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Processing hyperspectral image data can be computationally expensive and difficult to employ

for real-time applications due to its extensive spatial and spectral information. Further, applications

in which computational resources may be limited can be hindered by the volume of data that is

common with airborne hyperspectral image data. This paper proposes utilizing band selection

to down-select the number of spectral bands to consider for a given classification task such that

classification can be done at the edge. Specifically, we consider the following state of the art

band selection techniques: Fast Volume-Gradient-based Band Selection (VGBS), Improved Sparse

Subspace Clustering (ISSC), Maximum-Variance Principal Component Analysis (MVPCA), and

Normalized Cut Optimal Clustering MVPCA (NC-OC-MVPCA), to investigate their feasibility at

identifying discriminative bands such that classification performance is not drastically hindered.

This would greatly benefit applications where time-sensitive solutions are needed to ensure optimal

outcomes. In this research, an NVIDIA AGX Xavier module is used as the edge device to run



trained models on as a simulated deployed unmanned aerial system. Performance of the proposed

approach is measured in terms of classification accuracy and run time.

Key words: hyperspectral imagery, band selection, hyperspectral at the edge
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CHAPTER I

INTRODUCTION

1.1 Purpose of the Research

Hyperspectral image data can provide unique spectral information on collected scenes and

has been proven to be helpful in numerous fields, such as in the fields of food quality inspection

[16], [32], [35], vegetation and agriculture [30], [48], medical studies and diagnosis [26], [29],

and military applications [2], [27], [34], [41]. The resulting data is three dimensional, in which

the components are pixels by pixels by spectral bands. It can be made of hundreds of bands

that span the regions of visible and infrared within the electromagnetic spectrum, within spatial

resolutions of a particular value, that provide important information of the earth’s surface [1].

However, the resources are not always readily available to process its rich information, and the

hyperspectral image data can have a tendency to contain repetitious information. To counter

this, the task of dimensionality reduction has been introduced for the creation of a new, smaller

hyperspectral image set. Typically the methods of reducing the hyperspectral image data high

dimensionality can fall within the categories of feature extraction or feature selection [37]. Feature

extraction works to create a reduced hyperspectral image data set by mathematically transforming

the original image data into a smaller set of combined variables [9]. Band selection seeks to

create a reduced hyperspectral image data set by determining which spectral bands provide the

most information, selecting a predetermined number of those elucidative bands, and removing the
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remaining spectral bands from the set. This is done with the expectation that the descriptive and

overall general information given by the hyperspectral image data will still remain as informative

with less processing requirements. Within this study, band selection is applied on the hyperspectral

image data and then tested with classification models for performance evaluation. Classification of

hyperspectral image data is done to identify specific components of the earth’s surface, with each of

the pixels representing a certain characteristic [45]. This thesis seeks to compare the performance

and effectiveness of these band selection techniques when running on a simulation device and a

device acting as an edge device.

1.2 Contributions of this Research

To the authors’ knowledge, there has not been a presented study done in which the classification

performance of the VGBS, ISSC, MVPCA, and NC-OC-MVPCA are reviewed on an edge device,

e.g. the NVIDIA Jetson AGX Xavier, for the purposes of studying the effects of this use for use

in real-time applications. The research also provides insight into cross-platform interaction with

the building, placing, and testing of the classification models. This thesis provides a foundation

for continued work with band selection for those classification models and show how the NVIDIA

Jetson AGX Xavier is useful for hyperspectral sensor processing.

1.3 Outline of the Thesis

The thesis is outlined as followed: Chapter II introduces the hyperspectral image data usefulness

as well as its disadvantages. It provides band selection techniques as a method for reducing

data acquisition and computational strain, and it includes classification models to show their

effectiveness. The chapter closes by discussing the background work and existing literature in

2



this area. Chapter III describes the testing and results for the first implementations of this process

that were done. Chapter IV is an implementation of the previous testing on MATLAB, but the

selected band values are lower values and the training models are also tested on the NVIDIA Jetson

AGX Xavier. The final Chapter V gives a review of the results obtained from the thesis, derives

conclusions, and provides input for future work.
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CHAPTER II

BACKGROUND

2.1 Hyperspectral Classification

Hyperspectral sensors capture image data rich with spectral information that can be helpful

in diverse range of fields. Two hyperspectral sensors that are currently in use are the Airborne

Visible/Infrared Imaging Spectrometer (AVRIS) and the Hyperspectral Digital Imagery Collection

Experiment (HYDICE) [6]. Figure 2.1 from [31] provides a well illustrated concept of how

hyperspectral imaging works with the multiple wavelengths to extract details from the Earth’s

surface being represented by the multiple layers and colors. The problem with using this 3D

image data is that it can often be computationally expensive to acquire and to use, can frequently

require longer processing times, and usually contains redundant information. This causes it to

not be realistic for applications in which these resources are limited, such as use at the edge with

unmanned AI devices, like unmanned aerial vehicles (UAV). In response to these disadvantages,

there has been research done to reduce the overall volume of the hyperspectral image data, with the

most common of these approaches typically falling within the realm of feature extraction or feature

selection, e.g., band selection. Feature extraction works to create a reduced hyperspectral image

data set by mathematically transforming the original image data into a smaller set of combined

variables. An issue that occurs with using this approach is that important spectral information can

be removed or altered from the original set. Most notably, the discriminability of the hyperspectral

4



Figure 2.1: Hyperspectral Imaging Illustrated Example [31]

image dataset can be lost with these tests. Band selection retains the original data set, and instead

focuses on selecting a lower amount of spectral bands without degrading classification performance

much.

2.2 Overview of Band Selection Techniques

Work donewith band selection techniques has ranged from selecting bands based off of distance

measurements, such as the Euclidean distance or Jeffries-Matusita distance [19], to selecting

bands using a clustering technique, such as k-means clustering [13] or affinity propagation-based
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clustering [21]. With the diverse nature of band selection techniques, there are numerous categories

that it can be divided into, with the categories being focused on a particular type of learning or

process in which these methods seek to find the optimal band set solutions. In Ref. [38], an

in-depth overview of some of the most popular band selection techniques are listed, and within this

paper, the majority of these techniques can be placed within one of the following six categories:

• ranking-based

• searching-based

• clustering-based

• sparsity-based

• embedded learning-based

• hybrid scheme-based methods

Ranking-based band selection techniques hierarchically sort the spectral bands by an importance

criterion [7], [22]. The bands that are the highest ranked are the ones selected from the down-

selected hyperspectral input matrix. The principal component analysis (PCA) is a ranking-based

method that used the variances of the bands to determine the most informative of bands from

the data. The Maximum-Variance Principal Component Analysis PCA (MVPCA) sorts the bands

by their variance values, with the lower variance ranking higher than the higher variances. The

ranking is done this way due to the idea that bands with the lowest variances are more likely the

most dissimilar from one another and that bands with high variances can tend to have redundant

information shared between them [7]. Another ranking based technique is the Enhanced Fast

Density-Peaked Based Clustering (E-FDPC) method [22], which selects the bands by calculating

their local density and intracluster distance and then gives these calculations a certain weighted

value. Figure 2.2 shows an example of how this method chooses these bands. Determining the band
6



Figure 2.2: Overview of E-FDPC [22]

subset using a searching based method requires a defined criterion function, which defines what

makes a solution the best solution, and requires a searching strategy, which determines how the

strategy will seek for the optimal sets [10], [36]. Some examples of searching based methods are

the linear prediction (LP) and particle swarm optimization (PSO). The LP band selection method

chooses the bands to represent the hyperspectral image data by using the spectral bands that are

the most unique [10]. The PSO algorithm is a heuristic learning algorithm that seeks to find the

best solution by a series of algorithmic calculations that are iteratively updated. These calculations

were created with inspiration from that of bird flocks, with the potential solutions treated as the

moving parts and the location of the best know position in the subspace being chosen [36].

The clustering approach for band selection separates the hyperspectral image set into groups,

or clusters, determined by a similarity metric, and a band from each of the clusters that best

represents that group is the one chosen for the final band set. The use of Ward’s linkage in [28]
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is an example of how clustering can be applied for band selection. In this application, the bands

were grouped in attempts to get the lowest intracluster variance and highest intrercluster variance.

Sparsity-based methods are developed with the notion that all of the bands of the hyperspectral

image data can be sparsely represented in such a way that new information of the image data can

be identified. The improved sparse subspace clustering (ISSC) model is a type of sparsity-based

method for band selection in which the bands are chosen when spectral clustering is performed on

the previously constructed similarity matrix. More on this technique will be provided in Section

3.1 [40]. Embedded learning-based methods uses a defined implementation, such as embedded

learning or classification tasks, to be the basis of which the bands are selected. In these types

of band selection methods, the bands are chosen that give the optimal solution to the problem

given. An example of this method would be the use of a convolutional neural network (CNN) for

the task of classification of the hyperspectral imagery, in which the CNN is used to extract deep

features from the set and then used on AdaBoost SVM classifier for choosing the most unique and

informative spectral bands. Band selection methods categorized as hybrid scheme-based methods

combine multiple methods to find the optimal band set. An example of this method is [24] when

the genetic algorithm and support vector machine were both used to find the bands that gave the

best classification accuracy. Mutual information was also used in this selection to help reduce the

use of highly correlated bands.

2.3 Classification Models

To test the effectiveness of the band selection techniques, the task of classification is used. In

this, the reduced data sets are applied to a particular classification model, which in turn seeks to
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evaluate the different components of the scene within the image data. This was chosen as the

test due to its reflection of a real-time use with hyperspectral image data. There are numerous

classification models available, but this thesis focuses on the use of an artificial neural network

(ANN) and a support vector machine (SVM). These models were selected because of their high

achieving results from various related hyperspectral band selection studies, such as in [33], [46],

[38].

An ANN is a type of machine learning structure that was developed using concepts that relay to

the human neural system with how its components interact. Just as the neural system is composed

of several neurons that signal to one another, the ANN is composed of layers with neurons that

receive inputs and send outputs to communicate with the other neurons. An ANN are made up of

three types of layers: input layer, hidden layer, and output layer. The neurons within the layers are

what connect the layers together. Each neuron has a numeric weight, which can be a fixed value or

change with iterations, that determines its contribution to the ANN structure.

Figure 2.3 shows an example of a simple ANN.

Figure 2.3: Example of a simple ANN structure
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An advantage to using ANNs is that there are numerous studies in which they have shown

great performance and classification abilities. However, ANNs tend to require large amounts of

data for training and testing its models, with some ANNs requiring at least thousands of inputs to

even receive passible responses. This classification model can also be computationally expensive

depending on its makeup, with more complex networks needing more computational power.

The SVM is a supervised machine learning classification model that uses algorithmic calcula-

tions to determine the labels of the given data. It takes labeled training data and its corresponding

classification labels and creates a model that places the given data points into one of the classifica-

tion labels. SVM does this by dividing the given data into subcategories separated by a hyperplane,

also known as the decision boundary. The hyperplane is said to be its best when it is able to

correctly identify majority of the data to its respective class. SVM, though first introduced for

binary classification [8], has been extended to include multi-class classification capabilities. Two

approaches that can be used for multi-class classification are the "one vs. all" and "one vs. one"

techniques. The "one vs. all" technique takes all of the dataset and separates it into subsets that

place each classifier in comparison with the remaining classifiers. The "one vs. one" approach goes

through each of the individual categories and has them tested against all of the other categories

[18]. Some advantages to using this classification model are that it is able to perform well in

high dimensional spaces, even when the dimensional space is much larger than the given sample

number. A few drawbacks to using SVM are that it can have a tendency to overfit when the number

of features is greater than the number of samples and that it requires cross-validation for probability

estimates. Further, the choice of the test kernel is often unknown a priori.
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2.4 At The Edge Device

For this thesis, "at the edge" refers to the processing of the data on the device in the moment

of collection. In some applications of data collection and processing, the data must be sent back

and forth between a central station and the device. However, with this study, the expectation is that

once the device has been trained, it can receive data for classification and determine its usefulness

all within the device. If the information is determined to be useful, it can then be transferred back

to the central station.

Figure 2.4: NVIDIA AGX Xavier Developer Kit and Standalone Module [12].

The NVIDIA Jetson AGX Xavier developer kit, as seen in Figure 2.4, is an AI computer that

has a 512-core NVIDIA Graphics Processing Unit (GPU) with an 8-core ARM. Its module can

run with a minimum power supply of 10W, has 32GB 256-bit LPDDR4x memory, and is only 105

mm x 105 mm, which makes it desirable for use on AI-powered autonomous machines, especially

those such as unmanned aerial devices where weight and storage can be constrained and substantial

for performance capabilities. Further, the Jetson AGX Xavier developer kit has been optimized for
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AI-powered autonomous machines with its GPU performance of 32TOPS capability and NVIDIA

AI tools enhanced for deep learning. Table 2.1 shows the attributes of the Jetson AGX Xavier

module compared to other modules on the market. These attributes of the NVIDIA are the reason

it was selected to act as the device for the at the edge results.

Table 2.1: Similar Devices and Specifications

Module NVIDIA Jetson AGX Xavier NVIDIA Jetson Xavier NX NVIDIA Jetson Nano

Storage 32GB eMMC 5.1 16 GB eMMC 5.1 microSD capablities

Size 105mm x 105mm 45mm x 69.6mm 69.6mm x 45mm

GPU 512-core Volta GPU 384-core Volta NVIDIA Maxwell

64 Tensor cores 48 Tensor cores 128 NVIDIA CUDA cores

22 TOPS (INT8)

CPU 8-core Carmel Arm v8.2 6-core Carmel Arm v8.2 Quad-core ARM Cortex-A57

64-bit CPU 64-bit CPU MPCore processor

8MB L2 + 4MB L3 6MB L2 + 4MB L3

Memory 32GB 256-bit LPDDR4x 8 GB 128-bit LPDDR4x 4 GB 64-bit LPDDR4

136.5GB/s 1866MHz 59.7GB/s 1600MHz 25.6 GB/s

2.5 Related Work with Real-Time Applications

The study of hyperspectral image data has been a well-researched topic. Within this realm,

there has also been a growing number of studies done with the intentions of providing research in

which band selection techniques are applied to a hyperspectral image data set and then tested for
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real-time applications. The following section provides an overview of some similar work that has

been done.

In [47], there was an experiment ran in which the band selection techniques were trained on a

central processing unit (CPU) device and then implemented onto a NVIDIA GTX285 GPU system

using C++. This research highlights the use of unsupervised band selection techniques for reduc-

ing the dimensions of hyperspectral image data, with a specific focus on endmember extraction

algorithms. The algorithm selected for this study was the LP algorithm and GPUs were used to

help process the algorithms due to its low computational cost even with high computational pro-

cessing. The GPU was able to optimize the CUDA CUBLAS library to implement the algorithmic

calculations. Figure 2.5 provides a block diagram of how the LP-based band selection algorithm

was used with the GPU.

There has been similar experimentation done in which the band selection algorithm, the PSO

algorithm, is initiated on a CPU device and then placed onto a GPU device to train and test the

device. Its results are then printed back on the CPU [44]. Figure 2.6 shows the implementation of

this placing on the model for training and testing.

Within [14], the Ant Colony Optimization-based Band Selection (ACOBS) algorithm, which

builds off of the original ant colony optimization algorithm, was used to select the best band set.

For the purposes of real-time comparisons, an NVIDIA GPU is employed to demonstrate real-time

performance. The device was optimized to run in parallel, so the individual tasks of the algorithm

were able to run at higher speeds. Figure 2.7 shows this experimentation.

A study was done in [42] in which the focus of effectively using hyperspectral image data for

real-time devices shifted from the use of band selection techniques to finding an efficient method
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Figure 2.5: Parallel LP Band Selection Algorithm [47]

for spectral unmixing of the data set. Spectral unmixing is a method of estimating the endmembers,

which are the distinctive attributes of the hyperspectral data cube. In this paper, an NVIDIA device

is optimized to effectively run both its CPU and GPU components for a more efficient real-time

analyzation of the data.

Another study was done in which the orthogonal subspace projection (OSP) algorithmwas used

for the task of automatic target detection. The implementation expanded to include a OSP cluster

version and a OSP GPU version, and the target detection performance was compared between the

two methods [31]. The clustering based OSP provided was beneficial for applications in which the

data had already been transmitted and received, but the GPU based OSP allowed for close to real-
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Figure 2.6: Overview of CPU-GPU System for the PSO-Band Selection [44].

time collection and anamoly detection. For this research, the studied show that the classification

accuracy for both techniques were the same values, so the comparison was done for the calculation

run times.
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Figure 2.7: Overview of the ACOBS CPU-GPU Implementation [14]
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CHAPTER III

OVERVIEW OF BAND SELECTION PROCESSING PIPELINE

In this section, unsupervised band selection techniques are used on the input hyperspectral

image data to get a resulting reduced band selected hyperspectral image data. Being unsupervised

makes the band selection techniques appealing candidates because it promotes amore generalizable

set of bands to be selected. That is, incorporating the classification performance into the strategy for

band selection identification is susceptible to being biased towards the data distribution used by the

supervised band selection algorithm during the learning/band selection phase. Thus, unsupervised

techniques have the appeal of not requiring labeled data/ground truth information available to be

applicable. While using supervised band selection techniques can be a highly effective strategy

for situations in which the training data available adequately represents a specific domain that is

of interest, the identified bands would likely be less robust when transferred to a new area/region

of interest. The following band selection approaches are discussed: Fast Volume-Gradient-based

Band Selection (VGBS) [15], Improved Sparse Subspace Clustering (ISSC) [40], Maximum-

Variance Principal Component Analysis (MVPCA) [7], and Normalized Cut Optimal Clustering

MVPCA (NC-OC-MVPCA) [43]. In this preliminary section, the focus will be on the initial testing

of these band selection techniques on MATLAB, as well as testing a varying amount of bands for

selection.
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3.1 Band Selection Techniques

The band selection techniques chosen for this thesis research were selected due to their promis-

ing results from their respective research papers and for their reproducibility.

3.1.1 Fast Volume Gradient Band Selection

The VGBS method [15] is an unsupervised technique that selects bands on the basis of their

volume gradient. It builds off the structure of the original VGBS algorithm, and it is considered a

greedy-based method due to its function of taking or removing a band from the prospective band

set to determine its effect on optimizes the objective function. Instead of calculating the volume of

each band in the entire set, the VGBS calculates the volume gradient of the whole parallelotope.

It then removes those bands that pertain to the largest gradient values. With the removal of these

bands, there is likely to be minimal loss in spectral information, since the volume of the simplex is

typically most effected by the redundant bands. To calculate the volume of the simplex, use

+< =
1

(< − 1)+<−1ℎ (3.1)

where m represents the number of bands within the set,+< is the volume of the simplex,+<−1 is the

volume of the subsimplex, and h represents height between the remaining band and the subsimplex.

The derivative is then taken from both sides. This equation can be further reduced since the number

of bands selected is chosen before calculation and thus remains the same throughout the calculation.

The resulting equation can be shown as

+<−1 = (< − 1) 3+<
3ℎ

(3.2)

This equation shows that the bands can be selected based on the gradient of the simplex volume

over the calculation of all of the subvolumes, since the subvolume is of the same proportion to that
18



of the gradients of the remaining bands’ volume. A disadvantage to the VGBS is that it can be

sensitive to noise.

3.1.2 Improved Sparse Subspace Clustering

The ISSC [40] technique seeks to select bands building off of the concepts used in sparse

subspace clustering. Within sparse subspace clustering, the method acts off the notion that the

entire data set can be fragmented into smaller components, i.e., subspaces, that separate the data

points into the subspaces by similarity. The original sparse subspace clutering method uses the

!1-norm problem to create the sparse coefficient vectors that represent the band vectors [11].

The ISSC method differs from the original algorithm by using the !2-norm optimization problem

instead of the !1-norm optimization method. Each band vector can be defined by the following:

H8 = ./8 + 4 /88 = 0 (3.3)

where H8 is the band vector, /8 = [/8, 1/8, 2.../8, #]) is the coefficient band vector of H8, and 4

is the error term with a bounded norm. The equation that encompasses all of the band vectors is

represented as such:

. = ./ + �, 3806(/) = 0 (3.4)

where / and � are the matrix representations of the sparse coefficients and errors of all of the band

vectors. Using the !2-norm problem, (equation) can be optimized using this equation:

/̂ = 0A6<8=| |. − ./ | |22 + V | |/ | |
2
2 (3.5)
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where | |/ | |2 represents the !2-norm. To solve the above-mentioned equation, the ISSC algorithm

uses the least square regression algorithm. The resulting sparse coefficient matrix /̂ is then used

to create the similarity matrix, , which is constructed using the following:

,�(8 9 = (
/̂8 · /̂ 9

| |/̂8 | |2 × ||/̂ 9 | |2
)2

The following algorithm is then used to create the distribution compactness (DC) plot, which was

designed to help reduce errors by mathematically calculating the needed size of the band subset.

�� =

∫
/̂

?(/̂)3/̂ ≈ 1)#,1# =

#∑
8=1

_8{1)#D8}2

The ;>6(_8{1)#D8}2) is used to choose the appropriate cluster numbers. Then, the row vectors of

the band with the closest to the mean vector is chosen to represent the cluster.

3.1.3 Maximum-Variance Principal Component Analysis

TheMVPCA technique [7] is a ranking-based approach that ranks the spectral bands according

to their variances. A covariance matrix is first computed from the given hyperspectral image data.

Then, a loading factor matrix is created by doing eigenvalue decomposition over the covariance

matrix. This loading factor matrix is what determines the ranking of the spectral bands, with higher

variances being ranked over those with lower variances. Disadvantages to using this method are

that noisy bands tend to have higher variances and that the spectral bands with higher variances can

often be highly correlated, which can lead to repetitious information representing a small portion

of the dataset being selected to incorrectly represent the entire dataset [7].
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3.1.4 Normalized Cut Optimal Clustering MVPCA

The NC-OC-MVPCA approach was introduced in [43] as a clustering-based band selection

method with the capability of finding an optimal solution. The NC-OC-MVPCA uses the nor-

malized cut (NC) criterion as its objection function. With the NC, the space is assumed to be a

graph of � = (+,,) with V being the node set and W being the similiarity matrix. The individual

entries of this similiarity matrix are created by using

F8 9 = 4G?(−
‖G8 − G 9 ‖2

f8f9
) (3.6)

where F8 9 is 8 9 Cℎ entry of the similarity matrix, f8 = ‖G8 − G< ‖2 is the local scaling parameter, G<

is the <th neighbor of G8 This similarity matrix is then mapped onto the function

5=0 (- 9

8
) = 1

 

∑ 9

:=8

∑ 9

;=8
F:;∑ 9

:=8

∑!
;=1 F:;

(3.7)

where K is the number of partitions of the graph �. MVPCA is used to rank the bands. Dynamic

programming is then done, using the NC objection function and ranked bands, to select the

predefined number of bands. This concept of dynamic programming, presented in [20], [23], is

a method in which a convoluted problem is reduced into a deconstructed problem set of several

subproblems that are feasible to resolve. Once this point is reached, the problems are then

incorporated back together until the original convoluted problem is solvable. This band selection

technique can also be sensitive to noisy bands [43].

3.2 Dataset

The Indian Pines dataset is hyperspectral image data provided by Purdue University [4]. This

set depicts a test site in Indiana, and it was collected by use of an Airborne Visible Infrared Imaging
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Spectrometer (AVIRIS) sensor on June 12, 1992. It is comprised of 145 by 145 pixels with 224

spectral bands and 16 classes. Purdue University reduced the data set to 220 bands, removing

bands 1, 33, 97, and 161. The Computational Intelligence Group (CIG) provided a further reduced

data set of 145 by 145 pixels and 200 bands that removed the bands from the original dataset that

were corrupted due to water absorption [17]. The bands removed were bands 104-108, 140-163,

and 220. Figure 3.1 shows the ground truth image of Indian Pines, and Table 3.1 shows the pixel

make up of the Indian Pines Groundtruth.

Figure 3.1: Indian Pines Groundtruth [4].
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Table 3.1: Sample Numbers of Indian Pines Groundtruth classes

Number Class Samples

1 Alfalfa 46

2 Corn-notill 1428

3 Corn-mintill 830

4 Corn 237

5 Grass-pasture 483

6 Grass-trees 730

7 Grass-pasture-mowed 28

8 Hay-windrowed 478

9 Oats 20

10 Soybean-notill 972

11 Soybean-mintill 2455

12 Soybean-clean 593

13 Wheat 205

14 Woods 1265

15 Buildings-Grass-Trees-Drives 386

16 Stone-Steel-Towers 93

3.3 MATLAB Utilization

In this section, there is discussion of the approaches that were utilized for per-pixel classification

of the hyperspectral image data in its original form, i.e. the full datacube, and for classification of

the the reduced spectral band set hyperspectral image data. For the preliminary implementations,
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the spectral band values chosen for the reduced hyperspectral image data were 25, 50, 75, and 100.

These spectral band quantities were selected with the assumption that a wide range in band values

that make up a large percentage of the data will significantly alter the classification performance of

the reduced data sets. Both of the classification models, ANN and SVM, in this implementation

were run on an Intel(R) Core(TM) i7-8565U CPU 1.80GHz and on MATLAB R2021a. Figure

3.2 shows a general overview of the process in which the classification models are trained and

tested. The hyperspectral image data spectral band values is down-selected using one of the four

band selection techniques presented previously. The resulting reduced image data is then split into

training and testing data, which were used to train the classification model, and then the trained

model is tested on the test dataset.

Figure 3.2: Preliminary Work Overview

Multiple ANN configurations/architectures were considered for the classification task, and the

following architecture was empirically found to provide acceptable results for this investigation.

The ANN is composed of six layers: one input layer, three fully connected layers, a soft max layer,
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and an output layer. The input layer has nodes corresponding to the number of input values, e.g.

25 nodes are used when the reduced hyperspectral image data set are comprised of 25 spectral

bands. The fully connected layers are comprised of 25, 25, and 17 nodes. The values of the first

two layers were chosen arbitrarily - the intention was to have low values to avoid overfitting but

also high enough to encourage feature learning. The final hidden layer is made up of 17 nodes.

This is done to account for the 16 classes of the Indian Pines datsaset and for the background

information. Experiments were conducted ten times, and the performances reported herein are the

average of these experiments. For clarity, each experiment randomly selected 79.90% of the data

for training, and the remaining 20.1% was used for testing. This allows for a better test of the

robustness/generalizability of the bands selected by the technique being considered and ensures

the inference timings are consistent and not interfering with the operating system allocating cores

for various processes. Figure 3.3 provides a detailed overview of the ANN training and testing

process.

Figure 3.3: Initial Implementation Process
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The SVM model for this classification task used the radial basis function (RBF) as its learning

parameter. The RBF kernel can be represented by the following equation:

 (-1, -2) = 4G?(−
||-1 − -2 | |2

2f2 ) (3.8)

where f is the variance and | |-1 − -2 | | is the Euclidean distance between the two points. This

SVM performed multi-class classification by using the one-against-one method. Thus, there are

: (:−1)/2 classifiers created, where k is the number of total classes in the set. This value is selected

to account for the comparison of each of the classifiers against each other, while removing cases

where it would overlap or compare against itself. The data is decided to be in the class in which it

has the highest probability of being a part. [18] The hyperspectral image data was separated into

10% of the data for training, and the remaining 90% was used for testing.

3.4 Results

Table 3.2 displays the classification accuracy results from the tests run using the trained ANN

on MATLAB, and Table 3.3 shows the percent difference of the classification accuracies of the

reduced spectral band hyperspectral data compared to those of the full hyperspectral image data

tested on the ANN. Figure 3.4 shows the progression of the classification accuracy as the spectral

band values increase.

As can be seen from the figures and table, the ISSC and NC-OC-MVPCA band selection

techniques performed the best out of the techniques. The ISSC technique performed better than

the full hyperspectral data outperformed the other selection techniques at every band selection

value, with the exception of the 75 band selection. The NC-OC-MVPCA produced fairly similar

accuracies to those of the ISSC technique andwas able achieve a comparable classification accuracy
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Table 3.2: NN Classification Accuracy Results

Technique 25 Bands 50 Bands 75 Bands 100 Bands 200 Bands

Full Matrix - - - - 65.73%

VGBS 60.63% 63.26% 65.85% 67.16% -

ISSC 65.85% 67.76% 67.94% 68.85% -

MVPCA 56.28% 61.33% 65.99% 66.11% -

NC-OC-MVPCA 65.59% 67.13% 68.04% 68.25% -

Table 3.3: NN Percent Difference between Band Selection Techniques and Full Hyperspectral

Image Data

Technique 25 Bands 50 Bands 75 Bands 100 Bands

VGBS -8.07% -3.83% 0.18% 2.15%

ISSC 0.18% 3.04% 3.30% 4.63%

MVPCA -15.49% -6.92% 0.40% 0.58%

NC-OC-MVPCA -0.22% 2.11% 3.45% 3.76%

value to the full hyperspectral data with as little as 25 bands. The VGBS and MVPCA algorithms

needed 75 bands to get accuracies similar to that of the full hyperspectral image data, but these

techniques were able to output accuracies within 15% of the full hyperspectral data with only 25

bands selected. Overall, the band selection techniques did not perform with much dissimilarity

from the original full band set, and some were able to outperform the original hyperspectral data

with a small percentage of the bands.
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Figure 3.4: Comparison of Classification Accuracy amongst Techniques

Table 3.4 shows the run times of the trained ANN on MATLAB, and Table 3.5 shows the

percent difference of the run times of the reduced spectral band hyperspectral data compared to

those of the full hyperspectral image data tested on the ANN. Figure 3.5 shows the progression of

the run times as the spectral band values increase.

Table 3.4: NN Run Time of Band Selection Techniques

Technique 25 Bands 50 Bands 75 Bands 100 Bands 200 Bands

Full Matrix - - - - 0.0424s

VGBS 0.0317s 0.0355s 0.0335s 0.0360s -

ISSC 0.0304s 0.0330s 0.0335s 0.0411s -

MVPCA 0.0261s 0.0344s 0.0355s 0.0386s -

NC-OC-MVPCA 0.0290s 0.0344s 0.0338s 0.0356s -
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Table 3.5: NN Percent Difference of Band Selection and Full Matrix Run Times

Technique 25 Bands 50 Bands 75 Bands 100 Bands

VGBS 28.84% 17.54% 23.27% 16.20%

ISSC 33.04% 24.85% 23.43% 3.05%

MVPCA 47.49% 20.82% 17.68% 9.27%

NC-OC-MVPCA 37.30% 20.74% 22.42% 17.44%
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Figure 3.5: Comparison of Performance Run Time amongst Techniques

All of the band selection techniques were able to test the ANN classification model faster

than the full hyperspectral data, despite the band selection values chosen. The speeds, with the

exception of ISSC and MVPCA with 100 bands selected, were a substantial percentage faster, with

some of the techniques running 30-40% faster than the full hyperspectral data. On average, the

ISSC algorithm produced the quickest run time. The VGBS and NC-OC-MVPCA had consistent
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competitive run times regardless of the number of bands selected. While MVPCA started as the

fastest technique, it gradually became one of the slowest.

Table 3.6 presents the classification accuracy results from the tests run using the trained SVM

on MATLAB, and Table 3.7 shows the percent difference of the classification accuracies of the

reduced spectral band hyperspectral data compared to those of the full hyperspectral image data

tested on the SVM. Figure 3.7 shows the progression of the classification accuracy as the spectral

band values increase.

Table 3.6: SVM Classification Accuracy Results

Technique 25 Bands 50 Bands 75 Bands 100 Bands 200 Bands

Full Matrix - - - - 61.52%

VGBS 62.00% 65.26% 63.66% 62.38% -

ISSC 58.93% 61.76% 61.28% 61.40% -

MVPCA 59.60% 62.21% 63.42% 62.40% -

NC-OC-MVPCA 59.74% 60.02% 60.81% 61.31% -

For the SVM classification model, the VGBS on average performed the best, even with 100

bands it was only 0.02% less accurate than the MVPCA, and it was able to achieve comparable

classification accuracy to the full hyperspectral image data matrix with just 25 bands. The ISSC

only required 50 bands for it to achieve similar classification results, and it took the MVPCA

somewhere between 50 and 75 bands to do so. The NC-OC-MVPCA band selection technique was
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Table 3.7: SVMPercentDifference of theClassificationAccuracy of theBand Selection Techniques

and Full Hyperspectral Data

Technique 25 Bands 50 Bands 75 Bands 100 Bands

VGBS 0.77% 5.89% 3.42% 1.38%

ISSC -4.30% 0.39% 0.39% 0.19%

MVPCA -3.18% -1.11% 3.04% 1.42%

NC-OC-MVPCA -2.94% -2.47% -1.17% 0.35%
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Figure 3.6: Comparison of Classification Accuracy amongst Techniques

on average the worst performer in terms of classification accuracy, but its results were not too far

off with a 3% percent difference being the maximum difference for the technique.

Table 3.8 presents the run times from the tests run using the trained SVM on MATLAB, and

Table 3.9 shows the percent difference of these run times between those of the reduced spectral

band hyperspectral data and those of the full hyperspectral image data tested on the SVM. Figure
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3.7 shows the run times for each of the band selection techniques over the selection of 25 to 100

band values. For this graph, the full hyperspectral data was not included due to its high run time

which caused the graph to not be as readable.

Table 3.8: Run Time of Band Selection Techniques

Technique 25 Bands 50 Bands 75 Bands 100 Bands 200 Bands

Full Matrix - - - - 38.2892s

VGBS 6.5906s 16.5212s 17.3957s 21.7341s -

ISSC 3.8681s 7.2948s 10.1671s 13.3822s -

MVPCA 3.8897s 7.0858s 11.0509s 14.3912s -

NC-OC-MVPCA 4.2615s 7.3915s 10.3041s 13.4619s -

Table 3.9: Percent Difference of Band Selection and Full Matrix Run Times

Technique 25 Bands 50 Bands 75 Bands 100 Bands

VGBS 141.26% 79.43% 75.04% 55.16%

ISSC 163.30% 135.99% 116.07% 96.41%

MVPCA 163.11% 137.54% 110.41% 90.73%

NC-OC-MVPCA 159.94% 135.28% 115.18% 95.95%

Similar to that of the NN, all of the performance times with the band selection techniques

provide for run times that are much quicker than the hyperspectral full spectral bands. The ISSC
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Figure 3.7: Comparison of Performance Run Times amongst Techniques

was the highest performer on average with a faster run time of up to 163.30%. Whereas, the VGBS

was the slowest of the techniques, with its speed decreasing to a less than 100% percent difference

from the full hyperspectral set within only 50 bands selected. The MVPCA and NC-OC-MVPCA

performed comparably to the ISSC algorithm, with only fractions of a second difference.
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CHAPTER IV

AT THE EDGE APPLICATION

The focus of this section is to introduce a device that presents results for at the edge implemen-

tations and to compare the classification performance produced by MATLAB. This section also

includes an implementation process similar to that from the previous section but with a narrower

range of band selection values.

4.1 Implementation

With the initial testings done for this thesis, the band values that were selected, 25-100 bands,

spanned a large percentage of the data, 12.5% to 50% [5]. After reading more into current

hyperspectral band selection research in which a more selective range is applied, such as [46] with

5-40 bands, [25] with 10-50 bands, [39] with 5-60 bands, and [38] with 5-60 bands selected, the

spectral band values for the following implementations were selected to be 15, 30, 45, and 60.

Figure 4.1 shows the diverse selection of the four band selection techniques when tasked with

selecting 15, 30, 45, and 60 bands. The x-axis represents each of the bands that were selected by

the techniques, and the y-axis represents the center wavelength of the selected band in nanometers.

These new band selection values were used to create down-selected hyperspectral data that

was then split into training and testing data. The split between the two types of data was done by

randomly selecting 80% of the data to be training and the remaining 20% to be the testing data.
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(a) 15 Bands Selected (b) 30 Bands Selected

(c) 45 Bands Selected (d) 60 Bands Selected

Figure 4.1: The Wavelengths Associated with the Different Bands Selected
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Once the training data input was created, it was placed onto the chosen classification model, either

ANN or SVM, and used to create a trained classification model.

Figure 4.2 gives a visual representation of the process in which the training model is trained on

MATLAB and tested on MATLAB and the NVIDIA Jetson AGX Xavier, which will be referred

to as NVIDIA for the remainder of this chapter.

Figure 4.2: Block Diagram of Real Time Application

For placing the trainedANNmodel onto theNVIDIA,OpenNeuralNetworkExchange (ONNX)

was utilized. ONNX is an open-source platform that seeks to expand the uses of artificial intel-

ligence research beyond the use of a single platform and has a community of users that have

developed different resources for other users to be able to place models onto other platforms [3].

The models on MATLAB were created to be DAGNetworks to fit within the ONNX conversion

on MATLAB. Once the models were converted to the correct format, they were placed on the
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NVIDIA. There are numerous Ubuntu compatible platforms that can then be used to test the placed

models. For the realm of this research, the focus was limited to using Python applications. The

ONNX-runtime program was run in Python to test the given models. The responding results were

then recorded for comparison to the MATLAB implementations of the same classification models.

For placing the SVM model onto the NVIDIA, the models were converted from a MATLAB

structure to a C structure. This structure was compatible with python, which allowed for the process

to run similarily to that of the ANN model process for the remainder of the testing.

Once the models were placed, the models were tested on both MATLAB and the NVIDIA

for comparison of classification performance. The same testing data was used to evaluate both

of the applications in order to have a comparable reference for classification performance. The

performance was recorded in terms of classification accuracy and run times based on the testing

of these trained models.

4.2 Results
4.2.1 Classification of Reduced Spectral Band Numbers on MATLAB

Table 4.1 shows the classification accuracy results from the tests run using the lower band

selected values on the trained NN on MATLAB, and Table 4.2 shows the percent difference

of these new lower band selection values’ classification accuracies compared to that of the full

hyperspectral image data matrix. Figure 4.3 shows the progression of the classification accuracy

as the spectral band values increase.

From these results, it is evident that the ISSC and NC-OC-MVPCA band selection techniques

were the best performing techniques in terms of classification accuracy. VGBSwas able to perform

well compared to the full hyperspectral image data matrix when almost 60 bands were selected.
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Table 4.1: NN Classification Accuracy of Band Selection Techniques

Technique 15 Bands 30 Bands 45 Bands 60 Bands 200 Bands

Full Matrix - - - - 65.73%

VGBS 57.44% 61.15% 63.13% 65.77% -

ISSC 62.95% 67.04% 67.15% 67.82% -

MVPCA 55.83% 56.80% 60.05% 61.70% -

NC-OC-MVPCA 63.40% 65.54% 67.07% 68.23% -

Table 4.2: NN Percent Difference of the Classification Accuracy of the Band Selection Techniques

and Full Hyperspectral Data

Technique 15 Bands 30 Bands 45 Bands 60 Bands

VGBS -13.468% -7.22% -4.04% 0.05%

ISSC -4.32% 1.97% 2.13% 3.13%

MVPCA -16.29% -14.57% -9.04% -6.33%

NC-OC-MVPCA -3.61% -0.29% 2.02% 3.73%

The MVPCA band selection technique performed the worst of the band selection techniques, with

it not being able to reach a comparable classification accuracy within the 60 band limit.

Table 4.3 presents the run time results from the tests run using the trainedNNonMATLAB, and

Table 4.4 shows the percent difference of the run times of the reduced spectral band hyperspectral

data compared to those of the full hyperspectral image data tested on the NN. Figure 4.4 shows

the progression of the run times as the spectral band values increase.
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Figure 4.3: Comparison of Classification Accuracy amongst Techniques

Table 4.3: Run Times of Band Selection Techniques

Technique 15 Bands 30 Bands 45 Bands 60 Bands 200 Bands

Full Matrix - - - - 0.0424s

VGBS 0.0271s 0.0310s 0.0349s 0.0309s -

ISSC 0.0312s 0.0274s 0.0322s 0.0367s -

MVPCA 0.0322s 0.0326s 0.0327s 0.0366s -

NC-OC-MVPCA 0.0288s 0.0250s 0.0338s 0.0332s -

As can be seen from the figures, all of the band selection techniques run at shorter run times

than the full hyperspectral image data set, which is to be expected with such low values chosen

for the band sets. But what makes the results significant is the percentage in which the speed is

increased by. Most of the percentages are between 25-45%, which is a significant amount when

less than 30% of the bands are being selected for classification of the entire set. Table 4.5 presents
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Table 4.4: Percent Difference of Band Selection and Full Matrix Run Times

Technique 15 Bands 30 Bands 45 Bands 60 Bands

VGBS 43.94% 31.10% 19.20% 31.44%

ISSC 30.28% 42.89% 27.38% 14.29%

MVPCA 27.32% 25.73% 25.71% 14.72%

NC-OC-MVPCA 38.06% 51.45% 22.56% 24.20%
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Figure 4.4: Comparison of Performance Run Times amongst Techniques

the classification accuracy results from the tests run using the trained SVM on MATLAB, and

Table 4.6 shows the percent difference of the run times of the reduced spectral band hyperspectral

data compared to those of the full hyperspectral image data tested on the SVM. These band selected

values are also of the new chosen smaller values. Figure 4.5 shows the progression of the run

times as the spectral band values increase.
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Table 4.5: Classification Accuracy of Band Selection Techniques

Technique 15 Bands 30 Bands 45 Bands 60 Bands 200 Bands

Full Matrix - - - - 61.52%

VGBS 62.95% 62.24% 64.94% 65.59% -

ISSC 58.86% 59.22% 61.26% 61.31% -

MVPCA 58.60% 60.40% 61.69% 62.93% -

NC-OC-MVPCA 58.85% 59.79% 59.98% 60.55% -

Table 4.6: Percent Difference of the Classification Accuracy of the Band Selection Techniques and

Full Hyperspectral Data

Technique 15 Bands 30 Bands 45 Bands 60 Bands

VGBS 2.29% 1.15% 5.416% 6.40%

ISSC -4.43% -3.82% 0.43% 0.35%

MVPCA -4.87% -1.83% -0.27% -2.25%

NC-OC-MVPCA -4.44% -2.86% -2.54% -1.60%

The VGBS band selection technique was the highest performing in terms of classification

accuracy of all the band selection techniques. With only 15 bands, the VGBS is able to perform

at slightly higher classification accuracy than the full set. The other band selection techniques all

produce fairly comparable results, even though the ISSC is the only one of the three that reaches

the higher accuracy within the 60 band value limit.
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Figure 4.5: Comparison of Classification Accuracy amongst Techniques

Table 4.7 presents the run time results from the tests run using the trained SVMonNVIDIA, and

Table 4.8 shows the percent difference of the run times of the reduced spectral band hyperspectral

data compared to those of the full hyperspectral image data tested on the SVM. Figure 4.6 shows

the progression of the run times as the spectral band values increase.

Table 4.7: Run Times of Band Selection Techniques

Technique 15 Bands 30 Bands 45 Bands 60 Bands 200 Bands

Full Matrix - - - - 20.5540s

VGBS 4.8212s 9.4018s 10.2021s 16.1602s -

ISSC 2.7487s 4.8112s 6.1739s 8.9576s -

MVPCA 2.6887s 4.4769s 6.1373s 9.7854s -

NC-OC-MVPCA 2.9497s 4.7123s 6.1702s 8.6029s -
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Table 4.8: Percent Difference of Band Selection and Full Matrix Run Times

Technique 15 Bands 30 Bands 45 Bands 60 Bands

VGBS 155.27% 121.14% 115.84% 81.28%

ISSC 173.21% 155.35% 144.46% 124.16%

MVPCA 173.75% 158.13% 144.74% 118.58%

NC-OC-MVPCA 171.39% 156.17% 144.49% 126.62%
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Figure 4.6: Comparison of Run Times amongst Techniques

4.2.2 Classification of Reduced Spectral Band Numbers on NVIDIA

The results from the implementations tested on MATLAB’s classification accuracy are the

same values as that of the NVIDIA tested models, so the remaining section will only present the

run time values from the NVIDIA tests. Table 4.9 compares the run times of the band selection

techniques placed on the ANN in NVIDIA. The following Table 4.10 gives the percent difference
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of the given performance run times compared to the full matrix placed onto the ANN. Figure 4.7

shows the progression of the run times as the spectral band values increase.

Table 4.9: Run Times of Band Selection Techniques

Technique 15 Bands 30 Bands 45 Bands 60 Bands 200 Bands

Full Matrix - - - - 0.0467s

VGBS 0.0045s 0.0047 0.0053s 0.0320s -

ISSC 0.0043s 0.0045s 0.0058s 0.0063s -

MVPCA 0.0042s 0.0049s 0.0059s 0.0063s -

NC-OC-MVPCA 0.0043s 0.0046s 0.0057s 0.0065s -

Table 4.10: Percent Difference of Band Selection and Full Matrix Run Times

Technique 15 Bands 30 Bands 45 Bands 60 Bands

VGBS 64.41% 59.50% 48.49% 22.08%

ISSC 68.21% 63.12% 40.82% 31.61%

MVPCA 70.66% 56.46% 38.40% 31.61%

NC-OC-MVPCA 67.28% 62.50% 42.08% 29.67%

Depending on the number of bands selected, a different band selection technique performed

the best. All of the band selection techniques performed relatively close to the same, with all of

the times being 22-70% faster than that of running the entire hyperspectral image data. This is
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Figure 4.7: Comparison of Run Times amongst Techniques

significant because even in the case of using MVPCA for the selection of 15 bands, though the loss

in classification accuracy is 16.29%, the gain of performance run time is 70%, which depending

on the leniency on classification dependence, could be a good trade off. Another example could

be use of the NC-OC-MVPCA with 15 bands, there is a 67.28% decrease in performance run time

with just a loss of 3.61% in classification accuracy.

Table 4.11 compares the run times of the band selection techniques placed on the SVM in

NVIDIA. The following Table 4.12 gives the percent difference of the given performance run

times compared to the full matrix placed onto the SVM. Figure 4.8 shows the progression of the

run times as the spectral band values increase.

As with the classification accuracries, the ISSC and NC-OC-MVPCA are the top performing

band selection techniques. Although it is important to note that all of the band selection techniques

perform relatively close to one another and follow the trend of increasing about a second with the
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Table 4.11: Run Times of Band Selection Techniques

Technique 15 Bands 30 Bands 45 Bands 60 Bands 200 Bands

Full Matrix - - - - 20.553994s

VGBS 5.1868s 6.2416s 7.2431s 8.0562s -

ISSC 5.1816s 6.2117s 7.3467s 8.0473s -

MVPCA 5.5538s 6.5479s 7.5140s 8.1932s -

NC-OC-MVPCA 5.1597s 6.2742s 7.1305s 8.2428s -

Table 4.12: Percent Difference of Band Selection and Full Matrix Run Times

Technique 15 Bands 30 Bands 45 Bands 60 Bands

VGBS 119.40% 106.83% 95.77% 87.37%

ISSC 119.46% 107.17% 94.67% 87.46%

MVPCA 114.91% 103.36% 92.92% 86.00%

NC-OC-MVPCA 119.74% 106.45% 96.98% 85.50%

increase in 15 bands. These band selection techniques performed significantly faster than the full

data set, with the ranges being from 85.50%-119.74%.

4.2.3 Comparison of the Run Times for MATLAB and NVIDIA

As mentioned before, the initial comparison for the MATLAB and NVIDIA results were going

to be in terms of both classification accuracy and performance run time. However, the classification

accuracies remained the same for both devices, so the focus of this comparison is based on the run
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Figure 4.8: Comparison of Run Times amongst Techniques

times from the two. Figure 4.9 shows the comparison of the four band selection techniques when

run on both of the devices.

As can be seen from the devices, the NVIDIA ran faster than the MATLAB device despite the

number of bands that were placed onto the device.

Figure 4.10 shows the comparison of the run times of the VGBS, ISSC, MVPCA, and NC-OC-

MVPCA band selection techniques with increasing band selection values when trained through a

SVM classification model and tested on the MATLAB and NVIDIA devices.

With these comparisons, it is evident that both of the devices perform at more comparable run

times. In the VGBS appplication, NVIDIA ran at much faster speeds, regardless of the increase

in band values, with the exception at 20 bands selected. Whereas, for both the ISSC, MVPCA,

and NC-OC-MVPCA tests, the MATLAB implementation ran at a much quicker speed until after

50 bands were selected. The importance of the speed of the NVIDIA is not to conclude that it
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Figure 4.9: Run-Times for NN on NVIDIA and MATLAB
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performed "better" than the MATLAB tests, but to show that it can have a run time comparable to

that of simulated tests, which can then attest to its feasibility of being used as a real-time device.
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CHAPTER V

CONCLUSIONS

The overall purpose of this research was to test the use of band selection techniques and

investigate their practicality in real-time at the edge applications. The classification accuracies

and performance times reflect acceptable and achievable results, which confirms that the band

selection techniques do have the ability to retain important information needed for the testing of the

hyperspectral image set as a whole. For use of the ANN as a classification model, the classification

accuracy remained fairly similar to that of the full hyperspectral image data, with exceptions in

using MVPCA for certain values and with VGBS for 15 and 30 band selection values. There was

also a significant decrease in run-time with the use of band selection techniques with decreases as

high as 51.45% when tested on MATLAB and 70.66% when tested on NVIDIA with the lower

band selected values. With the SVM classification model, there was an even smaller difference

between the classification performance of the full hyperspectral image data compared to the band

down-selected data. These outputs show that the resulting tests can reflect those of real-time data

collection and processing. The NVIDIA Jetson AGXXavier produced similar, or sometimes faster,

run-times than the simulation-run tests, which does not correlate in terms of efficiency over the

simulation-run tests but instead demonstrates the plausibility of the NVIDIA device acting as the

edge device. With that established, the classification accuracies and run-times of the classification
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models placed on the NVIDIA Jetson AGXXavier can also be seen as a further confirmation of the

effectiveness of these down-selected models. For example, when 15 bands were selected for the

ANN, all of the band selected models performed 64.41% to 70.66% faster than that of the original

hyperspectral image data, which is a considerable increase in speed. In future work, this research

could be expanded upon to include more band selection techniques and additional hyperspectral

image data. This work could also be placed onto a UAV for documentation of performance as data

is collected.
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