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Beyond the list of molecules, there is a necessity to collectively consider multiple sets of
omic data and to reconstruct the connections between the molecules. Especially, pathway
reconstruction is crucial to understanding disease biology because abnormal cellular
signaling may be pathological. The main challenge is how to integrate the data together in
an accurate way. In this study, we aim to comparatively analyze the performance of a set of
network reconstruction algorithms on multiple reference interactomes. We first explored
several human protein interactomes, including PathwayCommons, OmniPath, HIPPIE,
iRefWeb, STRING, and ConsensusPathDB. The comparison is based on the coverage of
each interactome in terms of cancer driver proteins, structural information of protein
interactions, and the bias toward well-studied proteins. We next used these interactomes
to evaluate the performance of network reconstruction algorithms including all-pair
shortest path, heat diffusion with flux, personalized PageRank with flux, and prize-
collecting Steiner forest (PCSF) approaches. Each approach has its own merits and
weaknesses. Among them, PCSF had the most balanced performance in terms of
precision and recall scores when 28 pathways from NetPath were reconstructed using
the listed algorithms. Additionally, the reference interactome affects the performance of the
network reconstruction approaches. The coverage and disease- or tissue-specificity of
each interactome may vary, which may result in differences in the reconstructed networks.

Keywords: protein-protein interactions, interactome, network reconstruction, heat diffusion, personalized
PageRank, prize-collecting Steiner forest, pathway reconstruction

INTRODUCTION

Computational approaches improve our understanding about the mechanisms of perturbations,
effects of drugs, and functions of genes in the biological system by interpreting multiple “omic” data
and reducing their complexity (Liu et al., 2020; Paananen and Fortino, 2020). Integrative network
analysis approaches are used to interpret the complex interactions between “omic” entities as a whole
beyond the list of molecules. The impact of an alteration in any omic entity, for example, upregulated
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or downregulated genes or mutated or phosphorylated proteins,
may not be local; rather, it diffuses to the distant sites of the
interactome.

Many pathway databases cataloged the molecular interactions.
Each database explains interactions via different approaches.
KEGG (Kanehisa et al., 2017) provides annotated pathways,
while Reactome (Jassal et al., 2020) gives detailed information
on components and the reactions. Additionally, integrated
interactomes such as HIPPIE, ConsensusPathDB, and STRING
combine multiple resources to come up with a weighted
interactome. There are several scoring schemas to measure the
reliability of interactions such as MI-score and IntScore. These
methods combine different weights including the number of
publications, detection method, or network topology (Turinsky
et al., 2011; Kamburov et al., 2012; Kamburov et al., 2013; Alanis-
Lobato et al., 2017; Szklarczyk et al., 2019). Although the
combination of multiple resources improves the quality of the
interactomes, it still does not completely solve the bias toward
well-studied proteins or the artifacts from high-throughput
experiments (Žitnik et al., 2013; Caraus et al., 2015;
Skinniderid et al., 2018; Vitali et al., 2018). Besides the false
positives, interactomes are not complete and have false negatives
which are the undetected interactions. To complete the missing
parts in the interactome and to detect spurious interactions,
several prediction approaches have been employed using
network topology (Alkan and Erten, 2017), link prediction,
protein structures (Singh et al., 2006; Tuncbag et al., 2012;
Mosca et al., 2014; Segura et al., 2015; Yerneni et al., 2018;
Ietswaart et al., 2021), or additional data such as gene
expression (Cannistraci et al., 2013; Lei and Ruan, 2013;
Hulovatyy et al., 2014; Szklarczyk et al., 2021). For example,
Interactome3D uses the structural knowledge in PDB and
homology-based prediction to construct a highly accurate
interactome (Mosca et al., 2013). The main limitation of
proteome-wide structural interactome construction is the
number of structurally resolved protein complexes.

Network reconstruction approaches aim to transform the list
of seed genes/proteins into their interactome-wide impact based
on the topological proximity. Steiner trees/forests, statistical
models, and network propagation with random walk or heat
diffusion systems have been frequently used in omics data
integration with the molecular interactions (Leiserson et al.,
2015; Cowen et al., 2017; SeahSen et al., 2017) or identifying
disease-associated pathways, subnetworks, or modules (Paull
et al., 2013; Kim et al., 2015; Silverbush et al., 2019). These
approaches construct context-specific subnetworks under a
certain condition such as disease association or for revealing
the impact of an external stimulus such as drug treatment or
pathogen infection (Braunstein et al., 2019; Tabei et al., 2019).
Recently, DriveWays (Baali et al., 2020), MEXCOwalk (Ahmed
et al., 2020), iCell (Malod-Dognin et al., 2019), ModulOmics
(Silverbush et al., 2019), and Omics Integrator (Tuncbag et al.,
2016b) predicted the cancer driver modules. MEXCOwalk
implements a random walk on the reference interactome by
using mutation frequencies and their mutual exclusivity for
the identification of the cancer driver modules. ModulOmics
uses protein–protein, regulatory, and gene co-expression

networks together with mutual exclusivity of mutations to
identify highly functional driver modules. Omics Integrator
solves the prize-collecting Steiner forest problem to construct
optimal subnetworks from the single- or multi-omic datasets.
Omics Integrator was applied to several conditions from cancer
driver network construction (Dincer et al., 2019) and to viral
infection modules in the host organisms (Sychev et al., 2017).
iCell uses the matrix factorization to integrate multi-omics
datasets with tissue-specific interactomes. In this study, we
compared the performance of four network reconstruction
approaches, all-pairs shortest path (APSP), personalized
PageRank with flux (PRF), heat diffusion with flux (HDF),
and prize-collecting Steiner forest (PCSF), on six different
interactomes. A conceptual representation of these methods is
illustrated in Figure 1. We did not consider the methods in this
comparison that modify the underlying interactome or
reconstruct regulatory networks using gene expression, such as
ARACNe (Lachmann et al., 2016), GENIE (Fontaine et al., 2011),
and INFERELATOR (Madar et al., 2009). APSP merges the
shortest paths between pairs of nodes in the seed list. HDF
implements the heat diffusion process by transferring the
initial heat of the seed list to their neighbors. PRF applies a
random walk to find the nodes most relevant to the seed list. We
calculate the edge flux in both HDF and PRF based on the
resulting node weights. PCSF finds an optimal forest that
connects the seeds either directly or by adding intermediate
nodes. We evaluated the performance of these algorithms on a
gold standard dataset containing 32 curated pathways in the
NetPath database using different metrics such as precision, recall,
and MCC values. The performance of each network
reconstruction approach is highly dependent on the reference
interactomes. Additionally, each method has its own strengths
and limitations. We found that the interactomes have some
critical differences that can significantly affect the performance
of network reconstruction approaches, such as their edge weight
distributions, the bias toward some well-studied proteins, their
coverage of disease-associated proteins, and the structurally
resolved interactions. APSP has the highest recall and the
lowest precision, while PRF, HDF, and PCSF have more
balanced and comparable performance in precision and recall.
Among them, PCSF performed the best in terms of the F1 score,
which represents the balance between the precision and the recall.
Overall, our study presents an extensive comparison of the
selected network reconstruction approaches and shows the
impact of the input interactome in their performance. This
comparison presenting the strong and weak aspects of the
interactomes and reconstruction approaches has the potential
to be beneficial to the field.

METHODS

Reference Interactomes
We used PathwayCommons v12 (Rodchenkov et al., 2019),
iRefWeb v13 (Turinsky et al., 2011), HIPPIE v2.2 (Alanis-
Lobato et al., 2017), ConsensusPathDB (Kamburov et al.,
2013), STRING (Szklarczyk et al., 2019, 2021), and OmniPath
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(Ceccarelli et al., 2020) for the interactome comparison and the
assessment of subnetwork inference approaches. We mapped the
names of proteins in interactomes (nodes) to their reviewed
Uniprot identifiers (The UniProt Consortium, 2019). The
statistics of the interactomes are listed in Table 1. Some
interactomes have confidence scores, which represent how real
an interaction is. PathwayCommons and OmniPath do not have
confidence scores. iRefWeb uses the MI-scoring scheme, which
considers multiple parameters including experimental detection
methods. HIPPIE v2.2 and ConsensusPathDB (Release 34) have
confidence scores on edges calculated based on their own scheme
(Kamburov et al., 2012; Alanis-Lobato et al., 2017). We filtered the
STRING interactome by recalculating confidence scores
considering only the experiment and database scores (von
Mering et al., 2005).

Interactome Comparison Metrics
We compared the reference interactomes at both the node and
edge levels using different metrics, namely, the overlap
coefficient, correlation of edge confidence scores, inclusion of
disease-associated proteins, and overlap with the pathway edges.
The overlap coefficient is a similarity measure for two given
datasets, S1 and S2, which can be node sets or edge sets of graphs
or information coming from a database. The overlap coefficient
was calculated using Eq. 1 for pairwise comparison of
interactomes and coverage of varied knowledge (Simpson,
1966; Kuzmin et al., 2016) as follows:

overlap(S1, S2) � |S1∩S2|
min (|S1|, |S2|) (1)

We compared each pair of interactomes, G(VG, EG, c(eG))
and H(VH, EH, c(eH)), where V is the node set and E is the edge
set, and 0≤c(e)≤1, where c(e) is the confidence score of an edge.
The node-level similarity of the given interactomes were
calculated using the overlap coefficient by applying Eq.1
where VG is used as S1 and VH is S2. Likewise, the edge level
overlap coefficient in each pair of interactomes is determined
using Eq. 1 where EG and EH are assigned as S1 and S2,
respectively.

Next, we explored the structurally known protein-protein
interactions in each reference interactome using the overlap
coefficient. Interactome INSIDER has 4,150 interactions from
PDB and 2,901 interactions from Interactome3D (Meyer et al.,
2018). The edge level overlap coefficient between each reference
interactome (G) and each structural interactome (H) is calculated
using Eq. 1.

The interactomes and network reconstruction methods are
frequently used for revealing cancer driver modules. We
downloaded the 568 cancer driver genes (CDGs) from
intOGen (Martínez-Jiménez et al., 2020). The overlap
coefficient between CDGs (S1) and proteins in each reference
interactome (S2) is calculated using Eq. 1. Additionally, the
number of publications about each CDG and the degree
centrality of the CDGs are analyzed to find out the bias of the
interactomes toward well-studied or cancer-associated proteins.

FIGURE 1 | Conceptual representation of reconstruction algorithms: all-pair shortest paths (APSP), personalized PageRank with flux (PRF), heat diffusion with flux
(HDF), and prize-collecting Steiner forest (PCSF). In the APSP, the subnetwork is reconstructed with the union of all shortest paths between seed nodes. HDF diffuses the
heat that initially belongs to seed nodes. After limited steps of transfer, the heat of the nodes is used for flux score calculations for edges. PRF uses a personalized
PageRank algorithm to find the probability of nodes after randomly walking in the reference interactome and calculates flux scores. PCSF finds the optimum forest
to link seed nodes either directly or through intermediate nodes. The union of optimum forests reconstructs subnetworks.
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The overlap of each reference interactome (G) with the known
interactions in 171 pathways in KEGG (H) is calculated using
Eq. 1 (Kanehisa et al., 2017). Modeling a small-sized network
is a challenging task because a small number of molecular
interactions limit the overall dynamic range of the signals
(Tkačik et al., 2009; Azpeitia et al., 2020). Therefore, we
discarded KEGG pathways having less than 30 edges from the
interactome evaluations.

Among the selected interactomes, iRefWeb, HIPPIE,
ConsensusPathDB, and STRING have edge confidence scores
that are calculated with different scoring approaches. We applied
an all-pair comparison of the given interactomes (G, H) with the
Pearson correlation analysis on the confidence scores in the
intersection of edge sets in interactome pairs (EG∩EH)

Biological networks follow the scale-free power law
distribution, P(k) = k-ɣ, where k is the degree of a node, and ɣ
is the power coefficient (Barabási and Albert, 1995; Alm and
Mack, 2016). To linearize the representation of both degree
distribution and publication distribution, the logarithm of
distribution was used as log(P(k)) = −ɣlog(k). We collected
the number of publications about each protein from UniProt.
The correlation between the degree and the number of
publications of the nodes was evaluated using the Pearson
correlation test on a log scale.

Network Reconstruction Methods
We used four reconstruction approaches, the shortest path, heat
diffusion, PageRank, and PCSF. Selected interactomes are
separately employed as the reference network, G(V, E, c(e)),
where V is the node set, E is the undirected edge set, and c(e) is
the weight of an edge. These networks are weighted by
confidence scores in the interactions, 0≤c(e)≤1. Network
reconstruction algorithms infer the subnetwork, R(VR, ER),
where VR 4 V and ER 4 E, by connecting the seed node
set, VI4 V. The given node set is weighted with uniform 1/|VI|
where |VI| is the number of seed nodes, while the remaining
node set is weighted as 0, so that w(v) can be defined for
reconstruction algorithms.

All-Pairs Shortest Paths
We found out all shortest paths between each pair of nodes, u and
v ∈ VI, u≠v. When there are multiple shortest paths between u
and v, we included all of them. Finally, we merged all shortest
paths to obtain the final subnetwork. We did not put any edge
weight–based filtering or path length threshold.

Personalized PageRank
The PageRank algorithm was normally designed for propagation
in directed graphs. Personalized PageRank (PPR) is adapted to
undirected graphs by converting each edge into both directed
edges. The PageRank score of each node, p(v), in the reference
interactome,G, represents the probability of being at the node at a
certain time step (t) that is calculated using the following iterative
formula:

pt+1(y) � 1 − λ

N
+ λ ∑

xi → y

pt(xi)
deg(xi) (2)

where Eq. 2 includes the probability of node y ∈ V that is
calculated using the damping factor (λ) defining the
probability of walking from neighbor nodes (xi) to y, and N is
the number of nodes (Page et al., 1998; Langville and Meyer,
2005). Initial probabilities of nodes were taken from w(v). We
iterated Eq.2 100 times by default to obtain p(v).

Heat Diffusion
In the heat diffusion (HD), seed nodes having uniform heats
prioritize their related nodes via heat transfer, which is
formulated as follows:

p(v) � p0(I + −α
N

L)N

(3)

In Eq. 3, L = I –W, where I represents an identity matrix and
W = D−1A in which D and A are defined as the diagonal degree
matrix and the adjacency matrix, respectively. p0 is the initial
heat vector in which nodes were weighted from w(v). N and α
are, respectively, the number of iterations and the heat
diffusion rate. N = 3 is set as the default (Nitsch et al.,
2010). At the end of heat diffusion, nodes have the diffused
heat p(v) as the weight.

Edge Selection Over Flux Scores
Personalized PageRank with flux (PRF) and heat kernel
diffusion with flux (HDF) are calculated over deg(v), which
is defined as the number of interactions in G, and node scores
0≤p(v)≤1, which come from PPR or HD. In our study, unlike
TieDie and HotNet with heat diffusion algorithms and flux on a
random walk with restart, the threshold value is employed to
eliminate uncritical nodes (Vandin et al., 2011; Creighton et al.,
2013; Rubel and Ritz, 2020). The related nodes with p(vi)≥1/n
where n is the number of nodes in the interactome are

TABLE 1 | Reference interactomes and their statistics.

Interactome Number of proteins Number of interactions Confidence score

iRefWeb v13.0 11,295 80,351 Yes
PathwayCommons v12 18,536 1,126,072 No
HIPPIE v2.2 15,984 369,584 Yes
ConsensusPathDB 17,269 359,201 Yes
STRING v11 8,992 229,306 Yes
OmniPath 6,549 35,684 No
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considered for subnetwork reconstruction. We calculated the
directional flux scores fu→t using Eq. 4 where u, t ∈ V, p(u) is the
score that comes from PPR or HD, and deg(u) is the number of
neighbors of node u. Likewise, we calculated ft→u using Eq. 5.
We determined the final flux of the edge as the minimum of fu→t

and ft→u (Eq. 6).

fu→ t(u, t) � p(u) × c(e)
deg(u) (4)

ft→ u(t, u) � p(t) × c(e)
deg(t) (5)

f (e) � min(fu→ t(u, t), ft→ u(t, u)) (6)

Edges are ranked from the highest flux score to the lowest by
taking the negative logarithm of the flux. A total flux (F) is
calculated among the related nodes as follows:

F � ∑ f (e) (7)

0≤τ ≤ 1, where τ is a flux threshold value that is the selection
percentage of F. Edges are selected by summing flux scores from
the highest to the lowest until the targeted flux amount, τxF. The
edges having low flux scores are excluded from reconstructed
subnetworks (Rubel and Ritz, 2020).

Prize-Collecting Steiner Forest
We used the PCSF algorithm implemented in Omics
Integrator2. The seed nodes, vi ∈ VI, are weighted
uniformly, and the edge costs are calculated using the cost
function implemented in Omics Integrator 2 which combines
the edge confidence score, c(e), and a penalty calculated from
node degrees scaled with the c parameter. If the reference
interactome does not have confidence scores, c(e) = 1 is
uniformly defined. PCSF also penalizes the nodes based on
their degrees (Tuncbag et al., 2016a). The new version, Omics
Integrator 2, penalizes the edges based on the degrees of the
node pair. The following function finds an optimum forest,
F(V, E), by minimizing the objective function (Tuncbag et al.,
2013):

f ′(F) � ∑ β.p(v) +∑ cost(e) + ω.κ (8)

In Eq. 8, κ is the number of connected components, β controls
the relative weight of the node prizes, and ω controls the cost of
adding an additional tree to the solution network.

PCSF provides an optimum forest for each parameter set and
an augmented forest which includes all the edges in the
interactome that are present between the nodes in the optimal
forest. We obtained the final reconstructed networks with the
intersection of the optimal augmented forests that were generated
using multiple parameter sets.

Performance Analysis
NetPath is the curated human signaling pathway database that is
composed of immune signaling pathways and cancer signaling
pathways. In this study, 32 pathways in NetPath were used as a
plausible dataset (Kandasamy et al., 2010). Since the
computational cost of reconstruction was expensive for all

pathways in NetPath with all parameter sets, first, optimum
parameter sets were determined before performance analysis.

Parameter Tuning
Parameters of reconstruction algorithms were separately optimized
for each reference interactome. Thus, Wnt, TCR, TNFα, and TGFβ
pathways on NetPath were used for parameter selection. Nodes in
each pathway were independently shuffled and split into five-fold.
Each fold was, respectively, removed from the complete pathway
node list, and network reconstruction was executed with the
remaining folds. Parameters of reconstruction algorithms were
separately tuned for each reference interactome tomaximize the F1
score (Eq. 12). In the APSP, all identified shortest paths among
seed node sets were inserted into a reconstructed pathway without
any parameter tuning, so we do not adjust any parameter. We
tuned the parameters in the given interval inTable 2 for PRF,HDF,
and PCSF and for each reference interactome. Parameter sets of
PRF and HDF were tuned in a two-dimensional grid via the mean
of parameters that pooled the 10 highest F1 scores (Supplementary
Figures 1, 2). In the PCSF, the union of all parameters that achieve
the best coverage of the seed nodes, VI, for each pathway was used
as optimum parameter sets.

The Calculation of Performance Scores
After tuning the parameters on four pathways, the remaining 28
pathways in NetPath, listed in Supplementary Table 1, were used
for performance evaluation with five-fold cross-validation. We
evaluated each reconstruction algorithm separately on each
reference interactome by calculating the F1 score, Matthew’s
correlation coefficient (MCC), recall and precision values, and
false positive rate (FPR) in Eqs 9–13 as follows:

recall(TP,TN) � |TP|
(|TP| + |FN|) (9)

precision(TP, FN) � |TP|
(|TP| + |FP|) (10)

FPR(TP, FN) � |FP|
(|FP| + |TN|) (11)

F1score � 2 × precision x recall
precision + recall

(12)

MCC(TP,TN , FP, FN) �
(|TP| × |TN|) − (|FP| × |FN|)�������������������������������������������(|TP| + |FP|)(|TP| + |FN|)(|TN| + |FP|)(|TN| + |FN|)√

(13)

Seed nodes were not counted in the performance calculation.
However, all edges in the reconstructed network were used in the
performance evaluation since interactions were not used in the
initial input. For a given reference in interactome G(V, E) and an
seed node set (VI) from a pathway T(VT, ET), a network is
reconstructed, R(VR, ER), using the listed methods, where VT;, VR

and VI4 V, and ET and ER4 E. Node-level true positives (TPV)
and edge-level true positives (TPE) are obtained from |VR ∩ VT |
and |ER ∩ ET |, respectively. Node-level true negatives (TNv) and
edge-level true negatives (TNE) are obtained from |V \ (VR ∪ VT)|
and |E \ (ER ∪ ET)|, respectively. False positives FPV and FPE are
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equal to |VR \ VT | and |ER \ ET |, respectively. False negatives FNV

and FNE, are equal to |VT \ VR | and |ET \ ER |, respectively.
We performed principal component analysis (PCA) to figure

out critical scores that explain the highest variance across all
pathways. We statistically assessed overall performance data
including both edge- and node-based scores by individually
grouping reference interactomes and reconstruction methods.

Data Availability Statement
Codes and datasets used for this study are publicly available at the
online repository https://github.com/metunetlab/Interactome_
Network_Reconstruction_Assessment_2021. We downloaded
NetPath, http://netpath.org/browse, and PathwayCommons, https://
www.pathwaycommons.org/archives/PC2/v12/PathwayCommons12.
All.hgnc.txt.gz, iRefWeb, http://wodaklab.org/iRefWeb/search/index,
HIPPIE, http://cbdm-01.zdv.uni-mainz.de/∼mschaefer/hippie/
download.php, STRING, https://string-db.org/cgi/download,
ConsensusPathDB, http://cpdb.molgen.mpg.de/, Reference
Human Proteome from UniProtDB, https://www.uniprot.org/,
using the query https://www.uniprot.org/uniprot/?query�proteome:
UP000005640%20reviewed:yes, INSIDER, http://interactomeinsider.
yulab.org/downloads.html, and KEGG, https://www.kegg.jp/kegg/
download/ and http://rest.kegg.jp/get/+’pathwayid’+’/kgml’.
OmniPath and the signaling pathways in Glioblastoma (WP2261)
were retrieved from WikiPathway using Cytoscape 3.8.0.

RESULTS

Systematic Evaluation of Reference Human
Interactomes
Network reconstruction algorithms are highly dependent on
the quality and coverage of the reference interactome.
Therefore, we systematically explored the properties of iRefWeb,
PathwayCommons, HIPPIE, ConsensusPathDB, OmniPath, and
STRING databases. Among them, iRefWeb, HIPPIE,
ConsensusPathDB, and STRING provide the measure of
confidence in interactions as scores. First, we compared the
pairs of interactomes to determine how similar they are in
terms of their node and edge sets. PathwayCommons is the
largest network in size, so it has the highest fraction of node
and edge overlap compared to all other interactomes. iRefWeb,
PathwayCommons, HIPPIE, and ConsensusPathDB are the most

similar interactomes to each other based on the node and edge
overlaps (Figure 2A). On the other hand, STRING and OmniPath
have fewer common nodes and edges with other interactomes. We
need to note that the raw data in STRING contain more than one
million interactions in human interactomes, and we used only the
experimental and database interactions which resulted in a
relatively small-sized interactome with medium or high
confidence edges. Before using the network reconstruction
algorithms, obtaining the reference interactome with
measurements of interaction confidence is fundamental to
decreasing the impact of the false positives. Because network
reconstruction algorithms leverage the edge confidence scores
and the topology of the reference interactomes during the
propagation or optimization, confidence scores may
substantially affect the accuracy of the resulting network. Even
two topologically equivalent interactomes may produce different
subnetworks as a result of network reconstruction if their
confidence score distributions are different from each other. In
Figure 2B, the number of edges in each reference interactome is
shown, which are categorized as low, medium, and high confidence
edges based on the interaction scores. ConsensusPathDB contains
predominantly high confidence interactions, while HIPPIE and
iRefWeb interactions are accumulated in medium and low
confidence intervals. HIPPIE and iRefWeb use MINT-inspired
(MI) confidence score calculation, while ConsensusPathDB uses
the IntScore tool (Braun et al., 2009; Turner et al., 2010; Kamburov
et al., 2011; Kamburov et al., 2012; Turinsky et al., 2011; Schaefer
et al., 2012; Alanis-Lobato et al., 2017). We recalculated the
confidence scores in STRING by considering only the
experiment and database scores. PathwayCommons and
OmniPath do not provide confidence scores. Edge confidence
scores can be computed in various ways. Different scoring
schemes lead to variation in the confidence score distributions
across the interactomes. As expected, the correlation of confidence
scores between HIPPIE and iRefWeb is the highest (r � 0.67, p <
0.01) because both use MI-Score. The correlation between
confidence scores in iRefWeb and ConsensusPathDB is very
low (r � 0.25, p < 0.01) (Figure 2C) because ConsensusPathDB
uses a different scoring scheme, IntScore. While MI-Score
considers homologous interactions, the detection method, and
the number of publications about the interactions, IntScore
includes topological properties, literature evidence, and
similarities in annotation of proteins.

Confidence scores do not completely solve the bias in the
interactomes despite being a powerful measurement to filter out
false positives. Therefore, we additionally analyzed the
interactomes based on the bias toward well-studied proteins
using different features, namely, the number of publications
about the proteins, coverage of the cancer driver genes, and
the number of interactions having structural details. Well-
studied proteins, such as TP53 and EGFR, have hundreds of
high confidence interactions in the interactomes (Schaefer et al.,
2015; Chen et al., 2018; Porras et al., 2020). Indeed, there is a
trade-off between the interaction confidence scores of certain
proteins and systematic study bias. We used the number of
publications and the degree centrality of proteins in each

TABLE 2 | Tuning ranges of parameter sets in PageRank flux (PRF), heat diffusion
flux (HDF), and prize-collecting Steiner forest.

Reconstruction algorithm Parameter Range Increment

PRF Damping factor (λ) 0–1 0.05
Flux threshold (τ) 0–1 0.05

HDF Heat diffusion rate(α) 0–1 0.05
Flux threshold (τ) 0–1 0.05

PCSF Dummy edge weight (ω) 0–5 0.5
Edge reliability (β) 0–5 0.5
Degree penalty (γ) 0–10 0.5
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reference interactome to explore if highly connected proteins are
also well-studied ones.

Each analyzed interactome is a scale-free network so that their
degree distributions follow the power law (Supplementary
Figure 3) (Barabási and Albert, 1995; Vidal et al., 2011). The
number of publications about proteins follows the power law
distribution as their degree distribution (Supplementary
Figure 4). Thus, the number of publications and degrees were
analyzed using log-based values to find out their correlation. The

number of publications and the degrees of proteins are positively
correlated in all interactomes (Figure 3A). We observed the
highest correlation in PathwayCommons (r � 0.62, p < 0.01)
and HIPPIE (r � 0.61, p < 0.01), which implies the bias toward
well-studied proteins in these interactomes. iRefWeb, STRING,
and OmniPath havemoderate correlation between the degree and
the number of publications, which implies relatively less biased
interactomes (Supplementary Table 2). We note that this
comparison is performed on the whole interactome without

FIGURE 2 | Comparison of the reference interactomes. (A) Node- and edge-level commonalities between different interactomes; the node overlap score is
displayed on a light-to-dark blue-color scale, while the edge similarity score is shown on a size scale where the higher similarity is represented with the larger circle.
(B) Scores are categorized as low confidence between 0.1 and 0.4, medium confidence between 0.4 and 0.7, and high confidence between 0.7 and 1.0 for each
interactome. PathwayCommons and OmniPath are not demonstrated here due to the lack of a confidence score for their edges. Edges with low confidence scores
are mostly seen in iRefWeb and small portions of edges in ConsensusPathDB have low confidence scores, while low confidence edges are not seen in the filtered
STRING and HIPPIE. (C) Different strategies on confidence score calculation are used in interactomes. Using their common edges, the correlation coefficients among
their confidence scores over interactomes are demonstrated in the heatmap. The highest correlation between HIPPIE and iRefWeb is seen with the darkest blue. The
same confidence score calculation strategy, MI scoring, is used in both interactomes.
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FIGURE 3 | Correlation between publication counts and degrees over interactomes. (A) Log–log scale joint graphs of publication distribution and degree
distribution for each interactome were drawn since both follow a power-law distribution. While all interactomes have a positive correlation between the degree and
publication number, PathwayCommons, HIPPIE, ConsensusPath, and iREF have well-studied hubs. On the other hand, hubs in iRefWeb and OmniPath are not
composed of relatively well-studied proteins (p-values <0.001 and rPathwayCommons � 0.622, rConsensusPathDB � 0.556, rHIPPIE � 0.614, riRefWeb � 0.508, rSTRING � 0.250
and rOmniPath � 0.400). (B) Distributions of the number of publications and cancer driver genes in the intOGen database are shown, respectively, in blue and orange.
The probability of well-studied cancer driver genes (CDGs) is higher than the probability of well-studied proteins. (C) Driver gene degrees in the interactomes are
demonstrated in the boxplot in which driver genes in PathwayCommons have more connection than other interactomes. OmniPath and iRefWeb do not have highly
connected driver genes as many as ConsensusPath, HIPPIE, STRING, and PathwayCommons.
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any confidence score–based filtering, except STRING. We expect
that if only the high or medium confidence interactions in other
interactomes would be considered, the correlations may be
dramatically reduced and the bias toward well-studied proteins
may be dumped. Reconstruction algorithms are also adapted to
overcome this inherent bias toward the nodes and edges in
interactomes. For example, heat diffusion and random walk,
together with the edge flux calculation, use node degrees for
normalization, while PCSF penalizes highly connected proteins
(Creixell et al., 2015; Tuncbag et al., 2016a; Rubel and Ritz, 2020).
In this way, false-positive edges belonging to hub nodes are
excluded from the final subnetwork.

One application area of network reconstruction algorithms is
the discovery of disease-associated pathways, especially in cancer,
by inferring the seed proteins/genes. The resulting networks are
used for patient stratification, biomarker discovery, or the
analysis of drug mechanisms of action (Mo et al., 2018; Huang
et al., 2019; Koh et al., 2019; Wang et al., 2021). Therefore, we
searched for the coverage of the cancer driver genes (CDGs) in
each interactome. CDGs provide growth advantage to the tumor
cells and alter signaling pathways. Additionally, CDGs are
important markers in tumor stratification, characterization,
and drug development (Waks et al., 2016; Bailey et al., 2018;
Zsákai et al., 2019). We obtained the list of CDGs from the
intOGen database (Martínez-Jiménez et al., 2020). We found that
significantly more publications are present for CDGs than for the
rest of the proteomes, as shown in Figure 3B (p < 0.01). The
presence of driver genes and their edges help in accurately
reconstructing the driver pathways in cancer. All analyzed
interactomes are highly inclusive of driver genes, especially
PathwayCommons, ConsensusPathDB, and HIPPIE
(Supplementary Figure 5). However, the degrees of CDGs in
the PathwayCommons interactome are significantly higher than
others (Figure 3C).

In terms of protein interactions, the most accurate and
confident interactions can be caught by their structural
identification. Structures of protein–protein complexes uncover
the binding sites, domain contacts, and many more (Schmidt et al.,
2014; Nero et al., 2018; Hicks et al., 2019). The only drawback is the
availability of limited structural data. Despite the exponential
increase in PDB with the help of the X-ray, CryoEM, and NMR
techniques, the number of protein complexes can still only cover
around 16% of the whole interactome (Berman et al., 2000; Mosca
et al., 2013; Venko et al., 2017). Many structure-based predictive
approaches are also employed to accurately identify
protein–protein interactions. Therefore, we further analyzed
each interactome based on the representation of structurally
annotated interactions. For this purpose, we used the complexes
in PDB and Interactome3D.We found that HIPPIE has the highest
coverage of structurally known protein–protein interactions
(Figure 4A). HIPPIE is followed by PathwayCommons and
ConsensusPathDB. iRefWeb, OmniPath, and the filtered
STRING interactome have the lowest coverages.

Another source of confident interactions is the curated
pathways, despite being incomplete. Generated subnetworks are
required to be biologically meaningful so that their downstream
analysis can sign proper biological functions (Vidal et al., 2011;

Sevimoglu and Arga, 2014). Therefore, we explored the coverage of
interactomes based on the curated pathways retrieved fromKEGG,
which is one of the most frequently used databases for pathway
annotations. We found that KEGG pathways are relatively less
represented in iRefWeb, while PathwayCommons and filtered
STRING highly covered them (Figure 4B). We need to note
that some individual pathways are better covered in some
interactomes although their overall coverage is relatively low
(Figure 5). For example, the MAPK and RAS signaling
pathways are better represented in OmniPath, although
OmniPath has a moderate coverage of all pathways. Individual
pathway coverage of each interactome is listed in Supplementary
Table.

Performance of Network Reconstruction
Algorithms
As evidenced in detail, each interactome has its own strengths and
weaknesses. These properties have a direct effect on the
performance of network reconstruction algorithms. Therefore,
we used each interactome as the reference for each network
reconstruction algorithm to monitor the variance in the
performance. We used four well-established network
reconstruction algorithms, the all-pair shortest paths (APSP),
personalized PageRank with flux (PRF), heat diffusion with flux
(HDF), and prize-collecting Steiner forest (PCSF) algorithms, to
evaluate their performance on the gold standard dataset of 32
curated pathways retrieved from NetPath. Four pathways are
used for parameter tuning, and the rest (28 pathways) is used for
performance evaluation.

We collected both node- and edge-level performance metrics
for each pair of interactomes and reconstructionmethods on each
pathway. We found that node-level performance is relatively
more robust to different interactomes or different pathways in
each approach than the edge-level performance. The largest
variation is in the edge-level F1 scores, in that the balance
between the recall and precision values is highly variable
across pathways and interactomes (Supplementary Figure 6).
The F1 scores (p < 0.001) and precision (p < 0.001) scores of the
reconstructed pathways that are inferred from
PathwayCommons are mostly lower than the scores of
HIPPIE, ConsensusPathDB, OmniPath, and iRefWeb
(Figure 6A). The second highest variation is in the edge-level
MCC, used for binary classification over imbalanced data
(Boughorbel et al., 2017; Magnano and Gitter, 2021). This
result implies that the algorithms do not perform well with a
relatively very large reference interactome because of the potential
dominance of false positives over the true-positive interactions.
Based on the F1 score and the precision value, we did not find a
significant difference in performance when HIPPIE,
ConsensusPathDB, OmniPath, or iRefWeb interactomes are
used. Therefore, we continued with HIPPIE as a reference
interactome for further assessments since it has the most
balanced features based on the comparison in the previous
part, including coverage of structurally known interactions.
The comparison of edge-based performance scores showed
that APSP significantly has the lowest precision values (p <
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0.001) and the highest recall values among all reconstruction
approaches when the performance across all pathways is
evaluated. There is no significant difference in precision values
between HDF, PRF, and PCSF (Figure 6B). The recall values of the
reconstructed pathways do not significantly differ between HDF
and PRF, while PCSF (p < 0.001) has significantly higher recall
scores (p < 0.001) than HDF and PRF (Figure 6C). The trade-off
between the precision and recall scores can be noticed in the results
of reconstruction methods. Insertion of all shortest paths between
the seed nodes in the APSP algorithm causes both the reduction in

precision values and the increase in recall values. The significantly
high FPR in APSP (p < 0.001) indicates that false-positive edges
dominate the true-positive edges (Supplementary Figure 7).
Therefore, F1 scores of the APSP-reconstructed pathways are
significantly lower than those of other methods (p < 0.001)
(Figure 6D). On the other hand, PCSF-reconstructed pathways
havemoderately high recall and precision scores and the highest F1
score by a considerable margin, optimizing the trade-off between
the precision and recall values. Interestingly, the interval of recall
scores in the reconstructed pathways in PCSF is not variable in a

FIGURE 4 |Coverage of structurally known interactions and pathway interactions in each interactome. (A) Structural information is demonstrated in two groups, as
known interactions in PDB in blue and predicted interactions in Interactome3D in orange. (B) Overlaps between the interactions in KEGG pathways and each
interactome are shown as a violin-plot.
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wide interval as in other methods; rather, it fluctuates around 0.65.
The PCSF approach gives an optimum forest as an output together
with an augmented forest which includes all the edges in the

interactome that are present between the nodes in the optimal
forest. We obtained the final network of PCSF by taking the
intersection of augmented forests from multiple parameters. In

FIGURE 5 |Overlap between each pathway in KEGG and each interactome. The sorted coverage of interactomes for 171 KEGG pathways is shown as a heatmap.
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FIGURE 6 | Performance evaluation of each interactome and method in pathway reconstruction. (A) Boxplot of edge-based precision and F1 scores, for each
interactome, shows that PathwayCommons and STRING are significantly lower than HIPPIE, ConsensusPathDB, OmniPath, and iRefWeb, while there is not any distinct
difference among HIPPIE, ConsensusPathDB, OmniPath, and iRefWeb. The performance values for each reconstructed network is represented with red points in the
boxplots. Brown lines connect the performance scores of the same pathway across the interactomes. (B) Edge-based precision, (C) edge-based recall, and
(D) edge-based F1 scores are separately demonstrated for reconstruction algorithms. (E) HDF, PRF, and PCSF were compared in terms of the reconstructed
pathways. The heatmap shows that the reconstructed pathways by PCSF are different, having %44 and %39 different edges, respectively, than the ones
reconstructed by PRF and HDF.
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this way, adding an edge to the final network was made very
stringent.We computed the Jaccard similarity matrix amongHDF,
PRF, and PCSF to demonstrate the variation on the edge-level
performance in the reconstructed pathways (Figure 6E; Ricotta
et al., 2016). PCSF penalizes highly connected nodes, which reduces
the dominance of well-studied or highly connected nodes in the
reconstructed networks. In this way, important but low-degree
nodes are also successfully included in the reconstructed pathways.
As a result, PCSF has balanced precision and recall values, and its
reconstructed pathways have the highest dissimilarity compared to
the reconstructed pathways from other methods. Overall, the
performance of the algorithms is highly affected by the
parameter selection along with the used background
interactome. To illustrate the reconstructed networks intuitively
and to distinguish their commonalities and differences for each
algorithm, we selected two case studies; one is selected from the
NetPath database and the other is selected from WikiPathways.

Case Studies: Reconstruction of the Notch
Pathway and Glioblastoma Disease
Pathway
Our first case study is the Notch signaling pathway to intuitively
illustrate the performance of each approach. The Notch signaling
pathway plays a critical role in cell fate determination by
regulating differentiation, apoptosis, proliferation, and
morphogenesis. Its signaling cascades are associated with
many human cancers (Sjölund et al., 2005; Bazzoni and
Bentivegna, 2019; Guo et al., 2019). The APSP method
recovers many true-positive edges, but it also introduces many
false positives in the Notch pathway (Supplementary Figure 7).
Therefore, only PRF, HDF, and PCSF results inferred from a set
of seeds selected from the Notch pathway are illustrated in
Figure 7. Notch receptors are single-pass transmembrane
proteins, receiving signals from transmembrane ligands such
as JAG1, JAG2, DLL1, and DLL4. The given protein list
includes Notch receptors and CNTN1, JAG2, and DLL4. All
reconstruction algorithms successfully identified JAG1 and the
interaction between Notch receptors and their ligands except for
DLL. True-positive nodes having a low degree in the reference
interactome were caught better by PCSF than by PRF and HDF.
Additionally, PCSF accurately included nodes such as CNTN1,
WDR12, LEF1, RBX1, SIN3A, and many other true positives in
the final reconstructed network. Although PCSF performs well in
recovering low-degree nodes, it could not include some other
nodes such as AKT1, SKP1, SPEN, and TCF3 in the pathway.
PCSF successfully found the interactions between Furin–Notch
receptors that regulate the Notch pathway in cancer progression
where Furin, a low-degree ligand, generates biologically active
heterodimer receptors (Qiu et al., 2015). On the other hand, PCSF
fails to construct the interactions including low-degree nodes
such as JAK2 and WDR12. HDF and PRF mostly reveal the
interaction between high-degree nodes such as MAML1 and
Notch receptors since the heat diffusion and the PageRank
algorithm tend to give high scores to these nodes.

The Notch pathway has cross talk with other critical pathways
in cancer such as the PI3K-AKT-mTOR and JAK-STAT signaling

pathways (Chan et al., 2007; Hillmann and Fabbro, 2019). The
cross talk is mediated by the nodes with low-degree and high
betweenness centrality in the reference interactome such as
PIK3R1, LCK, and JAK2. Although we could reveal these
intermediate nodes that are important in cross talk between
multiple pathways with PCSF, we could not achieve the same
performance in the added edges. Despite correctly identifying
PIK3R1 interaction with Notch1 and LCK, interactions with
PIK3R2 and AKT were not found. In the JAK-STAT and
Notch pathway cross talk (Rawlings et al., 2004; Liu et al.,
2010), we accurately found intermediate nodes such as JAK2,
HES1, and HES5, but we failed in recovering their interactions
with STAT3 in the PCSF-reconstructed pathway.

Our second case study is the glioblastoma (GBM) disease
pathway. Disease-related pathways are mostly composed of
multiple signaling pathways. GBM is the most aggressive
type of brain cancer. Multiple signaling pathways such as the
PI3K/AKT/mTOR, EGFR/RAS/MAPK, P53, and RB pathways
have abnormal activity in GBM tumors (Ohgaki and Kleihues,
2007). Disease-related pathways are mostly composed of
multiple signaling pathways. The presence of cross talk via
intermediate molecules is the reason why multiple pathways
are related to a disease. In this regard, signaling pathways in
GBM, retrieved from WikiPathways, were reconstructed by
multiple algorithms using HIPPIE as the reference
interactome. Multiple signaling pathways such as the PI3K/
AKT/mTOR, EGFR/RAS/MAPK, P53, and RB pathways are
associated with GBM. Alterations on these pathways may lead to
more aggressive and invasive phenotype by disturbing DNA
repair, apoptosis, and G1/S progression and enhancing cell cycle
progression and cell migration (Ohgaki and Kleihues, 2007).
Some nodes such as PIK3CG and CDK1NA and their
interactions, mediating the cross talk between multiple
pathways, were not efficiently revealed by reconstruction
algorithms. CDKN1A is responsible for the inhibition of the
RB signaling pathway by transducing signals coming from the
PI3K/AKT/mTOR pathway. Even though the reconstructed
subnetwork recovers the RB signaling pathway, all four
algorithms failed in reconstructing the edges connecting two
signaling pathways (Figure 8). Thus, these algorithms are good
at revealing the mediator nodes in cross talk between pathways, but
they fail in revealing the connection between them. The HDF and
PRF methods ranked some nodes as important, such as APOH,
FBLN5, AFP, andMMP12. Although these proteins are not present
in the studied pathway, their association with GBM was previously
discovered in transcriptomic or proteomic studies (Varma Polisetty
et al., 2012; Kros et al., 2015; Trojan et al., 2020).

DISCUSSION

In this study, we comprehensively explored the properties of
interactomes from seven sources and the performance of four
network reconstruction algorithms on known pathways. Our
comparison reveals that PathwayCommons, having the highest
number of nodes and edges, has the highest coverage of nodes and
edges across all interactomes, including CDGs, and known
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pathways. However, precision values of the reconstruction
methods are significantly lower than the others when
PathwayCommons is used as the reference interactome. We
did not observe a significant difference in recall values among
all interactomes. The significant correlation between the degree
and the number of publications of the nodes in
PathwayCommons shows a bias toward well-studied proteins.
Interestingly, although HIPPIE and ConsensusPathDB have a
similar bias, the precision of the algorithms on these interactomes
is better than that of PathwayCommons. These results imply that
HIPPIE and ConsensusPathDB have a good balance in down-

weighting the false positives and preserving high
confidence edges.

The results of the different network reconstruction algorithms
may include disjoint edges. The highest recall scores in APSP
come along with the highest FPR score because the APSP
algorithm adds many false-positive edges besides the true
positives. Some studies, such as PathLinker (Ritz et al., 2016),
use a distance threshold during shortest path calculation, a
limited number of shortest paths between the source and the
target, or additional data including orientation of the signal from
the receptors to the transcription factors so that the false positive

FIGURE 7 |Reconstructed Notch pathway. Nodes that are present in the pathway, but are not found by any algorithms are colored light blue. Nodes that are found
by PCSF, PRF, and HDF are colored red, yellow, and cyan, respectively. Green edges are present in Notch pathway in NetPath, while incorrectly included edges by any
algorithm are shown in brown.
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rate is controlled. We need to note that we did not apply any
distance-based threshold, additional data, or refinement in the
APSP algorithm. Thus, F1 scores and precision scores are
extremely low in APSP. On the other hand, PRF, HDF, and
PCSF have similar performances of false positive and true positive
edges. PCSF has the highest F1 score compared to PRF and HDF.
Interactomes are imbalanced datasets where true-negative edges
are significantly more than true-positive edges. Naturally, the
precision scores seem relatively low in the pathways formed by
our algorithms since the FPR gets higher in such imbalanced
datasets. The reconstructed Notch pathway shows that PCSF is

better at finding weakly connected nodes. However, PCSF does
not perform well in revealing the intermediate nodes and
their edges achieving the cross talk between the Notch
pathway and the PI3K-AKT-mTOR and JAK-STAT signaling
pathways. Moreover, the intermediate nodes that links signaling
pathways in GBM cannot construct completely true edges. In our
study, the nodes are proteins; however, pathways may include
small molecules and non-peptide nodes. Therefore, the
reconstruction algorithms probably add false edges to include
true terminals. The lack of some nodes in reference interactomes
may be one of the reasons for the low precision scores.

FIGURE 8 | Reconstructed signaling pathways in glioblastoma (WP2261) are predicted by PCSF are red, PRF are yellow, HDF are cyan, and nodes that are not
found by any algorithm are colored light blue. Additionally, red rings represent the nodes that are incorrectly propagated. Green edges are the correct ones that are
present in GBM pathway, while incorrect edges included by any algorithm are colored brown.
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Network reconstruction algorithms are highly dependent on
topological properties and edge weights of the reference
interactomes (Janjić and Pržulj, 2017; Liu et al., 2017). Among
the evaluated approaches, the highest recall values are achieved by
using the APSP algorithm together with the lowest precision
values. The APSP algorithm adds many false-positive edges,
besides the true positives. On the other hand, PRF, HDF, and
PCSF have similar performances, while PCSF has a higher F1
score than PRF and HDF. High recall scores together with low
precision scores are the result of the unbalanced data where the
number of edges in the target pathway is dramatically lower than
that in the rest of the interactome (Saito and Rehmsmeier, 2015).
The low precision score with the moderate recall score is common
among reconstruction algorithms of human signaling networks
(Atias and Sharan, 2011; Ritz et al., 2016; Grimes et al., 2019).
Additionally, edge-based performances of reconstruction
algorithms are not as good as their node-based performance.
We also observe a similar pattern of performances in our
evaluation.

In a recent study, the performance of flux algorithms was
shown to exceed the performance of PCSF with default
parameters (Rubel and Ritz, 2020). However, the selected set
of parameters significantly affects the performance of
reconstruction algorithms, especially in PCSF. Automating
parameter tuning that considers topological properties of
reconstructed subnetworks can improve the performance
(Magnano and Gitter, 2021). Therefore, in this study, we
reconstructed pathways by extensively tuning the parameter
set, followed by merging multiple optimal forests to reach the
best performance. Parameter sets of other reconstruction
algorithms were also tuned to find the optimum parameters.
We can explain the overperformance of PCSF compared to other
methods with detailed parameter tuning and considering
multiple optimal solutions.

Several methods use topological properties of reference
interactomes to predict new links and to filter out false-
positive interactions (Cannistraci et al., 2013; Lei and Ruan,
2013; Hulovatyy et al., 2014; Alkan and Erten, 2017).
Additionally, functional annotations, protein structures, and
domain–domain interactions were also used to identify
missing protein associations (Singh et al., 2006; Segura et al.,
2015; Yerneni et al., 2018; Ietswaart et al., 2021). We need to note
that we did not use the methods that modify the underlying
interactome (Alanis-Lobato et al., 2018) and the methods that
construct regulatory networks (Madar et al., 2009; Fontaine et al.,
2011; Lachmann et al., 2016) in our evaluation. The performance
of the APSP, HDF, PRF, and PCSF algorithms may change upon
any modification or refinement of the reference interactomes.
These reference interactomes are undirected graphs, but signaling

pathways are intrinsically directed graphs. Indeed, the
directionality of the edges can be incorporated either with the
known or with the predicted ones. Orientation of the
reconstructed networks can improve the mechanistic
understanding of biological pathways. Therefore, using a
directed reference interactome can boost the performance of
each algorithm. Finally, biomolecular interactions are
temporally and spatially diverse. Interactomes are incomplete
sets of interactions, and the time dimension is not considered in
our evaluation. Subnetwork reconstruction algorithms may be
improved in the future to include biological annotations and
temporal and spatial interactions of proteins.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and
accession number(s) can be found in the article/
Supplementary Material.

AUTHOR CONTRIBUTIONS

Conceptualization: MA and NT. Data curation: MA. Formal
analysis: MA and NT. Methodology: MA and NT. Project
administration: NT. Supervision: NT. Visualization: MA.

FUNDING

NT has received support from the Career Development Program
of TUBITAK under the project number 117E192. MA has been
financially supported with the TUBITAK-2211 fellowship.

ACKNOWLEDGMENTS

NT acknowledges the support from the UNESCO-L’Oreal
National for Women in Science Fellowship and the UNESCO-
L’Oréal International Rising Talent Fellowship and TUBA-
GEBIP.

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fmolb.2021.666705/
full#supplementary-material

REFERENCES

Ahmed, R., Baali, I., Erten, C., Hoxha, E., and Kazan, H. (2020). MEXCOwalk:
Mutual Exclusion and Coverage Based Random Walk to Identify Cancer
Modules. Bioinformatics 36 (3), 872–879. doi:10.1093/bioinformatics/btz655

Alanis-Lobato, G., Andrade-Navarro, M. A., and Schaefer, M. H. (2017). HIPPIE
v2.0: Enhancing Meaningfulness and Reliability of Protein-Protein Interaction
Networks. Nucleic Acids Res. 45, D408–D414. doi:10.1093/nar/gkw985

Alanis-Lobato, G., Mier, P., and Andrade-Navarro, M. (2018). The Latent
Geometry of the Human Protein Interaction Network. Bioinformatics 34
(16), 2826–2834. doi:10.1093/bioinformatics/bty206

Frontiers in Molecular Biosciences | www.frontiersin.org October 2021 | Volume 8 | Article 66670516

Arici and Tuncbag Performance Evaluation of Network Reconstruction Approaches

https://www.frontiersin.org/articles/10.3389/fmolb.2021.666705/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmolb.2021.666705/full#supplementary-material
https://doi.org/10.1093/bioinformatics/btz655
https://doi.org/10.1093/nar/gkw985
https://doi.org/10.1093/bioinformatics/bty206
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Alkan, F., and Erten, C. (2017). RedNemo: Topology-Based PPI Network
Reconstruction via Repeated Diffusion with Neighborhood Modifications.
Bioinformatics 33 (4), btw655–544. doi:10.1093/bioinformatics/btw655

Alm, J. F., and Mack, K. M. L. (2016). Degree-correlation, Robustness, and
Vulnerability in Finite Scale-free Networks. Asian Res. J. Maths. 2 (5), 1–6.
http://arxiv.org/abs/1606.08768.

Atias, N., and Sharan, R. (2011). An Algorithmic Framework for Predicting Side
Effects of Drugs. J. Comput. Biol. 18 (3), 207–218. doi:10.1089/cmb.2010.0255

Azpeitia, E., Balanzario, E. P., and Wagner, A. (2020). Signaling Pathways Have an
Inherent Need for Noise to Acquire Information. BMC Bioinformatics 21 (1).
doi:10.1186/s12859-020-03778-x

Baali, I., Erten, C., and Kazan, H. (2020). DriveWays: a Method for Identifying
Possibly Overlapping Driver Pathways in Cancer. Sci. Rep. 10 (1), 1–14.
doi:10.1038/s41598-020-78852-8

Bailey, M. H., Tokheim, C., Porta-Pardo, E., Sengupta, S., Bertrand, D.,
Weerasinghe, A., et al. (2018). Comprehensive Characterization of Cancer
Driver Genes and Mutations. Cell 173 (2), 371–e18. doi:10.1016/
j.cell.2018.02.060

Barabási, A.-L., and Albert, R. (1995). Emergence of Scaling in Random Networks.
Mat. Res. Soc. Symp. Proc. 286, 509. doi:10.1126/science.286.5439.509

Bazzoni, R., and Bentivegna, A. (2019). Role of Notch Signaling Pathway in
Glioblastoma Multiforme Pathogenesis. Cancers 11 (3), 292. doi:10.3390/
cancers11030292

Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., et al.
(2000). The Protein Data Bank. Nucleic Acids Res. 28 (1), 235–242. doi:10.1093/
nar/28.1.235

Boughorbel, S., Jarray, F., and El-Anbari, M. (2017). Optimal Classifier for
Imbalanced Data Using Matthews Correlation Coefficient Metric. PLOS
ONE 12 (6), e0177678. doi:10.1371/journal.pone.0177678

Braun, P., Tasan, M., Dreze, M., Barrios-Rodiles, M., Lemmens, I., Yu, H., et al.
(2009). An Experimentally Derived Confidence Score for Binary Protein-
Protein Interactions. Nat. Methods 6 (1), 91–97. doi:10.1038/nmeth.1281

Braunstein, A., Ingrosso, A., and Muntoni, A. P. (2019). Network Reconstruction
from Infection Cascades. J. R. Soc. Interf. 16 (151), 20180844. doi:10.1098/
rsif.2018.0844

Cannistraci, C. V., Alanis-Lobato, G., and Ravasi, T. (2013). MinimumCurvilinearity
to Enhance Topological Prediction of Protein Interactions by Network
Embedding. Bioinformatics 29, i199–209. doi:10.1093/bioinformatics/btt208

Caraus, I., Alsuwailem, A. A., Nadon, R., and Makarenkov, V. (2015). Detecting
and Overcoming Systematic Bias in High-Throughput Screening Technologies:
a Comprehensive Review of Practical Issues and Methodological Solutions.
Brief. Bioinform. 16 (6), 974–986. doi:10.1093/bib/bbv004

Ceccarelli, F., Turei, D., Gabor, A., and Saez-Rodriguez, J. (2020). Bringing Data
from Curated Pathway Resources to Cytoscape with OmniPath. Bioinformatics
36 (8), 2632–2633. doi:10.1093/bioinformatics/btz968

Chan, S. M., Weng, A. P., Tibshirani, R., Aster, J. C., and Utz, P. J. (2007). Notch
Signals Positively Regulate Activity of the mTOR Pathway in T-Cell Acute
Lymphoblastic Leukemia. Blood 110 (1), 278–286. doi:10.1182/blood-2006-08-
039883

Chen, Z., Oh, D., Dubey, A. K., Yao, M., Yang, B., Groves, J. T., et al. (2018). EGFR
Family and Src Family Kinase Interactions: Mechanics Matters? Curr. Opin. Cel
Biol. 51, 97–102. doi:10.1016/j.ceb.2017.12.003

Cowen, L., Ideker, T., Raphael, B. J., and Sharan, R. (2017). Network Propagation:
A Universal Amplifier of Genetic Associations. Nat. Rev. Genet. 18 (9),
551–562. doi:10.1038/nrg.2017.38

Creighton, C. J., Morgan, M., Gunaratne, P. H., Wheeler, D. A., Gibbs, R. A.,
Robertson, G., et al. (2013). ComprehensiveMolecular Characterization of clear
Cell Renal Cell Carcinoma.Nature 499 (7456), 43–49. doi:10.1038/nature12222

Creixell, P., Reimand, J., Haider, S., Wu, G., Shibata, T., Vazquez, M., et al. (2015).
Pathway and Network Analysis of Cancer Genomes. Nat. Methods 12 (7),
615–621. doi:10.1038/nmeth.3440

Dincer, C., Kaya, T., Keskin, O., Gursoy, A., and Tuncbag, N. (2019). 3D Spatial
Organization and Network-Guided Comparison of Mutation Profiles in
Glioblastoma Reveals Similarities across Patients. Plos Comput. Biol. 15 (9),
e1006789. doi:10.1371/journal.pcbi.1006789

Fontaine, J.-F., Priller, F., Barbosa-Silva, A., and Andrade-Navarro, M. A. (2011).
Génie: Literature-Based Gene Prioritization at Multi Genomic Scale. Nucleic
Acids Res. 39 (Suppl. 2), W455–W461. doi:10.1093/nar/gkr246

Grimes, T., Potter, S. S., and Datta, S. (2019). Integrating Gene Regulatory
Pathways into Differential Network Analysis of Gene Expression Data. Sci.
Rep. 9 (1). doi:10.1038/s41598-019-41918-3

Guo, J., Li, P., Liu, X., and Li, Y. (2019). NOTCH Signaling Pathway and Non-
coding RNAs in Cancer. Pathol. Res. Pract. 215 (11), 152620. doi:10.1016/
j.prp.2019.152620

Hicks, M., Bartha, I., Di Iulio, J., Venter, J. C., and Telenti, A. (2019). Functional
Characterization of 3D Protein Structures Informed by Human Genetic
Diversity. Proc. Natl. Acad. Sci. USA 116 (18), 8960–8965. doi:10.1073/
pnas.1820813116

Hillmann, P., and Fabbro, D. (2019). PI3K/mTOR Pathway Inhibition:
Opportunities in Oncology and Rare Genetic Diseases. Int. J. Mol. Sci. 20
(22), 5792. doi:10.3390/ijms20225792

Huang, L., Brunell, D., Stephan, C., Mancuso, J., Yu, X., He, B., et al. (2019).
Driver Network as a Biomarker: Systematic Integration and Network
Modeling of Multi-Omics Data to Derive Driver Signaling Pathways for
Drug Combination Prediction. Bioinformatics 35 (19), 3709–3717.
doi:10.1093/bioinformatics/btz109

Hulovatyy, Y., Solava, R. W., and Milenković, T. (2014). Revealing Missing Parts of
the Interactome via Link Prediction. PLoS ONE 9 (3), e90073. doi:10.1371/
journal.pone.0090073

Ietswaart, R., Gyori, B. M., Bachman, J. A., Sorger, P. K., and Churchman, L. S.
(2021). GeneWalk Identifies Relevant Gene Functions for a Biological Context
Using Network Representation Learning. Genome Biol. 22 (1), 55. doi:10.1186/
s13059-021-02264-8

Janjić, V., and Pržulj, N. (2017). The Topology of the Growing Human Interactome
Data. J. Integr. Bioinformatics 11 (2), 27–42. doi:10.1515/jib-2014-238

Jassal, B., Matthews, L., Viteri, G., Gong, C., Lorente, P., Fabregat, A., et al. (2020).
The Reactome Pathway Knowledgebase. Nucleic Acids Res. 48 (D1),
D498–D503. doi:10.1093/nar/gkz1031

Kamburov, A., Pentchev, K., Galicka, H., Wierling, C., Lehrach, H., and Herwig, R.
(2011). ConsensusPathDB: Toward a More Complete Picture of Cell Biology.
Nucleic Acids Res. 39 (Suppl. 1), D712–D717. doi:10.1093/nar/gkq1156

Kamburov, A., Stelzl, U., and Herwig, R. (2012). IntScore: A Web Tool for
Confidence Scoring of Biological Interactions. Nucleic Acids Res. 40 (W1),
W140–W146. doi:10.1093/nar/gks492

Kamburov, A., Stelzl, U., Lehrach, H., and Herwig, R. (2013). The
ConsensusPathDB Interaction Database: 2013 Update. Nucleic Acids Res. 41
(D1), D793–D800. doi:10.1093/nar/gks1055

Kandasamy, K., Mohan, S., Raju, R., Keerthikumar, S., Kumar, G. S. S., Venugopal,
A. K., et al. (2010). NetPath: A Public Resource of Curated Signal Transduction
Pathways. Genome Biol. 11 (1), R3. doi:10.1186/gb-2010-11-1-r3

Kanehisa, M., Furumichi, M., Tanabe, M., Sato, Y., and Morishima, K. (2017).
KEGG: New Perspectives on Genomes, Pathways, Diseases and Drugs. Nucleic
Acids Res. 45 (D1), D353–D361. doi:10.1093/nar/gkw1092

Kim, Y.-A., Cho, D.-Y., Dao, P., and Przytycka, T. M. (2015). MEMCover:
Integrated Analysis of Mutual Exclusivity and Functional Network Reveals
Dysregulated Pathways across Multiple Cancer Types. Bioinformatics 31 (12),
i284–i292. doi:10.1093/bioinformatics/btv247

Koh, H.W. L., Fermin, D., Vogel, C., Choi, K. P., Ewing, R. M., and Choi, H. (2019).
iOmicsPASS: Network-Based Integration of Multiomics Data for Predictive
Subnetwork Discovery. Npj Syst. Biol. Appl. 5 (1), 22. doi:10.1038/s41540-019-
0099-y

Kros, J. M., Huizer, K., Hernández-Laín, A., Marucci, G., Michotte, A., Pollo, B.,
et al. (2015). Evidence-based Diagnostic Algorithm for Glioma: Analysis of the
Results of Pathology Panel Review and Molecular Parameters of EORTC 26951
and 26882 Trials. J. Clin. Oncol. 33 (17), 1943–1950. doi:10.1200/
JCO.2014.59.0166

Kuzmin, K., Gaiteri, C., and Szymanski, B. K. (2016). Synergy Landscapes: A
Multilayer Network for Collaboration in Biological Research. Adv. Netw. Sci.
9564, 205–212. doi:10.1007/978-3-319-28361-6_18

Lachmann, A., Giorgi, F. M., Lopez, G., and Califano, A. (2016). ARACNe-AP:
Gene Network Reverse Engineering through Adaptive Partitioning Inference of
Mutual Information. Bioinformatics 32 (14), 2233–2235. doi:10.1093/
bioinformatics/btw216

Langville, A. N., and Meyer, C. D. (2005). A Survey of Eigenvector Methods for
Web Information Retrieval. SIAM Rev. 47 (1), 135–161. doi:10.1137/
S0036144503424786

Frontiers in Molecular Biosciences | www.frontiersin.org October 2021 | Volume 8 | Article 66670517

Arici and Tuncbag Performance Evaluation of Network Reconstruction Approaches

https://doi.org/10.1093/bioinformatics/btw655
http://arxiv.org/abs/1606.08768
https://doi.org/10.1089/cmb.2010.0255
https://doi.org/10.1186/s12859-020-03778-x
https://doi.org/10.1038/s41598-020-78852-8
https://doi.org/10.1016/j.cell.2018.02.060
https://doi.org/10.1016/j.cell.2018.02.060
https://doi.org/10.1126/science.286.5439.509
https://doi.org/10.3390/cancers11030292
https://doi.org/10.3390/cancers11030292
https://doi.org/10.1093/nar/28.1.235
https://doi.org/10.1093/nar/28.1.235
https://doi.org/10.1371/journal.pone.0177678
https://doi.org/10.1038/nmeth.1281
https://doi.org/10.1098/rsif.2018.0844
https://doi.org/10.1098/rsif.2018.0844
https://doi.org/10.1093/bioinformatics/btt208
https://doi.org/10.1093/bib/bbv004
https://doi.org/10.1093/bioinformatics/btz968
https://doi.org/10.1182/blood-2006-08-039883
https://doi.org/10.1182/blood-2006-08-039883
https://doi.org/10.1016/j.ceb.2017.12.003
https://doi.org/10.1038/nrg.2017.38
https://doi.org/10.1038/nature12222
https://doi.org/10.1038/nmeth.3440
https://doi.org/10.1371/journal.pcbi.1006789
https://doi.org/10.1093/nar/gkr246
https://doi.org/10.1038/s41598-019-41918-3
https://doi.org/10.1016/j.prp.2019.152620
https://doi.org/10.1016/j.prp.2019.152620
https://doi.org/10.1073/pnas.1820813116
https://doi.org/10.1073/pnas.1820813116
https://doi.org/10.3390/ijms20225792
https://doi.org/10.1093/bioinformatics/btz109
https://doi.org/10.1371/journal.pone.0090073
https://doi.org/10.1371/journal.pone.0090073
https://doi.org/10.1186/s13059-021-02264-8
https://doi.org/10.1186/s13059-021-02264-8
https://doi.org/10.1515/jib-2014-238
https://doi.org/10.1093/nar/gkz1031
https://doi.org/10.1093/nar/gkq1156
https://doi.org/10.1093/nar/gks492
https://doi.org/10.1093/nar/gks1055
https://doi.org/10.1186/gb-2010-11-1-r3
https://doi.org/10.1093/nar/gkw1092
https://doi.org/10.1093/bioinformatics/btv247
https://doi.org/10.1038/s41540-019-0099-y
https://doi.org/10.1038/s41540-019-0099-y
https://doi.org/10.1200/JCO.2014.59.0166
https://doi.org/10.1200/JCO.2014.59.0166
https://doi.org/10.1007/978-3-319-28361-6_18
https://doi.org/10.1093/bioinformatics/btw216
https://doi.org/10.1093/bioinformatics/btw216
https://doi.org/10.1137/S0036144503424786
https://doi.org/10.1137/S0036144503424786
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Lei, C., and Ruan, J. (2013). A Novel Link Prediction Algorithm for Reconstructing
Protein-Protein Interaction Networks by Topological Similarity. Bioinformatics
29 (3), 355–364. doi:10.1093/bioinformatics/bts688

Leiserson, M. D. M., Vandin, F., Wu, H.-T., Dobson, J. R., Eldridge, J. V., Thomas,
J. L., et al. (2015). Pan-cancer Network Analysis Identifies Combinations of
Rare Somatic Mutations across Pathways and Protein Complexes. Nat. Genet.
47 (2), 106–114. doi:10.1038/ng.3168

Liu, C., Ma, Y., Zhao, J., Nussinov, R., Zhang, Y.-C., Cheng, F., et al. (2020).
Computational Network Biology: Data, Models, and Applications. Phys. Rep.
846, 1–66. doi:10.1016/j.physrep.2019.12.004

Liu, G., Wang, H., Chu, H., Yu, J., and Zhou, X. (2017). Functional Diversity of
Topological Modules in Human Protein-Protein Interaction Networks. Sci.
Rep. 7 (1), 16199. doi:10.1038/s41598-017-16270-z

Liu, W., Singh, S. R., and Hou, S. X. (2010). JAK-STAT Is Restrained by Notch to
Control Cell Proliferation of theDrosophilaintestinal Stem Cells. J. Cel.
Biochem. 109 (5), a–n. doi:10.1002/jcb.22482

Madar, A., Greenfield, A., Ostrer, H., Vanden-Eijnden, E., and Bonneau, R. (2009).
The Inferelator 2.0: A Scalable Framework for Reconstruction of Dynamic
Regulatory Network Models. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2009,
5448–5451. doi:10.1109/IEMBS.2009.5334018

Magnano, C. S., and Gitter, A. (2021). Automating Parameter Selection to Avoid
Implausible Biological Pathway Models. Npj Syst. Biol. Appl. 7 (1), 1–12.
doi:10.1038/s41540-020-00167-1

Malod-Dognin, N., Petschnigg, J., Windels, S. F. L., Povh, J., Hemingway, H.,
Ketteler, R., et al. (2019). Towards a Data-Integrated Cell.Nat. Commun. 10 (1),
805. doi:10.1038/s41467-019-08797-8

Martínez-Jiménez, F., Muiños, F., Sentís, I., Deu-Pons, J., Reyes-Salazar, I., Arnedo-
Pac, C., et al. (2020). A Compendium of Mutational Cancer Driver Genes. Nat.
Rev. Cancer 20, 555–572. doi:10.1038/s41568-020-0290-x

Meyer, M. J., Beltrán, J. F., Liang, S., Fragoza, R., Rumack, A., Liang, J., et al. (2018).
Interactome INSIDER: a Structural Interactome Browser for Genomic Studies.
Nat. Methods 15 (2), 107–114. doi:10.1038/nmeth.4540

Mo, Q., Shen, R., Guo, C., Vannucci, M., Chan, K. S., and Hilsenbeck, S. G. (2018).
A Fully Bayesian Latent Variable Model for Integrative Clustering Analysis of
Multi-type Omics Data. Biostatistics 19 (1), 71–86. doi:10.1093/biostatistics/
kxx017

Mosca, R., Céol, A., and Aloy, P. (2013). Interactome3D: Adding Structural Details
to Protein Networks. Nat. Methods 10 (1), 47–53. doi:10.1038/nmeth.2289

Mosca, R., Céol, A., Stein, A., Olivella, R., and Aloy, P. (2014). 3did: A Catalog of
Domain-Based Interactions of Known Three-Dimensional Structure. Nucl.
Acids Res. 42 (D1), D374–D379. doi:10.1093/nar/gkt887

Nero, T. L., Parker, M. W., and Morton, C. J. (2018). Protein Structure and
Computational Drug Discovery. Biochem. Soc. Trans. 46 (5), 1367–1379.
doi:10.1042/BST20180202

Nitsch, D., Gonçalves, J. P., Ojeda, F., de Moor, B., and Moreau, Y. (2010).
Candidate Gene Prioritization by Network Analysis of Differential Expression
Using Machine Learning Approaches. BMC Bioinformatics 11, 460.
doi:10.1186/1471-2105-11-460

Ohgaki, H., and Kleihues, P. (2007). Genetic Pathways to Primary and Secondary
Glioblastoma. Am. J. Pathol. 170 (5), 1445–1453. doi:10.2353/ajpath.2007.070011

Paananen, J., and Fortino, V. (2020). An Omics Perspective on Drug Target
Discovery Platforms. Brief. Bioinform. 21 (6), 1937–1953. doi:10.1093/bib/
bbz122

Page, L. B., Brin, S., Motwani, R., and Winograd, T. (1998). The PageRank Citation
Ranking: Bringing Order to the Web.

Paull, E. O., Carlin, D. E., Niepel, M., Sorger, P. K., Haussler, D., and Stuart, J. M.
(2013). Discovering Causal Pathways Linking Genomic Events to Transcriptional
States Using Tied Diffusion through Interacting Events (TieDIE). Bioinformatics
29 (21), 2757–2764. doi:10.1093/bioinformatics/btt471

Porras, P., Barrera, E., Bridge, A., del-Toro, N., Cesareni, G., Duesbury, M., et al.
(2020). Towards a Unified Open Access Dataset of Molecular Interactions. Nat.
Commun. 11 (1), 1–12. doi:10.1038/s41467-020-19942-z

Qiu, H., Tang, X., Ma, J., Shaverdashvili, K., Zhang, K., and Bedogni, B. (2015).
Notch1 Autoactivation via Transcriptional Regulation of Furin, Which Sustains
Notch1 Signaling by Processing Notch1-Activating Proteases ADAM10 and
Membrane Type 1 Matrix Metalloproteinase.Mol. Cel Biol. 35 (21), 3622–3632.
doi:10.1128/mcb.00116-15

Rawlings, J. S., Rosler, K. M., and Harrison, D. A. (2004). The JAK/STAT Signaling
Pathway. J. Cel Sci. 117 (8), 1281–1283. doi:10.1242/jcs.00963

Ricotta, C., Podani, J., and Pavoine, S. (2016). A Family of Functional Dissimilarity
Measures for Presence and Absence Data. Ecol. Evol. 6 (15), 5383–5389.
doi:10.1002/ece3.2214

Ritz, A., Poirel, C. L., Tegge, A. N., Sharp, N., Simmons, K., Powell, A., et al. (2016).
Pathways on Demand: Automated Reconstruction of Human Signaling
Networks. Npj Syst. Biol. Appl. 2 (1), 1–9. doi:10.1038/npjsba.2016.2

Rodchenkov, I., Babur, O., Luna, A., Aksoy, B. A., Wong, J. V., Fong, D., et al.
(2019). Pathway Commons 2019 Update: Integration, Analysis and Exploration
of Pathway Data. Nucleic Acids Res. 48, 489–497. doi:10.1093/nar/gkz946

Rubel, T., and Ritz, A. (2020). Augmenting Signaling Pathway Reconstructions.
Proc. 11th ACM Int. Conf. Bioinformatics Comput. Biol. Health Inform. 10,
1–10. doi:10.1145/3388440.3412411

Saito, T., and Rehmsmeier, M. (2015). The Precision-Recall Plot Is More
Informative Than the ROC Plot when Evaluating Binary Classifiers on
Imbalanced Datasets. PLOS ONE 10 (3), e0118432. doi:10.1371/
journal.pone.0118432

Schaefer, M. H., Fontaine, J.-F., Vinayagam, A., Porras, P., Wanker, E. E., and
Andrade-Navarro, M. A. (2012). Hippie: Integrating Protein Interaction
Networks with experiment Based Quality Scores. PLoS ONE 7 (2), e31826.
doi:10.1371/journal.pone.0031826

Schaefer, M. H., Serrano, L., and Andrade-Navarro, M. A. (2015). Correcting for
the Study Bias Associated with Protein-Protein Interaction Measurements
Reveals Differences between Protein Degree Distributions from Different
Cancer Types. Front. Genet. 6, 260. doi:10.3389/fgene.2015.00260

Schmidt, T., Bergner, A., and Schwede, T. (2014). Modelling Three-Dimensional
Protein Structures for Applications in Drug Design. Drug Discov. Today 19 (7),
890–897. doi:10.1016/j.drudis.2013.10.027

SeahSen, C. S., Kasim, S., Fudzee, M. F. M., Law Tze Ping, J. M., Mohamad, M. S.,
Saedudin, R. R., et al. (2017). An Enhanced Topologically Significant Directed
RandomWalk in Cancer Classification Using Gene Expression Datasets. Saudi
J. Biol. Sci. 24 (8), 1828–1841. doi:10.1016/j.sjbs.2017.11.024

Segura, J., Sorzano, C. O. S., Cuenca-Alba, J., Aloy, P., and Carazo, J. M. (2015).
Using Neighborhood Cohesiveness to Infer Interactions between Protein
Domains. Bioinformatics 31 (15), 2545–2552. doi:10.1093/bioinformatics/
btv188

Sevimoglu, T., and Arga, K. Y. (2014). The Role of Protein Interaction Networks in
Systems Biomedicine. Comput. Struct. Biotechnol. J. 11 (18), 22–27.
doi:10.1016/j.csbj.2014.08.008

Silverbush, D., Cristea, S., Yanovich-Arad, G., Geiger, T., Beerenwinkel, N., and
Sharan, R. (2019). Simultaneous Integration of Multi-Omics Data Improves the
Identification of Cancer Driver Modules. Cel Syst. 8 (5), 456–466.e5.
doi:10.1016/j.cels.2019.04.005

Simpson, G. (1966). Notes on theMeasurement of Faunal Resemblance.Am. J. Sci. 258-
A, 300–311. http://earth.geology.yale.edu/∼ajs/1960/ajs_258A_11.pdf/300.pdf.

Singh, R., Xu, J., and Berger, B. (2005). Struct2Net: Integrating Structure into
Protein-Protein Interaction Prediction. Pac. Symp. Biocomput 2006, 403–414.
doi:10.1142/9789812701626_0037

Sjölund, J., Manetopoulos, C., Stockhausen, M.-T., and Axelson, H. (2005). The
Notch Pathway in Cancer: Differentiation Gone Awry. Eur. J. Cancer 41 (17),
2620–2629. doi:10.1016/j.ejca.2005.06.025

Skinnider, M. A., Stacey, R. G., Foster, L. J., and Iakoucheva, L. M. (2018). Genomic
Data Integration Systematically Biases Interactome Mapping. Plos Comput.
Biol. 14, e1006474. doi:10.1371/journal.pcbi.1006474

Sychev, Z. E., Hu, A., DiMaio, T. A., Gitter, A., Camp, N. D., Noble, W. S., et al.
(2017). Integrated Systems Biology Analysis of KSHV Latent Infection Reveals
Viral Induction and reliance on Peroxisome Mediated Lipid Metabolism. Plos
Pathog. 13 (3), e1006256. doi:10.1371/journal.ppat.1006256

Szklarczyk, D., Gable, A. L., Lyon, D., Junge, A., Wyder, S., Huerta-Cepas, J., et al.
(2019). STRING V11: Protein-Protein Association Networks with Increased
Coverage, Supporting Functional Discovery in Genome-wide Experimental
Datasets. Nucleic Acids Res. 47 (D1), D607–D613. doi:10.1093/nar/gky1131

Szklarczyk, D., Gable, A. L., Nastou, K. C., Lyon, D., Kirsch, R., Pyysalo, S., et al.
(2021). The STRING Database in 2021: Customizable Protein-Protein Networks,
and Functional Characterization of User-Uploaded Gene/measurement Sets.
Nucleic Acids Res. 49 (D1), D605–D612. doi:10.1093/nar/gkaa1074

Frontiers in Molecular Biosciences | www.frontiersin.org October 2021 | Volume 8 | Article 66670518

Arici and Tuncbag Performance Evaluation of Network Reconstruction Approaches

https://doi.org/10.1093/bioinformatics/bts688
https://doi.org/10.1038/ng.3168
https://doi.org/10.1016/j.physrep.2019.12.004
https://doi.org/10.1038/s41598-017-16270-z
https://doi.org/10.1002/jcb.22482
https://doi.org/10.1109/IEMBS.2009.5334018
https://doi.org/10.1038/s41540-020-00167-1
https://doi.org/10.1038/s41467-019-08797-8
https://doi.org/10.1038/s41568-020-0290-x
https://doi.org/10.1038/nmeth.4540
https://doi.org/10.1093/biostatistics/kxx017
https://doi.org/10.1093/biostatistics/kxx017
https://doi.org/10.1038/nmeth.2289
https://doi.org/10.1093/nar/gkt887
https://doi.org/10.1042/BST20180202
https://doi.org/10.1186/1471-2105-11-460
https://doi.org/10.2353/ajpath.2007.070011
https://doi.org/10.1093/bib/bbz122
https://doi.org/10.1093/bib/bbz122
https://doi.org/10.1093/bioinformatics/btt471
https://doi.org/10.1038/s41467-020-19942-z
https://doi.org/10.1128/mcb.00116-15
https://doi.org/10.1242/jcs.00963
https://doi.org/10.1002/ece3.2214
https://doi.org/10.1038/npjsba.2016.2
https://doi.org/10.1093/nar/gkz946
https://doi.org/10.1145/3388440.3412411
https://doi.org/10.1371/journal.pone.0118432
https://doi.org/10.1371/journal.pone.0118432
https://doi.org/10.1371/journal.pone.0031826
https://doi.org/10.3389/fgene.2015.00260
https://doi.org/10.1016/j.drudis.2013.10.027
https://doi.org/10.1016/j.sjbs.2017.11.024
https://doi.org/10.1093/bioinformatics/btv188
https://doi.org/10.1093/bioinformatics/btv188
https://doi.org/10.1016/j.csbj.2014.08.008
https://doi.org/10.1016/j.cels.2019.04.005
http://earth.geology.yale.edu/%7Eajs/1960/ajs_258A_11.pdf/300.pdf
http://earth.geology.yale.edu/%7Eajs/1960/ajs_258A_11.pdf/300.pdf
https://doi.org/10.1142/9789812701626_0037
https://doi.org/10.1016/j.ejca.2005.06.025
https://doi.org/10.1371/journal.pcbi.1006474
https://doi.org/10.1371/journal.ppat.1006256
https://doi.org/10.1093/nar/gky1131
https://doi.org/10.1093/nar/gkaa1074
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Tabei, Y., Kotera, M., Sawada, R., and Yamanishi, Y. (2019). Network-based
Characterization of Drug-Protein Interaction Signatures with a Space-
Efficient Approach. BMC Syst. Biol. 13 (S2), 39. doi:10.1186/s12918-019-
0691-1

The UniProt Consortium (2019). UniProt: a Worldwide Hub of Protein
Knowledge. Nucleic Acids Res. 47, D506. doi:10.1093/nar/gky1049

Tkačik, G., Walczak, A. M., and Bialek, W. (2009). Optimizing Information Flow in
Small Genetic Networks. Phys. Rev. E Stat. Nonlin Soft Matter Phys. 80 (3),
1–18. doi:10.1103/PhysRevE.80.031920

Trojan, A., Kasprzak, H., Gutierrez, O., Penagos, P., Briceno, I., O. Siachoque, H.,
et al. (2020). “Neoplastic Brain, Glioblastoma, and Immunotherapy,” in Brain
and Spinal Tumors - Primary and Secondary (The Shard: IntechOpen).
doi:10.5772/intechopen.84726

Tuncbag, N., Braunstein, A., Pagnani, A., Huang, S.-S. C., Chayes, J., Borgs, C., et al.
(2013). Simultaneous Reconstruction of Multiple Signaling Pathways via the
Prize-Collecting Steiner forest Problem. J. Comput. Biol. 20 (2), 124–136.
doi:10.1089/cmb.2012.0092

Tuncbag, N., Gosline, S. J. C., Kedaigle, A., Soltis, A. R., Gitter, A., and Fraenkel, E.
(2016a). Network-Based Interpretation of Diverse High-Throughput Datasets
through the Omics Integrator Software Package. Plos Comput. Biol. 12 (4),
e1004879. doi:10.1371/journal.pcbi.1004879

Tuncbag, N., McCallum, S., Huang, S.-s. C., and Fraenkel, E. (2012). SteinerNet: a
Web Server for Integrating ’omic’ Data to Discover Hidden Components of
Response Pathways.Nucleic Acids Res. 40 (W1),W505–W509. doi:10.1093/nar/
gks445

Tuncbag, N., Milani, P., Pokorny, J. L., Johnson, H., Sio, T. T., Dalin, S., et al.
(2016b). Network Modeling Identifies Patient-specific Pathways in
Glioblastoma. Sci. Rep. 6 (1), 1–12. doi:10.1038/srep28668

Turinsky, A. L., Razick, S., Turner, B., Donaldson, I. M., and Wodak, S. J. (2011).
Interaction Databases on the Same page. Nat. Biotechnol. 29, 391. doi:10.1038/
nbt.1867

Turner, B., Razick, S., Turinsky, A. L., Vlasblom, J., Crowdy, E. K., Cho, E., et al.
(2010). iRefWeb: Interactive Analysis of Consolidated Protein Interaction Data
and Their Supporting Evidence. Database (Oxford) 2010, baq023. doi:10.1093/
database/baq023

Vandin, F., Upfal, E., and Raphael, B. J. (2011). Algorithms for Detecting
Significantly Mutated Pathways in Cancer. J. Comput. Biol. 18 (3), 507–522.
doi:10.1089/cmb.2010.0265

Varma Polisetty, R., Gautam, P., Sharma, R., Harsha, H. C., Nair, S. C., Kumar
Gupta, M., et al. (2012). LC-MS/MS Analysis of Differentially Expressed
Glioblastoma Membrane Proteome Reveals Altered Calcium Signalling and
Other Protein Groups of Regulatory Functions Running Title-Glioblastoma
Membrane Proteins. Available at: https://www.mcponline.org.

Venko, K., Roy Choudhury, A., and Novič, M. (2017). Computational Approaches
for Revealing the Structure of Membrane Transporters: Case Study on

Bilitranslocase. Comput. Struct. Biotechnol. J. 15, 232–242. doi:10.1016/
j.csbj.2017.01.008

Vidal, M., Cusick, M. E., and Barabási, A.-L. (2011). Interactome Networks and
Human Disease. Cell 144 (6), 986–998. doi:10.1016/j.cell.2011.02.016

Vitali, F., Marini, S., Pala, D., Demartini, A., Montoli, S., Zambelli, A., et al.
(2018). Patient Similarity by Joint Matrix Trifactorization to Identify
Subgroups in Acute Myeloid Leukemia. JAMIA Open 1 (1), 75–86.
doi:10.1093/jamiaopen/ooy008

vonMering, C., Jensen, L. J., Snel, B., Hooper, S. D., Krupp, M., Foglierini, M., et al.
(2004). STRING: Known and Predicted Protein-Protein Associations,
Integrated and Transferred across Organisms. Nucleic Acids Res. 33
(DATABASE ISS.), D433–D437. doi:10.1093/nar/gki005

Waks, Z., Weissbrod, O., Carmeli, B., Norel, R., Utro, F., and Goldschmidt, Y.
(2016). Driver Gene Classification Reveals a Substantial Overrepresentation of
Tumor Suppressors Among Very Large Chromatin-Regulating Proteins. Sci.
Rep. 6 (1), 1–12. doi:10.1038/srep38988

Wang, Y., Yang, Y., Chen, S., and Wang, J. (2021). DeepDRK: a Deep Learning
Framework for Drug Repurposing through Kernel-Based Multi-Omics
Integration. Brief. Bioinform. 00 (August 2020), 1–10. doi:10.1093/bib/bbab048

Yerneni, S., Khan, I. K., Wei, Q., and Kihara, D. (2018). IAS: Interaction Specific GO
Term Associations for Predicting Protein-Protein Interaction Networks. Ieee/acm
Trans. Comput. Biol. Bioinf. 15 (4), 1247–1258. doi:10.1109/tcbb.2015.2476809

Žitnik, M., Janjić, V., Larminie, C., Zupan, B., and Pržulj, N. (2013). Discovering
Disease-Disease Associations by Fusing Systems-Level Molecular Data.
Scientific Rep. 3 (1), 1–9. doi:10.1038/srep03202

Zsákai, L., Sipos, A., Dobos, J., Erős, D., Szántai-Kis, C., Bánhegyi, P., et al. (2019).
Targeted Drug Combination Therapy Design Based on Driver Genes.
Oncotarget 10 (51), 5255–5266. doi:10.18632/oncotarget.26985

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Arici and Tuncbag. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Molecular Biosciences | www.frontiersin.org October 2021 | Volume 8 | Article 66670519

Arici and Tuncbag Performance Evaluation of Network Reconstruction Approaches

https://doi.org/10.1186/s12918-019-0691-1
https://doi.org/10.1186/s12918-019-0691-1
https://doi.org/10.1093/nar/gky1049
https://doi.org/10.1103/PhysRevE.80.031920
https://doi.org/10.5772/intechopen.84726
https://doi.org/10.1089/cmb.2012.0092
https://doi.org/10.1371/journal.pcbi.1004879
https://doi.org/10.1093/nar/gks445
https://doi.org/10.1093/nar/gks445
https://doi.org/10.1038/srep28668
https://doi.org/10.1038/nbt.1867
https://doi.org/10.1038/nbt.1867
https://doi.org/10.1093/database/baq023
https://doi.org/10.1093/database/baq023
https://doi.org/10.1089/cmb.2010.0265
https://www.mcponline.org
https://doi.org/10.1016/j.csbj.2017.01.008
https://doi.org/10.1016/j.csbj.2017.01.008
https://doi.org/10.1016/j.cell.2011.02.016
https://doi.org/10.1093/jamiaopen/ooy008
https://doi.org/10.1093/nar/gki005
https://doi.org/10.1038/srep38988
https://doi.org/10.1093/bib/bbab048
https://doi.org/10.1109/tcbb.2015.2476809
https://doi.org/10.1038/srep03202
https://doi.org/10.18632/oncotarget.26985
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles

	Performance Assessment of the Network Reconstruction Approaches on Various Interactomes
	Introduction
	Methods
	Reference Interactomes
	Interactome Comparison Metrics
	Network Reconstruction Methods
	All-Pairs Shortest Paths
	Personalized PageRank
	Heat Diffusion
	Edge Selection Over Flux Scores
	Prize-Collecting Steiner Forest

	Performance Analysis
	Parameter Tuning
	The Calculation of Performance Scores

	Data Availability Statement

	Results
	Systematic Evaluation of Reference Human Interactomes
	Performance of Network Reconstruction Algorithms
	Case Studies: Reconstruction of the Notch Pathway and Glioblastoma Disease Pathway

	Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


