
BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, Vol. 8, No. 2, April 2020

Copyright © BAJECE ISSN: 2147-284X http://dergipark.gov.tr/bajece

Abstract— We propose a real-time image matching

framework, which is hybrid in the sense that it uses both hand-

crafted features and deep features obtained from a well-tuned

deep convolutional network. The matching problem, which we

concentrate on, is specific to a certain application, that is,

printing design to product photo matching. Printing designs are

any kind of template image files, created using a design tool, thus

are perfect image signals. For this purpose, we create an image

set that includes printing design and corresponding product

photo pairs with collaboration of an actual printing facility.

Using this image set, we benchmark various hand-crafted (SIFT,

SURF, GIST, HoG) and deep features for matching performance.

Various segmentation algorithms including deep learning based

segmentation methods are applied to select feature regions.

Results show that SIFT features selected from deep segmented

regions achieves up to 96% product photo to design file matching

success in our dataset. We propose a framework in which deep

learning is utilized with highest contribution, but without

disabling real-time operation using an ordinary desktop

computer.
·

Index Terms— image matching, hand-crafted features, deep

features, semantic segmentation, product image processing

I. INTRODUCTION

MAGE MATCHING is a broad title that covers or partially

relates to various topics among a number of different

computer vision problems, namely image-based localization,

multi-view 3D reconstruction, structure-from-motion, image

retrieval, tracking, just to name a few. This title may refer to

finding a transformed version of an image [1], or may refer to

a different version of the problem, such as finding an image

with a similar semantic context [2]. Regardless of the problem

definition, image matching boils down to a simple statement:

finding a similarity model between (at least) two images,

which would satisfy the pairings for a given image set.

The algorithms proposed under this title in recent years can

ALPER KAPLAN, is with Cognitive Science Program, Graduate School of
Social Sciences, Yeditepe University, Istanbul, Turkey
(e-mail: alperkaplan@outlook.com).

ERDEM AKAGUNDUZ, is with Department of Electrical and Electronics
Engineering, Çankaya University, Ankara, Turkey,
(e-mail: akagunduz@cankaya.edu.tr).

https://orcid.org/0000-0002-2306-6008

Manuscript received January 20, 2020; accepted April 16, 2020.
DOI: 10.17694/bajece.677326

be mainly split into two principle categories. The first

category consists of approaches that utilize hand-crafted

representations. Among these methods, the bag-of-visual-

words (BoVW) algorithm [3] proved to be very successful,

irrespective of the type of the hand-crafted feature used, and is

still the state-of-the-art approach due to its flexibility,

compactness and speed.

However, as a part of the growing wave of interest on deep-

learning-based methods, a second category of approaches

recently focus on image matching using convolutional neural

networks (CNN) [4]. The strength of these methods comes

from the abstract features that merge at the deeper layers of

CNNs [5]. The earlier approaches of this category [6-9]

performs particularly good at problems like image category

classification, object detection and/or localization, mainly

because of their capability to convolve abstract features into

image categories or object definitions. There are also attempts

with promising results, which aim at transferring pre-trained

and well-tuned CNNs into image retrieval frameworks [10,

11]. Nonetheless, these network structures are not well-suited

to match a given image to its pair, since they use fully

connected layers that lead to a classification layer (such as

soft-max). This final layer is used to classify the extracted

abstract features into object categories. Therefore, their

structure is not designed with the purpose of finding pairs.

Very recently a new CNN structure, namely the Siamese

network (SN), has been proposed specifically for the problem

of image matching [12]. SNs can learn feature spaces that map

similar image pairs close to each other and dissimilar image

pairs with a selective distance, by using labelled pairs. This

approach has also been successfully applied to similar

problems that require an image-to-image matching, such as

face recognition [13] or aerial-to-ground image matching [14].

SNs improve matching performance dramatically, however

they come up with two main drawbacks. Firstly, they

necessitate the creation of a large-scale image set, because in

order to span the entire space of possible transformations from

the original image to the image to be matched, a massive

number of image pairs are required. Such an image set

collection and annotation effort is extremely expensive and

usually, industrially impracticable. Secondly, these networks

make a separate full forward deep CNN run for each candidate

image in the image set, thus are slow even with dedicated

hardware, such as a GPU.

Deep learning is a powerful tool. In less than a decade,

nearly all vision problems shifted to CNN domain.

A Hybrid Framework for Matching Printing

Design Files to Product Photos

A. KAPLAN and E. AKAGUNDUZ

I

170

http://dergipark.gov.tr/bajece
mailto:alperkaplan@outlook.com
mailto:akagunduz@cankaya.edu.tr

BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, Vol. 8, No. 2, April 2020

Copyright © BAJECE ISSN: 2147-284X http://dergipark.gov.tr/bajece

Nevertheless, it still comes with a price. As the layers of a

CNN get deeper, the hardware requirements for real-time

operation become more and more expensive. We still don’t

have a mobile solution, which may replace the high-cost and

power-hungry GPUs that allow real-time deep learning

operations. And when it comes to the problem of image

matching, our best solution yet, namely the Siamese networks

architecture, require massive training sets and forward-run for

all possible candidate images. In conclusion we still need

ingenious solutions for real-time, operation-specific and

affordable image matching frameworks.

A. Problem Definition and the Proposed Solution

In this paper, we study a particular version of the image

matching problem, in which we match printing design files to

product photos. Printing designs are any kind of template

image files, created using a design tool and used as templates

for printing a flyer, banner, poster, etc. These files are

computer generated, thus they possess no signal-based

deficiencies like noise or optic blur. Most of them are in

vector format, hence, are resolution-free.

On the other hand, photographs of a printed product suffer

many unwanted effects, such as uncontrolled shooting angle,

uncontrolled illumination, occlusions, printing deficiencies in

colour, camera noise, optic blur, etc. Matching them to their

original design files requires learning the unknown

transformation that the photographing action creates. This

transformation is not deterministic by nature and is affected by

predominant uncontrolled factors, such as the photographer,

the camera or the background.

A pictorial representation of our problem definition and

system framework is depicted in Figure 1. In a sample

scenario of our problem definition, an operator (or an

automatic visualization system) shoots the photographs of

some printed products by using a computation-limited device

(such as a mobile phone, etc.). Then this device sends the

product photo to a server machine, in which the photo is

matched to its design file pair, in real-time.

In order to solve this problem, we propose a real-time image

matching framework, which is hybrid in the sense that it uses

both hand-crafted features and deep features obtained from a

well-tuned very deep CNN [6]. The hand-crafted or deep

features are extracted only from a region that is designated by

a fine-tuned deep CNN. In our framework, this feature region

segmentation operation is the only “deep” operation that is

applied on the product photo, thus we avoid running a deep

CNN for each possible pair in the image set, as it is done for

Siamese networks. This also prevents us from using expensive

deep learning hardware (a GPU), but still permits us to

provide real-time operation. By using the hand-crafted or deep

features extracted from the deep segmented region, a BoW

framework is utilized in order to find the correct image pair.

In following section, we provide the details of the image set

that includes printing design files and corresponding product

photo pairs. Section 3 explains the deep learning experiments,

which aim at solving feature region segmentation problem.

Section 4 represents the BoVW framework, in which different

hand-crafted and/or deep feature extraction, and product

segmentation methods are benchmarked for optimal

performance. Section 5 presents the experimental results,

whereas the final section concludes the paper and gives

directions for future work.

II. DESIGN FILE - PRODUCT PHOTO PAIRS IMAGE SET

The existing image sets [15-18] prepared for matching or

retrieval problems in the literature are very diverse in

category. They deal with different problems such as retrieving

RAW images, medical images, outdoor images, or even

satellite images. Consequently, for each image set the problem

definition is different. That’s why, in order to provide a

solution for our specific problem definition, we need to create

a specific image set that includes printing design files and

corresponding product photos.

As a consequence, an image set creation effort was carried

out. To this end, an operator took the photographs of 2000

products at the production line. Product photos are images of a

sample product (e.g. a flyer) usually stitched over a cargo box,

which carries the other printed samples (Figure 2). The idea is

to recognize this product (i.e. its ID) by matching the image of

the sample on the cargo box with the design file at the server.

Fig.1. Pictorial representation of our operational problem definition

171

http://dergipark.gov.tr/bajece

BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, Vol. 8, No. 2, April 2020

Copyright © BAJECE ISSN: 2147-284X http://dergipark.gov.tr/bajece

For some of the products, there exists more than a single

design file. A good example is a business card (Figure 1),

which usually has information on both sides, and thus has two

separate design files. In these cases, the problem definition is

to match the product photo (which could be any face of the

card) to one of the design files in the image set. Consequently,

for the photographed 2000 product samples, 3458 design files

were added to the image set. The operators were advised to

shoot the product with a perpendicular angle so that the

product (usually, but not necessarily rectangular in shape)

would fit the image with uniform margins. However, this

weak protocol was not successfully applied to all images,

mainly because of human-errors, and it is difficult to say that

the image set is rotation or scale controlled (please see Figures

1 and 2).

In addition to the product shooting and design file labelling

efforts, an annotation effort was also carried out. For each

photographed product the rectangle that encapsulates the

product sample was annotated on the images (depicted as blue

rectangles on Figure 2). These annotations will later be used as

ground truth to our deep learning framework in the following

section.

In Figure 2, several examples from the image set are

provided. As it can be seen from this figure, the set includes

various types of background clutter, occlusions caused by

packaging (tapes, chords, etc.), unwanted flash light

reflections, non-uniform illumination, folding of the sample

product and such. Thus, it is important that the matching

solution we propose, must be robust to these types of effects.

III. DEEP PRODUCT SEGMENTATION

As mentioned in the introduction section, we apply a deep-

segmentation supported bag-of-visual-words method to match

product photos to design files. This framework, with rigorous

benchmarking, is provided in the next section. However,

before we get into the details of our matching framework, in

this chapter we present some methods for segmenting the

product region in product photos using different deep CNN

(DCNN) architectures.

Finding the pixels that belong to a specific object category is

known as semantic segmentation in the literature. The reader

may refer to various surveys on this problem [19-26]. The

literature involves hundreds of different approaches to

semantic segmentation. The most common component among

these approaches is undoubtedly the utilization of the abstract

features of pre-trained DCNNs, by fine-tuning or transfer

learning.

In this paper, in order to segment the pixels of a product

photo using deep learning, we adapt three different

architectures: “FCN32s”, “FCN8s” and finally the proposed

“VGG-Regression-Net”, as we name it.

TABLE I

VGG-REGRESSION-NET ARCHITECTURE

Input Layer 224×224×3 RGB Image.
(VGG default input image size)

VGG Layers Pre-trained VGG layers (1 to N)

New Layers (all fully connected)

layer no. Number of Weights Activation Vector Size

N+1 j×k×d×256 1×1×256

N+2 1×1×256×256 1×1×256

N+3 1×1×256×900 1×1×900

Output 900x1 vector (30x30 Segmentation Result)

FCN32s and FCN8s are well-known fully convolutional

semantic segmentation networks, designed specifically for this

problem [27]. They are originally trained for 21 different pixel

labels. The only difference between these two architectures is

that FCN8s includes skip connections that allow feature

concatenation between different hierarchies within the DCNN.

In order to adapt these networks to our problem, the final

deconvolutional layers are set to 2 labels depth (as “product”

and “background”), and while this layer is being learned from

scratch, all other convolutional layers in the networks are fine-

tuned during training.

Fig.2. Sample product photos from the image set

172

http://dergipark.gov.tr/bajece

BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, Vol. 8, No. 2, April 2020

Copyright © BAJECE ISSN: 2147-284X http://dergipark.gov.tr/bajece

A. VGG-Regression-Net Architecture

In addition to these fully convolutional architectures, a

regression network is also proposed for the same problem. To

that end, the convolution layers of a pre-trained deep network,

namely VGG-VD-19L [6] are transferred to the VGG-

Regression-Net (VGGRN) architecture. In VGGRN, fully

connected layers are replaced and retrained. The aim is to

assess whether a DCNN with fully connected layers, this time

trained for regression of the segmentation mask, performs

better than fully convolutional architectures, such as FCN32s

or FCN8s. We hypothesize that the fully connected layers can

provide inference for a global composition of the image, in

which the FCNs could fail to achieve.
TABLE II

VGG-REGRESSION-NET EXPERIMENTS

Layer NCC
mean

NCC
std.

VGG-Regression-Net Layer 09: Conv41 0.84 ±0.11

VGG-Regression-Net Layer 10: Conv42 0.85 ±0.12

VGG-Regression-Net Layer 11: Conv43 0.87 ±0.15

VGG-Regression-Net Layer 12: Conv44 0.87 ±0.13

VGG-Regression-Net Layer 13: Conv51 0.92 ±0.06

VGG-Regression-Net Layer 14: Conv52 0.91 ±0.09

VGG-Regression-Net Layer 15: Conv53 0.90 ±0.14

VGG-Regression-Net Layer 16: Conv54 0.89 ±0.12

VGG-Regression-Net Layer 16: Conv54 0.89 ±0.12

FCN32s 0.87 ±0.10

FCN8s 0.85 ±0.09

The detailed architecture of the VGG-Regression-Net is

provided in Table 1. Selected N number of pre-trained

convolutinoal layers of VGG-VD-19L are transferred to this

new architecture. The input layer of the original VGG-VD-

19L receives 244×224 pixels RGB images. So any product

photo that is fed to this DCNN is first down-sampled into

244×224 pixels resolution.

In order to find the most suitable layer, multiple transfer

learning experiments are run. Each separate experiment

corresponds to creating a new DCNN by transferring “some”

VGG-VD-19L layers and replacing new fully connected

decision layers, so that we create the segmentation mask for

the product in the product image. The weights of the

transferred layers are frozen during training.

The ground truth of these masks are obtained by using the

annotation mentioned in the previous section (please see the

blue rectangles in Figure 2). For each product photo, a ground

truth mask for which the pixels inside the rectangle region are

1 and the rest (i.e. the background) 0, is created and used for

training. The output of the final fully-connected layer consists

of 900 components, which is actually the 30×30 pixels-sized,

down-sampled version of the segmentation mask.

B. Training the Deep Segmentation Architectures

Although training the FCNs is a subject of semantic

segmentation, training the proposed VGG-Regression-Net

architecture is a regression problem. In order to train this

DCNN, L1-norm operator is implemented as a loss function.

Stochastic gradient descent (SGD) with momentum is utilized

and a batch size of 16 images1 is used for batch normalization.

1 Stochastic Gradient Descent (SGD) algorithm with momentum is employed,
Initial Learning rate: 0.001, Weight Decay: 0.0004, Momentum: 0.91.
MatConvNet [28] library is used for training the VGG-Regression-Net, while
MATLAB Deep Learning Toolbox is utilized for training the FCNs.

Fig.3. Segmentation results for VGG-Regression-Net Layer 13, namely Conv51 are depicted. For four different samples, the image (left), the annotated ground
truth (middle) and the DCNN output (right) are shown.

Fig.4. Segmentation results, as blue regions over the image, for FCN8s (leftmost three images) and FCN32s (rightmost three images) are depicted. FCNs may
create segmentation regions with disconnected blobs, since their fully convolutional nature has no means to prevent such an output

173

http://dergipark.gov.tr/bajece

BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, Vol. 8, No. 2, April 2020

Copyright © BAJECE ISSN: 2147-284X http://dergipark.gov.tr/bajece

For all architectures, data augmentation is applied by

mirroring (×2), zooming (×2) and rotating (×4) the product

photos, thus enlarging the image set by 16. For training the

architectures 75% and for validation 15% of the image set are

used. For this reason, each experiment is run 10 times, using a

different subset for testing, which contains a separate 10% of

the whole image set.

Regarding the VGG-Regression-Net architecture, in order

to find the layer that provides the best abstract features for

segmentation, 8 different structures are trained, by cutting the

VGG-VD-19L at 8 different layers, namely conv41, conv42,

conv43, conv44, conv51, conv52, conv53 and conv54, which

are the 9th to 16th layers of VGG-VD-19L. Thus for 8 layers

of VGG-Regression-Net, FCN32s and FCN8s, separately for

10 test sets, a total of 100 learning experiments are run.

In order to benchmark the success of different VGG-

Regression-Nets and the FCNs architectures, normalized-

cross correlation (NCC) of the test results with the ground

truth are calculated and averaged over the entire set,

respectively for each experiment. In Table 2, for each

experiment the mean and the standard deviation of the

segmentation accuracy (i.e. normalized-cross correlation of

test results with the ground truth) are calculated. The best

results are obtained using the 13th layer of VGG-VD-19L for

fine-tuning experiments, with an average of 0.92 normalized

cross-correlation. FCNs both perform poor.

We believe that this is mainly because of the fact that, the

problem we solve here is not exactly semantic segmentation.

The product photo to be segmented, a poster, a flyer et cetera

is a composition of objects, not a single object. Our problem

is about learning the pixels of a product inside an image, as a

composition of objects. We believe that the reason why the

VGG-Regression-Net architecture performed better compared

to FCNs is mainly because, fully connected layers can learn

the global composition of abstract features, whereas FCNs,

with limited receptive fields, search for objects in local

regions. Therefore, as seen in Figure 4, even disconnected

blobs as segmentation results can be obtained for FCNs.

In the rest of this paper, we examine the effect of these

three different segmentation methods to our matching

performance. For this purpose, each matching method is deep

segmented by the two adapted FCNs and the best VGG-

Regression-Net experiment, which is obtained by using the

abstract features from layer 13 (namely conv51).

IV. IMAGE MATCHING FRAMEWORK

As previously mentioned in the introductory sections, the

aim of this study is to find a real-time solution to product

photo and design file matching problem. For this purpose, we

propose a framework with various benchmarking

experiments. The proposed framework is hybrid in the sense

that it fuses a conventional pattern recognition method that

uses hand-crafted features with a deep segmentation

technique. And while doing this, the study presents

benchmarking of different methods, in order to correctly

acknowledge the best performance for the given framework.

In Figure 5, the high level depiction of our framework can

be seen with the benchmarking processes we utilize. The

matching is accomplished by using the BoVW method [3]

together with a Naïve Bayes classifier. The main advantage of

using BoVW is that it provides a fixed-length representation

of the image, regardless of the number or type of features

obtained from that image. Moreover, BoVW + Naïve Bayes

online operation (testing) is extremely fast. It requires a

relatively slower offline training phase, in which the features

obtained from training set is clustered into N sets. But

needless to say, this does not affect the real-time operation in

our framework. Within the BoVW framework, two principle

benchmarking efforts are carried out, first being the

benchmarking for selection of the hand-crafted or deep

features of BoVW and second being the benchmarking for the

optimal number of clusters for BoVW.

BoVW relies on the features obtained from a test image,

which is a product photo in our case. The product photo does

not only include the “product” but considerable background as

well; ergo, it may be crucial to select the features only from

the product region in the photo. For this purpose, as seen in

Figure 5, another benchmarking effort for finding the product

region is also carried out, using different segmentation

Fig.5. The overall matching framework is depicted. The framework consists of four main blocks, namely segmentation, feature extraction, clustering and
classification.

174

http://dergipark.gov.tr/bajece

BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, Vol. 8, No. 2, April 2020

Copyright © BAJECE ISSN: 2147-284X http://dergipark.gov.tr/bajece

methods including the deep segmentation techniques

explained in the previous section.

In the following subsections, we explain each

benchmarking effort separately, following their process order

in the framework. Thus, we start with the segmentation

benchmark. Then we delve into our results and carry out

discussions on the optimum method.

A. Segmentation Benchmark

As mentioned above, selecting the features only from the

product regions may dramatically affect the matching

performance of a BoVW model. For this reason, in our

experiments we utilize five product segmentation methods out

of three categories and compare their results within the

complete framework. We also include the case where no

segmentation is carried out, so that we can clearly assess the

contribution of a tested segmentation method.

We categorize our tested segmentation strategies in three

titles, namely manual segmentation, unsupervised

segmentation and supervised segmentation.

1) Manual Segmentation

Manual segmentation is accomplished by the operator. As

seen in Figure 1, the operator shoots the products with a

mobile device and at this very moment, can manually segment

the product region in the photo using the same mobile device.

This is an unwanted scenario because it increases the

operation time, which contradicts with the general purpose of

the proposed system. However, we still choose to utilize this

segmentation method in our framework, so as to see the effect

of “perfectly” segmenting the product in a photo to our overall

matching success and we regard this method as a ground truth

for the segmentation step. In our image set we already have

these manual annotations (please see Section 2 and Figure 2).

2) Unsupervised Segmentation: Visual Saliency

The first automatic segmentation method we utilize is an

unsupervised method to find the product region in a photo.

Unsupervised segmentation had been a very hot topic [29]

before deep learning overwhelmingly manipulated the field

with the idea of employing large-scale data to any problem.

Since, for the sake of cheap and fast operation, we try to avoid

deep operation as much as we can, we select a visual saliency-

based method as our unsupervised segmentation method.

For this purpose, we use Graph-based Visual Saliency

(GBVS) method, which is a bottom-up visual saliency model.

By creating Markov chains among image pixels, the GBVS

algorithm calculates saliency values from equilibrium

distributions over pixel map locations [30]. Although it is not

a direct segmentation technique, visual saliency is being used

as an objectness measure and is utilized for segmenting

objects in an image [31]. In Figure 6, a sample result on a

product photo can be seen. Firstly, the saliency heat map is

calculated. Then by using a constant threshold (0.11 in our

experiments), the object region is segmented. In the same

figure, the segmented object can be seen in the rightmost

image.

There are various methods to segment an object from an

image without any prior information, in other words in an

unsupervised manner. The reason we choose to use GBVS is

simply because of its speed-accuracy trade-off [31]. In an

extended study, it is possible to search for the most optimum

method to segment an object in an unsupervised manner,

however we find this effort beyond the scope of this study.

3) Supervised Segmentation: Deep Learning

Supervision is simply utilizing domain-specific data. Thus,

compared to any unsupervised method, it is more susceptible

to over-fitting. However, if there is sufficient training data,

supervised methods are preferable most of the time. In order

to segment the product in a supervised manner, we utilize the

three deep segmentation methods, as explained in Section 3.

B. Image Features Benchmark

The general idea of BoVW is very simple: “representing an

image as a fixed-length set of features”. The so-called features

consist of keypoints and descriptors. Keypoints denote the

salient locations in the image, ideally invariant to

transformations. Descriptor is the description “around” the

keypoint. BoVW use both keypoints and descriptors to

construct vocabularies and represent each image as a

frequency histogram of features that are in the image.

Similarity measures to a test image can be calculated using

these frequency histograms, and thus a classification can be

performed.

For a BoVW framework, the most important question is

obviously “which feature/descriptor to use”. Depending on the

problem definition, imaging modality, performance

requirements and computational budget, different methods

can be used. For a comparison of local feature detectors and

descriptors for visual object categorization, the reader may

refer to [32]. In this study we employ 5 popular features,

namely, GIST [33], histogram of gradients (HoG) [34], SIFT

[35], SURF [36], and deep features, which are obtained using

a special CNN layer, namely the Spatial Pyramid Pooling

(SPP) Layer [37].

Among the aforementioned five features types, SIFT [35]

and SURF [36] are, by definition, local; thus they are well-

suited for BoVW. For HoG [34], the locality should be pre-

defined, i.e. provided by the user for local a region with a

fixed area. We use blocks of 16x16 on a uniform grid and

obtain HoG features individually from each block.

GIST [33], on the other hand, is a global descriptor, more

than a feature. It literally catches a “gist” of the scene by

using multi-scale low level features. Hence it is incompatible

for a BoVW model, and accordingly it is implemented out of

the BoVW framework. We calculate the GIST descriptors for

each training and test data. In consequence, by calculating the

Euclidean distances between the GIST descriptors, we match

a product photo to an image design file.

175

http://dergipark.gov.tr/bajece

BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, Vol. 8, No. 2, April 2020

Copyright © BAJECE ISSN: 2147-284X http://dergipark.gov.tr/bajece

Similarly, to GIST descriptor, the output of an SPP layer

[37] does not need a histogramisation effort. This layer’s

output is already fixed-length. SPP collects activations from

layers of different hierarchies, and concatenates them in a

single fixed-length vector. For this purpose, we have utilized

combinations of activations from different layers of the

FCN32s network as an input to the SPP layer. By calculating

the (weighted2) Euclidean distances between these vectors,

matching is performed.

C. Hyper-Parameter Optimization

The proposed framework includes different methods with

benchmarking of various intermediate steps (segmentation,

feature extraction etc.). Thus there are many hyper-parameters

that may affect the system performance. In this study, we

optimize only the cluster number of the BoVW framework.

We believe that this is the most important hyper-parameter,

mainly because it is independent of the utilized segmentation,

feature extraction or the classification steps. The number of

clusters is the vocabulary size and thus the heart of a BoVW

model. Accordingly, in the next section, we also provide

results for different cluster numbers, thus showing the effect

of vocabulary size on performance.

D. Classifier

The final block of the proposed framework is classification.

BoVW provides a fixed length histogram representation for

any image, and classification within this vector space is

another step, which serves as the final decision of the system.

In our framework, the final goal is to find the design file that

matches the given product photo. Various classification

methods can be employed for a BoVW system and the reader

may refer to [38] for a detailed comparison.

BoVW concept is an adaptation of the bag of words (BoW)

idea from natural language processing. In BoW, the so-called

words are calculated by clustering the entire training set

features into K number of subsets. Then, the number of each

“word” in a document is counted, and a frequency histogram

is created by using the word occurrences. We have the same

concept in BoVW, but instead of words, we use image

features. Image features can be anything, like salient regions

in an image. We normalize frequency histograms to obtain

probability distribution functions that represent the possibility

of having a given visual word in an image. At this point we

utilize Naïve Bayes algorithm. Occurrence of a word is

2 In an SPP layer [37], the activations are weighted by the size of the pooling
layer.

assumed as an independent event (which is the Naïve part)

and all feature probabilities are multiplied to find the

matching probability of an image to another.

We have chosen Naïve Bayes algorithm as our classifier

mainly because of two reasons. Firstly, it is fast and

compatible with real-time processing. And secondly training

requires a small amount of samples to estimate the model

parameters. This is why it has always been an optimal [39]

partner for BoVW. We believe that with another, maybe

mathematically more complex classifier, our results may

further be improved. For the sake of computation speed we

employ Naïve Bayes for all BoVW experiments in this study,

and leave the benchmarking of different classifiers to a future

study.

V. EXPERIMENTAL RESULTS

Before we present our comparative results with rigorous

discussions in this section, the details of the experimental

parameters are provided below.

A. Experimental Setup

The main objective of our experiments is to find an optimal

method to product photo and design file matching. The

absolute value of matching success depends on the number of

design files to be compared in the image set. If there are only,

for example, 10 design files to match, regardless of the

benchmarked methods, the success would be relatively higher

compared to a case in which thousands of possible design file

candidates exist.

In our experiments, we have selected the number of product

photos to match as 603. Moreover, we have selected the

number of design files as 100, so that the 60 product photos

will match some of the design files in this 100 element set,

whereas the rest are just fillers4.

3 This parameter can be optimized with further experimentation. However,
this would require running thousands of experiments with 26 different
methods, which we have chosen leave to a future study.
4 As explained in Section 2, the number design files that match a set of 60
product photos vary. A single page flyer has a single corresponding design
file, whereas a two-sided business card has two design files matches for both
sides. Thus the exact number of fillers (i.e. randomly selected non-pair design
files) in a set of 100 design files changes according to the set of product
photos.

Fig.6. The objects in the product photos are segmented using the GBVS algorithm [30], which is selected as the unsupervised segmentation method for our
segmentation benchmark.

176

http://dergipark.gov.tr/bajece

BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, Vol. 8, No. 2, April 2020

Copyright © BAJECE ISSN: 2147-284X http://dergipark.gov.tr/bajece

Accordingly, we have created 1000 different randomly

selected 60 product photo - 100 design file sets, using the total

2000 product photos and 3458 design files. For each

benchmarked method, 1000 experiments are run using these

1000 different test cases. At each experiment, for each

product photo, the order of match is recorded. For this

purpose, when a product photo is matched to 100 design files

for an experiment, the Naïve Bayes probabilities (or the

Euclidean distances) are calculated and sorted. The rank of the

probability of the corresponding design file is recorded as the

order of that product photo’s matching performance5.

B. Results

For benchmarking, we employ 26 different methods using a

combination of 6 different segmentation methods and 5

different features as presented in Section 4. For instance, the

case in which SIFT features, that are obtained from only the

product region segmented using VGG-Regression-Net, is

referred to as “sift-deep”. Or, the case, in which GIST global

features are obtained from a manual segmented object region

in a product photo, is called “gist-manual”.

All 26 methods are tested for the same 1000 experiment

sets and for each product photo in each experiment, the order

of match is recorded. Using this order measure, we also

calculate the average order of being matched. For example,

5 For example, for a single product photo, we check the similarities to the
given 100 design files in that experiment. The actual design file that matches
the given product photo has the order 4, when all Naïve Bayes probabilities
(or the Euclidean distances) are sorted. Then the order for this product photo
in this experiment is simply 4.

for a specific method, the percentage of product photos that

have smaller or equal order “k” is recorded as the top-k

accuracy. For example, if the top-k accuracy for order k=10 is

95%, this shows that by only checking best 10 possible match

results, it is possible to match the correct design file with 0.95

probability.

In Figure 7.a, the top-k accuracy for all methods are

depicted. The numerical values are provided in Table III. The

best accuracy is obtained with “sift-deep” method, for which

SIFT features that are obtained from only the product region

segmented via the VGG-Regression-Net, are fed to the BoVW

framework. The sift-deep method also slightly outperforms

sift-manual method, for which the segmentation is performed

by the human operator. This indicates that human operators

can make mistakes in product region annotation, whereas

deep learning-based segmentation method can generalize

these errors and perform much better.

After observing the success of SIFT, we have applied

another version of the SIFT descriptor, namely the “Dense

SIFT” (DSIFT) [40]. DSIFT is the same algorithm as the

SIFT but it is run on a denser grid of locations. That is why

DSIFT provide, on average, 10 times higher number of

keypoints, compared to SIFT. In Figure 7.a, the performance

of DSIFT, which is quite poor, can also be seen. This is, we

believe, because of the fact that, increasing the number of

keypoints does not support representation, but conversely

creates more false alarm matches between feature clusters.

Fig.7. Top-k accuracy curves are depicted. In these curve x-axis denotes the order of match, i.e. the order of similarity of the actual pain in the training set. The
y-axis denotes the average success for that order value. a) (left) Top-k accuracy curves for all method. b) (right) Top-k accuracy curves for sift-deep under
varying number of clusters in BoVW.

177

http://dergipark.gov.tr/bajece

BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, Vol. 8, No. 2, April 2020

Copyright © BAJECE ISSN: 2147-284X http://dergipark.gov.tr/bajece

TABLE III

NUMERICAL RESULTS FOR EACH METHOD

Method / Order 1st 5th 10th 15th 20th

gist-manual 50.0% 66.7% 78.3% 81.7% 86.7%

gist-none 23.3% 43.3% 55.0% 63.3% 65.0%

gist-gbvs 33.3% 60.0% 68.3% 73.3% 75.0%

gist-deep 45.0% 65.0% 71.7% 80.0% 88.3%

gist-fcn32s 36.7% 60.0% 73.3% 76.7% 80.0%

gist-fcn8s 40.0% 70.0% 76.7% 76.7% 78.3%

hog-none 13.3% 28.3% 46.7% 50.0% 55.0%

hog-manual 15.0% 31.7% 41.7% 51.7% 58.3%

hog-gbvs 16.7% 31.7% 46.7% 50.0% 58.3%

hog-deep 11.7% 28.3% 40.0% 45.0% 55.0%

hog-fcn32s 8.3% 26.7% 36.7% 45.0% 53.3%

hog-fcn8s 16.7% 35.0% 41.7% 46.7% 50.0%

sift-manual 61.7% 83.3% 91.7% 95.0% 95.0%

sift-none 36.7% 53.3% 65.0% 76.7% 83.3%

sift-gbvs 53.3% 71.7% 86.7% 88.3% 90.0%

sift-deep 60.0% 88.3% 91.7% 96.7% 96.7%

sift-fcn32s 26.7% 48.3% 56.7% 65.0% 80.0%

sift-fcn8s 26.7% 45.0% 51.7% 66.7% 80.0%

dsift-deep 8.3% 26.7% 31.7% 45.0% 45.0%

surf-none 40.0% 55.0% 60.0% 66.7% 70.0%

surf-manual 56.7% 68.3% 70.0% 71.7% 71.7%

surf-gbvs 46.7% 65.0% 70.0% 76.7% 76.7%

surf-deep 55.0% 66.7% 71.7% 73.3% 76.7%

surf-fcn32s 41.7% 55.0% 63.3% 63.3% 63.3%

surf-fcn8s 45.0% 58.3% 66.7% 70.0% 73.3%

deepspp-manual 18.3% 26.7% 35.0% 40.0% 43.3%

The “deepspp” method, in which deep CNN features are fed

to a SPP layer, performs poor, even with manual (perfect)

segmentation of the product. Deep features carry abstract

information, which may fill the semantic gap of any vision

problem. Consequently, this poor performance of deep

features was intriguing for us. For this reason, we have carried

out extensive deep visualization experiments to uncover this

issue. SPP creates activations from all (thousands even when

only the deepest layer is used) neurons from the selected

layers, most of which are unfortunately noise and are usually

dropped out within the deep CNN. An SPP layer does not

have the ability to select deep features according to their

quality. That is why this method performs unsurprisingly poor

within a BoVW framework, compared to a more selective and

scale-invariant descriptor method, such as the SIFT. We have

utilized different combinations of activations from various

layers of the FCN32s network. The best performance was

obtained when only the activations from the final max-pooled

convolutional layer (pool5 - 13×13×512) was utilized. Only

the resulting curve for this case is depicted in Figure 7.a. Our

visualisation experiments clearly show that, regardless of the

layer the deep features are obtained, selective activations are

always overwhelmingly outnumbered by noisy, unselective

and insignificant activations, which cannot lead to any

semantic decision.

Consistent with our observations presented in Section 3,

segmenting with FCN32s and FCN8s does not contribute the

BoVW matching success positively. Semantic segmentation

of product photos as if they are plain objects, is apparently not

helping the feature selection operation enough.

In Figure 7.b, a parameter optimization effort for cluster

numbers is depicted. As the number of clusters in BoVW

increases, so as the success rates. In our tests, we tested up to

2000 clusters, which is the best case. This number can further

be increased for higher success with a price of dramatically

increasing our training time. The top-k accuracy for all

methods that utilize BoVW in Figure 7.a are calculated using

2000 clusters, which is our optimal case.

In Figure 8, some sample results for the sift-deep method

can be seen. The three samples on the top row are found with

order 1, i.e. with a perfect hit. The samples in the bottom row

are matched with orders 8, 70 and 11 from left to right,

respectively. The mismatch cases are usually because of

strong clutter or impaired design files.

The actual implementation of the system shows that the

average “end-to-end” matching time for a product photo,

using the sift-deep method in a regular, no-GPU desktop

computer is less than 4 seconds, including communication

delays6. This is a feasible duration for the operation

considering that it is much faster than the operator manually

searching for the product id, which takes about a minute for a

single product photo. Still, the computation duration is open

6 Image upload: 0.65s) + (deep segmentation: 2.15s) + (SIFT extraction:
0.69s) + (matching 0.23s) + (downloading the results 0.025s) = (TOTAL
3.74s on average). Feature extraction for design files are performed offline.

Fig.8. Sample results for the sift-deep method are seen. The samples on the top row are found with a perfect hit. The samples in the bottom row are matched
with orders 8, 70 and 11 from left to right, respectively.

178

http://dergipark.gov.tr/bajece

BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, Vol. 8, No. 2, April 2020

Copyright © BAJECE ISSN: 2147-284X http://dergipark.gov.tr/bajece

to improvement with better hardware and further software

optimization.

VI. CONCLUSIONS

The real-time image matching framework we propose in

this paper is hybrid in the sense that it uses both hand-crafted

features and deep features obtained from a well-tuned DCNN.

We concentrate on a specific application, that is to say,

printing design to product photo matching. Since photographs

of a printed product suffer many unwanted effects, such as

uncontrolled shooting angle, uncontrolled illumination,

occlusions, printing deficiencies in color, camera noise, optic

blur, et cetera, we benchmark different hand-crafted and deep

features to choose an optimal performance and propose a

framework, in which deep learning is utilized with highest

contribution.

Our results show that a deep segmentation supported

BoVW method gives satisfactory results for the proposed

operational concept. What is more, hand-crafted features,

when deep segmented from a region of interest may lead to

better results, compared to deep features, which may include

overwhelming number of noisy and unselective activations.

Like all current problems in computer vision, image

matching problem is also moving to the DCNN domain. On

the other hand, DCNNs require millions of data and expensive

hardware. That’s why we still need ingenious, practical and

cheap industrial solutions until deep CNN hardware becomes

standard in the following years.

In the meantime, we continue our studies on deep CNN

structures, specifically on Siamese networks. We are currently

building a Siamese network which can learn similarities

between a product photo and design file pair. In order to train

such a Siamese network, our analyses show that the current

dataset must be significantly larger, compared to the dataset

utilized in this study. Thus, we first focus our studies on

enlarging our image set for training of such a system.

Furthermore, a Siamese network will bring higher

computation burden. For that matter, we are also studying

embedded deep learning solutions that will utilize system-on-

chip solutions for real-time operations.

ACKNOWLEDGMENT

This research was partially supported by the National

Science Council of Turkey (TUBITAK - TEYDEB), with the

project title “Customer-Information Matching, Invoicing and

Barcoding of Post-Cut Products in Custom Printed Products

using Image Processing Methods”, under the 1507 program

and with the project number “7170364”. The authors would

like to thank the owner of the project, Şans Printing Industries

(bidolubaski.com) for their support and hard-work.

REFERENCES

[1] T. Dharani, I. L. Aroquiaraj, "A survey on content based image
retrieval," International Conference on Pattern Recognition, Informatics
and Mobile Engineering, Tamilnadu, India, pp 485-490, 2013.

[2] Y. Liu, D. Zhang, G. Lu, W.Y. Ma, "A survey of content-based image
retrieval with high-level semantics," Pattern Recognition, vol. 40. 1,
2007, pp 262 - 282.

[3] J. Sivic, A. Zisserman, "Video Google: a text retrieval approach to
object matching in videos," International Conference on Computer
Vision, 9th IEEE, Nice, France, vol. 2, pp 1470-1477, 2003.

[4] H. Wang, Y. Cai, Y. Zhang, H. Pan, W. Lv, H. Han, "Deep learning for
image retrieval: What works and what doesn't," International Conference
on Data Mining Workshop, Washington, DC, US, pp 1576-1583, 2015.

[5] J. Yosinski, J. Clune, A. Nguyen, T. Fuchs, H. Lipson, "Understanding
neural networks through deep visualization," Deep Learning Workshop,
International Conference on Machine Learning, Lille 2015, pp 2015.

[6] K. Simonyan, A. Zisserman, "Very deep convolutional networks for
large-scale image recognition" International Conference on Learning
Representations Workshops, San Diego, CA, US, 2015.

[7] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D.
Erhan, V. Vanhoucke, A. Rabinovich, "Going deeper with
convolutions," IEEE Conference on Computer Vision and Pattern
Recognition, ,Boston, MA, US, pp 1-9, June 2015.

[8] A. Krizhevsky, I. Sutskever, G. E. Hinton, "ImageNet classification with
deep convolutional neural networks," Advances in Neural Information
Processing Systems (NIPS), Lake Tahoe, NV, US, pp 1097-1105, 2012.

[9] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, Y. LeCun,
"Overfeat: Integrated recognition, localization and detection using
convolutional networks," International Conference on Learning
Representations, ICLR, Banff, Canada, 2014.

[10] A. Babenko, A. Slesarev, A. Chigorin, V. Lempitsky, "Neural codes for
image retrieval," European Conference in Computer Vision, Zurich,
Switzerland, pp 584-599, 2014.

[11] V. Chandrasekhar, J. Lin, O. Morère, H. Goh, A. Veillard, "A practical
guide to CNNs and fisher vectors for image instance retrieval," Signal
Processing, vol. 128, pp 426-439, 2016.

[12] I. Melekhov, J. Kannala, and E. Rahtu, "Siamese network features for
image matching," International Conference on Pattern Recognition
(ICPR), Cancún, Mexico, pp 378-383, 2016.

[13] Y. Taigman, M. Yang, M. Ranzato, L. Wolf, "DeepFace: Closing the
gap to human-level performance in face verification," IEEE Conference
on Computer Vision and Pattern Recognition, Columbus, OH, US, pp
1701-1708, 2014.

[14] T. Lin, Y. Cui, S. Belongie, J. Hays, "Learning deep representations for
ground-to-aerial geolocalization," IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), Boston, MA, US, pp 5007-5015, 2015.

[15] D. Cai, X. Gu, C. Wang, "A revisit on deep hashings for large-scale
content based image retrieval," ArXiv.CoRR, vol. abs/1711.06016, pp 1-
11, 2017.

[16] R. Datta, J. Li, J. Z. Wang, "Content-based image retrieval: Approaches
and trends of the new age”, ACM SIGMM International Workshop on
Multimedia Information Retrieval, New York, NY, USA, pp. 253-262,
2005.

[17] P. Clough, H. Müller, T. Deselaers, M. Grubinger, T. Martin Lehmann,
J. R. Jensen, W. Hersh, "The CLEF 2005 Cross-Language Image
Retrieval track," International Conference of the Cross-Language
Evaluation Forum for European Languages, Vienna, Austria, vol. 1171,
pp. 535-557, 2005.

[18] G. Schaefer, "UCID-RAW - a colour image database in raw format,"
European Congress on Computational Methods in Applied Sciences and
Engineering, Porto, Portugal, pp 179-184, 2017.

[19] T. Ahmad, P. Campr, M. Cadik, G. Bebis, "Comparison of semantic
segmentation approaches for horizon/sky line detection," International
Joint Conference on Neural Networks (IJCNN), Anchorage, AK, US, pp
4436-4443, 2017.

[20] F. Jiang, A. Grigorev, S. Rho, Z. Tian, Y. Fu, W. Jifara, A. Khan, S. Liu,
"Medical image semantic segmentation based on deep learning," Neural
Computing and Applications, vol 29. 5, pp 1257–1265, 2018.

[21] M. Siam, S. Elkerdawy, M. Jägersand, S. Yogamani, "Deep semantic
segmentation for automated driving: Taxonomy, roadmap and
challenges," IEEE International Conference on Intelligent
Transportation Systems, Yokohama, Japan, pp. 1-8, 2017.

[22] I. Ulku, E. Akagunduz, "A Survey on Deep Learning-based
Architectures for Semantic Segmentation on 2D images," ArXiv.Corr,
vol. abs/1912.10230, pp 1-20, 2019.

[23] M. H. Saffar, M. Fayyaz, M. Sabokrou, M. Fathy, "Semantic video
segmentation: A review on recent approaches," ArXiv.Corr, vol. abs/
1806.06172, pp 1-24, 2018.

[24] H. Yu, Z. Yang, L. Tan, Y. Wang, W. Sun, M. Sun, Y. Tang, "Methods
and datasets on semantic segmentation: A review," Neurocomputing,
vol. 304, pp. 82 - 103, 2018.

179

http://dergipark.gov.tr/bajece

BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, Vol. 8, No. 2, April 2020

Copyright © BAJECE ISSN: 2147-284X http://dergipark.gov.tr/bajece

[25] Y. Guo, Y. Liu, T. Georgiou, M. S. Lew, "A review of semantic
segmentation using deep neural networks," International Journal of
Multimedia Information Retrieval, vol. 7, pp. 87-93, Jun 2018.

[26] A. Garcia-Garcia, S. Orts-Escolano, S. Oprea, V. Villena-Martinez, and
J. G. Rodríguez, "A review on deep learning techniques applied to
semantic segmentation," ArXiv.Corr, vol. abs/1704.06857, pp 1-19,
2017.

[27] E. Shelhamer, J. Long, T. Darrell, "Fully convolutional networks for
semantic segmentation," IEEE Transactons on Pattern Analysis and
Machine Intelligence, vol. 39, pp. 640-651, Apr. 2017.

[28] A. Vedaldi, K. Lenc, "MatConvNet: Convolutional neural networks for
Matlab," ACM International Conference on Multimedia, Brisbane
Australia, pp. 689-692, 2015.

[29] H. Zhang, J. E. Fritts, and S. A. Goldman, "Image segmentation
evaluation: A survey of unsupervised methods," Computer Vision and
Image Understanding, vol. 110. 2, pp. 260 - 280, 2008.

[30] J. Harel, C. Koch, and P. Perona, "Graph-based visual saliency,"
Advances in Neural Information Processing Systems, Vancouver,
Canada, pp 545-552, 2006.

[31] Y. Xu, J. Li, J. Chen, G. Shen, Y. Gao, "A novel approach for visual
saliency detection and segmentation based on objectness and top-down
attention," International Conference on Image, Vision and Computing,
Chengdu, China, pp 361-365, 2017.

[32] J. Lankinen, V. Kangas, J. Kamarainen, "A comparison of local feature
detectors and descriptors for visual object categorization by intra-class
repeatability and matching," International Conference on Pattern
Recognition, Tsukuba, Japan, pp 780-783, 2012.

[33] A. Oliva, A. Torralba, "Modeling the shape of the scene: A holistic
representation of the spatial envelope," International Journal of
Computer Vision, vol. 42, pp. 145-175, 2001.

[34] N. Dalal, B. Triggs, "Histograms of oriented gradients for human
detection," IEEE Computer Vision and Pattern Recognition, San Diego,
CA, US, pp. 886-893, 2005.

[35] D. G. Lowe, "Distinctive image features from scale-invariant
keypoints," International Journal of Computer Vision, vol. 60, pp. 91-
110, 2004.

[36] H. Bay, T. Tuytelaars, L. Van Gool, "SURF: Speeded up robust
features," European Conference on Computer Vision, Graz, Austria, pp
404-417, 2006.

[37] K. He, X. Zhang, S. Ren, J. Sun, "Spatial pyramid pooling in deep
convolutional networks for visual recognition," Arxiv.CoRR, vol.
abs/1406.4729, pp 1-13, 2014.

[38] C. Hentschel, H. Sack, "Does one size really fit all?: Evaluating
classifiers in bag-of-visual-words classification," International
Conference on Knowledge Technologies and Data-driven Business,
New York, NY, USA, pp. 7:1-7:8, 2014.

[39] L. I. Kuncheva, "On the optimality of naïve bayes with dependent binary
features," Pattern Recognition Letters, vol. 27, pp. 830-837, 2006.

[40] K. Lenc, A. Vedaldi, "Understanding image representations by
measuring their equivariance and equivalence," IEEE Conference On
Computer Vision and Pattern Recognition, Boston, MA, US, pp. 991-
999, 2015.

BIOGRAPHIES

ALPER KAPLAN was graduated from

Yeditepe University, Computer

Engineering Department in 2016.

Currently, he is a research assistant and a

master’s student at Cognitive Science

Program of Yeditepe University. He

continues his studies by focusing on his

thesis about machine-generated music. In

addition to his academic studies, he

works as a software developer in an e-commerce company.

His interests consist of machine learning, machine-generated

art/music, music theory, natural language processing, image

processing.

ERDEM AKAGÜNDÜZ received his Ph.D.

degree in Middle East Technical

University, Electrical and Electronics

Engineering Department, Ankara,

Turkey, in 2011. He worked a research

and teaching assistant with the METU

EEE CVIS Lab. from 2001 to 2008.

Between 2009-2016 he worked as an

algorithm design engineer with

ASELSAN. Before starting his academic career in Turkey, as

a post-doctoral research associate, we visited the University of

York, UK, in 2016. He is currently an Assistant Professor in

Çankaya University, Electrical and Electronics Engineering

Department, Ankara, Turkey. His research interests include

deep learning, computer vision and sound processing.

180

http://dergipark.gov.tr/bajece

