
SL209940 WT NaCl 12h WT NaCl 12h
SL209941 ILK1 CONTROL 0h ILK1 CONTROL 0h
SL209942 ILK1 CONTROL 0h ILK1 CONTROL 0h
SL209943 ILK1 CONTROL 0h ILK1 CONTROL 0h
SL209944 ILK1 NaCl 3h ILK1 NaCl 3h
SL209945 ILK1 NaCl 3h ILK1 NaCl 3h
SL209946 ILK1 NaCl 3h ILK1 NaCl 3h
SL209947 ILK1 NaCl 6h ILK1 NaCl 6h
SL209948 ILK1 NaCl 6h ILK1 NaCl 6h
SL209949 ILK1 NaCl 6h ILK1 NaCl 6h
SL209950 ILK1 NaCl 12h ILK1 NaCl 12h
SL209951 ILK1 NaCl 12h ILK1 NaCl 12h
SL209952 ILK1 NaCl 12h ILK1 NaCl 12h
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Table 2.2

Grouping of samples according to the type, treatment, time for batch Flg22

Sample Names Type Treatment Time Groups
SL209953 WT CONTROL 0h WT CONTROL 0h
SL209954 WT CONTROL 0h WT CONTROL 0h
SL209955 WT CONTROL 0h WT CONTROL 0h
SL209956 WT Flg22 3h WT Flg22 3h
SL209957 WT Flg22 3h WT Flg22 3h
SL209958 WT Flg22 3h WT Flg22 3h
SL209959 WT Flg22 6h WT Flg22 6h
SL209960 WT Flg22 6h WT Flg22 6h
SL209961 WT Flg22 6h WT Flg22 6h
SL209962 WT Flg22 12h WT Flg22 12h
SL209963 WT Flg22 12h WT Flg22 12h
SL209964 WT Flg22 12h WT Flg22 12h
SL209965 ILK1 CONTROL 0h ILK1 CONTROL 0h
SL209966 ILK1 CONTROL 0h ILK1 CONTROL 0h
SL209967 ILK1 CONTROL 0h ILK1 CONTROL 0h
SL209968 ILK1 Flg22 3h ILK1 Flg22 3h
SL209929 ILK1 Flg22 3h ILK1 Flg22 3h
SL209930 ILK1 Flg22 3h ILK1 Flg22 3h
SL209931 ILK1 Flg22 6h ILK1 Flg22 6h
SL209932 ILK1 Flg22 6h ILK1 Flg22 6h
SL209933 ILK1 Flg22 6h ILK1 Flg22 6h
SL209934 ILK1 Flg22 12h ILK1 Flg22 12h
SL209935 ILK1 Flg22 12h ILK1 Flg22 12h
SL209936 ILK1 Flg22 12h ILK1 Flg22 12h
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Table 2.3

Mapping output for NaCl treated samples

Input Reads Mapped reads
SL209921 15486879 95.09%
SL209922 15400488 95.22%
SL209923 14825823 94.95%
SL209924 16919859 93.53%
SL209925 16226945 93.23%
SL209926 14408122 92.73%
SL209927 15851632 94.36%
SL209928 16944518 93.59%
SL209937 12889348 94.41%
SL209938 16961915 94.24%
SL209939 18985000 93.96%
SL209940 21081276 93.50%
SL209941 19491568 95.23%
SL209942 14887305 95.23%
SL209943 14913368 95.48%
SL209944 14182911 94.86%
SL209945 18421895 94.69%
SL209946 15485404 93.68%
SL209947 15904885 93.15%
SL209948 16474980 93.64%
SL209949 14279886 94.83%
SL209950 16781790 92.27%
SL209951 17628332 94.43%
SL209952 19898531 93.57%
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Table 2.4

Mapping output for Flg22 treated samples

Input Reads Mapped reads
SL209953 17688489 94.84%
SL209954 15881217 94.77%
SL209955 19457697 93.73%
SL209956 12527033 94.41%
SL209957 21039873 94.58%
SL209958 18060975 94.69%
SL209959 25609849 88.52%
SL209960 19887661 91.74%
SL209961 16096277 95.69%
SL209962 16862499 95.08%
SL209963 14043704 94.77%
SL209964 17542353 94.43%
SL209965 18362587 95.36%
SL209966 17801017 94.03%
SL209967 17163927 93.78%
SL209968 20319127 92.50%
SL209929 16970583 92.09%
SL209930 14712327 93.91%
SL209931 19065595 92.10%
SL209932 21929347 94.59%
SL209933 14141932 93.59%
SL209934 10810009 94.53%
SL209935 18035483 93.32%
SL209936 17472622 92.94%

Table 2.5

Sample table

gene_id 21 22 23 24 25 26 27 28
AT1G01010 231 251 232 350 342 358 314 421
AT1G01020 181 177 204 275 226 180 194 230
AT1G01030 55 45 57 154 156 123 121 143
AT1G01040 527 772 651 607 679 590 675 738
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Figure 2.3

Multidimensional plot for batch 1

Table 2.6

Summary of DEG genes obtained using different Log-Fc≥ 0.5 threshold and p-value≤0.05 for
batch 1

With Log-Fc ≥ 0.5, p-value ≤ 0.05, adjusted method = “none” Down Not Sign Up
ILK1_CT_0_vs_WT_CT_0 28 20800 26

ILK1_NaCl_3_vs_WT_NaCl_3 35 20685 134
ILK1_NaCl_6_vs_WT_NaCl_6 35 20775 44

ILK1_NaCl_12_vs_WT_NaCl_12 28 20803 23
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Figure 2.4

Multidimensional plot for batch 2

Table 2.7

Summary of DEG genes obtained using different Log-Fc≥ 0.5 threshold and p-value≤0.05 for
batch 2

With Log-Fc ≥ 0.5, p-value ≤ 0.05, adjusted method = “none” Down Not Sign Up
ILK1_CT_0_vs_WT_CT_0 64 19053 117

ILK1_flg22_3_vs_WT_flg22_3 171 19014 49
ILK1_flg22_6_vs_WT_flg22_6 56 19053 125

ILK1_flg22_12_vs_WT_flg22_12 343 18687 204
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Figure 2.5

Trend wise dispersion of the data from Batch1 and Batch 2 respectively
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Figure 2.6

Voom normalized logCPM plot for batch 1 and batch 2 respectively

Table 2.8

Summary of DEG genes obtained using different Log-Fc≥ 0.5 threshold and p-value≤0.05 for
batch 1

With Log-Fc ≥ 1, p-value ≤ 0.05, adjusted method = “BH” Down Not Sign Up
WT_NaCl_3_vs_WT_CT_0 1351 17482 2021
WT_NaCl_6_vs_WT_CT_0 1559 17303 1992
WT_NaCl_12_vs_WT_CT_0 1940 16868 2046
ILK1_NaCl_3_vs_ILK1_CT_0 1285 17472 2097
ILK1_NaCl_6_vs_ILK1_CT_0 1511 17237 2106
ILK1_NaCl_12_vs_ILK1_CT_0 1960 16759 2135
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Table 2.9

Summary of DEG genes obtained using different Log-Fc≥ 0.5 threshold and p-value≤0.05 for
batch 2

With Log-Fc ≥ 1, p-value ≤ 0.05, adjusted method = “BH” Down Not Sign Up
WT_flg22_3_vs_WT_CT_0 3142 12662 3430
WT_flg22_6_vs_WT_CT_0 2121 14867 2246
WT_flg22_12_vs_WT_CT_0 1022 16766 1446
ILK1_flg22_3_vs_ILK1_CT_0 2920 13393 2921
ILK1_flg22_6_vs_ILK1_CT_0 1558 15609 2067
ILK1_flg22_12_vs_ILK1_CT_0 1541 16364 1329

40



Figure 2.7

Batch 1 type comparisons analysis expression data results at 3 hrs., 6 hrs., 12 hrs. and control at 0
hrs respectively
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Figure 2.8

Batch 2 type comparisons analysis expression data results at 3 hrs., 6 hrs., 12 hrs. and control at 0
hrs respectively
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Figure 2.9

Batch 1 time comparisons analysis expression data results for the WT type sample
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Figure 2.10

Batch 1 time comparisons analysis expression data results for the ILK1 type sample
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Figure 2.11

Batch 2 time comparisons analysis expression data results for the WT type sample
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Figure 2.12

Batch 2 time comparisons analysis expression data results for the ILK1 type sample
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CHAPTER III

METHODS FOR ANALYSIS OF SIGNALING NETWORKS FROM TIME SERIES DATA

USING WCGNA AND IGRAPH

3.1 Introduction

This chapter discusses the time series analysis of the gene network for the gene expression data.

These gene expression data were obtained by utilizing the RNA seq technology previously. The

reason to use RNA sequencing technology was to capture the Arabidopsis plants’ transcriptomic

response with reduced ILK1(Integrin Linked Kinases) expression and the Arabidopsis plants with

Wild-type mutants under two different environmental stress conditions and at four different time

frames. Firstly, gene correlation network analysis on gene expression data was carried out, then

modules or clusters in the DEG genes were identified. The data obtained by the correlation

analysis gave an insight into the co-expressed genes. The data then was used to construct a gene

co-expression network using genes as the nodes and their correlation as the edges. The goal was

to study the interaction pattern found in our genes at different time points and use this interaction

pattern for later analysis. After obtaining the preliminary results, different tools were utilized to

create and analyze the co-expressed network from gene expression data. The results obtained

could help study the pathway formed in the genes and help construct a network to find such

patterns. Weighted correlation network analysis (WGCNA) pulled the patterns or clusters in our

gene expression data set and found the hubbed genes on each of those clusters to accomplish this
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task. WGCNA (Weighted gene Correlation network analysis) is an R software package, has great

significance as it helps reduce high dimensional RNA seq gene expression data. It is also helpful

for integrating multi-scale data such as complex phenotype or traits of the gene expression data.

Originally it was developed to analyze the gene expression data and micro RNA data. In WGCNA,

highly correlated (highly interconnected genes) clusters are found using the hierarchical clustering

technique. The module eigengene is the first principle component of the module representing a

given module’s gene expression profile. It explains the highest proportion of variance among the

genes in a particular module. The research in this chapter performed statistical analysis using R

package WGCNA, which includes network construction, module detection, topological overlap

matrix construction of the gene expression data by deciding them into two different batches. Each

phenotype (Col0 and ILK1) was analyzed separately to find biologically interesting modules in

our gene expression data then Go enrichment analysis was performed on each set of our study.

Network analysis was completed to understand the gene expression data’s functionality on each

DEG set and form the gene regulatory network using the module-based analysis. In the later phase

of network analysis, igraph was used to visualize and analyze the network’s topology using igraph

and determine the network’s import features using igraph parameters. The data used for the network

construction using igraph was obtained from the previous step in WGCNA. The network analysis

using the igraph was divided into two different sections. The node-level or gene-level analysis as

each node in the graph/network represents a gene and network-level analysis, where we analyze the

entire network. Several other pieces of information were obtained from network analysis. Some

of them are identification hubbed genes obtained from node level analysis, pattern level analysis

48



such as community detection in the gene network, and strongly connected components in the genes

network are obtained from the entire network-level analysis.

3.2 Gene expression data preprocessing

The previous chapter studied the differentially expressed genes obtained by carrying out time-

series comparisons set analysis and genotypic comparison set analysis. The RNA seq data obtained

from Illumina HiSeq 2000 was then passed through a computational workflow to detect the DEG

genes received from the previous work using the computational workflowwas then loaded into R as

an R data frame for further correlation analysis. In this step, since the filtering of lowly expressed

genes using Edge R has already been performed, the normalized counts of the data were used to

complete the analysis. The analysis was carried out with the DEG genes. We used the normalized

value of the raw count’s data as the input for each part of the given study. WGCNA package was

used to determine the related modules found in each set of differentially expressed genes.

3.2.1 Adjacency Matrix

We know that a network is specified by an asymmetric matrix called the adjacency matrix,

determining whether the two genes are connected or not connected [41]. The =G= adjacency matrix

� = [0_8 9] is obtained from nxn similaritymatrix ( = [B8 9 ], whichmeasures the similarity between

the gene expression profiles across all the samples. Similarity matrix ( = [B8 9 ] is defined as the

absolute value of correlation between each pair of gene 88 and 9 9 . For example, the correlation

coefficient, Pearson correlation, could be used to find out the co-expression in a pair of genes in

our dataset. These correlation coefficients can be negative (for negative relation) and positive (for

positive correlation) for a pair of genes in our dataset. In this dissertation, the similarity matrix

49



consisting of correlation matrix is used. The baseline methodology is to study the interaction

between the genes. The similarity matrix is mathematically transformed into aWGCNA adjacency

matrixwhich obeys the scale-free topology [41]. The requirement here in this chapter is to construct

a scale-free network for gene expression data. The term weight properties refer to the network,

whether; it is weighted or unweighted. We can select the network to be signed or unsigned and

determine the interaction strength for a network. For a network whose entries are 0 or 1 for an

unweighted network, particularly specifies whether the two genes are connected or not connected.

A network whose entries are real numbers (in the case of a weighted network) determines the

strength of the connection between a pair of genes. We can also choose the signed network as the

graph property to account for negative and positive correlations. The aim was to find out genes

that are overexpressed for the network formation that makes up a module. This research used a

signed network strategy to account for both positive and negative correlations as these correlation

coefficients are transformed into the network. Additionally, in this project, Pearson correlation was

used to find the correlation between the genes for forming a similarity matrix. The relationship

between the adjacency matrix and similarity matrix is given as 0.5*(1+similarity matrix)sft. Here

sft is the soft threshold power taken from the Soft thresholding measure.

A Soft thresholding measure was used to choose the adjacency matrix power. There are few

factors to consider when selecting the power as this parameter defines the sensitivity and specificity

of the connection strength between two pairs of genes. The Scale-free topology method criterion

was used to choose the appropriate soft threshold. The task is to turn the WGCNA matrix into a

Topological OverlapMeasure (TOM) tominimize noise and spurious associations. The topological

overlap matrix is the measure of the strength of connectivity between the two nodes. It finds out
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how each gene is a topological overlap on all the other genes based on the common neighbors’

factor that each of these genes (nodes) shares [75]. In other words, if someone considers placing a

framework of the entire network, TOM is simply the co-occurrence between two nodes by factoring

in all the other nodes each is connected to. The equation 3.1 introduced in the paper [41] helps to

find the WGCNA adjacency matrix. Topological overlap matrix is given as:

F8 =

∑
D 0D80D 9 + 08 9

<8={ 9 8} + 1 − 08 9
(3.1)

Here  8 and  9 are the network connectivity of a node 8 and 9 , which is defined as the number of

direct connections with other nodes. D is a random neighbor node. For a pair of genes, the TOM

is high if the pair of genes have many shared neighbors, which in turn implies that genes similar

expression pattern [41]. To continue with the gene clustering, we need to find out the dissimilarity

matrix, which is given in the equation below

38 = 1 − F8 (3.2)

3.2.2 Gene Module detection and intermodular connectivity

After calculating the overlap matrix, the next step is module detection. In this reference, the

modules are the clusters of closely interconnected nodes. The clusters of closely interconnected

nodes, in this case, are the genes with high topological overlaps (collected from the TOM matrix).

The genes with a higher association are clustered together. High topological overlaps mean each

gene’s affinity with the other genes. These clusters are obtained using an unsupervised clustering

technique using theWGCNApackage. TheWGCNApackage performs average linkage hierarchical

clustering to get these clusters using the dissimilarity matrix obtained from Topological Overlap

Matrix [41]. The R function hclust is used to create a dendrogram using a hierarchical clustering
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tree then call the hierarchical clustering function. WGCNA detects the modules as branches and

cuts the dynamic tree to perform module identification. A cluster dendrogram is obtained of all

the genes. In some cases where the identified modules are way too high, further merging was

performed even after completing the initial clustering. The idea is to find out unique modules

whose expression profiles are very similar. Further identification and merging of the module

whose expression profiles are very similar was carried out. To carry out this process, WGCNA first

quantifies the co-expression similarity of the entire module. After that, it calculates the eigengenes

and clusters these eigengenes based on their correlation. Later the WGCNA, then merge the

modules with a similar expression profile. The resultant plots of the merged clusters obtained on

DEG genes using WGCNA functions are discussed later.

3.2.3 Network Analysis and visualization

This section covers the basics of importing, visualizing, and analyzing the network graph

obtained from WGCNA. The node represents the genes in the data, and the links between the

nodes represent the correlation between the pair of genes. The adjacency matrix is converted into

a network data frame for better visualization and analysis. Edges that had a correlation value lesser

than 0.5 were removed. A network data frame had three columns, one for the source node, one

for the target node, and one for the weight that contains the value of the correlation between the

genes in the source node and target node. In the network, the nodes’ color depicts the module’s

color, and the nodes’ size represents the node’s degree (number of links of the particular node).

The description of the degree of nodes is given in the next section.

In this section, the analysis have been divided into two parts:

1. Node and edge level analysis level analysis
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2. Entire network/graph level analysis

This kind of analysis is called network topology analysis and it depends on location of nodes.

In Node and edge level analysis, the node degree and centrality measures are discussed. The

centrality index of a graph [60] is calculated using a different methodology, the nodes on node

betweenness and closeness measures of nodes we realso analyzed. The critical property of a

node is the degree of nodes. In an undirected graph, the node degree is represented as the total

number of links. The following important metric for node-level analysis is all kinds of centrality

scores. Four different kinds of network centrality scores are studied. The first one is strength

centrality. The strength centrality or weighted degree centrality defines the sum of the weights of

all the given nodes [11]. The second one is the closeness centrality; the closeness centrality of

the node gives us an idea about how far the other nodes are from the particular node taken into

consideration [11]. In this context, the nodes/genes with higher closeness centrality signify the

nodes/genes that have a stronger correlation with all the nodes/genes. The third type is betweenness

centrality. The betweenness of a node is the number of the shortest paths between that particular

node and all the other nodes in that network [11]. The node with a high betweenness score

acts as the vital node/gene as it might have an enormous impact on the network if the particular

node is removed. The last one is Eigenvalue centrality; Eigenvector centrality is defined as the

principal eigenvector’s values for the network when represented as a matrix. Under this metric,

a node’s centrality score is proportional to its connections’ centrality scores [11]. The metrics

mentioned earlier as a histogram to study the distribution of nodes across different metrics have

been plotted. The entire network/graph level analysis found how the genes are grouped based

on the different topological parameters. The different metrics used here to study are finding the
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clusters of the network’s strongly connected components and communities. Strongly connected

components are the different subgraphs obtained from the original graph, which are topologically

strongly connected. For each pair of subgraphs, there is a common path that connects two subgraphs

distinctively. The process of finding this subgraph is based on either a depth-first search algorithm

or a breadth-first search algorithm. This method helps extract the subgraph and analyze the

individual subgraph as these genes in these subgraphs will have a similar value of correlations.

3.3 Results and Discussion

In this section, results were collected for all the sets of DEG genes are discussed. In this

type of time-series analysis, DEGs were collected for NaCl treated samples and then left joined

on normalized counts for all the genes obtained from the EdgeR results to get the normalized

counts of NaCl treated DEG genes’. In total, twenty-four samples were included with subtypes in

coexpression analysis, each for each treatment. DEG gene expression data for 418 DEGs for NaCl

treated samples were used. So, the expression data for the first set of analyses had 418 rows and

24 columns. Similarly, for the second set of time-series analyses, DEGs for flg22 treated samples

were collected and then left joined on normalized counts for all the EdgeR results’ genes to get

the normalized flg22 treated DEG genes’. DEG gene expression data for 1036 DEGs for flg22

treated samples were used. So, the expression data for the first set of analyses had 1036 rows and

24 columns.

figure 3.2 on page 56 and figure 3.1 on the next page shows the cluster dendrogram created

by the average linkage hierarchical clustering for NaCl treated samples and flg22 treated samples

respectiely.
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Figure 3.1

Cluster dendrogram created by the average linkage hierarchical clustering for NaCl treatment

Gene and samples were checked for missing values. Next, using average linkage hierarchical

clustering, sample outliers are detected. After standardization, no samples were found to be an

outlier in any of our analysis sets, So no samples were removed in the analysis. Using the scale-free

topology criterion, the threshold power was chosen. To validate the choice of scale-free topology,

one must check the '2 value and the mean number of connections k. After analyzing several plots,

a value of 20 was chosen as the threshold power for analysis data that belongs to NaCl treatment

and 7 for analysis data that belongs to flg22 treatment. figure 3.3 on page 60 and figure 3.4 on

page 61 shows the igraph network visualization NaCl treated samples and flg22 treated samples

respectiely.
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Figure 3.2

Cluster dendrogram created by the average linkage hierarchical clustering for flg22 treatment

figure 3.5 on page 62 and figure 3.6 on page 62 show the igraph node degree comparisons

between NaCl treated samples and flg22 treated samples, respectively. In the figures, one can see

the different metrics’ histograms across all the nodes. From these distributions, we get an idea

about the density of connection in our network. The histogram representing the degree of node and

strength centrality depicts the connectivity pattern. By looking at the distribution of betweenness

centrality scores, one can determine how centralized a network is. It can be seen from the plots

for the DEG gene data for flg22 treated samples and DEG gene data for NaCl treated samples that

there are many nodes/genes with low closeness centrality and very few nodes with high closeness

centrality; this depicts that the network is highly centralized.

In the next step, hubbed genes were determined, basically the highly importing genes in the

topological network. To obtain hubbed genes, the gene with the degree of nodes more significant
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Table 3.1

Top Hubbed genes in NaCl treated samples

Cluster module NaCl treated Samples
blue AT1G22370
brown AT2G19970
green AT3G06530

turquoise AT5G03210
yellow AT3G10910

than 30, an eigenvalue centrality scores greater than 0.8, and a strength centrality score greater

than 20 in NaCl treated Samples were extracted. Similarly, in flg22 treated samples, the gene with

degree of nodes greater than 80, an eigenvalue centrality score greater than 0.8, and a strength

centrality score greater than 60 were extracted. table 3.1 and table 3.2 on the next page show the

topped hubbed genes obtained for NaCl treated sample and Flg22 treated sample, respectively.

3.3.1 Final Analysis

The final analysis found that genes that were differentially expressed in ilk1-1 post-flg22

treatment were associated with the cell wall synthesis, plasma membrane interface, microtubule

cytoskeleton, and plant immunity. The resulting analysis is reported in figure 3.7 on page 63.

The analysis found that around thirty DEGs linked to cell wall biosynthesis and modification,

around 20 DEGs encoding anchored membrane proteins, 18 immune response DEGs, and 13

microtubule-associated DEGs had the defective regulation ilk1-1 line [20]. Signaling components

and response genes mediated by defense hormones abscisic acid (ABA), jasmonic acid (JA), and

salicylic acid (SA), and the growth hormone auxin were also found to be overrepresented among

ilk1-1 DEGs. These resultant genes included most of the upregulated expression levels at 0
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Table 3.2

Top Hubbed genes in flg22 treated samples

Cluster module flg22 treated Samples
black AT3G12580
blue AT2G18690
brown AT1G74070
magenta AT5G15950
pink AT4G23430
purple AT2G25900
red AT5G66270

and 12 h post-treatment with flg22 [20]. DEGs were classified functionally using gene ontology

(GO) terms using Araport annotations and Panther Gene Ontology (http://pantherdb.org/) tools.

figure 3.8 on page 64 shows the result of Functional annotation clustering and enrichment analysis

of the repressed and upregulated DEGs in ilk1-1 in the Arabidopsis genome, performed with the

GeneOntology Panther tool. figure 3.9 on page 65 shows the Gene Ontology (GO) term clusters

of DEGs with high enrichment scores. In both the figures, figure 3.8 on page 64 and figure 3.9 on

page 65 repressed DEGs are blue, and upregulated DEGs are yellow.

3.4 Conclusion

In this chapter, the correlation pattern in our DEGs dataset was found using correlation analysis.

This correlation pattern was analyzed using hierarchical clustering. From the hierarchical cluster-

ing, there were several modules/clusters extracted and further subjected to downstream analysis.

From the downstream analysis, the downstream analysis of modules/ clusters results performed

on DEGs, some genes were found to be linked to cell wall biosynthesis and modification. In the

ILK1 type mutant, some genes were found to be responsible for many other biological processes.
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The graphical analysis using the igraph package provided a brief overview of the topological struc-

ture of pairwise gene correlation. Through the topological analysis, different interaction patterns

within the DEGs could be studied. Through the topological structure analysis, genes based on high

interactiveness parameters were extracted.
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Figure 3.3

Igraph network visualization for NaCl treated samples
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Figure 3.4

Igraph network visualization for flg22 treated samples
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Figure 3.5

Node degree comparison for NaCl treated samples

Figure 3.6

Node degree comparison for flg22 treated samples
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Figure 3.7

Heat map dendrograms of differentially expressed genes (DEGs) in ilk1-1 clustered according to
expression (logarithm of fold-change, logFC) values in controls and at 3, 6- and 12-hours

post-treatment (hpt) with flg22. Color scheme: blue: downregulated, and yellow: upregulated
DEGs.
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CHAPTER IV

NETSEEKR: A NETWORK ANALYSIS PIPELINE FOR RNASEQ TIME SERIES DATA

4.1 Introduction

The core software pipeline presented in this chapter performs alignment of reads, differential

gene expression analysis, gene ontology enrichment analysis, and network analysis of differentially

expressed genes. It includes various parameter setups and exemplifies two different methodologies

for differential gene expression analysis along with the pipeline. The input of the pipeline are

sets of files containing raw reads from the high throughput sequencing step. These reads were

previously processed with quality control and trimmed using Trimmomatic [10] software.

The first step of the pipeline is to align processed reads to genome positions using the gene

annotation file. NetSeekR currently implements two read mapping tools, STAR, and Kallisto,

to allow comparative transcript quantification evaluation. The next step in the pipeline is the

identification of differentially expressed genes.

The data obtained in the previous step is a subset for mapping counts data to conditions, loaded

into an R data frame, and converted into matrix format. Two options are available at this stage of the

pipeline edgeR [58], and Sleuth [52] offering two options for gene expression modeling, comple-

mentary methods for identification of differentially expressed genes, and multiple methods for data

normalization and visualization. Both software tools implement statistical methodologies for car-
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rying out various operations on gene counts data such as filtering, normalization, multidimensional

plotting, and clustering.

The next stage of the pipeline aims to use statistical tools to predict gene networks and to

compute functional overrepresentation of differentially expressed genes obtained in the previous

step. There are currently included two methods to create and analyze correlated gene expression

networks and to infer regulatory networks. Gene network analysis aims to identify pathways

associated with the experimental treatment by mining differential gene expression patterns. To

accomplish this task, Weighted Correlation Network Analysis (WGCNA) [41] was used to identify

patterns or clusters in gene expression data and the Dynamic Regulatory Events Miner (DREM)

[61] to identify regulatory patterns that drive the observed gene expression. The NetSeekR pipeline

uses the WGCNA package’s functionality to perform network construction, module detection, and

topological overlap matrix construction of gene expression.

The pipeline’s output can be used to find out biologically interesting modules by correlating

gene expression changes with phenotype changes when provided by the experimental design. The

pipeline also uses GO enrichment analysis to mine the functionality of gene expression data on

selected sets of genes identified in The analysis. The pipeline implements DREM to infer regulatory

networks from time series of gene expression or series of treatments and/or genotype variation

data. Finally, the igraph [15] R packages are used to conduct network analysis on the differentially

expressed gene (DEG) networks using custom scripts for mapping overlapping nodes between DEG

sets and gene networks from public data sources and for visualization of network analyses results.

The pipeline processing begins by reading several arguments from a configuration file and

making a directory tree to store data. Arguments to the pipeline include a string specifying the
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analysis type, covariates to account for differential testing, a path to a differential gene expression

sample comparison matrix (DGECM), a path to an experimental design matrix on which DGECM

is based, parameters for differential gene expression analysis (a significance level for statistical

testing of differential gene expression), a path to a directory containing raw read sequences, a

path to a selected output directory, a path to a reference genome, and Boolean flags for specifying

whether to implement Kallisto or STAR pipelines or both. The directory tree is structured. The

current working directory is the top-most node, with subdirectories within the tree for DREM,

edgeR, Kallisto, network analysis, Sleuth, and WGCNA data.

The first two steps of the pipeline consist of building a transcriptome index and quantifying

reads. Both STAR and Kallisto operations are executed from the R environment through the Linux

terminal by passing a bash script assembled from arguments. Arguments are passed to NetSeekR

from the configuration file to match the type of pipeline (STAR or Kallisto) being executed. The

R-implemented bash scripts for index-building operations use a genome annotation file reference

in the configuration file (using the path as an input argument) to generate the transcriptome index

for Kallisto/STAR in the specified data storage directory created in the directory tree.

The read quantification step is also directed to the Linux terminal from within the R code.

The quantification commands sent to the terminal are concatenated together in a bash script using

variables given to the configuration file’s function. The bash script for running the STAR/Kallisto

quantification method is called from within the R environment. The STAR/Kallisto quantification

method creates a directory for each sample quantified with directory names derived from sample

identifiers. Arguments to the command include: the shell script name, the read data directory path,
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the path to the Kallisto or STAR index file, three digits (used for manipulating the read data file

names), a directory path for storing quantification results and the log file directory path.

Running a bash script from within the R environment has the advantage that large datasets

(mRNA sequencing read data files) do not need to be loaded into R’s memory, saving time and

avoiding memory size issues. The bash script iterates over all mRNA sample datasets in the order

in which they appear in the directory and compares their orientation. Quantification data and the

design matrix are accessed in the next step for differential gene expression (DGE) computation.

The experimental design matrix (DM) is a file that consists of paths to samples and respective

characteristics defined in the experimental design before sequencing.

The experimental design file is string-processed to provide a dataset with references to DGE

software variables to use. The design matrix used as input has to conform to a specified format and

be edited with a file editing program. The DM is used in tandem with the DGECM supplied to the

pipeline; the DGECMgroups together the DM samples to be compared when testing for differential

gene expression. The DGECM columns are combined in the R code row-wise with a ’logical or’

string between each sample identifier to select test samples. The number of rows in the DGECM

corresponds to the total number of sample comparisons in the analysis, each row corresponding to

one comparison instance. The cells contain sample identifiers matching the samples described in

the experimental design file.

The last component of the pipeline is a network analysis of the data. This involves processing

WGCNA input (differentially expressed genes obtained from edgeR/Sleuth and their estimated

expression values) to generate correlation networks. Next, GO enrichment analysis is carried out

on the same set of rearranged data using topGo software [4]. The last step is network construction
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and visualization using igraph. The pipeline workflow is shown in figure 4.1 on page 81 [28]. The

details of pipeline implementation are explained in the next sections.

4.1.1 Reads mapping and differentially gene expression analysis

This section explains the reads mapping and differentially gene expression analysis using two

different methods; in the first method, reads mapping through STAR was performed and then the

data was analyzed through EdgeR, while in the second method, reads mapping was performed

through Kallisto and then the data was analyzed through Sleuth.

4.1.1.1 STAR and edgeR

The pipeline implementation uses STAR aligner software to carry out the read alignment of

RNASeq time series data. The STAR aligner’s input consists of the reference genome and the

annotation file that need to be downloaded or accessed from public databases using tools such

as biomaRt [23]. STAR alignment consists of two steps: 1) generating genome indexing from

target genome annotation files and 2) alignment of reads in FASTAQ files using genome indexing

information. After mapping the FASTAQfile to the reference genome, STAR stores the result of the

alignment file in a SAM or BAM format [42] in the pipeline-specified directories. FeatureCounts

software [43] summarizes the reads counts mapped from the RNA sequencing files in the previous

task. Next, the workflow uses an edgeR pipeline for differential gene expression analysis. The

RNA -seq pipeline uses various statistical methodologies available in this package for carrying

out filtering, normalization, multidimensional plotting, identification of genes with significant

expression changes, clustering, etc. A typical processing in edgeR includes the following steps:

1) loading the data as an R dataframe and then combine into a matrix where each cell in a matrix
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represents the count of the number of the reads for a particular gene; 2) scaling and normalization

of counts per million (CPM) and Log counts per million (Log-CPM) data; 3) filtering out the

genes that are not expressed; 4) removing any data artifacts or batch effect in the using robust

normalization of the data ( edgeR trimmed mean of M-value (TMM) method normalization); 5)

creating a DGEList object to hold the read counts that remains after the filtering; 6) plotting

multidimensional scaling plots to perform the analysis the inter-sample relationships; 7) setting

up the model by taking the DGEList object and the groups and formed the design matrix; 8)

using voom to perform additional data normalization to remove batch effect and other processing

biases; 9) forming the contrast matrix for the analysis of the comparison of interest; 10) fitting the

model data - this step is carried out using Limma function lmfit and contrast.fit for contrast matrix;

empirical Bayes moderation can be applied to contrast matrix; 11) using treat method of Treat

function provided by Limma package [57] to set log-FC value requirements. The treat method

allows to set decisions based on p-value results from the empirical Bayes moderator t-statistics

and the target log-FC threshold; and 12) examining differentially expressed data partitioned into

upregulated and downregulated genes and storing them in “.csv” files for each of comparison;

generating the mean difference plot to study the upregulated and downregulated genes.

4.1.1.2 Kallisto and Sleuth

Kallisto is a command-line tool used for quantifying transcript abundances by pseudo-alignment.

AnR script was designed to pseudo-align, usingKallisto, batches of trimmedmRNA reads (accord-

ing to the sample processing configuration file), and test, using Sleuth, for differentially expressed

genes. The pipeline script uses as input a reference genome annotation file and the mRNA read
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datasets. Three other input files are also necessary: one file containing an edited design matrix,

another with arguments to the pipeline, and the third indicating sample comparisons to make when

testing potential differentially expressed genes. Genome annotation files can be imputed either

through the biomaRt R package or provided as input after download from a public database. One

downside to the biomaRt gene extraction method is that some annotations might not be up to date

(i.e., for A. thaliana currently, only the TAIR10 annotation is available, and not Araport11 [13]).

One advantage of using biomaRt is that annotations are available for each gene so that descriptions

can be returned in the differential expression analysis alongside each gene’s statistics. To perform

differential gene expression analysis, Sleuth is programmed to iterate over the comparison sets

specified in the DGECM file. Sleuth provides both transcripts- and gene-level differential gene

expression analysis functionality. A Boolean flag is written in the arguments to specify the analysis

level. The code captures each of three cases: transcript-level, gene-level, or both. Gene-level

analysis requires an additional dataset with transcript identifiers mapped to corresponding gene

names. Alternatively, Kallisto count data can be analyzed in edgeR after a data transformation

involving gene isoform removal.

4.1.2 Network inference

This section explains the different methods used for inferring gene regulatory and gene cor-

relation networks.The WGCNA package was used and performed analysis on the differentially

expressed genes obtained from the previous step to obtain a gene correlation network. The

TF(Transcriptional Factor) gene interaction data was obtained from DREM to obtain a gene regu-

latory network and performed the DREM analysis on the DEG genes.
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4.1.2.1 Gene Correlation Networks Analysis

NetSeekR implements statistical network analysis usingWGCNA, including network construc-

tion, module detection, and topological overlap matrix construction of the gene expression data.

WGCNA is an R software package used to infer gene networks from transcriptomics data by

applying topological constraints derived from complex networks’ statistical analysis. It includes

additional methods for integration of phenotype or traits data with the gene expression data. In

WGCNA, highly correlated gene clusters called modules are identified using a hierarchical clus-

tering technique. Module eigengenes was also computed which is the first principle component

representing a given module’s gene expression profile, and assessed the proportion of variance

among the genes in a particular module. In the NetSeekR pipeline, a data preprocessing step was

performed consisting of filtering of lowly expressed genes from the output of Sleuth/edgeR. The

genes with an excessive number of missing samples was also filtered out to carry out further analy-

sis. Then one can visualize the clustering of the samples using an Euclidean distance measure. The

gene correlation network is specified by the adjacency matrix obtained from a similarity matrix that

measures the similarity between the gene expression profiles across all the samples. The similarity

matrix contains the absolute value of the correlation between series of expression data for each pair

of genes in the dataset. These series for large-scale experimental designs was constructed to span

time points, treatments, conditions, genotypes, etc. Pearson correlation was used to calculate the

similarity of pairs of genes in the dataset. An adjacency function transforms the similarity matrix

containing co-expression similarities into the adjacency matrix containing connection strengths. A

typical choice is biweight midcorrelation (bicor), as it is more robust and less susceptible to outliers

while capturing monotonic relations between genes. Soft thresholding measure was used to set
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the adjacency matrix power. The implementation uses the pickSoftthreshold function to analyze

network topology to select the appropriate soft threshold. Next, the Topological Overlap Matrix

(TOM), a measure of connectivity strength between the two nodes based on common neighbors’

overlap, is computed. After calculating the overlap matrix, the next step is module detection.

The Modules are the clusters of closely interconnected nodes, which are genes with high

topological overlaps obtained using the unsupervised clustering technique provided by theWGCNA

package. The pipeline performs average linkage hierarchical clustering using the dissimilarity

matrix obtained from Topological Overlap Matrix. A cluster dendrogram of all the genes was

obtained using the R function hclust.In the cluster dendrogram, the modules are detected as

branches, and dynamic tree cut is used to perform module identification. A further step is the

reduction of the number of modules that resulted after clustering. First the co-expression similarity

of modules was quantified by calculating the eigengenes and clustering them based on their

correlation. Then the modules with a similar expression profile were merged. For module display,

the TOM plot was used, which summarizes the co-expression network, showing the dissimilarity

matrix’s values.

4.1.2.2 Gene Regulatory Networks (GRN) analysis

To infer GRNs, count data was used from the read mapping pipelines as input for DREM.

First, a dataset rearrangement was performed that ensures the data series structure associates with

the GRN analysis design (typically series span time points and/or treatments). Networks are

graphed for differential expression gene sets to show overlap between an input network (default

is the DREM input network) and the differentially expressed genes; mean read counts per gene
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are also represented. Count data from the pseudo-alignment performed by STAR/Kallisto is

used to produce DREM input data. If needed, reads for multiple gene models are aggregated

together by summing count data for each gene. Aggregated gene quantification sets are saved

to unique files based on sample identifiers in a data directory (from the directory tree). A data

transformation is implemented on the edited quantification data (aggregate read counts) such that

read counts are arranged in a time series format for each condition and each replicate. The time

series rearrangement results are stored in uniquely named files in a directory to be accessed by

DREM.

DREM is executed for each dataset corresponding to a time series for a genotype, condition,

and technical replicate. Time series datasets discussed prior are accessed iteratively for analysis;

the argument defaults file provided by DREM2.0 (defaults.txt) is edited in the R code by inserting

paths to the time series datasets proper cells, accounting for technical replicates. All arguments

to DREM other than those used for iterating over time-series datasets need to be specified in the

default template file prior to running the pipeline. NetSeekR calls an instance of the DREM GUI

for each genotype, condition, and technical replicate dataset. Files generated for DREM input

should be used in the DREMGUI. Gene tables for each path should be saved, once DREM finishes

executing, to the DREM analysis-specific directory with a literal ‘path’ string to be extracted in

network analysis.

4.1.3 Gene Ontology Enrichment Analysis

After identifying the WGCNA modules, the GO enrichment analysis was performed for each

of the modules obtained in the analysis from DEG sets. The aim is to identify significantly
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overrepresented gene categories and biological processes associated with the treatment performed

in experimental design. Since the GO package included with WGCNA (anRichment [20]) does

not provide support for many genomes (including plant genomes), the package topGO [4] was

additionally added to perform this analysis. Using topGO, overrepresentation of GO terms was

tested.

4.1.4 Network analysis

Further network analysis is provided using the igraph R package. One network analysis method

consists of searching for overlapping nodes between differential gene expression sets and an existing

gene network from public data sources. For example, such a network file is provided by DREM for

six organisms. Other networks can be obtained from public databases such as: GeneMania [72],

IntAct [32], STRING [66] and KEGG [30]. Further, count data derived from Kallisto or STAR

results can be used to visualize average counts per gene with regard to the replicates belonging to

each differential gene expression comparison set. Beta coefficients from Sleuth or log-fold changes

from edgeR can also be visualized per gene in each extracted network. The processing of input

files proceeds with reducing multiple sources and multiple targets (gene identifiers) to generate

unique edges. Initially, edges in the network file may contain multiple unique and non-unique gene

nodes. The reduction ensures edges are unique, leaving one edge per row in the dataset. DEG

gene sets are then overlapped with nodes in the provided network, generating sets of differentially

expressed nodes in each comparison set. Read counts of DEG genes are represented over each

DEG network, and per gene, statistics are computed. Overlapping nodes are visualized in graphs

where positive or negative beta coefficients are represented as distinct shapes, estimated counts
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are represented as size, and beta coefficients (scaled to a range from 0 to 1) are represented by

shape opaqueness. When using input from Sleuth, beta coefficients for multiple gene isoforms are

averaged; alternatively, Sleuth analysis can be performed for genes instead of gene models. EdgeR

analysis produces log-fold-change information that can be visualized of the target networks using

this package.

Metrics can be collected to characterize network structures and to provide insight into key

pathways associated with the experimental treatment. Node degree, centrality, shortest pathways,

diameter, clustering coefficient, etc., can be calculated on differential gene expression graphs. To

illustrate these capabilities, a method to generate networks of differentially expressed genes have

been implemented to identify the hub genes of each comparison set. The node centrality score

was calculated for all the clusters and identified the hub genes. The hub genes were obtained

from each cluster to find top genes from the network. The top genes list was then intersected

with the most significant GO enrichment genes calculated using Kolmogorov-Smirnov testing in

the topGO package. To visualize network information, The module information obtained from

WGCNA (cluster membership information of each gene) were incorporated and combined it with

the nodes(genes) data of the network data frame, assigning each node the color of the module

to which that particular gene belonged to. The functions implemented by NetSeekR are briefly

described in table 4.1 on page 82.

4.2 Results and Discussion

NetSeekR allows integrated management of the RNASeq tools, comparative analysis of gene

expression implemented using multiple pipelines, and network analysis. It can provide support
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for sample comparison using PCA and MDS analyses, comparative analysis of DEG gene sets

using UpSetR [25], visualization and analysis of gene correlation networks, and visualization and

analysis of gene regulatory networks. In figure 4.2 on page 86 [28] visualization capabilities related

to network analysis were enumerated for an experimental design that includes time-series data of

four selected time points, two stress factors, and two genotypes. Comparisons on statistics of gene

expression estimates between a spliced read aligner and a pseudo-aligner can be used to understand

the dynamics of gene expression better. The PCA and MDS plots show the sample correlation

and its dynamics as a function of treatment and genotype as calculated with STAR-edgeR (SE)

and Kallisto-Sleuth (KS) pipelines, respectively (a sample PCA plot is shown in figure 4.2 on

page 86.A) [28]. The upset analysis allows DEG comparison between the SE and KS pipelines

(figure 4.2 on page 86.B) [28].

Next, the construction of correlation networks was performed to analyze the dynamics of dif-

ferentially expressed genes and correlate this dynamic with observed phenotypes. Parametrization

of WGCNA controls the scale-free topology constraints that shape the structure of the correla-

tion network. Also, network constraints derived from publicly available interactome data can be

superimposed to the resulting topology using network analysis software.

A network analysis function implemented in NetSeekR builds network structures from the

correlation of differentially expressed genes calculated in WGCNA.

figure 4.2 on page 86.C shows the network constructed for differentially expressed genes for two

WGCNA modules (defined by the respective colors) with node sizes proportional to their degree.

The package includes a regulatory network analysis function as well. In this function, results

from the WGCNA and DREM analysis were combined to build regulatory bipartite graphs of
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significant Transcriptional Factor (TF) - gene interactions in the analyzed data. The modules

obtained in the previous step in the WGCNA analysis were taken as input along with the lists

of significant genes for each comparison set we use from the EdgeR/Sleuth output files. The

significant genes were filtered out based on the p-value. TFs from AtTFDB from the Arabidopsis

Gene Regulatory Information Server (AGRIS) [26] database were identified. AtTFDB contains

information on approximately 1,770 transcription factors (TFs) grouped into 50 families based

on conserved domains. This output was then aaded to the DREM output containing the list of

regulatory TFs in the data. This data was then converted into an incident matrix which was then

use to build a bipartite graph where one set is the list of TFs and the other the list of genes that

those TFs are regulating (figure 4.2 on page 86.D).

The NetSeekR pipeline also provides integration with several GO analysis R packages that can

be used for assessing overexpression of differentially expressed genes, clusters/modules of genes

with correlated gene expression, or performing GO analysis of other combinations of gene sets

obtained from the pipeline.

4.3 Conclusion

NetSeekR, a new integrated pipeline for large-scale experimental designs that include RNASeq

time-series observations of gene expression dynamics of multiple treatments and multiple geno-

types was designed. The pipeline vertically integrates several reads mapping and analysis tools

with regulatory and correlation network tools and provides additional network analysis, perfor-

mance analysis, and network visualization. The methodology takes advantage of the increasing

availability of efficient data analysis pipelines to generate a flexible integration of genomics analysis
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tools from reads mapping to gene network analysis. This integration allows the rapid design of

gene expression analyses, easy comparison of several pipelines (using reads alignment and pseudo-

alignment), differential gene expression analysis, network analysis, facilitating genomics discovery

from large-scale NGS data. The pipeline provides network prediction and analysis capabilities by

integrating the inference of regulatory and correlation networks with network structure analysis

and visualization tools. In this way, the pipeline bridges genomics data analysis results to systems

biology modeling and simulation.
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Figure 4.1

Workflow of the NetSeekR pipeline
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Table 4.1

Brief description of functions implemented in NetSeekR

Function_name Description

implement_alignment

Extract all arguments from the configuration
file, decide which pipeline to run, assemble
arguments for each decided pipeline,
and implement each decided pipeline.

extract_pipeline_input_from_configuration Convert arguments from configuration file
into a named list data structure.

decide_alignment_tool Determine which pipeline(s) to execute and
write directory trees for each tool chosen.

write_kallisto_directory_tree Create directory tree for Kallisto results.
write_STAR_directory_tree Create directory tree for STAR results.

assemble_alignment_arguments
Subset arguments particular to an alignment
tool and ensure proper command formatting to
execute.

align_tool_bool Check for tool existence in the decision data
structure.

subset_tool_arguments
Subset tool arguments from the decision
data structure and pass them to tool-specific
command processing functions.

implement_kallisto Write bash scripts for Kallisto index building
and quantification, then execute them.

implement_STAR Write bash scripts for STAR index building
and mapping, then execute them.

implement_feature_counts Write bash script for feature counts to execute.

implement_differential_gene_expression

Extract alignment function output and execute
differential gene expression testing depending
on the upstream alignment or pseudo-alignment
software used.

split_and_unlist_conditions Separate covariates from list of conditions.

write_differential_testing_file_name Combine conditions from each sample
the comparison set to create a file name with.

implement_sleuth Run Sleuth on one sample the comparison
set at a time.

structure_covariates_for_DGE_testing Searches for conditions in the comparison sets
which vary in a column

82



Table 4.1

(continued)

Function_name Description

separate_conditions Separate condition column into multiple columns
based on the covariates.

select_sleuth_mode Determine at what level to run Sleuth: gene,
transcript, or both.

gene_level_analysis_data_structure Removes splicing notation from one quantification
file result to use for gene-level Sleuth analysis.

extract_single_testing_condition
Select a single covariate to test with by identifying
the condition column with varying contents across
samples.

transcript_prep Sleuth_prep implementation was specific to
transcript analysis.

gene_prep A Sleuth_prep implementation specific to gene
analysis.

run_sleuth_pca Plot PCA plots for a comparison.
save_sleuth_pca Save PCA plots for a comparison.
run_sleuth_fit Measurement error model fitting with Sleuth.
run_sleuth_lrt Perform likelihood ratio test.

extract_sleuth_lrt_results Extract Likelihood Ratio test results from a Sleuth
object.

save_sleuth_results Save LRT results to a file for a comparison set.

implement_edgeR Conduct differential testing on STAR mapped
reads with edgeR.

filter_counts_data Filter the lowly expressed genes for edgeR analysis.

edgeR_preliminary
Process input data for Edge R analysis followed by
the analysis and set the directory where data has to
be saved.

implement_network_analysis
Performs the network visualization and finds out
hub genes in the network using Go enrichment
analysis also.

wgcna_input_data Takes the input data and convert it into differentially
expressed expression data for WGCNA analysis.
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Table 4.1

(continued)

Function_name Description

counts_keep
Load the count data into the environment
using decisions from which count data type
is being sourced.

filter_counts_data Filter the lowly expressed genes from the data
obtained from feature counts.

reset_splice_variants Remove splice variant notation.
wgcna_data_processing Preprocess the input data for WGCNA.

differentially_expressed_genes_keep
Find the count data of differentially expressed
genes from TSV files of edgeR/Sleuth results
regardless of which tool was used.

extract_comparison Find the comparison file name and remove .tsv
string pattern

read_and_filter Reads the data from Sleuth/edgeR and
filters out the differentially expressed genes.

wgcna_plot_sample_tree Plot to find any outlier sample in the
data for all the comparisons.

hclust_distance_matrix Find the distance matrix to perform clustering
plot_sample_tree Plot to find any outlier sample in the data.

wgcna_plot_power_results Histogram plot to analyze and choose correct
power value for all the comparisons.

plot_power_results Histogram plot to analyze and choose
correct power value.

wgcna_plot_power_histogram Plot to choose the correct power from
scale free topology for all the comparisons.

plot_power_histogram Plot to choose the correct power from scale
free topology.

wgcna_clustering Perform clustering and saves result in their
respective directory.

clustering Perform clustering and produces gene dendrogram
on the data.

implement_GO_enrichment Checks the DEG data on which GO analysis to be
performed and performs GO analysis.

enrichment Test and performs GO analysis for significantly
enriched genes in the deg gene sets.
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Table 4.1

(continued)

Function_name Description

extract_filename_go Extracts the comparison set for which GO enrichment
and network analysis to be performed.

post_process_GO_results Associate file names with GO results.
DREM_main Extract required data for executing DREM.
load_read_data Load count data.
rearrange_count_data Create data sets formatted for DREM.
write_DREM_time_series_data Write DREM-formatted data sets to files.
write_default_files Create DREM configuration file and write data.
insert_DREM_input_to_defaults Create default files to execute DREM for samples.
write_new_default_file_name Create a file name to write DREM defaults script.
mapping_network_analysis Apply network analysis to each comparison dataset.

network_analysis Finds the network of differentially expressed genes
and collect the hub genes of each comparison.
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Figure 4.2

A) PCA plot from Sleuth analysis of time-series of RNASeq data; B) UpSetR comparison of time
series of RNASeq data; C) Dendrogram from WGCNA analysis of time series of RNASeq data;

D) DREM analysis of time series of RNASeq data.
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CHAPTER V

METHODS FOR INFERENCE IN GENE REGULATORY NETWORK USING LOOPY

BELIEF PROPAGATION ALGORITHM

5.1 Introduction

Probabilistic graphical modeling is a statistical modeling technique that captures the conditional

independence and dependency between random variables in the graph. It describes a probabilistic

model using a graph structure. Graphical manipulations can be used to express the complex

computations that require inference and learning [71]. One of the significant applications of

probabilistic graphical modeling is its use in image denoising and image segmentation. This

chapter proposes a probabilistic graphical model for gene regulatory networks. The modeling

technique proposed here involves the representation of the data in the form of a graph. In this

chapter, an undirected factor graph is constructed out of a gene regulatory network with the data

obtained from the public database. The interaction parameters used in the graph were obtained

from the correlationmeasures and read counts for the given set of genes. The loopy belief algorithm

was used to perform inference on the graphical model/graph. In the method used in the chapter,

the belief message-passing algorithm was used using the sum-product algorithm to determine each

variable node’s marginal probabilities/beliefs in a graph. The main task is to compute efficiently

marginal distribution of a single variable when all discrete other variables’ joint distribution or

energy function is already known. To accomplish the task, the Sum Product algorithm of the
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loopy belief propagation method was used. The gene regulatory network that was used here is

a Transcriptional-factor and gene interaction model. The data structure used in the graphical

modeling in this chapter was a factor graph. A factor graph is a bipartite probabilistic model with

two nodes: a factor node and a variable node. In this work, the variable nodes are all the genes

(TF and regulated genes), whereas the factor nodes are all the interaction parameters between a

gene and a Transcription factor. In this model, genes are considered variables, and the factors are

energy functions obtained from the correlations and counts gene expression data taken as the factor

node. A further description of implementing PGM and drawing inference on the graph using a

loopy belief algorithm is given in the next section.

5.2 Probabilistic graphical modeling

In a graphical model, a graph is denoted as � = (+, �) consists of set of nodes + and set of

edges � . Nodes are associated with the random variables so for each node 8 (8 ∈ +), let G8 denote

the random variables where 8 = 1, 2, 3....= [37]. The edges between the pair of nodes determine

the probabilistic interaction between the two nodes. There are two types of graphical modeling

Directed Graphical Models (DGMs), or Bayesian Networks (BNs) and Undirected Graphical

Models (UGMs) or Markov Random Fields (MRFs) [37].

5.2.1 Bayesian Network representation

In the Bayesian network, the random variable G8 has an associated conditional probability

distribution associated with it. The representation of the Bayesian network is based on directed

cyclic or acyclic graph representation. A directed edge from a random variable G8 to another random

variable G 9 represents the conditional probability relation between the random variables [37]. The
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Figure 5.1

Bayesian Network

concept of causality defines the relationship between two random variables as one random variable

can be the cause of the second random variable. The variable that causes is called the parent node,

whereas the variable caused by any parent variable is called the child node. The Bayesian network

defines the independency rule such that the probability of the child node is in one of its states

depends directly on the state of its parent node. The figure 5.1 shown below represents an example

of how Bayesian network can be used in the causality method in gene networks. In the figure, for

the nodes which do not have any parent node, let’s define the probability as ?(�1) and ?(�2) for

GENE 1 and GENE 2, respectively. For nodes that are caused by their respective parent node are

given conditional probability as ?(�3 |�2, �1)

The over-all joint probability distribution for N such random variable can be defined as
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?1 (G1....G# ) =
∏

?(G8 |%0A (G8)) (5.1)

where %0A (G8) is the probability of the parent nodes.

5.2.2 Markov Random Fields and Loopy belief Propagation

Markov random field or Markov net is a category of undirected graphical models because the

edges are undirected in a Markov random field holds the node independence rule, which is given

as

∀8 ∈ +, -8 ⊥ -+−8 |-#8
(5.2)

here #8 = 9{8, 9} ∈ Y denotes the set of neighbor of node i in the graph � and -8 ⊥ - 9 |-:

means that for given -: ,-8 and - 9 are independent [37].

To parameterize the structure in the Markov network, factors are used. The parameterization in

the Markov network is used to integrate the graph nodes and edges with a set of parameters. It is is

done in the same way as associating conditional probability distribution in the Bayesian network;

but, the parameterization in the Markov network is not as intuitive as in the Bayesian network.

Factors in Markov Network may or may not correspond either to probabilities or conditional

probabilities.

5.2.3 Factor graph

In a Markov Random Field, to represent conditional dependency or independence between

two variables, a probability distribution parameterization method called factors is used to compute
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Figure 5.2

Factor graph

marginals probabilities. So to know the probability distribution function of all variables in a

probabilistic graphical model, one needs to use the technique to model the property in dependent

variable and their interaction parameters.

The factor graph represents a graphical model containing the variable node, the factor node.

Factor node usually determines the interaction between a pair of variable nodes or a set of nodes

by assigning a score to the joint probability distribution between the nodes.

For example, in a factor graph, given in figure 5.2 below, the representation of joint probability

between any two nodes, say B and D, can be done by assigning a score to the interaction between

these two nodes is q(�, �). The interaction between any two nodes or a set of nodes is called

factors.
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Similarly any other pair of nodes of the same graph can be taken and find the similar score

or factor, q(�, �), q(�,�),q(�,�) and etc. and then defining the probability as normalized

score(these scores could be any function) and take it as factor products:

?̃(�, �, �, �) = q(�, �)q(�,�)q(�,�)q(�,�) (5.3)

The final probability is then defined as

?(�, �, �, �) = 1
/
?̃(�, �, �, �) (5.4)

where / =
∑
�,�,�,� ?̃(�, �, �, �) is a normalizing constant that ensures that the distribution sums

to one.

5.2.3.1 Gibbs Distribution in a Factor graph

One way of understanding factorization technique much further is by defining the energy

parameters for all the possible assignment in the given space and then using the normalization

factor, this energy parameter is converted into probability functions. In some cases one could use

the maximal clique potential technique to find the factor graph.

Consider a joint probability distribution ?(G8 |H) where G8 = {G1, G2, . . . , G=}

?(G8 |H) =
∑
G1

. . .
∑
G=−1

∑
G=

?(G |H) (5.5)

for all discrete variable. So for variables G1, ....., G= in an undirected graph �, where nodes are

denoted as G8. According to Clifford theorem, the probability ?(G8) over all the variables of G8

could be converted in the form of cliques � in Graph �. � has the form q2 (G2) which denotes the

energy function of cliques. / is the normalization factor.
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/ =
∑
G1...G=

∏
2∈�

q2(G2) (5.6)

q2 (G2) denotes the clique’s potential function, which is a real-valued function.

5.2.4 Pairwise Markov Random field

This chapter introduces the concept of pairwise Markov Random fields. The transformation

of such a network into a cluster graph using the Gibbs sampling method is fairly straightforward.

Here, only the pairwise interaction is only taken into account. The energy function is calculated

for the pairwise interaction instead of using a clique of several nodes and calculating the energy

of those cliques. In the pairwise Markov random field, the concept of the Gibbs sampling method

makes sure that the interaction between a pair of nodes is uniform across all the edges of the

graph. The interaction between a pair of nodes is converted into an energy function, which is later

converted into an exponential function to complete the uniform distribution requirement. So the

energy of interaction is a function of a univariate potential/energy over each variable node G8 and

a pairwise potential over the pair of variables nodes that form an edge. Later the same principle

of the Gibbs sampling method is used over all the energy function calculated. In This chapter, the

interaction parameter between gene and Transcription Factor was defined using energy parameters

or cliques for the graph �. The gene-TF probabilistic model transformed into the energy functions

between two variables, a gene, and a TF. This kind of implementation is a form of Markov Random

field where the interaction parameter in the form of an exponential energy function transforms into

a factor between two variables. The equation for finding the energy of interaction between a pair

of nodes and then converting it into a form that follows the Gibbs sampling method is discussed
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in the next section. The final normalized interaction constraint between a pair of nodes can be

considered similar to joint probability distribution between a pair of nodes, giving us the idea of

the probability of interaction between a TF and gene node given the gene node.

5.3 Modelling gene regulatory network using factor graph

This section explains the modeling technique using Markov Random Fields and loopy belief

propagation to find the gene’s differential expression using gene expression data and a gene regu-

latory network. The gene expression data were obtained for flg22 treatment from feature counts.

The Agris database [16] [48] was used to find the TFs that regulate the genes. The energy function

has three parts; the first part corresponds to the univariate potential for each gene node G8. To find

the univariate potential, the probability of occurrence were found first for all the genes and TFs

based on the expression value of both the genes and the TFs. %6 corresponds to probability score

of a gene, %)� corresponds to the Probability of TF. =6 is the initial state of the expression value of

a gene with probability %6. =)� is the initial state of the expression value of a TF with probability

%)� . %) is the threshold z score that the user could set. ?) is used to make decision for the state

of =6 and =)� .It is taken from the prior knowledge based the up regulated genes, down regulated

genes and their corresponding probabilities.

1 − (%6 − 0.5)=6 (5.7)

The decision on initial state of =6 and =)� is taken as:
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BC0C4(=6) =



=6 = 1, if %6 > %)

=6 = −1, if ?6 < %)

=6 = 0, otherwise


The second part of the energy function corresponds to the interaction between the gene node

and the TF node. The correlations measure were taken between the normalized expression value of

gene and the normalized expression value of a TF to find the interaction with their states multiplied.

R defines how the TF acts on the target gene; whether it inhibits the gene, then it is -1 or activates

the genes, then it is +1. The term, 2>AA (=6 ∗ G6, =)� ∗ G)�) is obtained using Pearson correlation.

The second part of the energy function is given as

1 − ||2>AA (=6 ∗ G6, =)� ∗ ' ∗ G)�) | | (5.8)

The third and last part of energy function is the penalty term used to penalize the energy

function if it becomes too high and is dependent on state of gene,=6. The third part of energy

function uses <0G((=6)2,  ) as the term to penalize of the state of =6 used.  is constant kept at

0.05 for the modeling done in this chapter.

The final energy function is given as:

� (G) = 1 − (%6 − 0.5)=6 + 1 − ||2>AA (=6 ∗ G6, =)� ∗ ' ∗ G)�) | | + <0G((=6)2,  ) (5.9)

This energy parameter is converted to form of a joint probability distribution by using the

following equation

?(G) = 4G?(−� (G)) (5.10)
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The above probability distribution function is used in the factor graph to set the factor potential

between each pair of respective nodes. The following section described the mechanism to perform

the message passing in the factor graph.

5.4 Belief propagation in Gene-TF factor graphs

The graph was constructed using the igraph package. A factor data structure was formed using

the python class inheritance method to hold the probability density function data in the Factor

graph. The variable nodes were initialized with the parameter augmented from state. The energy

parameter between each gene pair was calculated using the equation 5.9. The energy parameter

was then converted to probability distribution between the pair of genes using the equation 5.10.

After obtaining the factor graph and initializing the graph with the initial set of parameters, the next

task is to propagate and receive the belief messages from one to all other nodes. The figure 5.3 on

the following page shows the message passing algorithm in Factor graph. In the figure the factor

node is marked as black nodes and gene node are marked as white nodes.

let G8 denote the variable node and #4(G8) denote the neighbors of variable node G8 (8 =

1, 2, 3....= for n number of variable nodes). Assuming 5 9 denote the factor node and #4( 5 9 )

denotes the neighbors of factor nodes ( 9 = 1, 2, 3....= for n number of factor nodes). To understand

the message passing algorithm, the message from a given variable node to a given factor node on

the edges (denoted by E) is defined as `G8→ 5 9∈� and from a given factor node to a given variable

node on the edges E as ` 5 9→G8∈� . The message passing in this chapter is bi-directional.Message

passing from gene node to transcriptional factor and from transcriptional factor to genes as a

feedback loop. The message passing uses sum product algorithm.
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Figure 5.3

Message passing in gene regulatory network

The first step of message passing is from the TF node to the gene node. The message is first

passed from the TF variable node to the factor node; it will follow the product rule. So, the product

of the message from all the neighboring factor nodes except the recipient factor node is taken. The

message passing is according to the equation (5.11).

`G8→ 5 9 =
∏

5:∈#4(G8)/ 5 9

` 5:→G8 (5.11)

The second phase of the message passing involves passing message from factor node to variable

gene node. In this part the sum rule is used. In this case, the product of the factors were taken with

the messages from all the other node except the variable node where the message has to be sent

and then take the summation of all of that neighboring node which doesn’t include the recipient

variable node. The equation for this message passing is given in equation (5.12).

` 58→G 9 =
∑

#4( 58)/G 9

( 58 (-)
∏

G:∈#4( 58)/G 9

`G:→ 58 (G: )) (5.12)
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Considering only working in the pairwise interaction model, so the summation term is of no

use as there will be only one factor for each pairwise interaction between a gene and a TF. So the

equation used will be given as in equation (5.13).

` 58→G 9 = 58 (-)
∏

G:∈#4( 58)/G 9

`G:→ 58 (G: ) (5.13)

One have to check whether each node has passed the message and also received the message.

so the message passing technique After the forward message passing is performed, the reverse

directional message passing is also checked to give the feedback message to each gene node. After

all the nodes have received the message (after passing through the number of iterations), One can

calculate the marginal probability distribution or beliefs at each variable gene node. This can be

done by simply normalizing the message received at each node and then calculating the beliefs

at each node. The normalized message or final belief message will be compared to the threshold

again, and the initial state =6 will be set accordingly. This message passing will continue until the

difference localized sum for beliefs for a subgraph in the entire network is too small.

After the multiple variables have received the message (after passing through number of

iterations), one can calculate the beliefs at each variable node by the formula given below:

1G8 (G8) =
∏

9∈#4(G8)
` 9→8 (G8) (5.14)

The belief messages 1G8 (G8) is then normalized 1G8 (G8) for all the variable nodes i.

5.4.1 Loopy belief propagation implementation

After obtaining the graph, the next step was to perform inference to identify the differential

expression of the genes in the dataset. The algorithm passing has three main steps: message
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initialization, message passing, message update.The initialization step uses the initial values of the

initialization obtained ?(G) for factor nodes and state(=6) for variable nodes. The message passing

step is conducted in the forwarding direction (from TF nodes to gene nodes) and feedback direction

(from gene nodes to the TF nodes). The message passing takes place in the form of dictionaries in

python. Each node is assigned an old dictionary variable <>;3 and a new dictionary <=4F. These

dictionaries are assigned a couple of key values: Start node and End Node. The start node and end

node specify the direction in which the message has to be passed. The old dictionary stores the

value of previous iterations, while the new dictionary stores the value at the current iteration. The

values in the dictionary keep on updating at each iteration. At initialization the old dictionaries of

all the nodes are initialized with the values at initialization while the new dictionaries are initialized

as zero. The description for the entire algorithm is given below.

1. Initialize the message at each node:

(a) Initialize <>;3 for Factor node using ?(G) and <>;3 for variable node using state of
genes/nodes.

(b) Initialize <=4F for each node (variable node and factor node) as zero.

2. Forward message passing algorithm and update:

(a) Update the <=4F of nodes where TF is the start node, and the corresponding factor
nodes are the end nodes. This is done by passing the message of the variable TF node
to the neighboring factor node using the product rule of the sum-product algorithm
given in equation (5.11) and using the values in<>;3 dictionaries for the corresponding
nodes used in message passing.

(b) Update the <=4F of nodes where factor node is the start node, and the corresponding
target gene nodes are the end nodes. This is done by passing themessage from the factor
nodes to the corresponding target gene node using the sum rule of the sum-product
algorithm given in equation (5.13) and using the values in <>;3 dictionaries for the
corresponding nodes used in message passing.

(c) Check for normalized belief for the message at each target node if it is connected to
other subsequent nodes; otherwise, if the target gene is a sink node, then the message
passed in the second step will only become the belief message for the target gene. The
belief at each target node is calculated using the given equation (5.14).
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The two step forward message passing example from the TF node to Factor node and then
from Factor node to the target gene node is shown in figure 5.4 on page 103.

3. Feedback message passing algorithm and update:

(a) Change the state =6 for target genes based on the message received by the target gene
in the second step of the forward message passing and compare it with the threshold.

(b) Update the <=4F of nodes where the target node is the start node, and the factor node is
the end node by changing the factor node’s potentials using the equation (5.10). This
is done because of the probability of interaction between gene and TF changes with
the change of state of the target gene. The message passed from the target gene node
to the corresponding neighboring factor nodes using the target gene state as a feedback
process.

(c) Update the <=4F of nodes where the factor node is the start node, and the TF node is
the end node based on the message received by the TF node as feedback. This is done
by taking the normalized product of all the messages received from the factor node
using the equation (5.14).

(d) Change the state =)� for target genes based on the message received by the TF gene in
the previous step and compare it with the threshold.

(e) For the next iteration, initialize the <>;3 dictionaries of all the nodes with the values
obtained in the <=4F dictionaries of the corresponding nodes. The message passing
continues until the beliefs have a very low difference in subsequent iterations.

(f) To check for convergence, the difference of the sum of the belief message received at
all the variable nodes at iteration C and C + 1. If the difference between the sum of the
belief messages is too small, The state at which the convergence takes place would be
the final state for the differential expression of the genes for the particular subgraph of
the network.

The two step feedback message passing example from the Target node to Factor node and then
from Factor node to the TF gene node is shown in figure 5.5 on page 104.

5.5 Results

The figure figure 5.6 on page 105shows a TF- gene interaction Markov network. This network

is obtained by using the probabilistic graphical modeling approach. The graph/network obtained

below is called the factor graph. To construct the graph, I borrowed some of the visualization

packages and functions from the repository [39]. The white circled nodes are the variable gene
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nodes that represent the genes or TF or both. The black circled nodes represent the factor nodes that

signify the joint probability distribution or the interaction parameter between each pair of TF gene

interaction nodes. After obtaining the graph, the data structure of the variable node was loaded

with the initial state and the factor node with the data structure that holds the interaction parameters

for each pair of nodes. The graph was then divided into several subgraphs. For each subgraph, the

corresponding start node and end node were checked to ensure correct message passing using the

igraph package. The algorithm for smaller subgraphs was run, and a level of convergence could

be reached by checking the local variables for convergence. However, the global parameter such

as the threshold probability value and the minimum convergence value needed to be appropriately

tuned to reach convergence. This is a great difficulty in this algorithm. However, the message

passing is sequentially, but the parallel processing for all the subgraphs simultaneously could also

be done to check for convergence with local variables. The parameter tuning must be checked

across all the subgraphs, and the global parameters need to be set at a particular variable. It aids in

the convergence of algorithms for all the subgraphs. The final state of the gene must be compared

to that obtained from the differential gene analysis done in the previous chapters.

5.6 Conclusion

This chapter used a data-driven approach to find local minima for the convergence at each TF

node. The algorithm requires a proper energy optimization technique to find the local minima

for each TFs. The biggest challenge in setting up the energy equation is finding whether the

energy parameters converge to a global minimum. Interestingly, the TF that acts upon a gene can

also become a gene and be controlled by a different TF; there were several loops obtain in the
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network. Many other energy optimization methods could be used to find the global minima for

the belief message passing. Even though the algorithm proposed in the chapter works on finding

a local minima for each TF node, it could be used to find the expression of a set of the gene. The

differential expression of these sets of genes could be used for further downstream analysis.
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Figure 5.4

Forward Message Passing: (a) Forward Message passing from TF node to Factor node using
product rule of Sum Product Algorithm. (b) Forward message passing from Factor node to target

gene node using sum rule of Sum Product Algorithm.
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Figure 5.5

Feedback Message Passing: (a) Feedback Message passing from Target node to Factor node is
calculated using the energy update. (b) Feedback message passing from Factor node to TF gene

node is computed using belief message normalization
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Figure 5.6

Sample Markov random field obtained for Arabidopsis samples treated with flg22 treatment
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CHAPTER VI

CONCLUSIONS

6.1 Summary

This dissertation uses advances in bioinformatics tools used in RNA sequencing technology as

a practical methodology for mining and analyzing genomics data. We also used machine learning

and probabilistic graph modeling algorithms to study gene networks and draw inferences from

the data. This dissertation studied Arabidopsis plants treated with bacterial flagellin and NaCl

treatment at different time points and found out the effect of biotic stress and abiotic stress on the

plant ILK1 and Wild-type mutant Arabidopsis plant. In this work, RNA sequencing technology

was used to find the differentially expressed genes from the given samples of Arabidopsis plant

subjected to different stress treatments/experiments at a given time frame. Network analysis was

used to study the correlation pattern, detect clusters, and use the network topological approach

to extract essential information from the differentially expressed genes. Probabilistic graphical

modeling and belief propagation algorithm-based inference method was used to determine the

genes’ differential expression using gene regulatory network as input. We also designed and

implemented an R software pipeline that contains the capacity to carry out the mining and analysis

of differentially expressed genes into one software package.

In Chapter 2, mapping the reads from RNA seq data using the software STAR aligner was

performed, and then the data was further processed and quantified using FeatureCounts. Finally,
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R packages Limma and EdgeR were used to perform the differential analysis on the RNA- seq data

to obtain and identify the differentially expressed genes. The data were normalized using Voom

normalization. The results were obtained for ten different kinds of comparison analysis, each for

Flg22 and Nacl separately. The comparison analysis included genotypic comparison analysis and

phenotypic comparison analysis. Each comparison sets analysis was tested for the required log-FC

value threshold. Linear model fitting was performed for the comparison set of interest using linear

modeling in limma. Next, the empirical Bayes moderation test was carried out to give a sense of

differentially expressed genes in each different set of comparisons set. Fil the DEGs obtained were

stored in CSV files to conduct the next level of downstream analysis.

In chapter 3, correlation patterns amongst the differentially expressed genes (obtained from

chapter 2) were studied in the stress study by constructing gene co-expression networks. We

used the R software package WCGNA to analyze the correlation pattern. We integrated the

networks analyzed with the multiple bioinformatics tools and studied the resulting gene network’s

topology using the R package igraph. The WGCNA package helped detect modules for each set of

differentially expressed genes obtained from the previous chapters. Themodules or clusters of genes

obtained for each comparison sets were then tested for their functional enrichment using various

public databases. There were significant results obtained for flg22 treatment. The correlation

values obtained from the WGCNA were used to construct a correlation network. The correlation

network helped find some of the hubbed genes based on different network topological analysis tools

like centrality scores. The functional gene enrichment tools and databases were also used to find

the biological functionality of the essential set of genes obtained from the network’s topological
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analysis. Besides, we used another gene prediction tool, DREM, to identify transcription factors

that control gene expression dynamics in time series data.

To compile the tools and packages mentioned above, we developed a software package that

consists of a programmatic framework using R software and Linux shell commands. The idea

was to implement the data mining and data analysis steps mentioned above into a single software

package. We called this R package, NetSeekR as the main objective is to infer and analyze gene

networks from the RNA-Seq time series data. Chapter 4 describes the structure and functionality of

NetSeekR. Themain functionalities of this package include alignment of processed reads to genome

positions using the gene annotation file, identification of differentially expressed genes, predicting

gene networks, module detection of differentially expressed genes, gene ontology enrichment

analysis, and topological network analysis of differentially expressed genes.

The final chapter, Chapter 5 of this dissertation, was dedicated to identifying the gene expression

value of genes using gene regulatory networks. This task was performed using a belief propagation

algorithm on a probabilistic graphical model. This algorithm uses the gene expression dataset

obtained from the previous chapter and a literature-based public database to obtain information

about TF-gene interactions as input to draw the probabilistic graph. The inference algorithm is

based on the energy minimization method, which would require further improvement. The graph

we used was a sparse network of around 70000 edges.

Fromwork mentioned in the dissertation, we found ILK1 expression causes widespread defects

in the transcriptional program when activated by the bacterial elicitor flg22. We found some of the

target genes that were associated with cell wall integrity and immunity. The significant contribution

of the work in this dissertation is given in the next section.
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6.2 Contributions

The major contribution of the research performed in the dissertation is given below:

1. From the data mining and analysis of DEGs, several genes responsible for several biological
processes were obtained. The analysis implied that genes obtained were linked to cell
wall biosynthesis and modification, encoding anchored membrane proteins for Arabidopsis
Thaliana. Some genes found were related to immune responses, and their functioning is
found in Arabidopsis Thaliana. Some microtubule-associated genes were obtained in the
output had defective regulation in the ilk1-1 line for Arabidopsis Thaliana. All these genes
were obtained for Arabidopsis Thaliana post-treatment with flg22. Signaling components
and response genes mediated by defense hormones abscisic acid (ABA), jasmonic acid (JA),
and salicylic acid (SA) and the growth hormone auxin were overrepresented among ILK1-1
DEGs and included a majority of genes with up-regulated expression levels at 0 and 12 h
post-treatment with flg22.

2. With NetseekR, a novel gene expression data analysis pipeline was designed by compiling
all the components used for sequencing and analyzing RNA sequencing data. The pipeline
can perform alignment of reads, carry out differential gene expression analysis, perform gene
ontology enrichment analysis, and network analysis of differentially expressed genes. The
pipeline also holds the capacity to allow the user to chose different tools for aligning the
reads and carrying out differential gene expression analysis of the genes by including two
different options for each step. The pipeline has features for direct execution and manual
execution if the user wants to change the parameters set by default.

3. A loopy belief propagation algorithm for biological network inference method was designed.
Implementation of belief propagation algorithm was performed on a graphical model de-
signed for transcriptomics analysis using gene expression data and TF-gene regulatory net-
work information. Using the network inference algorithm proposed in the dissertation, the
differential expression of genes was inferred. Although the algorithm requires further de-
velopment, it can be used to analyze the biological significance of genes expression changes
in the context of available TF regulatory network information without using downstream
analysis of genes regulatory pathways could be used to understand the biological process
associated with the gene transcriptional reprograming.

6.3 Further Research

The analysis carried out in this research assumes the counts’ data to be distributed according

to the negative binomial distribution. Other discrete distributions could also be used to find the

differentially expressed genes. In this dissertation, correlation networks and gene-TF regulatory
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networks have been investigated using WGCNA and igraph. Several other network analysis tools

are available on Bioconductor packages that could provide several other topological analysis tools

to investigate the interaction pattern in the data. Also, a Similar network analysis could be used

for the Protein-protein interaction for Arabidopsis and other plants from the network inference

algorithm.

The pipeline NetSeekr also combines the software Packages that assume the count distribution

to have a negative binomial distribution. To make the pipeline versatile for all kinds of data, one

could combine other software packages that work on other discrete data distributions.

The inference model used in the research works on minimizing the distance between the counts

of genes and thus minimizing the energy parameter to obtain higher energy of interaction for the

gene and TF. One could find other energy parameters based on TF- gene interaction binding sites

and could use it as a parameter to find the interaction between gene and TF. The inference model

provides the differential expression of genes and TFs. These differentially expressed genes and TFs

could further be used for other downstream analyses, as mentioned in chapter 3, to find the critical

set of genes and TFs and infer a particular biological process related to the specific treatment.
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APPENDIX A

CODE FOR METHODS FOR INFERENCE IN GENE REGULATORY NETWORK USING

LOOPY BELIEF PROPAGATION ALGORITHM
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A.1 Code

import pandas

import pandas as pd

import numpy as np

import s c i p y . s t a t s

import math

import i g r a p h

import random

k=0.05

# read t h e f i l e s

r t =pd . r e a d_c sv ( " t f _ d a t a 1 2 . t s v " , sep = ’ \ t ’ )

d a t a = pd . r e ad_ c s v ( " c oun t s . c sv " )

# r e g u l a t o r y ne twork da ta

ne two rk_da t a_1= r t [ r t . TF . i s i n ( d a t a . g ene i d ) ] . \

r e s e t _ i n d e x ( drop=True )

ne two rk_da t a_1= r t [ r t . Gene . i s i n ( d a t a . g ene i d ) ] . \

r e s e t _ i n d e x ( drop=True )

ne two rk_da t a_1 = ne two rk_da t a_1 [ ne two rk_da t a_1 . TF != \

ne two rk_da t a_1 . Gene ]

ne two rk_da t a_1=ne two rk_da t a_1 . \

d r o p _ d u p l i c a t e s ( [ ’TF ’ , ’Gene ’ ] )
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ne two rk_da t a_1=ne two rk_da t a_1 [ 0 : 2 5 5 ]

genes=pd . c on c a t ( [ n e two rk_da t a_1 . TF , ne two rk_da t a_1 . Gene ] ) . \

r e s e t _ i n d e x ( drop=True )

# group ing t h e da ta acco rd i ng t o TF

grouped = ne two rk_da t a_1 . groupby ( [ "TF" ] )

d f1 =[ grouped . g e t _g r oup ( x ) f o r x in grouped . g roups ]

# check sou r c e node and t a r g e t node

s ou r c e_gene= ne two rk_da t a_1 . TF . un ique ( )

d a t _ s o u r c e _ c o u n t s = d a t a [ d a t a [ " g ene i d " ] . \

i s i n ( s ou r c e_gene ) ] . r e s e t _ i n d e x ( drop=True )

t a r g e t _ g e n e = ne two rk_da t a_1 . Gene . un ique ( )

d a t _ t a r g e t _ c o u n t s = d a t a [ d a t a [ " gene i d " ] . \

i s i n ( t a r g e t _ g e n e ) ] . r e s e t _ i n d e x ( drop=True )

t a r g e t _ g e n e = l i s t ( np . un ique ( genes ) )

d a t a _ t a r g e t _ g e n e = d a t a [ d a t a [ " gene i d " ] \

. i s i n ( t a r g e t _ g e n e ) ] . r e s e t _ i n d e x ( drop=True )

gene2= l i s t ( d a t a _ t a r g e t _ g e n e . g ene i d )

d a t a _ t a r g e t _ g e n e = d a t a _ t a r g e t _ g e n e . s e t _ i n d e x ( " gene i d " )

d a t a _ t a r g e t _ g e n e [ ’ sum ’ ]= d a t a _ t a r g e t _ g e n e . sum ( a x i s =1)

d a t a _ t a r g e t _ g e n e = d a t a _ t a r g e t _ g e n e [ ’ sum ’ ]
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t o t a l = d a t a _ t a r g e t _ g e n e . sum ( )

d a t a _ t a r g e t _ g e n e =np . l og ( d a t a _ t a r g e t _ g e n e ∗100000/ t o t a l )

t o t a l = d a t a _ t a r g e t _ g e n e . sum ( )

d a t a _ t a r g e t _ g e n e = d a t a _ t a r g e t _ g e n e / t o t a l

d a t a _ t a r g e t _ n o d e = { ’ gene_ id ’ : gene2 , ’ p o t e n t i a l ’ : \

l i s t ( d a t a _ t a r g e t _ g e n e )}

d a t a _ t a r g e t _ n o d e = pd . DataFrame ( d a t a _ t a r g e t _ n o d e , \

columns =[ ’ gene_ id ’ , ’ p o t e n t i a l ’ ] )

# f i r s t term ,

gene= l i s t ( s e t ( l i s t ( n e two rk_da t a_1 [ ’Gene ’ ] ) ) )

t f = l i s t ( np . un ique ( ne two rk_da t a_1 [ ’TF ’ ] ) )

def po t e_ t e rm ( gene , d a t a ) :

f o r i in range ( 0 , l en ( d a t a ) ) :

i f ( gene==" " . j o i n ( d a t a [ ’ gene_ id ’ ] [ i ] ) ) :

re turn d a t a . i l o c [ i , 1 ]

# s e t s t a t e s o f genes

def n _ g _ s t a t e ( pot1 , d a t a _ t a r g e t _ n o d e ) :

r =np . mean ( d a t a _ t a r g e t _ n o d e [ ’ p o t e n t i a l ’ ] )

i f po t1 > r :

re turn 1

e l i f po t1 < r :
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re turn −1

e l s e :

re turn 0

# s e t s t a t e s o f TF

def n _ t f _ s t a t e ( pot1 , d a t a _ t a r g e t _ n o d e ) :

r =np . mean ( d a t a _ t a r g e t _ n o d e [ ’ p o t e n t i a l ’ ] )

i f po t1 > r :

re turn 1

e l i f po t1 < r :

re turn −1

e l s e :

re turn 0

# f i r s t t erm o f Energy f u n c t i o n

def f i r s t _ t e r m ( n_g , po t1 ) :

po t2 = 1−( pot1 −0 .5 )∗1

po t3 =1− ( pot1 −0.5)∗ −1

po t4= 1−( pot1 −0 .5 )∗0

re turn min ( pot2 , pot3 , po t4 )

# second term o f Energy f u n c t i o n

def second_ te rm ( n_ t f , n_g , gene1 , gene2 , d a t _ t a r g e t , d a t _ s o u r c e ) :

f o r i in range ( 0 , l en ( d a t _ t a r g e t ) ) :
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i f ( gene2==" " . j o i n ( d a t _ t a r g e t [ ’ g ene i d ’ ] [ i ] ) ) :

c oun t s_2= d a t _ t a r g e t . i l o c [ i , 1 : 2 5 ]

t o t a l = coun t s_2 . sum ( )

coun t s_2= coun t s_2 ∗100000/ t o t a l

f o r i in range ( 0 , l en ( d a t _ s o u r c e ) ) :

i f ( gene1==" " . j o i n ( d a t _ s o u r c e [ ’ g ene i d ’ ] [ i ] ) ) :

c oun t s_1= d a t _ s o u r c e . i l o c [ i , 1 : 2 5 ]

t o t a l 2 = coun t s_1 . sum ( )

coun t s_1= coun t s_1 ∗100000/ t o t a l 2

c o r r = abs ( s c i p y . s t a t s . p e a r s o n r (1∗ coun t s_1 , \

n _ t f ∗ coun t s_2 ) [ 0 ] )

c o r r 1 = abs ( s c i p y . s t a t s . p e a r s o n r (−1∗ coun t s_1 , \

n _ t f ∗ coun t s_2 ) [ 0 ] )

c o r r 2 = abs ( s c i p y . s t a t s . p e a r s o n r (0∗ coun t s_1 , \

n _ t f ∗ coun t s_2 ) [ 0 ] )

r = 1− c o r r

r1 =1− c o r r 1

r2 =1− c o r r 2

re turn min ( r , r1 , r2 )

# t h i r d term o f Energy Func t i on
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def t h i r d _ t e rm ( n_g ,K ) :

pen= max ( 1 ,K)

pen1=max ( −1^2 , k )

pen3=max ( 0 , k )

re turn min ( pen , pen1 , pen3 )

Energy = [ ]

f a c t o r _ p o t e = [ ]

# s e t f a c t o r p o t e n t i a l

f o r m in range ( l en ( d f1 ) ) :

f o r i in range ( l en ( d f1 [m] ) ) :

gene1=df1 [m] . i l o c [ i ] . TF

gene2=df1 [m] . i l o c [ i ] . Gene

po t e1= po t e_ t e rm ( gene1 , d a t a _ t a r g e t _ n o d e )

po t e2= po t e_ t e rm ( gene2 , d a t a _ t a r g e t _ n o d e )

n _ t f = n _ g _ s t a t e ( pote1 , d a t a _ t a r g e t _ n o d e )

n_g= n _ g _ s t a t e ( po te2 , d a t a _ t a r g e t _ n o d e )

E1= f i r s t _ t e r m ( pote2 , n_g )

E2= second_ te rm ( n_ t f , n_g , gene1 , gene2 , \
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d a t _ t a r g e t _ c o u n t s , d a t _ s o u r c e _ c o u n t s )

E3= t h i r d _ t e rm ( n_g , 0 . 0 5 )

E=E1+E2+E3

f i n a l _ p o t =np . exp ( − (E ) )

Energy . append (E )

f a c t o r _ p o t e . append ( np . exp ( − (E ) ) )

# s e t f a c t o r node and f a c t o r p o t e n t i a l

p=[ " p_%d" % x f o r x in range ( l en ( f a c t o r _ p o t e ) ) ]

f a c t r _ d f = { ’ f a c t o r ’ : p , ’ p o t e n t i a l ’ : f a c t o r _ p o t e }

f a c t o r _ d i c t i o n a r y = {p [ i ] : f a c t o r _ p o t e [ i ] f o r i in range ( l en ( p ) ) }

f a c t o r _ d f =pd . DataFrame ( f a c t r _ d f )

# c o n v e r t f a c t o r p o t e n t i a l as f a c t o r s

f a c t r = [ ]

f o r i in range ( 0 , l en ( d f1 ) ) :

d f =df1 [ i ]

f o r j in range ( 0 , l en ( d f ) ) :

f a c t r . append ( f a c t o r ( [ " " . j o i n ( d f . i l o c [ j ] . TF ) , \

" " . j o i n ( d f . i l o c [ j ] . Gene ) ] ) )

# add f a c t o r s t o f a c t o r node

pgm_1 = f a c t o r _ g r a p h ( )
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f o r i in range ( l en ( p ) ) :

pgm_1 . a dd_ f a c t o r _ nod e ( p [ i ] , f a c t r [ i ] )

p l o t _ f a c t o r _ g r a p h ( pgm_1 )

# change f a c t o r d i s t r i b u t i o n i n graph acco rd i ng t o p ( x )

def c h a n g e _ f a c t o r _ d i s t r i b u t i o n ( f_name , f a c t o r ) :

pgm_1 . g e t _ g r a ph ( ) . vs . f i n d ( name=f_name ) [ ’ f a c t o r ’ ] = f a c t o r

f o r f_name in p :

c h a n g e _ f a c t o r _ d i s t r i b u t i o n ( pgm_1 . g e t _ g r a ph ( ) . \

vs . f i n d ( f_name ) [ ’ name ’ ] , f a c t o r _ d i c t i o n a r y [ f_name ] )
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