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Abstract 
Collagen I is a member of the Collagen superfamily of proteins, the proteins most 

abundant in mammals, and an essential component of bones, teeth, skin and connective 

tissues including ligaments and tendons. COL1A1 and COL1A2 are the genes that code 

for the collagen I alpha chains, α1 and α2 respectively. Collagen I is a heterotrimer of 

these two alpha chains, formed of two α1 and one α2 chains. Diseases resulting from 

genetic mutations in COL1A1 and COL1A2, include osteogenesis imperfecta (OI) and 

Ehlers-Danlos syndrome (EDS), however, mutations in these genes have not been 

implicated in the development of osteoarthritis (OA). 

At MRC Harwell Institute, large-scale mutagenesis screens, including the Harwell Ageing 

Screen, have been used to identify novel models of disease and establish links between 

genes and diseases. The mutagenised mouse lines MP-107 and TM44 were identified in 

such screens, exhibiting early-onset mild bone abnormalities at the pelvis and elbow. 

These animals subsequently developed late-onset phenotypes including abnormal bone 

growth at the knee and OA. 

Genetic mapping and sequencing revealed that MP-107 and TM44, contained mutations 

in Col1a2 and Col1a1 respectively, which correspond to the genes COL1A2 and COL1A1 

in humans.  The MP-107 mutation was a T to A transversion at position 4521226 of 

Chromosome 6 resulting in alternative splicing at exon 22 of Col1a2. The TM44 mutation 

was a C to T transition at position 94836670 of Chromosome 11 resulting in a premature 

stop codon in exon 31 of Col1a1. 

Extensive phenotyping analysis revealed that the bone abnormalities observed in these 

lines are a result of an OI phenotype. Evidence of an EDS phenotype was also identified 

in the line MP-107, indicating that MP-107 is likely a model of Col-1 related overlap 

syndrome, a proposed EDS subtype exhibiting aspects of OI and EDS. Collagen I related 

changes to the joint tissues is likely the cause of the OA phenotypes. The project has the 

potential to enhance understanding of both the development of Col-1 related overlap 

syndrome and OA, and possible targets for therapy. 
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Chapter 1: Introduction 
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1.1. Collagen I 

1.1.1. The Collagen Family 

Type I collagen is a member of the Collagen superfamily, which are the most abundant 

family of proteins in mammals, accounting for around 30% of total dry protein weight 

[1]. There are currently 28 proteins classified as collagens, numbered with Roman 

numerals (I-XXVIII). In addition to these there are many other proteins, which contain 

collagen-like domains, but are not regarded as collagens. The defining feature of  a 

collagen is the presence of 3 polypeptide chains (commonly called α chains) each of 

which forms a left handed Polyproline-II (PPII) type helix, made up of G-X-Y tripeptide 

repeats, where X is most commonly Proline, and Y is most commonly Hydroxyproline 

[2]. This open form of helix, devoid of internal hydrogen bonds, enables the 3 helices to 

twist together to form a right-handed triple helix, with a one residue stagger between 

adjacent α chains.  The number of helical domains varies in each of the members of the 

collagen family, collagen I contains a single large helical domain, while Collagen XVII 

contains 15 smaller helical domains [3]. 

The majority of collagens are homotrimers, with 3 identical α chains making up the triple 

helix, while the minority are heterotrimers, such as collagen I which is made up of 2 

different α chains, and collagen IV which can be made up of different combinations of 

up to 6 different α chains [1, 4]. 

The 28 collagens are split into 7 groups: fibril forming collagens, fibril associated 

collagens with interrupted triple helix (FACIT), beaded filament forming collagens, 

anchoring fibril collagens, network forming collagens, transmembrane collagens and 

endostatins (Table 1.1). 
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Classification  Type Distribution/remarks 
 Fibril-forming I  Non-cartilaginous connective tissues –e.g. tendon, 
    ligament, cornea, bone, annulus fibrosis, skin 
  II  Cartilage, vitreous humour and nucleus pulposus 
  III  Co-distributes with collagen I, especially in embryonic  
   skin and hollow organs 
  V Co-distributes with collagen I, especially in embryonic  
   tissues and in cornea 
  XI Co-distributes with collagen II 
  XXIV   Shares sequence homology with the fibril-forming collagens; 
    has minor interruptions in the triple helix; selective  
    expression in developing cornea and bone 
 XXVII  Shares sequence homology with the fibril-forming collagens; 

  
 has minor interruptions in the triple helix; found in a number 
of embryonic tissues but restricted to cartilage in adults  

FACIT IX  Co-distributes with collagen II, especially in cartilage 
   and vitreous humour 
  XII  Found with collagen I 
  XIV Found with collagen I 
  XVI Integrated into collagen fibrils and fibrillin-1 microfibrils 
 XIX  Rare; localised to basement membrane zones; contributes to  
  muscle physiology and differentiation 
 XX Widespread distribution, most prevalent in corneal epithelium 
 XXI Widespread distribution 
 XXII  Localised at tissue junctions – e.g. myotendinous junction,  
   cartilage, synovial fluid, hair follicle-dermis 
Beaded-filament forming VI  Widespread, especially muscle 
  XXVI  Also known as EMI domain-containing protein 2, protein 
   Emu2, Emilin and multimerin domain-containing protein 2 
 XXVIII A component of the basement membrane around Schwann  
  cells; a von Willebrand factor A domain-containing protein 
   with numerous interruptions in the triple helical domain 
Anchoring fibrils VII Dermal-epidermal junction 
Network-forming IV Basement membranes 
  VIII  Descemet’s membrane 
  X  Hypertrophic cartilage 
Transmembrane XIII  Neuromuscular junctions, skin 
  XVII Also known as the bullous pemphigoid antigen 2/BP180; 
    localised to epithelia; an epithelial adhesion molecule;  
   ectodomain cleaved by ADAM proteinases 
  XXIII  Limited tissue distribution; exists as a transmembrane  
   and shed form 
  XXV  CLAC-P – precursor protein for CLAC 
    (collagenous Alzheimer amyloid plaque component) 
Endostatins XV Located between collagen fibrils that are close to basement 
   membranes; found in the eye, muscle and microvessels;  
   a close structural homologue of collagen XVIII 
  XVIII Associated with basement membranes; endostatin is 
    proteolytically released from the C-terminus of collagen XVIII; 
     important for retinal vasculogenesis 

 

Table 1.1.  Table showing each group within the collagen family and the members of those 
groups, as well  as distribution. Adapted from Kadler et a l.,  2007  [5].  
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1.1.2. Collagen I Structure and Synthesis 

Type I collagen is typically a heterotrimer composed of two α1 chains (encoded by the 

gene COL1A1) and one α2 chain (encoded by the gene COL1A2), however under certain 

circumstances type I collagen can exist as a homotrimer of three α1 chains, including in 

fetal tissues, fibrosis, and cancer [6]. Collagen I exists extracellularly as collagen fibres, 

made up of collagen micro fibrils, which are composed of collagen molecules (Figure 

1.1). Collagen molecules self-assemble into microfibrils in a staggered offset, which gives 

collagen fibrils a characteristic D-periodicity of 67nm, which consists of a 40nm gap 

between molecules, and a 27 nm overlap zone [7]. 

 

Figure 1.1.  Collagen Structure and organisation. Taken from Canelón  et al.,  2016 [7].  

There are a number of essential processes, which occur throughout the production of 

the collagen molecule, which allow the formation of these microfibrils and fibrils, which 

will be outlined below, and starts with the genes COL1A1 and COL1A2. 

The genes COL1A1 and COL1A2 are very similar in terms of their exon structure, resulting 

in very similar structures in the α1 and α2 chains. Both genes contain large triple helical 

domains flanked by C- and N-propeptides separated from the triple helix by C- and N- 
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telopeptides respectively. The N-propeptide region also contains a smaller additional 

triple helical domain (Figure 1.2).  

 

Figure 1.2.  A diagram showing the Exon structure of COL1A1  and COL1A2,  and the 
elements of the α chains that they code for. The N-propeptide of both COL1A1  and COL1A2  
contain a short trip le helical domain. Adapted from Rossert and de Crombrugghe, 2002 
[8] 

The similar structure of the collagen I genes, allow the formation of a pro collagen 

molecule where the 3 left-hand helices (2 pro α1 (I) and 1  pro α2 (I)) interact and form 

a right-handed triple helix (Figure 1.3). 

 

Figure 1.3. A schematic representation of the type I pro-collagen molecule. Adapted from 
Marcius et al., 2006 [9]. 
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The mechanisms by which collagen I is produced is a complicated process, including 

synthesis, post-translational modifications, and folding; the processing takes place both 

intracellularly and extracellularly [10]. 

Initially the genes for each of the alpha chains are transcribed to mRNA in the nucleus, 

before the mRNA exits the nucleus and interacts with the membrane-bound ribosomes 

of the rough endoplasmic reticulum (rER) [11, 12]. The ribosomes translate the mRNA 

into polypeptide chains, which are secreted into the lumen of the endoplasmic reticulum 

(ER) [10]. While most proteins fold from the N terminal end before the chain has finished 

synthesising, procollagens do not start folding until after the entire chain is synthesised, 

and the folding commences from the C-terminal end [13]. The polypeptide chains 

undergo a number of post-translational modifications during the folding process, 

starting with the cleavage of the N-terminal signal peptide. As mentioned previously, 

the repeating Glycine motif, of Gly-X-Y, where X is most commonly proline and Y is 

mostly commonly hydroxyproline, is essential to proper folding of the collagen I triple 

helix. The triple helix of collagens is stabilised by proline in the X position and 4-

hydroxyproline and arginine in the Y position [2, 13]. It is therefore also essential that 

approximately half of proline residues in the Y position are hydroxylated by prolyl 4-

hydroxylase, although some specific proline residues are hydroxylated by the prolyl 3-

hydroxylation complex, which involves a number of different proteins, including CRTAP, 

P3H1 and CyPB. The role in the stabilisation of the triple helix of 4-hydroxyproline is by 

providing hydrogen bonds and water bridges [14]. Additionally, lysine residues are 

hydroxylated by lysyl hydroxylases to form hydroxylysine residues which can then 

undergo further modifications such as glycosylation or covalent crosslinking [15]. The 

folded pro-collagen molecule is then ready for secretion. ER chaperone proteins such as 

BiP bind to unfolded and partially folded chains and ensure the chains remain in a 

foldable state. When these chaperones are released it signals that the molecule is ready 

for transportation [13, 16]. Due to the large, rigid structure of the pro-collagen I 

molecule, trafficking of the molecule from the endoplasmic reticulum to the Golgi 

apparatus requires specialised COPII vesicles, which are able to cope with larger 

molecules. Jin et al. showed the actions of ubiquitin ligase CUL3–KLHL12, which 

catalyses the monoubiquitylation of the COPII-component SEC31, drives the assembly 

of large COPII coats, although the precise mechanism remains elusive [17, 18].  Golgi to 
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plasma membrane transport carriers, which are a type of vesicle formed by the 

detachment of large regions of the trans golgi network, enable the pro-collagen  to leave 

the trans face of the Golgi [19]. C- and N- terminal propeptides are cleaved by their 

respective proteinases, BMP1 (Bone morphogenetic protein-1) and ADAMTS-2 (A 

Disintegrin and Metalloproteinase with Thrombospondin Motifs-2) [20]. After the 

cleavage of the propeptides the ~300nm tropocollagen is then able to self-assemble into 

microfibrils. It has previously been suggested that interaction of the C-terminal 

telopeptide with specific binding sites on other triple helical monomers may facilitate 

the self-assembly [21]. These microfibrils then bind together, forming fibrils which have 

diameters ranging from 50 to 500nm [22]. Cross-linking between the molecules in the 

fibril then provides strength and stability [23]. 

Myllyharju and Kivirikko published a schematic summarising the biosynthesis of fibril 

forming collagens, which is reproduced in Figure 1.4 [24]. 

 

Figure 1.4.  An overview of the synthesis of a fibr il-forming collagen. Taken from 

Myllyharju and Kivirikko 2004 [24].  

1.1.3. Collagen I and Connective Tissues 

Type I collagen is an important protein in tissues with mechanical functions, as it confers 

mechanical stability, strength and toughness [25]. 
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It is the major constituent of tendons and ligaments, the majority of the organic matrix 

in bone and dentine, and is also present in a number of other tissues such as skin, 

arteries, cornea and meniscus [1]. Despite collagen I being major constituents in all these 

tissues, the tissues all have unique behaviours and functions. In bone, in addition to the 

collagen I fibrils, the tissue is mineralised, which changes the mechanical properties. In 

other tissues the collagen fibrils are heterotypic, in that they can contain more than one 

type of fibrillar collagen. For example, the fibrils in skin are made up of both type I and 

type III collagen, and those in tendon are predominantly type I and type V [26, 27]. Other 

differences in tissue behaviours can relate to the orientation of the fibrils or varying 

ratios of the constituents of the extracellular matrix (ECM) [28]. 

Additionally, these tissues tend to be anisotropic, meaning the mechanical properties of 

the tissue varies depending on the direction, much like the grain of wood, the direction 

of the collagen fibres has an effect on the mechanical properties [29]. 

Examples of the function of collagen I in connective tissues are outlined in the 

subsections below. 

1.1.3.1. Tendons 

Tendon are fibrous tissues that connect muscles to bone and their main function is to 

transfer force from the muscle to the bone at joints [22]. Tendons are collagen rich 

tissues, constituting 65-85% of the dry weight of tendons, and approximately 90% of this 

collagen is collagen I [30]. The collagen fibrils in tendon are heterotypic where collagen 

V is present in the centre of the collagen I fibrils, likely acting as a template for 

fibrilogenesis [31]. Other collagens are also present including fibrillar collagens, type III 

and XI, as well as fibril associated collagens, XII and XIV [30]. 

Tendons have a hierarchical organisation where collagen molecules and collagen fibrils, 

which have previously been described, aggregate to form fibres, and fascicles, which are 

the largest subunit of tendons. The fascicles are surrounded by the interfascicular 

matrix, or endotendon [22] (Figure 1.5). 
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Figure 1.5.  Schematic diagram of tendon in cross-section showing the hierarchical 
structure.  Collagen fibri ls are bundled into fascicles containing vessels, lymphatics and 
nerves. The fascicles are grouped together, surrounded by epitenon, and form the gross 
structure of the tendon, which is further enclosed by paratenon. Taken from Parmar, 2018 
[32]. 

The structure and composition of tendons vary slightly depending on where the tendon 

is located and whether its primary purpose is as an energy-storing tendon, such as the 

Achilles tendon or as a positional tendon, such as the anterior tibial tendon. The material 

and mechanical properties of these tendons vary accordingly. Positional tendons are 

relatively inextensible under physiological loads, with high stiffness, but low strain, less 

than 3%, and stresses of 20-30MPa. Energy storing tendons have a high degree of 

extensibility, high strains and very high stresses up to around 90 MPa, which is close to 

the failure stress of tendons [33]. The differences between these two tendon types have 

been attributed to the geometric arrangement of collagen within the fascicles [34]. 

Another theory is that the presence of trivalent crosslinks within energy storing fibrils 

appears to limit molecular sliding, which may allow the higher stresses [35]. The multiple 

hierarchical levels of tendon structure, mean that local extension and sliding mechanics 

can be altered by small changes at different levels, which can impact the behaviour of 

the tendon as a whole, enabling tendon behaviour to be tailored to their specific task 

[22]. 



 

10 

Fratzl et al. proposed a model attributing the mechanical properties of tendons to the 

collagen I structure. As the tendon is extended initially, the macroscopic crimp of the 

fibrils is removed, followed by straightening of molecular kinks in the gaps and finally  

the linear region to a gliding of molecules [36] (Figure 1.6).  This model has been further 

built upon; Gupta et al. found that inter-fibre and inter-fibril shearing are significant 

mechanisms for dissipation of energy [37]. At the higher hierarchical scale, Thorpe et al., 

found that inter-fascicular sliding also plays a role in the ability of energy storing tendon 

to fulfil their role [38]. 

 

Figure 1.6. Typical stress–strain curve of a rat  tail tendon. (A) The removal  of the 
macroscopic crimp visual ised with polarized light. (B) Further structural changes occur at 
the fibril lar level.  Taken from Fratzl  et  al., 1998 [36].  

 

1.1.3.2. Bone 

Bone is a hierarchical tissue, which at the macroscale is made up of trabecular or cortical 

bone and at the nanoscale is composed of mineralised collagen fibrils (Figure 1.7).  

Mineralised collagen fibrils are linked by an organic phase to form fibril arrays that  are 
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overlaid in layers oriented at different angles to provide the lamellar structure of 

osteons, which make up the trabecular and cortical bone [39]. 

 

Figure 1.7.  Hierarchical structure of bone. The macroscale arrangements of bones are 
either compact/cortical (dense material found at the surface of all bones) or 
spongy/cancel lous (foam-like material whose struts are some 100 μm thick). Compact 
bone is composed of osteons that surround and protect blood vessels. Osteons have a 
lamellar structure. Each individual lamella is composed of fibres arranged in geometrical 
patterns. These fibres are the result of several collagen fibrils,  each linked by an organic 
phase to form fibri l arrays. Each array makes up a single collagen fibre. The mineralized 
collagen fibrils are the basic bui lding blocks of bone. They are composed of collagen 
protein molecules (tropocollagen) formed from three chains of amino acids. Taken from 
Launcey  et al., 2010 [39].  
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Bones have a variety of functions within the body, and require different structures and 

make up to fulfil their function. The bones play a major role in structural support, 

provide leverage to enable movement, and protect vital organs. Approximately 80% of 

total bone is classified as cortical, with only 20% trabecular, but the ratios in different 

bones vary according to function.  Both cortical and trabecular bone are made up of 

osteons, but the structure of the bone differs with trabecular bone  being a honeycomb 

of trabeculae with bone marrow compartments and cortical bone being a solid, dense 

mass [40]. 

The mineralised collagen fibrils are formed in the extracellular space, where osteoblasts 

secrete collagen molecules, which self-assemble into fibrils (as previously described in 

section 1.1.2). The osteoblasts also secrete hydroxyapatite crystals, which form in matrix 

vesicles before elongation into the extracellular space [41]. They then nucleate in the 

gaps, provided by the staggered offset between collagen molecules, and grow 

preferentially in their crystal-axis direction and broaden into nanoplatelets. The 

hydroxyapatite within bone grows within the collagen fibrils (intrafibrillar) and on the 

surfaces of the fibrils (extrafibrillar) [42](Figure 1.8). TEM imaging in multiple dimensions 

has led to the formation of a model that indicates that the mineral lamellae formed by 

the hydroxyapatite, surrounds the outer surface of the fibril as opposed to mainly being 

embedded in the fibril. These mineral lamellae improve the stiffness and strength of the 

tissue, compared to the isolated mineral models [43]. 
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Figure 1.8. Schematic of the mineralisation of collagen I  fibri ls.  (a) A single collagen 
molecule, 1.23 nm in diameter, 300 nm in length and spaced 0.24 nm apart,  is shown as 
well  as a 2D aggregate of collagen molecules, cross-l inked into a quarter-staggered array 
with characterist ic gap (40 nm) and overlap (27 nm) zones. (b) Packing of consecutive 2D 
arrays into 3D assemblages occurs with str ict  registration of all  gap and overlap zones so 
that channels are created throughout the model. Cuboids indicate these channels. (c) The 
hydroxyapatite crystals,  shown in blue, nucleate principally  in the collagen gaps and grow 
preferentially in their  crystal-axis direction. (d) Growth of the hydroxyapatite phase to 
occupy the entire 40-nm length of the gap. The channels are thought to allow lateral 
growth of the hydroxyapatite nuclei into nanoplatelets. As pictured, the hydroxyapat ite 
has extended beyond the gap zone, but  the narrow pore spaces (0.24 nm) between 
adjacent collagen molecules have unknown capacity to accommodate mineral. Taken from 
Stock, 2015 [42].  

 

The hydroxyapatite that mineralises the bone accounts for 50-70 % of the bone mass, 

with small quantities of other minerals such as carbonate and magnesium and acid 

phosphate, with 20-40% organic matrix (of which 90% is collagen I), 5-10% water and 

<3% lipids making up the remained of the tissue [44]. 

Collagen gives the bone elasticity and the ability to dissipate energy under mechanical 

deformation through molecular stretching and inter-molecular gliding, which have been 

mentioned previously. The mineral phase has an elastic modulus, which is more than 10 

times higher than collagen, and therefore mineralisation is critical to the stiffness of 
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bone [44]. Various models have been used to explore the relationships between the 

mineralised and unmineralised phases of the collagen fibrils. For example, Nair et al. 

developed a model to identify deformation mechanism. They observed that the 

mineralized fibrils showed a higher modulus compared with the non-mineralised fibril, 

which increased in samples with higher mineral densities. In addition to the higher 

modulus, the hydroxyapatite phases of the mineralised fibrils exhibited approximately 

4 times higher stress than the collagen phase of the same fibrils. This suggests that the 

load is predominantly carried by the mineral phase of the mineralised fibril [45]. 

1.2. Diseases Associated with Collagen I 

There are several diseases associated with collagen I, including osteogenesis imperfecta 

(OI), Ehlers-Danlos syndrome (EDS), osteoporosis and an overlap condition with 

elements of OI and EDS.  Additionally, there are other conditions including atypical 

Marfan syndrome and Caffrey’s disease. 

As of November 2020, 2053 individuals were reported with 1065 individual variants in 

COL1A1, and 1069 individuals were reported with 612 individual variants in COL1A2 [46-

48]. These variants result in a number of different conditions, which will be described in 

this section. 

1.2.1. Osteogenesis Imperfecta 

Osteogenesis imperfecta (OI) is characterised by an inherent susceptibility to fractures, 

though the severity ranges from a lethal phenotype to very mild. It was first described 

in a scientific manner in the thesis ‘Congenital osteomalacia’ by Olaus Jackob Ekman in 

1788. Ekman’s observations included the hereditary nature of the bone fragility [49]. 

The term osteogenesis imperfecta was reportedly first used by the Dutch professor 

Willem Vrolik, when describing a new-born that was born with numerous fractures and 

hydrocephalus, and died 3 days after birth [50]. 

The variability in the phenotypes, and their severity led to a classification system 

published by Sillence et al. in 1979, classifying the patients into four types, each 

designated a Roman numeral (I-IV). The four types were I- Dominantly inherited OI with 

blue sclerae, II- Lethal perinatal OI with radiographically crumpled femora and beaded 
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ribs, III- Progressively deforming OI with normal sclerae and IV- Dominantly inherited OI 

with normal sclerae [51].  

As more cases were studied, and understanding grew, the Sillence classification was 

modified, expanding the definitions and adding OI types V-VII in 2004 [52]. The vast 

majority of cases of OI, over 90%, have mutations in one of the collagen I genes, COL1A1 

and COL1A2, and are classified as types I-IV [53]. The new classifications (V-VII) were 

created for cases with unknown aetiology, or clinical classifications that differed from 

those in type I-IV. As more genetic causes have been identified, the classification system 

has further changed. It was found that many different genes can cause types I-IV and 

that the use of VI and VII for cases with unknown aetiology were no longer required, 

leading to the use of types I-V for clinical diagnosis, and a separate ‘molecular type’ 

pertaining to the genetics. Table 1.2. gives a breakdown of the genes involved in OI, the 

mode of inheritance and the molecular type of OI caused by mutations in these genes, 

and which of the updated Sillence classification each falls into. The autosomal dominant 

forms of the disease, making up over 90% of cases of the disease predominantly involve 

mutations in COL1A1 and COL1A2, the exceptions being IFITM5 and PSL3 [53]. The 

remaining less than 10 % of OI cases are caused by autosomal recessive mutations in a 

variety of genes.    
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Pathophysiological 
mechanism 

Gene Protein Inheritance Number of 
known 
mutations 

Molecular 
Type 

Updated 
Sillence  
Type 

Defects in collagen 
type I synthesis, 
structure, folding, 
post-translational 
modification, 
processing and 
cross-linking 

COL1A1 Collagen alpha-1(I) chain AD 
>1,000 

I,II,II,IV I,II,II,IV 

COL1A2 Collagen alpha-2(I) chain AD 
AR* >600 

II,II,IV I,II,II,IV 

CRTAP Cartilage-associated 
protein 
 

AR 

32 

VII II, III, IV 

PPIB Peptidyl-prolyl cis-trans 
isomerase B; cyclophilin B 

AR 
17 

IX II,III, IV 

LEPRE1/ 
P3H1 

Prolyl 3-hydroxylase 1 AR 
69 

VIII II,III 

FKBP10 Peptidyl-prolyl cis-trans 
isomerase FKBP10 

AR 
38 

XI  III, IV 

PLOD2 Procollagen-lysine,2-
oxoglutarate 5-
dioxygenase 2 

AR 

10 

BRKS2 No longer 
treated as OI 

SERPINH1 Serpin H1 
 

AR 
9 

X III 

BMP1 Bone morphogenetic 
protein 1 
 

AR 

11 

XIII III 

Defects in other 
proteins leading to 
abnormal bone 
mineralization 

SPARC SPARC; osteonectin 
 

AR 
2 

XVII III 

SERPINF1 Pigment epithelium-
derived factor (PEDF) 

AR 
38 

VI III 

IFITM5 Interferon induced 
transmembrane protein 5 

AD 
2 

V V 

PLS3 Plastin 3 
 

XLD 17 
BMND18 

Osteoporosis 
X-linked 
form 

Defects in 
osteoblast 
differentiation and 
function 

TMEM38B Trimeric intracellular 
cation channel type B 

AR 
6 

XIV III 

WNT1 Proto-oncogene Wnt-1 
 

AR 
AD 

35 

XV III,IV, 
Osteporosis 
AD form 

SP7 Transcription factor Sp7; 
osterix 

AR 
2 

XII IV 

CREB3L1 Cyclic AMP-responsive 
element-binding protein 
3-like protein 1 

AR 

3 

XVII III 

MBTPS2 Membrane-bound 
transcription factor site-2 
protease 

XLR 2 XIX Osteoporosis 
X-linked 
form 

Unknown TENT5A 
(FAM46A) 

Terminal 
nucleotidyltransferase 5A 

AR 3 XIIX III 

 

Table 1.2.  Types of osteogenesis imperfecta, organised by mechanism and gene. AD, 
autosomal dominant; AR, autosomal recessive; XLD, X-linked dominant; XLR,  X-l inked 
recessive; BRKS1, Bruck syndrome-1; BRKS2 Bruck syndrome-2; BMND18, Bone Mineral 
Density Quantitative Trait Locus 18. *Seen only in a few consanguineous families. Adapted 
from Makit ie et al., 2019 and Chetty  et al., 2020 [54, 55].  

In addition to the mutations in genes coding for the collagen I alpha chain, mutations in 

seven genes known to be involved in the biosynthesis, processing and secretion of 

collagen I have also been identified as causing OI. 

The genes CRTAP [56, 57], LEPRE1 [58] and PPIB [59] encode the  proteins which form 

the collagen-3-hydroxylation complex that resides in the endoplasmic reticulum and 



 

17 

modifies the unfolded collagen I α1 and  α2 chains [60]. PLOD2, encodes Procollagen-

lysine, 2-oxoglutarate 5-dioxygenase 2 which catalyses the hydroxylation of lysyl 

residues in collagens. This enzyme is required for the hydroxylation of lysyl residues of 

collagens, including those residues that are involved in the formation of glycosylated 

hydroxylysyl residues and hydroxylysyl-derived collagen cross-links [61]. The specific 

phenotype caused by mutations in PLOD2, lead to Bruck syndrome type 2, which has 

previously been considered a type of OI, but as of 2020, has been removed from the OI 

nosology [55]. Mutations in two other genes involved in the biosynthesis of collagen I 

have also been identified in OI cases, SERPINH1 and FKBP10 [62, 63]. SERPINH1 encodes 

HSP47, and FKBP10 encodes FKBP65, which are chaperone proteins that are involved in 

procollagen transit and folding respectively. BMP1, encodes Bone morphogenetic 

protein 1 (BMP1) which is a procollagen C-endopeptidase, which as the name suggests 

cleaves the carboxyl propeptides of procollagens (specifically I, II and III) and plays a role 

in inducing bone and cartilage development. Mutations in BMP1 can block cleavage of 

the c-propeptide and lead to impaired assembly of type I collagen, mutation in COL1A1 

and COL1A2, that inhibit propeptide cleavage can have similar effects [64]. Figure 1.9 

gives an overview of the biosynthesis process and each of the stages where these 

proteins have their effect. 
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Figure 1.9. Overview of collagen type I biosynthesis.  A number of proteins are essential 
for the biosynthesis of Collagen, mutations in the genes coding for these proteins are 
known to cause OI. These proteins and their function in the biosynthesis process are 
marked in the diagram. Taken from Van Dijk and Sillence, 2014 [65].  

In addition to abnormal collagen and collagen processing, genes affecting the 

osteoblast, and mineralisation can also lead to OI, but will not be explored further in this 

review, however some of the mechanisms will be touched on in the following 

subchapter.  
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1.2.1.1. Mechanisms Behind the OI Phenotype 

The overwhelming majority of cases of OI are due to mutations in the genes coding for 

the collagen I alpha chains, but the different types of mutation can manifest in different 

ways and by different mechanisms. These mechanisms will be discussed here. 

Most cases of type I OI, the least severe form, have haploinsufficency due to a null 

COL1A1 allele.  Mutations causing a frameshift, premature stop codon, or abnormal 

splicing leading to a premature stop codon, lead to a quantitative reduction of type I 

collagen without affecting collagen structure [66]. Mutations in COL1A2 have been 

noted to cause similar phenotypes, including splice site mutation reducing levels of 

COL1A2 transcript [67]. The other three types of OI caused by mutations in collagen I 

genes, II-IV are generally caused by structural defects in one of the collagen I chains, 

which can then lead to a variety of downstream effects. The most common of these is a 

substitution of glycine, disrupting the repeating motif, and the next most common, 

causing about 20% of cases, are mutations affecting splicing, which can lead to exon 

skipping or intronic inclusion [68]. Should the structural changes prevent trimerisation, 

the protein is degraded by the proteasome in a process known as ER-associated 

degradation (ERAD) [69]. If the proteins are able to trimerise, but are unable to be 

retrotranslocated from the ER, due to over modification or defects in folding, then the 

proteins, or their aggregates, are removed by autophagy. Both of these processes can 

lead to ER stress, which in turn can lead to apoptosis of osteoblasts, as can delays in the 

collagen processing. Osteoblasts are essential for bone remodelling and therefore 

apoptosis impairs bone homeostasis [70, 71]. Structurally abnormal protein often leads 

to delayed helical folding, leading to over modification. Upon secretion, these 

modifications can cause a variety of effects downstream including, impairing the ability 

of non-collagen proteins to bind to the fibrils.  This is often the case in the lethal type II 

form [66, 72, 73]. Forlino et al. summarised these mechanisms in a figure, which is 

replicated in Figure 1.10 [66]. 
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Figure 1.10. Mechanisms contr ibuting to osteogenesis imperfecta. (1)Mutant procollagen 
chains unable to incorporate into heterotrimer are retrotranslocated into the cytosol and 
degraded by the ER-Associated Degradation (ERAD) pathway. (2) Fully misfolded 
heterotrimers with structural defects generate supramolecular aggregates that are 
eliminated by autophagy. (3) Mutant molecules with triple helical mutations can be 
degraded through an unidentified pathway. (4) Abnormal procollagen can be secreted, 
processed and incorporated in the extracellular matrix.  The secreted mutant collagen 
affects fibril  structure and interactions of non-collagen proteins (NCPs) with matrix,  as 
well as matrix mineralization and osteoblast development and cell-cell and cell -matrix 
cross-talk. The overall  result is bone deformity and fragil ity. Taken from Forlino  et al.  
[66]. 

Matrix abnormalities including heterogeneity of collagen forms, abnormal fibril 

organization and altered modifications may increase stress in osteoblast and altered 
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cell-cell signalling, which in turn alters bone homeostasis, leading to enhanced bone 

dissolution and absorption by osteoclasts [66, 74]. 

 

1.2.1.2. Mouse Models of OI 

The majority of murine models of OI have alterations to the genes Col1a1 and Col1a2, 

however a number of genes known to be involved in collagen biosynthesis, bone 

mineralisation, and osteoblast function have been knocked out to create further 

models.  A summary of murine models of OI is shown in Table 1.3. 

As with the mechanisms of OI, only the models that involve the genes Col1a1 and Col1a2 

will be discussed further. Unsurprisingly, due to defects in Col1a1 generally being more 

deleterious than mutations in Col1a2, there are also more mouse models involving 

Col1a1 than Col1a2.  These murine models of OI replicate phenotypes seen in all four 

Sillence type that are caused by mutations in COL1A1 and COL1A2 in human. However 

due to the sheer number of different mutations detected in human OI cases, it is not 

feasible that these models will replicate all the different mechanisms by which 

mutations lead to OI, however they can help elucidate mechanisms. Examples of models 

resulting in all 4 OI types involving both Col1a1 and Col1a2 will be described briefly 

below. 

The Mov-13 mouse is essentially a Col1a1 null, as the transcription is blocked by the 

insertion of Moloney leukaemia virus [75]. The homozygous Mov-13-/- exhibits arrested 

development between day 11 and 12 of gestation [76]. This model is classed as a model 

of type II OI due to the lethal phenotype; however, it does not replicate the type II OI 

phenotypes seen in humans. The heterozygous Mov-13-/+ animals exhibit a 50% 

reduction in type I collagen production; however, the protein is structurally normal, 

heterotrimic, and indistinguishable from wild-type [77]. The heterozygous Mov-13-/+ 

animals did not exhibit an overt OI phenotype, such as spontaneous fractures, however 

the animals were shown to have reduced mechanical properties in bone (around a 25% 

reduction in bending strength, among other parameters), and hearing loss, together 

these phenotypes indicate a type I OI phenotype [77, 78]. 
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Common name 
Human 
OI type 

Gene Characteristics 

Mov-13−/− a OI II COL1A1 Perinatal mortality 

Mov-13−/+ a OI I COL1A1 Hearing loss, reduced mechanical properties in bone, 
and reduced collagen production 

oim/oim b OI III COL1A2 
Fragile bones, osteopenia, cortical thinning, bone 
deformities, joint laxity, kyphosis 

oim/+ b OI I COL1A2 Decreased material properties of bone 

G610C/G610CNeo+ c OI IV COL1A2 
Decreased body weight, bone mineral density, bone 
volume, and mechanical properties of bone 

+/G610CNeo+ c OI I/IV COL1A2 
Decreased body weight, bone mineral density, bone 
volume, and mechanical properties of bone 

+/G610CNeo− 
(Amish) c 

OI IV COL1A2 
Decreased body weight, bone mineral density, bone 
volume, and mechanical properties of bone 

G859C d OI II COL1A1 
Short and wavy ribs, poor bone mineralization, 
underdeveloped skeleton, pliable limbs, perinatal 
death 

Aga2/+ e OI II/III COL1A1 
Skeletal deformities, fragile bones, osteopenia, 
perinatal death (in some cases) 

Aga2−/− e OI II COL1A1 Embryonic mortality 

BrtlII f OI II COL1A1 Rib fractures, short vertebral bodies, poor skull 
mineralization, perinatal mortality 

BrtlIV/+ f OI IV COL1A1 
Perinatal death to long-term survival, bone deformity, 
fragile bones, osteopenia 

BrtlIV/BrtlIV f 
OI IV 
(mild) 

COL1A1 Bone deformity, bone fragility, osteopenia 

Human COL1A1 
minigene d 

OI II–IV COL1A1 
Fragile bones, low bone mineral density, ~90% 
perinatal mortality rate (when high levels of minigene 
expressed) 

Ifitm5 transgenic a OI V IFITM5 
Skeletal deformities, fragile bones, poor bone 
mineralization, perinatal death 

Pedf−/− * OI VI SERPINF1 Decreased material properties of bone 

Crtap−/− c OI VII CRTAP 

High bone mineralization and mineral density in bone 
(but low bone density), progressive kyphoscoliosis, 
cartilage dysplasia, decreased material properties in 
skin 

P3h1−/− a OI VIII LEPRE1 
Small body size, low mineral density in calvarial and 
long bones, decreased material properties of bone, 
impaired hearing 

Ppib−/− * OI IX PPIB 
Decreased body size and weight, low bone mineral 
density and volume, progressive kyphosis, decreased 
material properties in skin 

Hsp47−/− a OI X SERPINH1 Embryonic mortality 

Fkbp10−/− a OI XI FKBP10 
Delayed growth beginning at E13.5, fragile tissue, 
skeletal deformities, perinatal mortality 

Sp7−/− c 
Possibly 
OI XII SP7 

Decreased trabecular bone mineralization, osteopenia, 
cortical bone thinning 

Wnt1Sw/Sw * 
(Swaying) 

OI XV WNT1 
Poor coordination, osteopenia, fragile bones, cerebellar 
deficit 

 

Table 1.3.   A table documenting murine models of OI. Backgrounds of these models are 
as fol lows a  C57BL/6J, b  B6C3Fe,  c  129/SvEv, d  FVB, e  C3HeB/FeJ, f 129/SvJ x C3H/HeJ,  *not 
specified. Adapted from Enderl i et al., 2016 [79].  
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The Aga2 mouse model was identified as part of an ENU screen, where a mutation 

caused a C-terminal frame shift, leading to a poorly secreted protein and ER-stress 

induced apoptosis [71]. The Aga2-/- animals were lethal around day 9 of gestation, and 

the heterozygous Aga2-/+ animals showed reduced viability in addition to increased bone 

fractures, fragility and deformity, and osteopenia [71]. The heterozygous Aga2-/+ models 

type II or type III OI, depending on the severity of the phenotype. The homozygous      

Aga2-/- could be viewed as modelling type II OI, however as with Mov-13-/-, aside from 

lethality it does not resemble the phenotype seen in humans. 

The BrtlII and BrtlIV mouse models were created in an attempt to induce a G349C 

substitution using the Cre/Lox system in Col1a1. An unexpected allelic expression due 

to the stop cassette created the BrtlII where heterozygous animals died within hours of 

birth and exhibited rib fractures and poor skeletal mineralisation, modelling type II OI 

[80]. The stop cassette was subsequently removed to create an F2 generation that 

possessed the desired G349C substitution, BrtlIV. The heterozygous animals showed a 

variable phenotype with a severe lethal phenotype and a moderately severe non-lethal 

phenotype, both exhibited fragile bone, deformity and osteopenia, the bones appeared 

more fragile in the lethal animals [80]. The heterozygotes that showed the lethal 

phenotype showed increased expression of transforming growth factor beta (TGF-β), 

which the non-lethal heterozygotes did not [81]. BrtlIV appears to model type II/IV of 

OI. The homozygous BrtlIV animals show a similar OI IV phenotype, but milder than the 

non-lethal heterozygotes [66]. 

The OIM mouse model is the result of a spontaneous mutation in Col1a2, resulting the  

deletion of a guanine at position 3978 causing a frameshift, leading to  a deficiency in 

the pro α2(I) chains, which in turn leads to the production of α2(I) homotrimer [82]. The 

homozygous animals exhibit phenotypes including spontaneous fractures, bone 

deformity, small body size and reduced material properties under mechanical testing 

(around a 50% reduction in maximum load, among other parameters), indicating a type 

III OI phenotype [82, 83]. The heterozygotes did not show spontaneous fractures, but 

did exhibit reduced material properties under mechanical testing (around a 20% 

reduction in maximum load) indicating a mild type I OI phenotype. 
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The G610C (Amish) mouse model is a knock-in replicating the G610C mutation in COL1A2 

first identified in Old Order Amish (OOA) kindred [84]. The initial line retained a 

neomycin-targeting vector, which caused the secretion of homotrimer in addition to 

heterotrimer containing the G610C substitution. The neomycin-targeting vector was 

subsequently removed. The homozygotes retaining the neomycin-targeting vector were 

viable, and the homozygotes, which did not, were found to die perinatally. The 

heterozygotes without the vector, which replicates the genetic mutation in the OOA, 

exhibited decreased body weight, BMD, bone volume, and mechanical properties of 

bone testing (around a 40% reduction in maximum load) [84]. 

1.2.2. Ehlers-Danlos Syndrome 

Ehlers-Danlos Syndrome (EDS) is a heterogeneous group of connective tissue disorders 

with phenotypes including joint hypermobility, skin hyperextensibility and fragility [85]. 

EDS is named for two dermatologist Edvard Ehlers and Alexandre Danlos. Ehlers 

described some of the most important clinical signs of EDS, including joint 

hypermobility, skin fragility and haemorrhages in a condition he called cutis laxa  [86]. 

Danlos also made a description of cutis laxa in which he emphasised excessively 

stretchable skin [87]. It later transpired that the case described by Danlos was more 

likely to be Pseudoxanthoma elasticum than the syndrome that bears his name [88]. 

Much like the classification of OI, the nosology of EDS has changed over time with 

different types, and subtypes being identified or re-classified. The different genetic 

causes of EDS has further diversified the classification, which started with 3 types 

described by Barabas in 1967 [89], increasing to 5 types described by Beighton in 1968 

[90], and 7 types described by Mckuisick in 1972 [91]. The 2017 international 

classification of the Ehlers-Danlos syndromes recognises 13 subtypes of EDS which 

maintains the clinical classification, as opposed to genetic classification, primarily 

because the names are widely used in the scientific and medical communities [92]. 

These 13 types are shown in Table 1.4. After the publication of the 2017 international 

classification of the Ehlers-Danlos syndromes, variants in the gene AEBP1 have been 

found to cause an EDS-like phenotype, inherited in an autosomal recessive manner. The 

phenotypes include joint hypermobility, hyperextensible skin, poor wound healing with 

atrophic scarring, and osteoporosis [93, 94]. This potential new subtype on EDS has not 

been included in Table 1.4, as it has not been given a designation yet.  
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Clinical EDS subtype Abbreviation IP Genetic basis Protein 

Classical EDS cEDS AD 

Major: COL5A1, COL5A2 
Type V 
collagen 

Rare: COL1A1 
Type I 
collagen 

c.934C>T, p.(Arg312Cys)   

Classical-like EDS clEDS AR TNXB Tenascin XB 

Cardiac-valvular EDS cvEDS AR 
COL1A2 (leading to 
NMD and absence of  
pro α2 (I) chains) 

Type I 
collagen 

Vascular EDS vEDS AD 

Major: COL3A1 
Type III 
collagen 

Rare: COL1A1 Type I 
collagen 

c.934C>T, p.(Arg312Cys)   

c.1720C>T, 
p.(Arg574Cys) 

  

c.3227C>T, 
p.(Arg1093Cys)   

Hypermobile EDS hEDS AD Unknown Unknown 

Arthrochalasia EDS aEDS AD COL1A1, COL1A2 
Type I 
collagen 

Dermatosparaxis EDS dEDS AR ADAMTS2 ADAMTS-2 

Kyphoscoliotic EDS kEDS AR PLOD1 LH1 

      FKBP14 FKBP22 

Brittle Cornea 
syndrome 

BCS AR ZNF469 ZNF469 

      PRDM5 PRDM5 

Spondylodysplastic EDS spEDS AR B4GALT7 β4GalT7 

      B3GALT6 β3GalT6 

      SLC39A13 ZIP13 

Musculocontractural 
EDS mcEDS AR CHST14 D4ST1 

      DSE DSE 

Myopathic EDS mEDS 
AD 
or 
AR 

COL12A1 Type XII 
collagen 

Periodontal EDS pEDS AD C1R C1r 

      C1S C1s 

 

Table 1.4.  The 2017 internat ional classification of the Ehlers-Danlos syndromes. IP, 
inheritance pattern; AD, autosomal dominant; AR, autosomal recessive, NMD, nonsense-
mediated mRNA decay. Adapted from Malfait et al., 2017 [92]. 

There is considerable overlap in phenotypes of these different forms of EDS, and many 

include some of the hallmarks of EDS, joint hypermobility, skin fragility and 

hyperextensibility. As such the new classification includes major and minor criterion for 

diagnosis, however, definite diagnosis relies on molecular confirmation of a causative 
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variant with the exception of hypermobile EDS, where the causative gene is unknown 

[92]. 

There are 4 acknowledged types of EDS which can be caused by mutations in COL1A1 

and COL1A2: classical EDS, cardiac-valvular, vascular EDS and arthrochalasia EDS. Due to 

the high degree of overlap of the 13 types of EDS, this brief overview will only specifically 

cover these 4 forms of EDS. 

1.2.2.1. Classical EDS 

Classical EDS is inherited in an autosomal dominant  manner, and is caused by mutations 

in COL5A1 or COL5A2 in over 90% of cases [95], however a specific amino acid 

substitution (Arg134Cys) in COL1A1  has been observed to cause a classical EDS 

phenotype [96]. Where there was a causal involvement of Collagen V, the majority of 

mutations affect COL5A1, with less than 20% affecting COL5A2.  The majority of COL5A1 

mutations lead to a COL5A1 null allele, with the remainder, structural mutations 

including missense mutation and in-frame splicing or deletions. To date no COL5A2 

mutations have been found to lead to a COL5A2 null allele, mutations tend to be 

structural mutations including missense mutations and in-frame splicing or deletions 

[95]. The arginine to cysteine mutation in COL1A1 occurs at the X position of the 

previously mentioned G-X-Y repeating motif. It has been suggested that the cysteine 

could lead to intermolecular di-sulphide bridges, which could impair efficient secretion 

[96]. 

Diagnosis of most forms of EDS is made on the basis of major and minor criteria.  The 

major criteria for classical EDS are skin hyperextensibility and atrophic scarring, and 

generalised joint hypermobility (GJH). A minimal criteria for diagnosis is either both 

major criteria, or skin hyperextensibility and atrophic scarring with at least 3 of the 

minor criteria. Minor criteria include easy bruising, doughy skin, skin fragility, molluscoid 

pseudotumors, subcutaneous spheroids, hernias, epicanthal folds, complications of 

joint hypermobility, and a family history of a first degree relative who meets clinical 

criteria [92]. 

GJH is defined as having a Beighton score of 5 or more out of a possible total of 9. The 

Beighton score for assessment of generalized joint hypermobility was first published in 

1973 [97] (Table 1.5). 
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 Right Left 

Passively dorsiflex the fifth finger to 90° 1 1 
Bend the thumb to the volar aspect of the 

forearm 1 1 

Hyperextend the elbow to 10° 1 1 

Hyperextend the knee to 10° 1 1 
Place hands flat on floor without bending the 

knees 1 

Total possible score 9 
 

Table 1.5.  A table showing the Beighton score for assessment of generalized joint 
hypermobility [97].  

 

1.2.2.2. Cardiac-valvular EDS 

Cardiac-valvular EDS is inherited in an autosomal recessive manner and is caused by 

mutations in COL1A2, leading to a complete deficiency of pro α2 (I) collagen. A number 

of causes have been identified including splice mutations that lead to mRNA instability 

and nonsense mutations creating premature termination codons. Both the aberrant 

splicing and nonsense mutations alters mRNA processing, leading to nonsense mediated 

decay, and an absence of the pro α2 (I) collagen chain [98, 99]. 

The major criteria for cardiac-valvular EDS are more diverse than classical EDS, in 

addition to joint hypermobility (which can be generalised as in classical, or restricted to 

smaller joints) and skin involvement including hyperextensibility and atrophic scarring 

(as in classical EDS), as well as easily bruised or thin skin, the key major criterion is severe 

progressive cardiac-valvular problems.  The minimal criteria for diagnosis is the cardiac-

valvular problems with a family history compatible with recessively inherited disease 

and one other major criterion, or two minor criteria. Minor criteria include inguinal 

hernias, pectus deformity, joint dislocations and foot deformities [92]. 

1.2.2.3. Vascular EDS 

Vascular EDS is inherited in an autosomal dominant manner and is caused by mutations 

in COL3A1 in the vast majority of cases, although a number of different arginine to 

cysteine substitution in COL1A1 have been observed to cause a vascular EDS phenotype. 

A large number of different mutations in COL3A1 have been identified, and the majority 
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are missense or splice mutations, with a few nonsense mutations. The majority of these 

missense mutations alter the repeating glycine motif, and the splice variants introduce 

premature termination codons that lead to mRNA instability through nonsense-

mediated decay and a null allele [100]. The mechanism by which mutations in COL1A1 

lead to  vascular EDS is not known, however delayed procollagen processing by N-

proteinases has been noted in some patients [101]. Another possibility that has been 

suggested is that the introduction of the cysteine residue could lead to intermolecular 

di-sulphide bridges, which could impair efficient secretion [96]. 

Vascular EDS is unique among the EDS subtypes, in that the major criteria do not include 

joint hypermobility or skin involvement, but include ruptures of tissues such as arteries 

and uterus, colon perforation and the formation of carotid-cavernous sinus fistulas. 

Minor criteria include easy bruising, thin translucent skin, acrogeria (skin ageing), and 

characteristic facial appearance, spontaneous pneumothorax, talipes equinovarus (club 

foot), hypermobility of small joints, congenital hip dislocation, tendon and muscle 

rupture, keratoconus (corneal defect), gingival recession or fragility, early onset varicose 

veins.  There are not minimal criteria for diagnosis, only criteria suggestive of vascular 

EDS, and generally, diagnosis is made by molecular testing.  The criteria are a family 

history of the disorder and one other major criteria; however, combinations of major 

and minor criteria should be tested [92]. 

1.2.2.4. Arthrochalasia EDS 

Arthrochalasia EDS is the type of EDS most commonly associated with collagen I defects. 

Mutations causing arthrochalasia EDS occur in either COL1A1 or COL1A2, but in either 

gene, the mutations cause either complete or partial deletion of Exon 6, most commonly 

due to exon skipping caused by a splice variant. The downstream effect of this is that 

the N-propeptide is retained due to the loss of the cleavage site [102, 103]. 

The major criteria for arthrochalasia EDS include congenital bilateral hip dislocation, 

severe GJH with dislocations and subluxations and skin hyperextensibility. Minor criteria 

include muscle hypertonia, kyphoscoliosis, radiologically mild osteopenia, tissue fragility 

and easily bruised skin.  A minimal criteria for diagnosis is congenital bilateral hip 

dislocation and skin hyperextensibility, or congenital bilateral hip dislocation, severe 

GJH dislocations and subluxations and two of the minor criteria [92]. 
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1.2.2.5. Mouse Models of EDS 

There are a number of mouse models of EDS, including classical EDS and vascular EDS, 

however a literature search revealed no mouse models of arthrochalasia EDS or cardiac-

valvular EDS. The models of classical EDS involve Col5a1, either Col5a1 

haploinsufficency, or a tissue specific homozygous Col5a1 deletion due to the 

homozygous Col5a1 null allele being lethal [104, 105]. Models of vascular EDS all involve 

Col3a1, including Col3a1 haploinsufficency and glycine substitutions [106-108]. As none 

of these mouse models involves either Col1a1 or Col1a2, they will not be explored 

further here. 

1.2.3. Osteogenesis Imperfecta/Ehlers-Danlos Syndrome Overlap 

A number of publications have reported patients as having mixed features of both EDS 

and OI [109-112]. These cases were termed osteogenesis imperfecta/Ehlers-Danlos 

syndrome overlap (OI/EDS overlap).  

Cabral et al. identified 7 children with type III or IV OI which also showed a joint laxity, 

and found that each child had a mutation in the first 90 residues of the helical region of 

COL1A1, leading to a delay in, or a prevention of, cleavage of the N-propeptide. In 6 of 

the 7 cases, the mutation was a glycine substitution and in one case a skipping of Exon 

7 [113]. 

Malfait et al. reported 7 cases of OI/EDS overlap, where the patients predominantly 

presented with an EDS phenotype that resembled, but was distinct from, the 

acknowledged EDS subtypes, with elements of OI phenotypes. Two patients had 

mutations in COL1A1, both glycine substitutions in exons 7 or 8, however the remaining 

5 patients had mutations in COL1A2, two with glycine substitutions in exons 8 or 12, and 

3 mutations leading to exon skipping of exons 7, 9 and 14.  The conclusions were similar 

to those of Cabal et al., that the phenotypes arise from mutations in the most N-terminal 

region of the helical domain, causing delayed, or impaired N-propeptide processing, and 

disturbing collagen fibrillogenesis [114]. 

More recently, it has been suggested, by Morlino et al., that the OI/EDS overlap should 

be renamed Col1-related overlap disorder and that is should be included as part of the 

EDS nosology [115]. To aid with diagnosis, and to prevent confusion with either EDS or 

OI, new diagnostic criteria were suggested, which included exclusion criteria.  Major 
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criteria include, blue sclera, flat feet with valgus deformity, generalized joint 

hypermobility according to age and soft, doughy, or hyperextensible skin. Minor criteria 

include dolichostenomelia, hearing loss, short stature, two or more atrophic scars, two 

or more fractures in pre-pubertal age, two or more joint dislocations and two or more 

injuries or ruptures of ligaments/tendons/muscles. The exclusion criteria include, 

congenital fractures, dentinogenesis imperfecta, molluscoid pseudotumors, 

papyraceous scars, progressive/severe heart valve disease, platspondyly, and stable or 

progressive long bone deformities. The diagnosis criteria for Col-1 related overlap 

disorder is three major criteria; or two major criteria and two or more minor criteria, or 

one major criterion and 5 or more minor criteria [115]. 

Whilst the majority of OI/EDS overlap cases are caused by mutations at the N-terminal 

end of the helical region, this is not always the case.  Nicholls et al. reported an OI/EDS 

case caused by homozygous splice mutation in COL1A2 yielding a non-functional proα2 

(I) chain [110]. A number of other examples of this are shown in Figure 1.11. 

 

Figure 1.11.  A diagram showing mutations in COL1A1  and COL1A2  reported in patients 
fitt ing the diagnostic criteria of Col-1 related overlap disorder.   Notat ions in red are 
novel mutations reported in Morlino  et al., notations in blue are previously reported 
mutat ions but  also included the Morlino  et al.  study, notations in  black are previously 
reported mutations, which were not included the Morlino  et al.  study. Figure adapted 
from Morl ino  et al., 2019 [115].  
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The phenotypes of this syndrome are variable and cases with the identical mutations 

often have different combinations of phenotypes, this is the case in several of the 

families reported by Morlino et al. In one such family, one patient would have been 

diagnosed with non-deforming OI (type I) if assessed separately from the other family 

members with identical mutations, due to the lack of generalised joint hypermobility, 

however the other family members did show generalised joint hypermobility [115]. 

 

1.2.3.1. Mouse models OI/EDS Overlap 

There is only one acknowledged mouse model of OI/EDS overlap disorder, however it is 

possible that mouse models with mutations in Col1a1 or Col1a2 currently categorised 

as OI models, could also model this disorder.  An example of this is the oim mouse (see 

section 1.2.1.3), where the phenotype includes joint laxity and altered skin and tendon 

physiology of OI, in addition to the OI phenotype, although it should be noted that skin 

fragility has not been reported [116]. None of the currently known EDS mouse models 

are attributed to mutations in Col1a1 or Col1a2, and therefore cannot be models for 

OI/EDS. 

The mouse model of OI/EDS is known as Jrt, and was published by Chen et al., an ENU 

induced splice variant led to skipping of Exon 9 in Col1a1. The homozygous animals were 

not viable, and phenotypes observed in the heterozygotes included small body size, a 

number of bone related phenotypes including reduced BMD, bone volume/tissue 

volume ratio, trabecular number, and fragile, fracture prone bones, in addition to fragile 

skin [117]. 

1.2.4. Other Conditions Related to Collagen I 

1.2.4.1. Osteoporosis 

Osteoporosis is a disease characterised by low bone mass and deterioration of the bone 

microarchitecture, leading to an increase in bone fragility, and an increased 

susceptibility to facture [118]. Fractures occurring at the hip and vertebrae are the 

“classic” osteoporotic fractures [119]. The diagnostic criterion for osteoporosis is having 

a bone mineral density (BMD) T score of -2.5 or less (2.5 standard deviations below an 

established baseline calculated from a mean BMD from young adults of the appropriate 
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sex) at the femoral neck [120]. Incidences of osteoporosis increase with age, and affects 

women far more frequently than men,  affecting 21% and 6% respectively in the 50-84 

year age bracket in the EU in 2010 [121]. 

Osteoporosis has a strong genetic component as shown by both familial studies and twin 

studies on the heritability of BMD [122-124]. Generally, osteoporosis is viewed as a 

complex polygenic disease where multiple genes each have a modest individual effect 

on BMD, and combine with environmental factors to have an effect greater than their 

individual parts [125]. Several possible monogenic causes of osteoporosis have been 

identified including WNT1 [126] and PLS3 mutations [127, 128]. 

There is some overlap is the clinical manifestation of mild OI and osteoporosis, with both 

disease having similar bone fragility and low BMD [129]. Patients have been identified 

with mutations in COL1A2, where the clinical criteria for OI were not met, resulting in a 

diagnosis of osteoporosis [130]. Additionally, a polymorphism in the SP1 binding site of 

COL1A1 has been found to predispose patients to osteoporotic fractures in multiple 

clinical studies [131-133]. 

1.2.4.2. Atypical Marfan Syndrome 

Marfan syndrome (MFS) is typically caused by mutations in the fibrillin-1 gene (FBN1).  

MFS is associated with abnormalities of the skeleton, cardiac and ocular systems  [134]. 

Abnormalities of the skeleton can include disproportionate overgrowth of the long 

bones, chest deformity (caused by over growth of the ribs), arachnodactyly, scoliosis and 

joint laxity  [135]. Abnormalities of the ocular system can include dislocation of the lens, 

flat cornea and hypoplastic iris [136]. Cardiac abnormalities can include thickening 

and/or prolapse of the atrioventricular valves, dilated cardiomyopathy, aortic dissection 

and aneurysm, and congestive heart failure [137, 138]. The mechanism by which 

mutations in FBN1 lead to MFS is not fully realised, however, there is evidence that it 

may lead to dysregulation of TGFβ activity and signalling [139, 140].  

A case of atypical Marfan syndrome has been identified by Phillips et al., where the 

patient  presented with skeletal and cardiovascular abnormalities consistent with MFS, 

including progressive lumbar scoliosis, and aortic dilation, resulting in congestive heart 

failure, arachnodactyly and a decreased upper to lower segment ratio. A mutation in 

COL1A2 causing an arginine to glutamine substitution (R618Q) was detected and found 
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to cause abnormal migration of the Pro α2(I) chain in SDS gels. It should be noted that 

this mutation does not affect the repeating glycine motif as it occurs at the Y position of 

the G-X-Y repeat, and the mechanism by which this mutation causes the phenotypes is 

unknown [141]. 

1.2.4.3. Caffrey’s Disease 

Caffrey’s disease was first described in 1945 by Caffrey and Silverman, but the first case 

identified as a distinct entity was in 1930 [142, 143]. Caffrey’s disease is an autosomal 

dominant disorder the “classical” disease presents in the first 5 months after birth, with 

periosteal hyperostosis in bones including mandible, ulna, ribs, clavicle and scapulae, 

which normally resolves by 2 years of age [144, 145]. Patients also exhibit joint 

hyperlaxity, soft, hyperextensible skin, similar to Ehlers-Danlos syndrome type III, which 

does not resolve. Approximately 50 % of cases in the Gensure et al. study had 

experienced peripheral fractures indicating an OI/EDS like phenotype [146].  If the 

disease presents prior to birth, it is usually lethal, and presents as OI type II, with 

periosteal hyperostosis [147].  

A mutation in COL1A1 resulting in an arginine to cysteine substitution in exon 41 (R836C) 

has been identified in both the non-lethal “classical” [146] and the lethal Caffrey’s 

disease [147]. Gensure et al. observed some lethal cases did not contain this mutation, 

and Kamoun-Goldrat et al., also state “it is likely that the mutation of an unknown gene 

is responsible for some cases of cortical hyperostosis, either classical (infantile) or 

prenatal forms” [147]. 

 

1.3. Osteoarthritis 

Osteoarthritis (OA) is a metabolically active, progressive degenerative arthropathy, 

which affects the synovial joints and is characterized by degradation of the articular 

cartilage [148]. OA is a complex syndrome, a group of overlapping disorders with similar 

biological and clinical outcomes [149, 150]. OA has previously been regarded as a 

disease of the cartilage, a disease of ‘wear and tear’, however this idea has evolved and 

OA is now viewed as a disease of the whole joint [151].  
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There are many risk factors for OA including systemic risk factors such as age, gender 

and hormones, and genetics; as well as local risk factors such as obesity and injury [152]. 

Epidemiologically OA can be defined pathologically, radiographically or clinically, and 

these classifications are not necessarily synonymous [152]. Clinically, OA is characterised 

by pain and impairment of joint function [153]. Radiographic OA is most commonly 

defined using the Kellgren-Lawrence classification (K&L) [154, 155] with a 0 grade 

indicating no OA, 2 or higher indicating definite OA, with 4 indicating severe OA. The 

radiographic evidence of OA includes osteophytes (new bone growth at the periphery 

of the joint), joint space narrowing and sclerosis of the sub-chondral bone [156]. There 

is often a discordance between clinical and radiographic OA, which is likely to be because 

patients tend not to experience symptoms during the early stages of OA, due to articular 

cartilage being aneural [157]. 

 

1.3.1. The Synovial Joint 

There are three main classifications of joint in the body; cartilaginous joints, fibrous 

joints and synovial joints. Synovial joints are freely movable joints and are identified by 

articulating bones capped with articular cartilage, enclosed within a flexible articular 

capsule.  Within this joint class there are three main sub-classes, uniaxial (such as the 

knee), biaxial (such as the metacarpophalangeal joints) and multiaxial (such as the hip) 

[158]. OA can affect any synovial joint, but is most common in the hips, knees, spine and 

specific joints in the hands (including first carpometacarpal joints, proximal 

interphalangeal joints and distal interphalangeal joints) [159]. Interestingly, these 

examples of the most commonly affected joints include all three sub-classes of synovial 

joints; uniaxial, biaxial and multiaxial, and are also the joints which are most commonly 

subjected to excessive and repeated loading [160]. 

As mentioned previously, OA is a disease of the whole joint, and whilst cartilage 

degradation is a hallmark, OA phenotypes in other tissues include synovial 

inflammation, new bone formation (sclerosis and osteophyte formation), degeneration 

of ligaments and tendons, hypertrophy of the joint capsule and where present, 

degradation of the meniscus or articular disc [161] (Figure 1.12). 
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Figure 1.12. A diagram comparing a normal knee and an osteoarthritic knee. Taken from 
Wieland  et  al., 2005 [162].  

 

1.3.1.1. Articular Cartilage 

Articular cartilage is a low-friction, wear-resistant tissue, which is ideal to bear and 

distribute loads [163]. The articular cartilage is normally between 2 and 4mm thick, and 

is avascular, aneural and alymphatic [164]. Cartilage contains a single cell type, 

chondrocytes, surrounded by an extracellular matrix (ECM), which is primarily 

composed of water, collagens, proteoglycans, with a smaller fraction of non-collagenous 

proteins [165]. 

Water is by far the most abundant component of articular cartilage comprising 

approximately 65-80% of its ‘wet weight’, with collagen II then next most abundant 

component at approximately 10-20%.  Chondrocytes, make up less than 5% of the total 

articular cartilage volume, but are essential for maintenance of the homeostasis of the 

cartilage [163, 166]. The chondrocytes respond to stimuli such as chemical factors, and 

mechanical factors such as, hydrostatic pressure and mechanical forces, and modifies 

the ECM metabolism. The most important of these factors are the growth factors and 

pro-inflammatory cytokines that have catabolic and anabolic effects, which in turn 
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modulate the synthesis and degradation of the matric molecules [167]. Imbalances in 

the metabolic processes can lead to a ‘vicious cycle’ of degeneration [162, 166].  

The ECM can be viewed as a biphasic structure, of a solid and fluid phase, the solid being 

collagens and proteoglycans, and the fluid, being water and ions.  The biphasic nature is 

due to the low permeability of the solid phase, creating a high interstitial fluid pressure, 

which contributes greatly to the load transmission of cartilage [163, 168]. The fluid 

phase also plays an important role in nutrient transport, as the chondrocytes are 

avascular and therefore acquire nutrients through osmosis from the synovial fluid via 

the water in the ECM.  

The structure of the ECM is created by a three-dimensional mesh of collagen fibrils, 

predominantly type II, interacting with proteoglycans (including aggrecan, decorin, 

biglycan and fibromodulin).  The majority of the intrafibrillar space is filled with large 

proteoglycan aggregates formed by the interaction of aggrecan monomers, and 

hyaluronan by way of link proteins.  Aggrecan monomers themselves are formed when 

glycosaminoglycan (GAGs) chains, such as keratan sulphate or chondroitin sulphate, are 

bound to an aggrecan core[169]. These proteoglycan aggregates provide compressive 

and tensile strength due to the highly negatively charged nature of the GAGs, which 

makes them hydrophilic, and therefore able draw water into the ECM [170](Figure 1.13). 
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Figure 1.13.   The extracellular matrix (ECM) of cartilage. The ECM features a network of 
proteins including collagens (predominantly type II ),  proteoglycans (predominantly 
aggrecan); and other non-collagenous proteins (including l ink protein, fibronect in, 
cartilage oligomeric matrix protein (COMP)) and the smaller proteoglycans (biglycan, 
decorin and f ibromodulin). The interact ion between highly negatively charged carti lage 
proteoglycans and type I I collagen f ibri ls is responsible for the compressive and tensile 
strength of the tissue, which resists load in vivo. Taken from Chen  et al.,  2006 [170].  

The articular cartilage is divided into 3 identifiable zones; the superficial zone, the 

middle zone and the deep zone. The superficial zone, which makes up 10-20% of the 

ECM, is the zone closest to the articular surface. The chondrocytes in this zone are 

flattened, and the collagen fibrils, are aligned parallel with the articular surface. The 

middle zone, which as the name suggests is sandwiched between the other zones, 

makes up 40-60% of the ECM volume. The chondrocytes are not flattened, and are more 

spherical in shape, and less densely packed than the superficial zone. The collagen fibrils 

in this zone are thicker and are arranged more obliquely. Figure 1.14 shows the shape 

and position of the chondrocytes and the orientation of the collagen fibrils. 
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Figure 1.14.  Cross-sectional diagram of healthy articular carti lage: A- cellular 
organization in the zones of articular cart ilage; B- collagen f ibre architecture. Taken from 
Buckwater,1994 [171] 

In terms of resisting mechanical forces, the deep zone provides the greatest resistance 

to compressive forces due to the collagen fibrils being positioned at right angles to the 

subchondral bone and running through the calcified cartilage. The middle zone is 

responsible for resistance to compressive forces, but to a lesser extent. The superficial 

zone is responsible for resisting the tensile and shear forces [171]. 

Aside from the difference in the organisation of chondrocytes and the orientation of 

collagen fibres within the different zones of the cartilage, the ECM also has a different 

make up depending on proximity to chondrocytes. The regions with differing 

constituents are referred to as the pericellular matrix (PCM), the territorial region and 

the interterritorial region (the latter two regions are sometimes referred to collectively 

as the further removed matrix). The PCM surrounds the chondrocyte and contains 

mostly proteoglycans with some loose collagen fibres (Collagen VI and IX, but not II) 

[172]. It has been suggested that the PCM plays a role in mechanotransduction [173]. 

The PCM is thought to amplify mechanical signals transmitted through the ECM and 

release growth factors and other regulatory molecules in response to these signals 

[174]. The territorial region surrounds the PCM, and contains abundant collagen fibrils 

(mainly collagen II) arranged in a web-like manner as well as proteoglycans [175]. The 

interterritorial region is the largest of the three regions, and fills the spaces between the 

territorial zones, and contains similar components to the territorial regions, but with a 

far higher concentration of proteoglycan aggregates [176]. 
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Cartilage requires a balance between catabolic and anabolic factors in the ECM, some 

of which are secreted by the chondrocytes and others that are provided through the 

synovial fluid. Catabolic factors include cytokines, such as interleukin-1 (IL-1), tumor 

necrosis factor α (TNFα) and leukemia-inhibitory factor (LIF), and proteinases, such as 

the metalloproteinases, and factors such as cathepsin K and Dickkopf-related protein. 

Anabolic factors include cytokine regulators such as interleukin-1 receptor agonist (IL-

1RA); growth factors, such as fibroblast growth factor (FGF), epidermal growth factor 

(EGF) and transforming growth factor-β (TGFβ); and proteinase inhibitors [177-179]. 

Mueller et al. provide a good summary of the various catabolic and anabolic factors 

[177]. 

1.3.1.2. Subchondral Bone 

Below the deep zone of the articular cartilage, the cartilage becomes calcified at a 

point called the tidemark, and is known as the zone of calcified cartilage (ZCC). The ZCC 

attaches the cartilage to the subchondral bone and is an important interface for the 

transmission of force [180]. The subchondral bone is generally defined as the bony 

tissue that lies distal to the calcified cartilage, separated by the cement line, and 

comprises the subchondral bone plate and the subchondral trabecular bone [181]. The 

subchondral bone plate consists of relatively nonporous cortical bone, which is poorly 

vascularised [182], however channels do provide a direct link between articular 

cartilage and trabecular bone, with blood vessels and nerves penetrating into the 

calcified cartilage [183]. The trabeculae of the subchondral trabecular bone connect to 

the subchondral bone plate and plays an important role in shock absorbing and 

supportive functions in the normal joint [181, 184]. The subchondral bone and articular 

cartilage, and the layers between them can be viewed as a single functional unit, the 

osteochondral junction, where there is intensive biomechanical and biochemical cross 

talk, and alteration of one tissue in the unit can modify the function of others [185]. 

1.3.1.3. Other Joint Components 

The capsule is a triple layered structure that surrounds the joint, the outer layer is made 

of fibrous connective tissue and the middle and inner layer, which together are called 

the synovium or synovial membrane, are the subintima and the intima respectively 

[186]. The outer capsule is thickened in places by the blending of ligaments and helps to 
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stabilise the joint [187]. Two types of synoviocytes reside in the intima, Type A, or 

synovial macrophages and Type B, or synovial fibroblasts. Type A cells remove waste 

and debris from the joint cavity and Type B cells produce specialized matrix constituents 

including hyaluronan, collagens and fibronectin for the synovial fluid [188]. 

The synovial fluid is an ultrafiltrate of blood plasma that lubricates the joint, provides 

nutrients to the articular cartilage and allows transport of regulatory cytokines. Synovial 

fluid contains lubricating molecules such as proteoglycan 4, hyaluronan and surface-

active phospholipids [189]. 

The menisci of the knee are crescent-shaped wedges of fibrocartilage located on the 

medial and lateral aspects of the knee joint. The menisci increase the stability of the 

joint, and due to their shape, are able to help disperse force through the knee due to 

hoop stress among other mechanisms [190]. The outer portion of the meniscus 

connected to the joint capsule is called the red zone, which is thickest part of the 

meniscus, the inner most zone is the white zone, and the area between is known as the 

red-white zone. The red zone is vascular and the white zone is avascular. The red zone 

is predominantly comprised of collagen I (approximately 80% dry weight), the white 

zone is about 60% collagen II and 40% collagen I by weight [191].  

There are various ligaments within the knee, attaching the meniscus to the tibial 

plateau, joining the tibia and femur, and forming part of the capsule. The structure and 

content of ligaments are very similar to tendons, which have been described in an earlier 

subchapter.  

1.3.2. The Osteoarthritic Joint 

OA has a complex pathogenesis involving mechanical, inflammatory and metabolic 

factors, which ultimately lead to damage to multiple tissues and failure of the synovial 

joint [192]. The ‘vicious cycle’ in Figure 1.15 is regarded as a good overview for the 

pathophysiological processes that occur during OA. What is unclear is where the ‘entry’ 

and ‘exit’ points to the vicious cycle are.  
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Figure 1.15.   The vicious cycle of Osteoarthritis. Taken from Wieland  et al.,  2005 [162]. 

The changes in the OA joint are numerous, Glyn- Jones et al. summarised these changes 

in a figure, which is replicated below [193] (Figure 1.16). 

 

 

Figure 1.16.  Signalling pathways and structural changes in the development of 
osteoarthritis. ADAMTS=a disintegrin and metalloproteinase with thrombospondin-like 
motifs. IL=interleukin. MMP=matrix metal loproteinase. TNF=tumour necrosis factor. 
IFN=interferon. IGF=insulin-like growth factor. TGF=transforming growth factor.  
VEGF=vascular endothelial growth factor. Taken from Glyn- Jones  et al.  [193].  
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1.3.2.1. Articular Cartilage 

As previously stated, healthy articular cartilage exists in a state of homeostasis with a 

balance of synthesis and degradation of the components of the ECM.  OA results from 

an imbalance between synthesis and degradation of the components of the ECM [194]. 

It is not known exactly what initiates the swing toward degeneration, but once it begins 

the ‘vicious cycle’ in Figure 1.15 propagates the process, with synovial macrophages 

taking up the degraded molecules from collagen and proteoglycans from the ECM, which 

stimulates the production of more  catabolic factors, such as TNFα, IL-1 and IL-6, leading 

to further degradation of the cartilage [195]. 

1.3.2.2. Subchondral Bone 

There is a significant increase in bone remodelling at the bone-cartilage interface below 

damaged cartilage in OA. This is what leads to the sclerosis of the subchondral bone. 

This is likely due to the increase mechanical load, due to the loss of the protective 

cartilage, in addition to the increase of cytokines and growth factors within the joint 

cavity [196]. A process called eburnation occurs where spikes of granulation and fibrous 

tissue advance from the calcified cartilage into the articular cartilage [162]. As OA 

progresses this tissue undergoes endochondral ossification, which is where the cartilage 

is converted into bone. The chondrocytes undergo hypertrophy, mineralize and are 

replaced with bone tissue. This ossification alters the subchondral bone architecture and 

decreases cartilage thickness simultaneously [197]. This process is accompanied by 

angiogenesis and can occur even below the areas with minimal cartilage damage.  

Osteophytes are the bony growth that appear at the margins of the joint [198]. Growth 

factors such as TGF-β, fibroblast growth factors (FGFs) and bone morphogenetic 

proteins (BMPs) have all been shown to play a role in osteophyte development [198, 

199].  Osteophyte development is thought to be caused by the excessive proliferation 

of mesenchymal stem cells, stimulated by the previously mentioned growth factors, in 

the periosteum and synovium, which then undergo chondrogenesis and differentiate 

into hypertrophic chondrocytes, before being replaced by osteoblasts which form the 

bone [200]. There is some evidence that absence of osteophytes may be linked to a 

higher risk of disease progress in some patients with OA, which lends credence to the 

theory that osteophyte development may be an adaptive process to stabilise the joint  
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[201]. The development of osteophytes, while thought to be an attempted repair 

process often leads to negative effects such as pain and loss of movement [167]. 

1.3.2.3. Other Joint Components 

Synovial inflammation in OA is thought to develop secondarily to pathological processes 

in cartilage and bone, and is rarely as severe as in rheumatoid arthritis. Synovial 

inflammation tends to occur in areas of the synovial membrane that are close to, or in 

contact with cartilage. Synovitis could be caused by cartilage debris and catabolic 

mediators in the synovial cavity [156]. This could accelerate the damage to the cartilage 

in patients with OA, due to synovial macrophages producing catabolic and pro-

inflammatory mediators, which in turn destabilise the balance of cartilage damage and 

repair [202, 203]. It is thought that the synovium could be the root cause of some of the 

pain suffered by patients with OA, this is because the synovium is highly innervated with 

sensory nerve fibres [204]. 

Pathological changes occurring in the ligaments and in the menisci in OA, include matrix 

disruption, fibrillation, cell clusters, calcification and cell death [161]. 

1.3.3. Genetics of OA 

It has been long been known that there is a genetic component to OA, in 1944 Stecher 

noted sisters of affected women were three times more likely to exhibit Heberden’s 

nodes (a hard swelling in the fingers, indicating OA in the distal interphalangeal joints), 

compared to the population in general [205]. Spector et al. used a twin study to show a 

genetic influence ranging from 39-65% in hand and knee OA, due to the correlation of 

disease state and status being consistently higher in identical twins compared with non-

identical twins [206]. In addition to twin studies and familial aggregation studies, linkage 

studies and genome wide association studies (GWAS) have been used to investigate the 

role of genetics in OA, as outlined in (Figure 1. 17). 
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Figure 1.17.  An overview of strategies for genetic studies. Taken from Valdes and Spector, 
2008 [207].  

Due to the multifactorial nature of OA, there are many ways in which genetic factors can 

affect the development and progression of disease. In addition to the direct effects that 

the genetic factors may have on the joint, they can also play a role in other risk factors 

such as obesity, inflammation and bone density [208] (Figure 1.18). 
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Figure 1.18.  A simplist ic diagram showing the roles of genes in OA. Taken from Spector 
and Macgregor, 2004 [209] 

The joint can be directly affected by the genetic factors causing skeletal malformations 

leading to changes in joint shape, alignment, or structure. Some developmental defects 

can result in congenital misalignment of joints and lead to loss of articular cartilage and 

damage to other joint structures, due to distinct degrees of biomechanical instability 

[208]. The form and function of cartilage itself can also be affected by the genetic 

factors. 

Genetic linkage occurs when a locus involved in the trait of interest (specific OA 

phenotypes) and alleles at nearby markers are inherited jointly. This allows 

identification of relationships between genetic markers and specific traits or diseases 

[206, 210]. These linkages then provide a good starting point for identifying candidate 

genes for further investigation.  For example, linkage analyses have identified several 

regions which are likely to contain OA susceptibility genes one of which, 2q13-32 

included IL-1 and frizzled related protein 3 (FRZB). These genes are currently the subject 

of further research [211]. 

GWAS studies involve comparing the DNA of two groups of people, normally a control 

group and a group with a specific trait (in this case OA). The individuals are all genotyped 
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for a large number of known single nucleotide polymorphisms (SNPs), and if significantly 

more individuals with a specific allele occurs in the affected group, then the SNP is said 

to be associated with the trait or disease.  These studies have proved very successful in 

associating genes with monogenic disorders, but somewhat less successful with complex 

multifactorial diseases such as OA. The variability of the disease including age of onset 

compounds these issues, as members of the control group, can cease to be controls. 

However, a number of loci have been identified as being associated with OA, for 

example 7q22 which has be found to be associated in multiple studies [212, 213].  

The number of genetic risk loci associated with OA has been increasing dramatically over 

the last few years and now number over 100. However, functional studies are required 

to elucidate the molecular mechanism that cause these variants to increase OA risk [214, 

215]. 

1.3.4. Ageing as a risk factor for OA 

Ageing has been known as the greatest risk factor of OA for many years and is perhaps 

one of the reasons why OA was viewed as a disease of wear and tear, however OA is not 

an inevitable part of growing old [216]. There are many consequences of ageing which 

can increase the likelihood of OA, including direct changes to the cartilage and changes 

to joint function.  Age-related cartilage changes include dissipation of the chondrocytes 

in the superficial region of the ECM, and an increase in chondrocytes in the deep zone, 

leads to decreased hydration of the cartilage [167] and accumulation of advanced 

glycation end-products (AGEs), which crosslink with collagen molecules increasing the 

brittleness of cartilage[216]. Age-related changes to joint function can result from 

sarcopenia, and increased joint laxity [217]. Chondrocyte senescence has also been 

implicated in the degradation of cartilage, both through increased oxidative stress and 

increased secretion of MMPs [218, 219]. 

1.3.5. Mouse Models of OA 

There is currently no consensus model for OA that naturally reflects human disease 

[220]. Ex vivo models are useful for modelling aspects of OA, but are unable to replicate 

the joint environment properly. There are a number of naturally occurring models of OA 

including mice, rabbits, guinea pigs, dogs and horses [221]. Each species has its own 

benefits and drawbacks, for example, mice are easily managed with low cost, which is 
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advantageous, but the cartilage has different cellular structure  and is over 70x thinner 

compared to human cartilage, horses on the other hand have very similar cartilage 

thickness and cellular structure, but are expensive and require more management [220], 

additionally in accordance with the 3Rs principle (reduce, refine, replace) lower order 

animals are preferable if possible. Genetically modified models have been created, 

where genes involved in OA pathogenesis are knocked out, to model elements of OA.  

There are also number of induced models of OA, where disease can be induced 

surgically, chemically, or through non-invasive procedures such as cyclic AC tibial 

compression. A summary of these models is shown in Table 1.6 [221]. 

Model/Example Advantages Disadvantages 
Naturally occurring 
models 
- Dunkin-Hartley 
Guinea pig 

Spontaneous models, no need for 
intervention, used to study pathogenesis 
of naturally occurring OA, variable in OA 
manifestation such as in human OA 

Time-consuming due to slow 
progression of OA, high cost 

Genetically modified 
models 
-IL-6 Knock-out 
mouse 

Spontaneous models, easy to produce, 
used to study the contribution of specific 
genes in OA and develop disease-
modifying treatments 

High cost, production of 
additional cartilage 
abnormalities and potential 
lethal gene deletions 

Surgically induced 
Models 
-Destabilisation of 
the medial meniscus 

Rapid progression of OA and therefore 
short study timeframe, reproducible, 
induces post-traumatic OA, allows the 
study of various lesions/stages of disease 
and assess therapeutic efficacy of agents 
for OA treatment 

Inappropriate for studies of 
degenerative OA since 
generated by traumatic invasive 
intervention 

Chemically induced  
Models 
-Monoiodoacetate 
(MIA) injection 

Most rapidly progressing OA, easy to 
implement, relatively less invasive than 
surgically induced models, reproducible, 
useful for short-term studies, allows the 
study of various lesions/stages of disease 
and assess therapeutic efficacy of pain-
alleviating agents for OA treatment 

Rapid and widespread changes 
generated by invasive 
intervention, poor correlation 
with the pathogenesis of human 
OA 

Non-invasive models 
-cyclic AC tibial 
compression 

Non-invasive, severity of the lesions can be 
adjusted, low risk of infection, 
reproducible, allows the study of early OA 
changes after acute or chronic overuse 
injuries of joints and the effects of early 
therapeutic intervention 

Equipment is not commonly 
available, several loading cycles 
and episodes are needed to 
induce severe OA changes, still 
in the early stages of 
understanding its application 

 

Table 1.6.  Advantages and disadvantages of in vivo models. Adapted from Samvelyan et 
al.,  2020 [210].  

Animal models of OA are a very important tool for investigating the pathogenesis. Due 

to early OA in humans being difficult to detect, using animal models can help us fill the 

gaps in our knowledge such as: Why and where in the joint is OA initiated? [222]. It is 

unlikely that any one model will mirror all facets of human OA. Nevertheless by 
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combining the knowledge gained from multiple model types, we can have fairly 

comprehensive coverage [222] (Figure 1.19). 

 

Figure 1.19. Pathogenesis map of OA. The map of OA is divided into pain and the different 
pathological processes that can be modelled. Taken from Vincent  et al., 2012 [222]. 

Spontaneous models such as the STR/ort mouse, enable the pathogenesis of the disease 

(in this particular case) to be thoroughly investigated [223, 224]. Spontaneous models 

of OA are not particularly common, and even when they do occur, do not mirror the 

chronic late onset disease seen in humans. New spontaneous models, especially late 

onset/chronic models will likely facilitate the investigation of disease pathogenesis.  

Another advantage of spontaneous or genetic models is the ability to challenge them 

with induced OA, as has previously been done with the STR/ort mouse model, which 

showed that the OA in these animals was unlikely to be due to greater vulnerability to 

mechanical trauma [225]. 

1.4. ENU Mutagenesis 

The use of N-ethyl-N-nitrosourea (ENU) as a potent chemical mutagen in the mouse, 

was first reported by Russell et al. in 1979, producing 5 times the mutation rate as the 

most effective dose of X-ray while retaining fertility [226]. This process was further 

improved by repeated dosing which increased the maximal mutation frequency induced 

to 12 times the maximal mutation frequency achievable with a single exposure to x-rays 

[227]. 
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ENU acts primarily as an alkylating agent, transferring its ethyl group to nucleotides by 

way of nucleophilic oxygen or nitrogen sites. The transferred ethyl group constitutes a 

DNA adduct that during cell proliferation and DNA replication results in heritable 

mutations [228]. 

At low doses ENU is ineffective as the damage is repaired, and at high doses fertility or 

health is impaired so a balance is required for optimum results [229, 230]. Optimum 

dosing as set out in Blease et al. leads to mutations at a rate of one mutation every 1.-

1.5Mb [231]. Mutation rates for individual genes is size dependent, with larger genes 

having a higher likelihood of being mutated [232, 233]. 

ENU predominantly modifies A/T base pairs (87%) compared to C/G pairs (13%).  Of the 

modifications of A/T the most common is A/T to T/A transversions (44%) followed by 

A/T to G/C transitions (38%), with only a fraction of A/T to C/G transitions (5%). The 

comparatively infrequent transitions and transversions at the C/G site, are primarily G/C 

to A/T transitions (8%), followed by G/C to C/G transversions (3%), and G/C to T/A 

transitions (2%) [228]. Following translation into proteins, these substitutions result 

most commonly in nonsynonymous changes (72%) of which approximately 65% are 

missense changes and the remainder are nonsense or splice mutations. The remaining 

28% are synonymous mutations that do not alter amino acid sequence [234]. 

Large-scale phenotype driven ENU mutagenesis screens have been utilised to explore 

gene function. The premise of these screens was to induce mutations at random, 

identify a phenotype resulting from the mutagenesis, and then identify the causative 

mutation [235, 236]. The unbiased and hypothesis-free nature of phenotype-driven ENU 

screens has proved successful in identifying a large number of novel genes underlying 

the observed phenotypes often uncovering novel mechanisms across a diversity of 

biological systems [237]. 

Different breeding schemes can be used to produce cohorts of mice that are 

heterozygous or wild-type for the mutations (a dominant screen), or homozygous, 

heterozygous and wild-type for the mutations (a recessive screen). Recessive screens 

require larger cohorts of mice but are potentially more informative. 



 

50 

1.4.1. The Harwell Ageing Screen 

The Harwell ageing screen was a large-scale phenotype-driven ENU screen, designed to 

identify mutations resulting in age related disease [238]. C57BL/6J males were injected 

with a total dose of 320mg/kg of ENU. After a period of sterility caused by the ENU, 

these C57BL/6J males (now referred to at G0) are crossed to C3H.pde6b+ female animals 

to produce G1 animals. A G1 male animal is selected and again crossed with a C3H.pde6b+ 

female to produce G2 animals. The female G2 animals are then crossed back to the G1 

male to produce a G3 cohort of animals containing animals that are heterozygous, 

homozygous and wild-type for the mutations in the G1 animal. This G3 cohort allows for 

screening of both recessive and dominant mutations. The sperm of the G1 founder 

animal was banked, so that the descendant lines could be re-derived and DNA was also 

archived for whole genome sequencing, should a phenotype be identified in the G3 

cohort derived from this G1 founder. 

A wide variety of phenotyping tests were undertaken longitudinally typically at an early, 

mid and late time point, around 4 months, 12 months and 18 months respectively 

(Figure 1.20). 

 

Figure 1. 20.  An overview of the time scale and phenotyping that were undertaken as part 
of the Harwell Ageing Screen. Additional tests or t ime points were added when required 
to investigate specific phenotypes. Taken from Blease  et al., 2018  [231] 
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Approximately ¼ of all the mutations identified by the ageing screen resulted in a ‘late’ 

phenotype (after 6 months of age), with some phenotyping tests identifying a much 

larger number of late onset phenotype, for example over 60% of skeletal phenotypes 

identified by X-ray were late phenotypes [231].  

 

1.5. Thesis Aims and Objectives 

 

The aim of this thesis is to characterise a novel model of late onset OA (MP-107), caused 

by an ENU induced mutation in the gene Col1a2. Col1a2 is one of the two genes that 

encode the collagen I alpha chains, which make up the Type I collagen. Mutations in 

genes coding for the collagen I alpha chains are known to cause diseases such as 

osteogenesis imperfecta and Ehlers-Danlos syndrome. However, they have not 

previously been known to play a role in OA. 

The objectives include- 

 Phenotypic analysis 

o Characterisation of the phenotypes exhibited by the mice in this line by 

in vivo phenotyping. 

o Mechanistic investigation of ex vivo tissues. 

 Gene identification 

o SNP mapping to identify the region of the genome containing the 

causative mutation. 

o Whole genome sequencing to identify candidate genes. 

o Sanger sequencing and molecular analysis to confirm effects of the 

mutation 

 Investigation into the effect of abnormal type I collagen 

o Phenotyping of a second line, TM44, which contains an ENU induced 

mutation in Col1a1. 

o Phenotyping of a third line, Col1a2-KO, which contains a CRISPR-Cas9 

modified Col1a2 gene, to create a null allele. 
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 Investigation of the epistasis of mutant genes, and null alleles 

o Phenotype compound crosses of MP-107 and Col1a2-KO 

o Phenotype compound crosses of TM44 and Col1a2-KO 

o Phenotype compound crosses of MP-107 and TM44 

The hypothesis tested in this thesis is that the OA phenotype in MP-107 is caused by the 

mutation identified in Col1a2. The aim of this project beyond this initial hypothesis is 

through genetic analysis, to establish the mode of action of all of these mutations and 

through in depth analysis of various tissues, the specific mechanisms by which mutations 

in these genes can lead to the observed phenotypes.  As previously, mentioned COL1A1 

and COL1A2 have not been implicated in the pathogenesis of OA in humans.  It is 

therefore of interest animals with mutations in Col1a1 and Col1a2, appear to develop 

OA. These models could therefore provide valuable insights into the pathogenesis of OA, 

and how genes not previously associated with the disease could play a role. 
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Chapter 2: Materials and Method
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2.1. Materials Lists 

Consumable Supplier Product code 

20% SDS Solution National 

Diagnostics 

EC-874 

2-Mercaptoethanol (50mM) Gibco 31350-010 

2x Taqman Fast Universal PCR 

Mastermix 

Applied 

Bioystems 

4352042 

70µm cell strainer Greiner bio-one 542070 

96F Without lid Microwell plate Thermo Scientific 269620 

96-Well PCR Plate Non-Skirted 4titude 4ti-0750-25 

Adhesive Film Covers Abgene AB-0558 

Adhesive Sealing Sheets Thermo Scientific AB-0558 

Bovine Serum Albumin Sigma-Aldrich A7906-100G 

Bovine Serum Albumin, fatty acid 

free 

Sigma-Aldrich A8806-5G 

CELLSTAR 10cm Cell Culture Dishes Greiner bio-one 664-160 

CELLSTAR 6 Well Cell Culture Plate, 

Sterile, With Lid 

Greiner bio-one 657-160 

CELLSTAR Cell Culture Flasks 

25cm2, 50ml, Red filter 

Greiner bio-one 690-175 

CELLSTAR Cell Culture Flasks 

75cm2, 250ml, Red filter 

Greiner bio-one 658-175 

cOmplete™ Tablets EDTA-free, 

EASYpack 

Roche 04 693 132 

001 
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DMEM (1x) + GlutaMAX™-1 +4.5g/L 

D-Glucose, -Pyruvate 

Gibco 61965-026 

DPBS (1x) -CaCl2, -MgCl2 Gibco 14190-094 

Dried Skimmed Milk 
  

Ethanol, absolute Fisher Scientific E/0650DF/17 

Foetal Bovine Serum Gibco 10500064 

High Capacity cDNA Reverse 

Transcription Kit 

Applied 

Bioystems 

4368814 

HotShot Mastermix 
 

HS002 

Illustra™ DNA Extraction Kit BACC2 GE Healthcare RPN-8502 

LCGreen® Plus+ BioFire BCHM-ASY-

0005 

MEM Non-Essential Amino Acids 

Solution (100x) 

Gibco 11140-050 

Methanol Fisher Scientific M/4000/PC17 

MicroAmp® Fast Optical 96-Well 

Reaction Plate 0.1mL 

Applied 

Bioystems 

4346906 

MicroAmp™ Optical Adhesive Film Applied 

Bioystems 

4311971 

Nitrocellulose Membrane (0.45µm) Invitrogen LC2001 

NP-40 Thermo Fisher 85124 

Nucleon BACC2 Genomic DNA 

Extraction System  

GE Healthcare 

Life Sciences, 

RPN8512 
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NuPAGE™ 4-12% Bis-Tris Gel 

1.0mmx12well 

Invitrogen NP0322BOX 

NuPAGE™ 4-12% Bis-Tris Gel 

1.0mmx15well 

Invitrogen NP0323BOX 

NuPAGE™ Antioxidant Invitrogen NP0005 

NuPAGE™ LDS Sample Buffer Invitrogen NP0007 

NuPAGE™ MOPS SDS Running 

Buffer (20x) 

Invitrogen NP0001 

NuPAGE™ Sample Reducing Agent 

(10x) 

Invitrogen NP0004 

NuPAGE™ Transfer Buffer (20x) Invitrogen NP0006 

Penicillin-Streptomycin 

(10,000U/mL) 

Gibco 15140-122 

PhosSTOP EASYpack Roche 04 906 837 

001 

Pierce® ECL Western Blotting 

Substrate 

Thermo Scientific 32106 

Precellys Lysing Kit Tissue Grinding 

CKmix50_7mL 

Bertin 

Technologies 

KT03961-1-

306.7 

Precision Plus Protein™ Dual Colour 

Standard 

Bio Rad 1610374 

Propan-2-ol Fisher Scientific P/7490/21 

Proteinase K Solution QIAGEN 19133 

QIAquick Gel Extraction Kit (50) QIAGEN 28704 
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QIAquick PCR Purification Kit (50) QIAGEN 28104 

QIAzol Lysis Reagent QIAGEN 79306 

Quick Start™ Bradford 1x Dye 

Reagent 

Bio Rad 500-0205 

RNeasy® Maxi Kit (50) QIAGEN 75144 

Syringe filter 0.2µm Fisherbrand 09-719c 

TBS (10x) Cell Signaling 

Technology 

12498S 

Triton X-100 Sigma-Aldrich X100-100ML 

Trizma® base Sigma-Aldrich T6066-500G 

Trizma® hydrochloride Sigma-Aldrich T5941-500G 

Trypsin (0.25%) phenol red Gibco 25050-014 

Trypsin-EDTA (0.05%) phenol red Gibco 25300-054 

Tween® 20 National 

Diagnostics 

EC-607 

Ultrapure Agarose Invitrogen 16500-500 

Vectastain- ABC Rabbit IgG Vector 

Laboratories 

PK-6101 

Whatman  filter paper Whatman WH1001-929 
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2.2. Primers 

2.2.1. Sequencing Primers for Mutation Validation 

Primer Sequence (5’ to 3’) 

Col1a2_gDNA_Forward TAGGAGAAATGGTGCCCTGT 

Col1a2_gDNA_Reverse GGCACCAGCATTATCAAGGT 

Col1a2_cDNA_Forward GCGGTGAAGAAGGAAAGAGA 

Col1a2_cDNA_Reverse CAGGAGACCCAGGAAGACCT 

Col1a1_gDNA_Forward CACTTCCGTTACGACATCCCA 

Col1a1_gDNA_Reverse ACACAACCGTCATGACCTTTC 

Sectm1a_gDNA_Forward TCAAAGACACCCAGGACGAC 

Sectm1a _gDNA_Reverse ACAGTGATGACTCCCACAAGG 

2.2.2. Primers for Validation of Alternative Splicing by Electrophoresis 

Primer Sequence (5’ to 3’) 

Col1a2_cDNA_Mut_Forward GACTTGTTGGTGAGCCTGGTC 

Col1a2_ cDNA_Mut_Reverse CTCCAGGGCTTAGACAGGGCA 

Col1a2_cDNA_WT_Forward GTGCCAGAGGACTTGTTGGT 

Col1a2_ cDNA_WT_Reverse AACCAGGGCTGCCTCTAAGC 

 

2.2.3. Lightscanner Genotyping Primers (Col1a2) 

Primer Sequence (5’ to 3’) 

MP-107 Forward GCCCTGTCTTAGGAAACTCTATC 

MP-107 Reverse ATTACACCAGCTCTGCCATCA 
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MP-107 Probe CATCTCATGCCCTTTCCAGCAGG 

 

2.2.4. Allelic Discrimination Genotyping Primers (Col1a1) 

Primer Sequence (5’ to 3’) 

TM-44 Forward CTAGGGCGAGAGAGGTTTCC 

TM-44 Reverse CTCACCTTGGCACCATCGTT 

TM-44  WT Probe (FAM) CGTGGTGTACAAGGTCC 

TM-44  MUT Probe (TET) ACGTGGTGTATAAGGTCCC 

 

2.2.5. Copy Number Genotyping Primers (Col1a2-KO) 

Primer Sequence (5’ to 3’) 

Col1a2-DEL2087-MUT Forward GCTTGCTTGTTCAGCATCAATTAC 

Col1a2-DEL2087-MUT Reverse CGTGGTCCTCTGTCTCCAG 

Col1a2-DEL2087-MUT Probe TAGTCACGTGGCCCTTTGCCAT 

Col1a2-DEL2087-LOA-WT Forward GCTTGCTTGTTCAGCATCAATTAC 

Col1a2-DEL2087-LOA-WT Reverse CGTGGTCCTCTGTCTCCAG 

Col1a2-DEL2087-LOA-WT Probe TAGTCACGTGGCCCTTTGCCAT 

Dot1L_Control Forward GCCCCAGCACGACCATT 

Dot1L_Control Reverse TAGTTGGCATCCTTATGCTTCATC 

Dot1L_Control Probe CCAGCTCTCAAGTCG 
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2.2.6. Gene Expression Primers 

Primer Sequence (5’ to 3’) 

Col1a2_Mutant_Forward CAGCGGTGAAGAAGGAAAGAGA 

Col1a2_Mutant_Reverse CATTACACCAGCTCTGCCATCA 

Col1a2_Mutant_Probe AGGGCTTAGACAGGGC 

Col1a2_Wild type_Forward TCCCGGAGAAGCTGGATCT 

Col1a2_Wild type_Reverse CATTACACCAGCTCTGCCATCA 

Col1a2_Wild type_Probe CTTAGAGGCAGCCCTG 

 

2.2.7. sgRNAs for CRISPR/cas9 Deletion 

Protospacer sequence PAM sequence 

ATTGATGCAAATTAGACCTT TGG 

GACTTAGCCCTTTCCCCCAA AGG 

CCATTACACGTGTATTGTGC AGG 

CCTGCACAATACACGTGTAA TGG 

 

2.2.8. Primers for CRISPR Confirmation 

Primer Sequence (5’ to 3’) 

Geno_Col1a2_F1 GGGTAATTGTAGCAAAGAAGTGGG 

Geno_Col1a2_R1 TCACAGGTTTCCAGCCGTAG 
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2.3. Primary Antibodies 

Antibody Species 

/clonality 

Supplier Code WB 

/IHC 

Dilution Size 

(kDa) 

Col1a1 Goat Poly Santa-Cruz SC-8784 WB 1:100 139 

Col1a1 Goat Poly Santa-Cruz SC-8784 IHC 1:200  

Col1a2 Rabbit 

Poly 

Abcam Ab96723 WB 1:1000 129 

Col1a2 Rabbit 

Poly 

Abcam Ab96723 IHC 1:200  

Col1 Rabbit 

Poly 

Abcam Ab21286 WB 1:1000 129 

/139 

BIP Rabbit 

mono 

Cell signalling C50B12 WB 1:1000 78 

BIP Rabbit 

mono 

Cell signalling C50B12 IHC 1:100  

Fibronectin Rabbit 

Poly 

Proteintech 15613-1-AP WB 1:1000 250 

Actin Rabbit 

mono 

Abcam ab176560 WB 1:3000 42 
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2.4. Secondary Antibodies 

Antibody Supplier Code Dilution 

IRDye® 680LT Goat 

anti-Rabbit IgG (H + L) 

Li-Cor 926-68021 1:10000 

IRDye® 800CW Goat 

anti-Rabbit IgG (H + L) 

Li-Cor 926-32211 1:10000 

IRDye® 800CW Goat 

anti-Mouse IgG (H + L) 

Li-Cor 926-32210 1:10000 

IRDye® 800CW Donkey 

anti-Goat IgG (H + L) 

Li-Cor 925-32214 1:10000 

 

2.5. Recipes and Buffers 

 

Standard MEF Media: 

DMEM + 10 % FBS + 50um mercaptoethanol + 1x non-essential amino acids + Pen/Strep 

DMEM    - 439.5 mL 

FBS     - 50 mL  

MEM amino acids   -  5.0 mL 

Penicillin + Streptomycin - 5.0 mL 

Mercaptoethanol  - 0.5 mL 
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FBS free MEF Media: 

DMEM + 50um mercaptoethanol + 1x non-essential amino acids + Pen/Strep 

DMEM    - 489.5 mL 

MEM amino acids   -  5.0 mL 

Penicillin + Streptomycin - 5.0 mL 

Mercaptoethanol  - 0.5 mL 

 

Low FBS MEF Media: 

DMEM + 0 .5 % FBS + 50um mercaptoethanol + 1x non essential amino acids + Pen/Strep 

DMEM    - 487.0 mL 

FBS     - 2.5 mL  

MEM amino acids   -  5.0 mL 

Penicillin + Streptomycin - 5.0 mL 

Mercaptoethanol  - 0.5 mL 

 

Transfer buffer 

Transfer Buffer (20X)  - 50 mL 

Antioxidant   - 1 mL 

Methanol   - 100 mL 

Deionized Water  - 849 mL 
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TBST 

TBS (x10)   - 100ml 

ddH20    - 899ml 

Tween    - 1ml 

 

Tendon Digestion solution 

Pepsin(3200-4500units/mg) - 750µg 

0.5M acetic acid    - 30 mL  

 

MOPS running Buffer 

MOPs  (20X)   - 50 mL 

Deionized Water  - 950 mL 

Antioxidant   - 2.5 ml 
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2.6. Animals 

2.6.1. Animal husbandry 

All animals described herein were housed in the Mary Lyon Centre (MLC), a specific 

pathogen free (SPF) mouse facility, within the MRC Harwell Institute. The majority of 

animals were bred and phenotyped on Home office licence 30/3070 “New mouse 

models of human disease”, when this specific licence came to an end, any further mice 

were bred on Home office licence 17/0004 (PE40B1D0F) “Breeding genetically altered 

mice” and then phenotyped on Home office licence 30/3384 “Phenotyping genetically 

altered mice”, under conditions adhering to the MRC ‘Code of practice for the housing 

and care of animals bred, supplied or used for scientific purposes’ (December 2014) and 

subject to review by Animal Welfare and Ethical Review Body (AWERB). 

Animals were housed in individually vented cages (IVCs), with food (Irradiated -RM3 (E)- 

Special Diet Services) and water (mains water purified using reverse osmosis and then 

chlorinated to 9-13 ppm) provided ad libitum. The environment of the IVCs was 

maintained at a temperature of between 19 and 22oC, a humidity of 45-65% and in a 

12:12 light: dark cycle. Welfare checks were performed daily, any welfare issues were 

escalated to the Named animal care and welfare officer (NACWO) and if necessary the 

Named veterinary surgeon (NVS) was consulted. Animals were housed separated by sex 

and with no more than 5 animals to a cage, with the exception of pre-weaning animals, 

and animals in matings.  

2.6.2. MUTA-PED-107 (MP-107) 

The animals in this line were derived from the Harwell Ageing screen, an ENU 

mutagenesis screen designed to identify models of age-related disease. The protocol by 

which mutagenised mice are generated for a recessive screen has been described 

previously [231, 238]. Briefly, C57BL/6J males are injected with a total dose of 320mg/kg 

of ENU, consisting of an initial dose of 120 mg/kg, followed by 2 further doses of 

100mg/kg with a week between each dose.  After a period of sterility caused by the ENU, 

these C57BL/6J males (now referred to at G0) are crossed to C3H.pde6b+ female animals 

to produce G1 animals. A G1 male animal is selected, and again crossed with C3H.pde6b+ 

female to produce G2 animals. The female G2 animals are then crossed back to the G1 

animal to produce a G3 cohort of animals containing animals that are heterozygous, 
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homozygous and wild-type for the mutations in the G1 animal (Figure 2.1). This G3 cohort 

allows for screening of both recessive and dominant mutations [235]. The purpose of 

crossing the ENU mutagenised animal to a different inbred strain, is to enable mapping 

of the causative mutation, using the single nucleotide polymorphisms (SNPs) 

polymorphic between the strains [238]. 

 

Figure 2.1.  A diagram showing the breeding strategy employed in the Harwell Ageing 
screen. TheG3 cohorts contain animals that are homozygous, heterozygous and wild-type 
for the ENU mutations. 

 

2.6.3. Bone-TM44 (TM44) 

The animals in this line were derived from an ENU mutagenesis screen designed to 

identify dominant mutations. The method for producing the mutagenised cohorts of 

animals is the same as detailed in Section 2.6.2, except in this case the G2 animals 

underwent phenotyping, rather than the G3 animals, so only dominant mutations can 

be identified. 
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2.6.4. Col1a2-KO 

This line was produced using CRISPR Cas9 technology by the Harwell Genome 

Engineering service. Cas9 mRNA and sgRNAs (detailed in Section 2.2.7) were diluted in 

microinjection buffer to a working concentration of 100ng/µl and 50ng/µl respectively. 

This solution was then delivered by pronuclear injection into 1-cell stage embryos. 

Injected embryos were re-implanted into CD1 pseudo-pregnant females, which were 

allowed to litter and rear F0 progeny. An animal with a 2087 nucleotide deletion was 

selected as the founder animal for the line Col1a2-KO. The deletion encompassed exons 

ENSMUSE00001291037, ENSMUSE00001247742 and ENSMUSE00001305705 and 

induced a premature stop codon and a null allele. 

 

2.7. Identifying the Causative Mutations 

2.7.1. DNA Extraction 

DNA was extracted from tail samples post mortem using the Nucleon BACC2 Genomic 

DNA Extraction System (GE Healthcare Life Sciences, USA) according to manufacturer’s 

instructions. Briefly, samples were incubated overnight at 55oC in 200 µl of ‘Reagent B’ 

and 10 µl of Proteinase K (20mg/ml, Qiagen, Netherlands). 50 µl of Sodium Perchlorate 

was added, then inverted 7 times, 200 µl of Chloroform was added, then inverted 7 

times, 30 µl of Nucleon resin was added before the sample was centrifuged at 200rpm 

for 2 minutes.  The upper phase was transferred to a clean microcentrifuge tube, and 2 

volumes of ice cold 100% ethanol were added to precipitate the DNA. The sample was 

then centrifuged at max speed for 2 minutes to pellet the DNA, which was then washed 

with 70% ethanol, before being dried and then re-suspended in 50 µl ddH2O at 4oC 

overnight.  

2.7.2. Linkage Mapping 

200ng of DNA was sent for linkage mapping using the Illumina Golden Gate Mouse MD 

linkage Panel (Gen-Probe Life Sciences Ltd, UK). This linkage panel contains 1449 SNP 

loci that are informative across 10 inbred strains. There are approximately 3 SNPs for 

every 5Mb interval with at least one of these SNPs being informative for each pairwise 

strain combination in 75% of cases.  The ENU mutations are inherited from the C57BL/6J 

G0, meaning that regions containing the mutation will either be homozygous for 



 

68 

C57BL/6J for recessive mutations, or heterozygous for dominant mutations. So while not 

all SNPs are informative for our purposes, this panel allows us to map the causative 

mutation to a region. 

2.7.3. Whole Genome Sequencing 

G1 DNA from the line MP-107 was sent for Whole Genome Sequencing (WGS) utilising 

the Illumina HiSeq platform (Oxford Genomics Centre, Wellcome Trust Centre for 

Human Genetics, UK). The reads generated were then aligned to the reference genome 

(NCBIM38/mm10) by the MRC Harwell Bioinformatics team using Burrows-Wheeler 

Alignment [239]. Single nucleotide variants (SNVs) were detected using a customised 

version of the Genome Analysis Toolkit (GATK) [240]. 

2.8. Mutation Validation 

2.8.1. Primer Design 

Sequencing primers were designed using the Primer3Plus software 

(http://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi) and were tested 

using an in silico PCR program from University of California Santa Cruz 

(https://genome.ucsc.edu/cgi-bin/hgPcr). These oligonucleotides were then 

synthesised (Eurofins MWG Operon, Germany). The specific primers are detailed in 

section 2.2.1 

2.8.2. PCR Amplification 

The relevant DNA was amplified using a 25 µl PCR reaction using the program as follows- 

Step 1 - 95oC for 10 minutes 

Step 2 - 95oC for 30 Seconds 

Step 3 - 60oC for 45 Seconds 

Step 4 - 72oC for 10 minutes 

Step 5 - Cycle to Step 2 40 more times 

Step 6 - 72oC for 15 minutes 

Step 7 - Hold at 4 oC 
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AmpliTaq Gold® 360 DNA Polymerase (Thermo Fisher) was used in the PCR reaction as 

follows (volumes per 25 µl  reaction) - 

10X Buffer II 2.5 µl 

dNTPs (10mM) 2 µl 

Forward Primer (10µM) 1.25 µl 

Reverse Primer (10µM) 1.25 µl 

MgCl2 (25mM) 1.5 µl 

DNA (10ng/µl) 1.25 µl 

Polymerase 0.125 µl 

ddH20 15.125 µl 
 

5µl of PCR product was then run on a 2% agarose gel to confirm the presence of a 

product the correct size. 

2.8.3. PCR Purification 

PCR products were purified using the QIAquick® PCR purification kit (Qiagen, 

Netherlands) (as per manufacturer’s instructions). Briefly, sample is diluted with 

‘Buffer PB’ (a high salt buffer) in a 5:1 ratio, and placed in a QIAquick column and 

centrifuged at high speed for 1 minute to bind DNA to the silica membrane, flow through 

is discarded. The membrane is then washed using ‘Buffer PE’, again by centrifugation at 

high speed for 1 minute, flow through is discarded. The DNA is then eluted in ‘Buffer EB’ 

(10mM Tris Cl. pH 8.5), by adding buffer to the membrane, leaving for 1 minute, before 

centrifugation at high speed for 1 minute, to elute the DNA into a fresh micocentrifuge 

tube. 
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2.8.4. Sanger Sequencing 

Purified PCR products were sent for Sanger Sequencing (Source Bioscience, Oxford, UK). 

PCR Products were supplied at 10ng/µl and sequencing primers (detailed in 2.2.1) were 

supplied at 3.2ng/µl. Chromatograms were visualised using Lasergene Seqman Pro 

(DNASTAR, USA) 

 

2.9. Genotyping 

2.9.1. Lightscanner 

Genotyping for the line MP-107 was performed using the Lightscanner (Idaho 

technology, USA) high throughput DNA melting analysis system.  Asymmetric exhaustive 

PCR is performed with a 3’ blocked oligonucleotide (probe) which binds to the site of 

the SNP, in addition to the primer pair in the presence of the double stranded DNA 

binding dye, LCGreen (Biofire). This causes 2 PCR products to be formed, the full PCR 

product between the normal primer pair and a second between the probe and the 

opposite strand. Primers were designed using LightScanner Primer Design Software 

(Idaho technology). 

Due to the probe being designed for the mutant allele, the homozygous sample 

produces the greatest fluorescence, followed by heterozygous samples, and finally the 

wild-type sample (Figure 2.5). 

The PCR reaction using the program as follows- 

Step 1 - 95oC for 2 minutes 

Step 2 - 95oC for 30 Seconds 

Step 3 - 60oC for 30 Seconds 

Step 4 - 72oC for 30 Seconds 

Step 5 - Cycle to Step 2 55 more times 

Step 6 - 95oC for 30 Seconds 

Step 7 -25oC for 30 Seconds 

Step 8 - 15oC for 30 Seconds 

Step 9 - Hold at 4 oC 
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Figure 2.2. Normalized melting curves and peaks, showing how the different genotypes 

can be identified. 

 

2.9.2. Allelic Discrimination 

Genotyping for the line TM44 was performed using the 7500 Fast Real-Time PCR system 

(Applied Biosystems, ThermoFisher,) and 2 custom Taqman assays with differing labels, 

one for the wild-type allele (FAM) and one for the mutant allele (TET). The different 

probes allow for differentiation between the three genotypes. The primer details can be 

found in Section 2.2.4  
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ABI GTX Taqman Master Mix (AB bioscience) was used in the qPCR reaction as 

follows (volumes per 10 µl reaction) - 

ABI GTX Taqman Master Mix 5 µl 

FAM and TET assay (WT probe 5μM, MUT 
probe 5μM  & primers 15μM each) 2 µl 

DNA (10ng/µl) 2.5 µl 

ddH20 0.5µl 
 

2.9.3. Copy Number 

To genotype the Col1a2-KO line, a genotyping strategy was developed to identify the 

genotype by copy number. The presence or absence of each allele is identified by 

recording the number of cycles taken to reach a threshold (CT value), which is inversely 

correlated to the amount of template DNA. 

e.g.  

CT 25 = 2 copies of the template DNA 

CT 26 = 1 copy of the template DNA 

CT >30 = no copies of the template DNA 

 

Using one assay for the wild-type sample and one for the mutant, we are able to 

accurately identify the genotype; control Dot1L is also included. 

WT= 2 copies of the LOA assay template and 0 copies of the mutant assay 

HET= 1 copy of the LOA assay template and 1 copy of the mutant assay 

HOM= 0 copies of the LOA assay template and 2 copies of the mutant assay 
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ABI GTX Taqman Master Mix (AB Bioscience) was used in the qPCR reaction as follows 

with each FAM assay run separately, but in multiplex with the VIC labelled internal 

control (volumes per 10 µl reaction) - 

ABI GTX Taqman Master Mix 5 µl 

Primers Dot1L_2F (20μM) 0.225 µl 

Primers Dot1L_R (20μM) 0.225 µl 

Probe DotL_2M (5μM) 0.2 µl 

FAM assay (probe 5μM & primers 15μM each) 0.3 µl 

DNA (10ng/µl) 2.5 µl 

ddH20 1.55 µl 
 

2.10. Time course Phenotyping 

2.10.1. X-Ray 

X-rays images were generated using a Faxitron MX20- specimen radiography system 

(Faxitron X-ray Corporation, Tucson, AZ). Animals were anaesthetised using a Xylazine 

(Sedaxylan™, 20mg/mg) / Ketamine (Anesketin™, 100mg/ml) /sterile water solution 

made up in the ratio 1:2:17, and administered at 10µl/g of bodyweight intraperitoneally. 

2.10.2. Dual X-ray Energy Absorption (DEXA) 

DEXA images and data were generated using the Lunar PIXImus II Densitometer (GE 

Medical Systems).  Animals were anaesthetised using a Xylazine (Sedaxylan™, 20mg/mg) 

/ Ketamine (Anesketin™, 100mg/ml) /sterile water solution made up in the ratio 1:2:17, 

and administered at 10µl/g of bodyweight intraperitoneally.  

2.10.3. Clinical Chemistry 

Two types of blood collection methods were used for clinical chemistry, for early time 

points blood was collected from the lateral tail vein, and for late, terminal time points, 

blood was collected via retro-orbital bleed. For blood collection from the lateral tail vein, 

animals had EMLA, local anaesthetic cream applied to their tails 30 minutes prior to the 

procedure. The animals were then restrained, and the lateral tail vein cut using a sterile 
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scalpel blade. Blood was then collected using heparin coated microvette tubes( VWR). 

The blood flow was then staunched using pressure, before the animal was returned to 

its home cage. For retro-orbital blood collection, the animal was terminally 

anaesthetised, with an overdose of pentobarbital, once all pedal and corneal reflexes 

had ceased a lithium heparin coated capillary tube was inserted into the retro-orbital 

sinus and  blood was collected in a heparin coated microvette tube. 

Plasma was separated by centrifugation at 5000xg at 4oC, before being pipetted into a 

microcentrifuge tube. Plasma samples were analysed using an Olympus U4000 bio 

analyser.  

2.11. Histology 

2.11.1. Histological Processing of Knee Joints 

Animals were culled, either by cervical dislocation, or by overdose of anaesthetic and 

retro orbital bleed. The limbs were then fixed in 10% neutral buffered formalin, before 

being decalcified in 20% formic acid. Knee joints were then embedded in paraffin wax 

and sections were cut at 5µm using a Finesse ME+ microtome (Thermo Fisher). Sections 

were transferred to charged slides, and either stained with Haematoxylin and Eosin 

(H&E), or Fast green and Safranin O, or left unstained for immunohistochemistry (IHC).  

2.11.2. Histological Analysis of Embryonic Lungs 

Embryos were harvested at 18.5 days post coitum (dpc) from timed intercross matings. 

Embryos were culled by decapitation before dissection and fixation of the lungs in 10% 

neutral buffered formalin. Lungs were then embedded in paraffin wax and sections were 

cut at 5µm using a Finesse ME+ microtome (Thermo Fisher). Sections were transferred 

to charged slides, and stained with H&E.  Analysis was performed using FIJI software. 

2.11.3. Immunohistochemistry 

Knee sections were obtained as outlined in Section 2.11.2. Slides were dewaxed and 

antigen retrieval was carried out by incubating sections in 1mg/ml pronase for 30 

minutes at 37oC, washing in PBST for 5 minutes and then incubating in 5mg/ml 

hyaluronidase 30 minutes at 37oC. Endogenous peroxidases were quenched by blocking 

with 3% hydrogen peroxide in 2-propanol for 15 minutes at room temperature. 

Immunostaining was then carried out using the ABC Anti-rabbit IgG Kit (AK-5001-NB, 



 

75 

Vectastain). Sections were blocked with goat serum for 30 minutes at room 

temperature, before incubating with Anti-BiP primary antibody (see section 2.3 for 

details) for 60 minutes at room temperature. The sections were then washed in PBS 

before being incubated in the biotinylated secondary included in the kit for 30 minutes 

at room temperature, before washing again. The sections were then incubated in 

vectastain reagent for 30 minutes at room temperature before a final wash. DAB is then 

used as a chromogen for the secondary antibody, and slides were counterstained using 

haematoxylin. 

2.12. Skeletal Staining 

2.12.1. Sample Collection 

Embryos were harvested at 18.5 dpc from timed intercross matings. The uterus was 

removed from the pregnant animal and placed in ice cold PBS, and then kept on ice for 

20 minutes. The uterus was then transferred into a 10 cm petri dish and covered with 

fresh ice-cold PBS.  The uterus was then opened to allow access to the individual yolk 

sacs. The yolk sac was then carefully cut open to release the embryo and placenta.  A 

sample of yolk sac was taken for genotyping, and the embryo separated from the 

placenta at the umbilical cord and placed in a labelled well of a 6 well plate filled with 

ice cold PBS. This process was repeated until all embryos were in individual wells of PBS. 

Any blood clots that formed at the navel were removed and the embryos were left on 

ice for another few minutes before being thoroughly washed to remove any remaining 

blood, before being placed into fresh wells containing ice cold 95% ethanol. 

2.12.2. Sample Preparation 

Samples were removed from 95% ethanol, then eyes, skin, adipose tissue and internal 

organs were removed, before placing the embryo in acetone overnight at room 

temperature. The acetone further fixes the tissue, permeabilises the tissues and 

dissolves the remaining adipose tissue. The embryo was then transferred to a glass vial 

and covered with 0.03% Alcian blue stain diluted in an 80/20 solution of ethanol and 

glacial acetic acid, and incubated at room temperature overnight. The embryo was then 

destained by washing twice in 70% ethanol, before incubating overnight in 95% ethanol. 

The embryo was then transferred into a solution of 1% potassium hydroxide in distilled 

water for 1 hour at room temperature to pre-clear the tissue. The sample was then 
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transferred into a solution of 0.005% alizarin red dissolved in 1% potassium hydroxide 

solution and incubated at 4oC overnight.  Finally, the sample is cleared at room 

temperature in a 50/50 clearing solution of glycerol and 1% potassium hydroxide, until 

the excess stain is removed, before placing the sample in 100% glycerol until imaging 

2.12.3. Sample Imaging 

The embryos were initially imaged in glycerol using a Nikon DSLR on a vertical rig, before 

the limbs were dissected from the embryos and imaged using a Zeiss SteREO V20 

discovery microscope with axiocam ERc5s. 

2.13. Transmission Electron Microscopy 

2.13.1. Sample Collection 

18.5 dpc embryos were harvested and decapitated before being fixed in 2% 

glutaraldehyde prepared in 100 mM phosphate buffer (pH 7.0) at room temperature. 

After 30 minutes the embryos were removed from the fixative, the tails were dissected 

from the body of the embryo, and cut into smaller pieces before being placed in fresh 

fixative. Fixation was continued for 2 hours at 4oC, after which the specimens were 

washed (twice) in 200mM phosphate buffer, before being placed in PBS (pH 7.0). 

2.13.2. Sample Imaging 

The fixed samples were then sent to our collaborators in the lab of Prof Karl Kadler at 

the University of Manchester for imaging. Sections (70-nm thick) were examined for 

TEM using an FEI Tecnai 12 instrument fitted with a 2k × 2k-cooled CCD camera (F214A, 

Tietz Video and Image Processing Systems, Gauting, Germany).  Analysis was performed 

using FIJI software 

2.14. Differential Scanning Calorimetry (DSC) 

2.14.1. Harvesting Tail Tendons 

3-month old animals were culled by cervical dislocation and the tail was amputated at 

the base. The skin was scored along the length and then removed to expose the bundles 

of tail tendons. The skinned tail was washed in a Petri dish containing PBS to ensure no 

hairs were attached to the tendon bundles. Using two pairs of robust forceps, the tail 

was held with one set of forceps at the base and sections of the tail with attached 
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tendons were removed by pulling with the second set of forceps upwards to the base in 

sections. The tendons were then dissected from the sections of tail using a sterile scalpel 

blade and then placed in microcentrifuge tubes, and frozen. 

2.14.2. Testing Samples 

DSC testing of the samples took place in the lab of our collaborator Prof Helen Birch at 

the University College of London.  The tendon was thawed and weighed in a 40µl 

aluminium crucible with a lid (ME-26763), which was then sealed. The sample was then 

placed into the DSC1 STARe System (Mettler Toledo, USA) along with an empty 

reference crucible. 

The DSC heating/cooling program is then run as follows- 

25oC-> -40oC @ 5oC per minute 

-40oC -> 90oC @ 5oC per minute 

This produces a thermogram containing peaks as the water content freezes in the 25oC 

-> -40oC step, and then a peak for the melt, and the denaturation of collagen in the -

40oC -> 90oC step. 

The lid of the crucible is then perforated and the DSC heating/cooling program is then 

run as follows- 

Perforated crucible- 

25oC-> 160oC @ 5oC per minute 

This produces a thermogram, containing a peak as the water content evaporates. 

2.14.3. Analysis of Samples 

The thermograms produced from the samples were analysed using the STARe Evaluation 

software (Mettler Toledo, USA). 

A number of parameters can be calculated from the thermograms produced- 

 The percentage free water within the sample can be calculated as the area under 

the freezing curve.  



 

78 

 The total water can be calculated as the area under the evaporation curve of the 

perforated crucible.  

 The percentage bound water within the sample can be calculated by subtracting 

the percentage free water from the percentage total water. 

 Collagen denaturation temperature is defined by the height of the denaturation 

peak. 

 Collagen enthalphy (or wet enthalphy) is calculated as the area under the curve 

of the denaturation peak, normalised to weight. 

 Dry enthalphy is calculated as wet enthalphy divided by dry mass (calculated 

from bound water). 

 

2.15. Radiolabelling of Tendons 

The radiolabelling of samples was carried out in the lab of our collaborator Dr Liz Canty-

Laird at the University of Liverpool. 

2.15.1. Harvesting Tail Tendons 

21-day old mice were culled by cervical dislocation and the tails were dissected from the 

body. Each tail was placed in a separate 100mm Petri dish in PBS containing 1% 

penicillin/streptomycin. The skin was scored along the length and then removed to 

expose the bundles of tail tendons. Using two pairs of robust forceps, the tail was held 

with one set of forceps at the base and sections of the tail with attached tendons were 

removed by pulling with the second set of forceps upwards to the base in sections.  

The tail sections with attached tendons were then placed in a fresh Petri dish containing 

cell culture medium containing 1% (v/v) penicillin/streptomycin 

The tendons were then dissected from the sections of tail using a sterile scalpel blade 

and then placed in a new Petri dish containing cell culture medium containing 1% (v/v) 

penicillin/streptomycin.  

2.15.2. Labelling Samples 

The tendons from each mouse was then split between 4 wells of a 24-well plate 

containing sterile cell culture medium (DMEM) containing 1% (v/v) 
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penicillin/streptomycin, 2 mM L-glutamine, 200 µM ascorbate and 400 µM beta-

aminopropionitrile at 37oC and 5% CO2, and left for 1 hour to equilibrate. The tissues 

were then transferred from each well to a fresh well containing fresh cell culture 

medium and 2.5 uCi/ml of [14C]-proline using fine forceps. Tendons for salt extraction 

were labelled for 1 hour for an approximately even distribution of (pro) collagen (I) 

between the intracellular and extracellular extracts. The tendons were then placed 

briefly in unlabelled supplemented medium to rinse residual [14C]-proline and chased 

in unlabelled medium for 3 hours (to allow newly synthesised pro-collagen to be 

processed and transferred to the extracellular fraction). 

2.15.3. Sequential Extractions 

Post chase, the tissue was transferred into 100µl of salt extraction buffer (1M NaCl, 

25mM EDTA, 50 mM Tris-HCl, pH 7.4, containing one Roche mini EDTA-free protease 

inhibitor cocktail tablet per 10ml), the plate was then place on a shaker with agitation 

at 4oC.  Four sequential extractions was performed, using fresh buffer each time, for 

varying lengths of time overnight (S1), 6hrs (S2), overnight (S3) and 6hrs (S4) to ensure 

complete extraction of extracellular labelled collagen before carrying out a final 

extraction (N) overnight in salt extraction buffer containing 1% NP40. After each 

extraction, the extract was transferred to a microcentrifuge tube and stored at -20oC. 

2.15.4. Analysis of Extracts 

The S1, S4 and N extracts were analysed by electrophoresis using 6% Tris-Glycine gels 

(NuPAGE™, Invitrogen, USA). The S1 extract contains the majority of the extracellular 

proteins, and the N extract contains the intracellular proteins, the S4 extract is included 

to confirm the extent of the extraction of extracellular labelled (pro) collagen prior to 

the lysis of the cells with NP40 extraction buffer.  

The gels were then fixed in a solution of 10% methanol and 10% acetic acid for 20 

minutes, before repeating with fresh fixative for a second 20 minutes. 

The gels were then dried on 3M Whatman paper and exposed to a phosphorimaging 

plate (BAS–IP MS) for 24 hours and then a second phosphorimaging plate for a  further 

7 days.  
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The plates were then imaged using a Typhoon FLA7000 Biomolecular imager (GE 

healthcare, USA). 

 

2.16. Gene expression analysis 

2.16.1. Sample Harvest and RNA Extraction 

Embryos were harvested at 18.5 dpc from timed intercross matings. Embryos were 

culled by decapitation. Tail was taken for genotyping, the embryos were split in half then 

each half of the embryo (and head) was snap frozen in liquid nitrogen, and stored at -

80oC. RNA was produced using the RNeasy Maxi kit (Qiagen) according to 

manufacturer’s instructions. Briefly, half of each embryo was homogenised in QIAzol 

lysis reagent (Qiagen) using a Precellys 24 tissue homogeniser (Bertin). gDNA eliminator 

solution was added to the homogenised tissue and shaken vigorously for 15 seconds 

before chloroform was added and the shaking repeated, before centrifugation for 15 

minutes at 5000xg at 4oC.  The upper aqueous phase is then mixed in a one to one ratio 

with 70% ethanol before the RNA is fixed to a membrane using RNeasy spin columns, 

before eluting the RNA with 200µl RNA-free water. RNA was then stored at -80 oC until 

required. 

2.16.2. CDNA Synthesis 

Synthesis of cDNA was performed using a High capacity cDNA reverse transcription kit 

(Applied Biosystems™ 4368814, Thermo Fisher, USA). Each reaction was composed of 

the following- 

10X RT Buffer 2.0µL 

25x dNTP mix (100mM) 0.8µL 

10x RT random primers 2.0µL 

Multiscribe reverse transcriptase 1.0µL 

Nuclease free H2O 4.2µL 

RNA (200ng/µL) µL 
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The program used was as follows- 

Step 1 - 25oC for 10 minutes 

Step 2 - 37oC for 120 minutes 

Step 3 - 85oC for 5 minutes 

Step 4 - Hold at 4 oC 

 

The cDNA was stored at -20oC until required 

2.16.3. Real Time qPCR 

The Applied Biosystems™ 7500 Fast Real-Time PCR System and software were used for 

this experiment, with Taqman assays for target and reference genes, and custom 

Taqman assays (primers detailed in Section 2.2.3) used to differentiate between wild-

type and mutant transcript. The reference gene used was Glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH). 

The cDNA was diluted to 2ng/µL cDNA; each cDNA sample was run in triplicate for all 

assays. 

2X Taqman fast universal 
PCR master mix 

10µL 

20x Taqman Assay 1µL 

ddH2O 4µL 

cDNA (2ng/µL) 5µL 
 

2.17. Mechanical Testing of Ex-Vivo Tissues 

2.17.1. Mechanical Testing of Tendons 

The mechanical testing of tendons was undertaken in the lab of our collaborator Prof 

Hazel Screen at Queen Mary’s University, London, with the assistance of Dr Chavaunne 

Thorpe. 
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2.17.1.1. Sample Collection  

Animals were culled at 3 months of age by cervical dislocations, and the tail was 

amputated at the base. The tails were then wrapped in gauze soaked in PBS, before 

being placed in individually labelled 15 ml falcon tubes and frozen at -20oC until 

required. It has previously been shown that a single freeze–thaw cycle does not affect 

tendon mechanical properties [241]. 

The tails were thawed at room temperature in small batches, the skin was scored along 

the length and then removed to expose the bundles of tail tendons. The skinned tail was 

washed in a Petri dish containing PBS to ensure no hairs were attached to the tendon 

bundles. The tail was held with one set of robust forceps, and with a set of jeweller’s 

forceps, individual fascicles were pulled to extract them from the bundle of tendons, 

fascicles shorter than 30 mm were discarded. Once extracted the fascicles were placed 

in a 10 cm lidded Petri dish, lined with blue roll soaked with PBS, which was then placed 

at 4oC. Fascicles were regularly moistened with PBS from a spray bottle. The diameter 

of each fascicle was measured using a laser micrometer (LSM-501, Mitutoyo, Kawasaki, 

Japan), and cross-sectional area was estimated using the formula πr2. 

2.17.1.2. Sample Testing 

The mechanical properties of the fascicle were determined using an Instron ElectroPuls 

1000 (Instron, USA) electrodynamic testing machine equipped with a 250N load cell.  

The pneumatic grips were modified with a thin layer of rubber and sandpaper, to reduce 

the likelihood of the fascicle slipping. The distance between the grips was set to 20 mm, 

and the fascicle was loaded into the top grip first to ensure the fascicle was close to taut 

and then pre-loaded to 0.2 N, to remove any slack in the sample. Fascicles underwent 

10 cycles of loading and unloading as a preconditioning step using a sine wave at 

frequency of 1 Hz and amplitude of 0.25mm. Immediately after preconditioning, 

fascicles were pulled to failure at a rate of 1mm/s. Force and extension data were 

continuously recorded at 100 Hz during preconditioning and the failure test. 

2.17.1.3. Analysis 

The percentage hysteresis and percentage stress relaxation were calculated between 

the first and last preconditioning cycles of the pre-conditioning data. The sample failure 

properties were calculated from the quasi-static test to failure. The start point was the 
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displacement at which the initial pre-load was reached, prior to preconditioning, and  

stress and strain were calculated using the estimated cross-sectional area and gauge 

length for each sample. A continuous modulus was calculated across every 10 data 

points of each stress strain curve, from which the maximum modulus value was 

determined [38]. 

2.17.2. Three Point Bending of the Humerus 

2.17.2.1. Sample Collection  

3-month old female animals were culled by cervical dislocation, before the skin was 

removed from both forelimbs. Incisions were made into the muscles at the shoulder and 

elbow to allow the separation of the humerus at both joints, any remaining ligaments 

and muscles at the joints were then severed. Each humerus was then wrapped in gauze 

soaked in PBS, before being placed in individually labelled bags and frozen at -20oC until 

required. 

2.17.2.2. Sample Testing and Analysis 

Three point bone bending was performed on both humeri using a Mach-1 Mechanical 

Tester v500cst (Biomomentum, Canada) equipped with a single-axis load cell of 100N 

and a 3-point bending attachment.  The humeri were loaded via the middle pin at 

0.05mm/s until failure. Mach-1 Motion software (Biomomentum, Canada) was used to 

record the displacement and load, before the data was exported to Excel for analysis. 

2.17.3. Tensile Testing of Skin 

2.17.3.1. Sample Collection  

3-month old female animals were culled by cervical dislocation. A large rectangle of skin 

was excised by making an incision in the skin in the centre of the abdomen from the 

pelvis to mid ribcage before cutting laterally around the whole body at top and bottom 

of the initial incision. The skin was then placed on blotting paper soaked in PBS, wrapped 

in gauze soaked in PBS, before being placed in individually labelled bags and frozen at -

20oC until required. 

2.17.3.2. Sample Testing and Analysis 

Samples were tested using the Mach-1 Mechanical Tester v500cst (Biomomentum, 

Canada) with Vertical (Z) stage (ILS100HA), Single-axis load cell of 100N and a tensile grip 
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attachment. The skin sample was thawed and cut into a dumbbell shaped sample, being 

careful that the integrity of the sample was not compromised. The wide edges of the 

sample were fixed in the tensile grip attachment and the sample was subjected to tensile 

rupture tests at 2mm/s. Mach-1 Motion software (Biomomentum, Canada) was used to 

record the displacement and load, before the data was exported to Excel for analysis. 

2.17.4. Micro-Indentation of the Articular Surface 

2.17.4.1. Sample Collection  

Animals were culled by cervical dislocation, before the skin was removed from both hind 

legs. Incisions were made into the muscles at the hip to allow the evulsion of the femoral 

head from the acetabulum, any remaining ligaments and muscles were then severed. 

Each leg was then wrapped in gauze soaked in PBS, before being placed in individually 

labelled bags and frozen at -20oC until required.  

2.17.4.2. Sample Testing and Analysis 

Samples were tested using the Mach-1 Mechanical Tester v500csst (Biomomentum, 

Canada) with Vertical (Z) stage(ILS100HA), Horizontal (x) stage (ILS100CC), and 

Horizontal (y) stage(ILS50BCC), Multi-axis Load cell 17N, spherical indenter and 1.3 MP 

colour camera.  

When required, legs were thawed at room temperature before the femur and tibia were 

separated and the articular surfaces dissected from the rest of the bone at the growth 

plate.  Tibial plateaus and femoral condyles were attached to a testing chamber filled 

with PBS. A camera registration system (Biomomentum, Canada) was used to image the 

tissue and a positional grid was superimposed on the image of the sample. The pixel 

coordinates were then converted into metric coordinates to allow for automated 

surface mapping. 

At each designated position a perpendicular indentation of 30µm is performed by 

moving all 3 orthogonal stages simultaneously and at different speeds resulting in a 

perpendicular indentation speed of 30µm/s. The force is measured using a spherical 

indenter (D=30 µm) attached to a multi-axial load cell (17N range). 

The structural stiffness at each position is calculated by dividing the perpendicular load 

by the perpendicular displacement. The mean structural stiffness of all indentation sites 
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within a designated region of the articular surface is calculated, to give an overall 

structural stiffness for each region.  

2.18. Micro Computed Tomography of Bones 

2.18.1. Sample Collection and Preparation 

Animals were culled at the appropriate time-point via intraperitoneal injection of 

Euthatal. Death was confirmed by cervical dislocation prior to dissection. Skin was 

removed from both forelimbs and hind limbs. Incisions were made into the muscles at 

the shoulder and hip to allow the separation of the limbs from their joints, any remaining 

ligaments and muscles at the joints were then severed. The spine and tail were 

amputated above and below the pelvis. Extra tissues were then trimmed from the bone, 

before placing the pelvis and limbs in 10% neutral buffered formalin for 48 hours before 

being transferred into 70% ethanol.  The femur, tibia and fibula were cut approximately 

6mm away from the knee joint using a Dremel tool and a diamond cutting wheel, before 

being rinsed in PBS to remove bone fragments. 

2.18.2. Sample Scanning 

Samples were wrapped in non-PVC cling film and then placed snugly inside an 

appropriately sized container made from polylactic acid (PLA) which was affixed to a 

brass chuck. The brass chuck was then inserted into the sample holder in the Skyscan 

1172 (Bruker, Belgium). The samples were scanned using a 0.5um Aluminium filter at 

50kV, 200 µA, 2x2 camera binning and pixel size 4.34 µm. Rotational steps were 0.7 

degrees with 2 frame averaging. 

2.18.3. Sample Analysis 

Samples were reconstructed using NRecon (Bruker, Belgium) with a beam hardening 

correction of 20% and a ring artefact correction 10. The resulting stacks were then re-

orientated using Dataviewer (Bruker, Belgium), before analysis and imaging was 

undertaken using CTAn (Bruker, Belgium). Regions of interest (ROIs) were outline in the 

epiphyseal bone, metaphyseal bone, or subchondral bone plate. These ROIs were then 

processed with a higher grayscale index of 66, and custom processing plug-ins of 

thresholding, despeckling and 3D analysis. 
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2.19. Optical Projection Tomography of Embryos 

Optical Projection Tomography (OPT) is an imaging technique similar to X-ray computed 

tomography, where visible light is used, instead of X-rays, and passed through an 

optically cleared sample. 

2.19.1. Sample Collection  

Embryos were harvested at 12.5 dpc from timed intercross matings. The uterus was 

removed from the pregnant animal and placed in ice cold PBS, and then kept on ice for 

20 minutes. The uterus was then transferred into a 10 cm Petri dish and covered with 

fresh ice-cold PBS.  The uterus was then opened to allow access to the individual yolk 

sacs. The yolk sac was then carefully cut open to release the embryos and placentas.  A 

sample of yolk sac was taken for genotyping, and the embryos separated from the 

placenta at the umbilical cord and placed in a labelled well of a 6 well plate filled with 

ice cold PBS. This process was repeated until all embryos were in individual wells of PBS. 

Any blood clots that formed at the navel were removed and the embryo were left on ice 

for another few minutes before being thoroughly washed to remove any remaining 

blood, before being placed into fresh wells containing ice cold 4% PFA.  The samples 

were then kept at 4oC overnight. The embryos were then embedded in agarose in a 

cylindrical mould, and mounted to a magnetic chuck. The agarose is then dehydrated 

using multiple changes of 100% methanol, before clearing with a solution of 1 part 

benzyl alcohol to 2 parts benzyl benzoate (BABB). 

2.19.2. Sample Scanning and Analysis 

Scanning of the embryos was undertaken by Dr James Cleak in the MRC Harwell 

molecular biology group using a custom built OPT system and software (labview) [242]. 

Images were reconstructed using Nrecon (Bruker). 

 

2.20. Collagen Analysis of Tendons 

2.20.1. Harvesting of Tail Tendons 

4-month old mice were culled by cervical dislocation and the tails were dissected from 

the body. Each tail was placed in a separate 100mm Petri dish in PBS containing 1% 

penicillin/streptomycin. The skin was scored along the length and then removed to 
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expose the bundles of tail tendons. Using two pairs of robust forceps, the tail was held 

with one set of forceps at the base and sections of the tail with attached tendons were 

removed by pulling with the second set of forceps upwards to the base in sections.  The 

tendons were cut away from the bone using dissection scissors, placed in a 

microcentrifuge tube and stored at -20oC. 

2.20.2. Extraction of Collagen 

Tail tendon samples were thawed at room temperature before approximately 15mg of 

each sample was placed in a corresponding 15ml Falcon tube. 3ml Pepsin (25µg/ml)  in 

0.5M acetic acid  was added to each falcon tube and digested at 4oC for 48 hours with 

shaking. 

2.20.3. Analysis of Collagen Content 

The tendon extracts were then diluted to 0.25mg/ml, before diluting 1:3 in LDS sample 

buffer (Nupage). 20µl was then run on 4-12% Tris Bis gel gels at 200V for 100 minutes. 

The gels were then stained using brilliant Coomassie blue for 30 minutes and then de-

stained using a solution of methanol and 0.5M acetic acid in a 50/50 ratio, changing the 

solution as required. The gel was then imaged using the Biorad Gel Doc XR with a white 

light conversion screen and Image lab 5.1 software. 

2.21. Mouse Embryonic Fibroblasts 

2.21.1. Fibroblast Harvest 

Embryos were harvested at 12.5 dpc from timed intercross matings. Embryos were 

culled by decapitation and placed in individual wells of 6 well plates filled with ice cold 

PBS. The organs, including the heart and liver were then removed from the abdominal 

cavity and discarded along with the head, tail tips were retained for genotyping 

purposes. Any blood clots were washed from the embryos, before placing them into 

individual wells of a 6 well plate with 1.5ml of 0.25% Trypsin. The embryos were then 

minced using a sterile scalpel blade, before being incubated for 5 minutes at 37oC in a 

shaking incubator. The embryos were then further homogenised by drawing the minced 

embryo and trypsin solution through a 21G needle 5 times. 5 ml of standard MEF media 

(see section 2.6) was then added to inactivate the trypsin. The plate was then placed in 
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an incubator at 37oC and 5% CO2 overnight to allow the cells to adhere, before changing 

the media for fresh media the next day. 

2.21.2. Cell Growth and Maintenance 

When the cells reached 90% confluence, the cells were transferred to a T25 flask. The 

old media was removed and the cells were gently washed using 2ml of pre-warmed 

DPBS. 1 ml of 0.05% Trypsin-EDTA was added to the well after the removal of the DPBS, 

and the plates were returned to the incubator until the cells had fully dissociated. The 

trypsin was then deactivated by adding 2ml standard MEF media. The 3 ml containing 

the dissociated cells were then transferred to a T-25 flask containing 7ml of standard 

MEF media. The media was then changed for fresh standard MEF media the next day. 

While the cells were growing the media was changed every few days. The media was 

aspirated out of the flask; the cells were then washed gently with pre-warmed DPBS, 

which was then aspirated and then 10 ml pre-warmed standard MEF media was carefully 

added to the flask. 

When the cells reached 90% confluence, the cells were split 1 in 20 using the same 

technique as outlined above. 

To preserve the cell lines at an early passage, a flask from each MEF line was frozen from 

the second splitting of passage 2 cells. 

2.22. Destabilisation of the Medial Meniscus (DMM) 

The surgical method for DMM under aseptic conditions is as described in Blease et al. 

[243]. Briefly, 10-week old animals were anaesthetised using an intraperitoneal injection 

of Ketamine/Xylazine as well as an analgesic injection of 0.1ml of Torbugesic 

(0.25mg/ml) and Vetergesic (0.025mg/ml) via subcutaneous injection. Anaesthesia was 

maintained using isoflurane at 0.5% in oxygen at 2 litres/minute. 

The knee was shaved, and swabbed with chlorhexidine, before an initial incision, 8 to 12 

mm long, was made medially to the knee with a scalpel exposing the parapatellar 

ligament. A secondary incision  was then made medially to the white parapatellar 

ligament. The medial meniscotibial ligament (MMTL) was then identified and severed 

using a microsurgical knife. Any bleeding was staunched with a sterile surgical swab. The 

joint capsule was then closed with a vicryl suture, and the dermal layer was then closed 
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using ethilon sutures. The mice were allowed to recover in a warmed recovery box and 

when weight-bearing returned to their home cage. The animals were culled 6 weeks 

post-surgery by cervical dislocation, and the hind legs fixed in 10% neutral buffered 

formalin for 48 hours before being transferred to 70% ethanol. 

Histological processing of the knee joints was carried out by the histology department 

at the Kennedy Centre for Rheumatology. Safranin O stained sections were then 

evaluated by OARSI scoring by two skilled evaluators. 

2.23. Western Blotting 

Cells were harvested by dissociating cells by adding 0.05% Trypsin-EDTA, when fully 

dissociated the trypsin was deactivated by adding 5ml media, before centrifugation at 

4oC at 800xg for 5 minutes. The media/trypsin was then siphoned off, before washing in 

ice cold PBS.  The cells were then lysed using a pellet pestle (Kimble) and 250µl Cell Lytic 

MT with phosphatase and protease inhibitors. 

Protein concentration was assessed using a Bradford assay using a uQuant plate reader 

(Biotek). 20µg of protein was mixed with LDS sample buffer (NUpage) and reducing 

agent (Nupage) and boiled at 95oC for 10 minutes before being run on a 4-12% Tris-Bis 

gel at 200V for 60 minutes in MOPs running buffer (see section 2.5). Proteins were then 

transferred to a nitrocellulose membrane (Invitrogen) with a 0.45µm pore size in 

transfer buffer (see section 2.5). 

The membrane was then blocked using 5% w/v milk powder in TBST (see section 2.5) for 

60 minutes with shaking. Primary antibodies were diluted in 5% w/v milk powder in TBST 

(see section 2.3 for dilutions) and incubated at 4oC overnight with shaking. The 

membrane was then washed in 3 changes of TBST with shaking for 5 minutes each time 

before incubating with secondary antibodies diluted in 5% w/v milk powder in TBST (see 

section 2.3 for dilutions) for an hour at room temperature. Fluorescent antibodies were 

protected from the light. The membrane was then dried and protected from the light 

before imaging using the Li-COR Odyssey Cl-X, and image studio lite software (Li-COR). 
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2.24. Statistical Analysis 

Statistical analysis was performed using Prism 7 (Graphpad).  Comparisons between 2 

groups were performed using unpaired Student’s t-test. Where more than two groups 

were analysed, either a one-way or a two-way ANOVA was used with Bonferoni 

correction. Chi squared tests were used to assess viability. Mann- Whitney test was used 

were non-parametric tests were required, for example to analyse osteophyte 

development. Results were considered significant at p<0.05.  

2.25. ARRIVE Guidelines 

The ARRIVE guideline (Animal Research: Reporting of In Vivo Experiments) originally 

published in 2010, and subsequently modified in 2020, are a checklist of information to 

include when describing animal research [244].  These guidelines are intended to 

maximise the reliability and quality of research, and to enable better reproducibility and 

transparency. This includes guidelines covering parameters, such as sample size, 

inclusion and exclusion criteria, blinding and statistical methods. The reporting of data 

in this thesis will endeavour to follow these guidelines. 
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Chapter 3: Identification and Initial 

Characterisation of Phenotypes 

Associated with a Point Mutation in 

Col1a2
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3.1. Introduction 

This chapter describes the identification and characterisation of a novel mutant mouse 

line carrying a mutation in Col1a2.  The mouse line was identified in the Harwell Ageing 

Screen, which was a large-scale N-ethyl-N-nitrosourea (ENU) mutagenesis screen, 

whereby a forward genetics approach was utilised to identify novel mutations. The 

majority of ENU mutagenesis screens age the mice for only a few weeks or months, and 

therefore only identify mutations relating to early onset disease [235, 236, 245]. The 

Harwell Ageing Screen addressed this by ageing the animals to 18 months to facilitate 

identification of mutations causing late onset or chronic phenotypes, in addition to the 

mutations causing early onset phenotypes.  We live in an ageing society with increased 

populations of older people, which has also increased the burden of late onset disease.  

Identifying novel models of disease, and their causative mutations, is an important route 

to therapy, disease prevention and a reduction in this disease burden. 

Sperm and DNA from each G1 founder animal was archived, and two large G3 cohorts 

(totalling ~100 mice) were bred from each G1 founder to ensure, even in lines where the 

causative mutation was recessive, that there were enough animals to identify the 

phenotype and map the mutation without further breeding. The G3 cohorts underwent 

a recurrent phenotyping regimen until a terminal time point at 18 months of age [238]. 

Further work to identify the causative mutations and characterise the mutations were 

undertaken on lines displaying a phenotype. Further details of the ageing screen and 

breeding schemes are detailed in Sections 1.41 and 2.6.2. 

The line Muta-Ped-107 (MP-107), which was initially identified by X-ray imaging as 

having early onset mild bone abnormalities, including curved olecranon at the elbow, 

and splayed ischia at the pelvis, subsequently developed late onset OA at the knee joint. 

The causative mutation was identified as a splice variant in the gene Col1a2.  In addition 

to describing the initial identification of the phenotype in the line MP-107 and the 

determination of the causative mutation; this chapter will also describe a more in-depth 

phenotyping pipeline involving purpose bred cohorts, tailored to the phenotypes 

observed in the original G3 cohort, to further characterise the progression of the 

phenotypes in this mutant. 
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3.2. Initial identification of Mutants by X-ray Imaging 

As part of the wider Ageing Screen phenotyping pipeline, X-ray imaging was performed 

at 3, 12 and 18 months of age on all females in the G3 cohort, providing the animals were 

sufficiently healthy.  At 3 months of age a number of animals were noted to have mild 

bone abnormalities including a curved olecranon at the elbow, widened or splayed ischia 

at the pelvis, or both.  

The pelvis can be viewed as two halves, known as coxae, with each coxae made up of 

the ischium, ilium and pubis (plurals- ischia, ilia and pubes), which are fused to form a 

single unit, and the two coxae are joined together by the sacrum.  The ischia and pubes 

are the posterior part of the pelvis, with the ischia forming the dorsal section and the 

pubes forming the ventral section. Generally, the ischia of the mice follow the trajectory 

of the ilia in a symmetrical manner, with the tuberosity of ischium (the most posterior 

point of the ischium) aligning with the body of the ilium. Where one or both ischia 

deviate outside of this trajectory, the animals were deemed to have the ‘splayed ischia’ 

phenotype (Figure 3.1). 

 

Figure 3.1. Examples of high-resolution radiographs of affected and unaffected pelvises, 
with annotation to show how the phenotype was defined. The blue l ines denote the 
trajectory of the ilia and pass through the acetabulum, where the tuberosity of ischium 
deviates outside of these paral lel  l ines, the animal  was deemed to have the ‘splayed 
ischia’  phenotype (red arrows). These radiographs are to show how the phenotype was 
defined and are not G3  animals.  

The olecranon is the proximal part of the ulna, and projects beyond the semilunar notch, 

where the trochlear of the humerus is seated. Generally, the olecranon follows the same 

trajectory as the ulna, where the olecranon deviates outside of this trajectory, the 

animals were deemed to have the ‘curved olecranon’ phenotype (Figure 3.2). 
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Figure 3.2.  Examples of high-resolution radiographs of affected and unaffected 
olecranons,  with annotation to show how the phenotype was defined. The blue lines 
denote the trajectory of the ulna and pass through the semilunar notch, where the 
olecranon deviates from the trajectory, the animal was deemed to have the ‘curved 
olecranon’ phenotype (red arrow). These radiographs are to show how the phenotype was 
defined and are not G3  animals.  

 

Analysis of the radiographs revealed that at 3 months of age, 11 of 48 animals exhibited 

the splayed ischia phenotype, and 8 of 48 animals exhibited the curved olecranon 

phenotype (Table 3.1 and Figure 3.32). 

3 months Ischia Olecranon Knee Total 
Affected 11 8 0 15 
Unaffected 37 40 48 33 
Total 48 48 48 48 
Percentage affected 22.92% 16.67% 0% 31.25% 

 

Table 3.1.  Table showing numbers of animals with each phenotype at  3 months of age.  
The phenotypes are recorded in isolation in this table and therefore animals with multiple 
phenotypes may appear in more than one phenotype column, however total number of 
animals affected are recorded in the last column 
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Figure 3.3.  Radiographs showing affected and unaffected animals at 3 months of age. (A) 
The unaffected animals showed no skeletal abnormalit ies. (B) and (C) The affected 
animals either showed a curved olecranon at one or both elbows (Orange arrows),  or 
splayed ischia at the pelvis (Blue arrows) or a combination of both phenotypes.  

At the 12-month time point, in addition to the abnormalities noted at the ischia and 

olecranon at 3 months, some animals appeared to show abnormal bone formation at 

the knee joints. This abnormal bone formation varied in appearance, but the common 

factor was that bone appeared to form in the vicinity of the knee, but outside of the 

areas where bone normally forms (Figure 3.4).  
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Figure 3.4.  Examples of high-resolution radiographs of affected and unaffected knee 
joints, with annotation to show how the phenotype was defined. The blue arrow on the 
unaffected knee marks the fabella, a sesamoid bone which is embedded in tendon behind 
the knee, this is not an example of abnormal bone growth. The red arrow on the affected 
knee marks the abnormal bone growth at the knee. These radiographs are to show how 
the phenotype was defined and are not G3  animals. 

Analysis of the radiographs revealed that at 12 months of age, 10 of 39 animals exhibited 

the splayed ischia phenotype, 6 of 39 animals exhibited the curved olecranon 

phenotype, and 10 of 39 animals exhibited the abnormal bone growth at the knee 

phenotype (Table 3.2 and Figure 3.5).  

12 months Ischia Olecranon  Knee Total  
Affected 10* 6* 10 16 
Unaffected 29 33 29 23 
Total 39 39 39 39 
Percentage Affected 25.64% 15.38% 25.64% 41.03% 

 

Table 3.2. Table showing numbers of animals with each phenotype at 12 months of age.  
The phenotypes are recorded in isolation in this table and therefore animals with multiple 
phenotypes may appear in more than one phenotype column, however total number of 
animals affected are recorded in the last column. The numbers marked with an asterix (*) 
are lower than numbers record at 3 months, due to some animals being on health checks 
and therefore unable to undergo anaesthesia or were culled for welfare reasons.  
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Figure 3.5.  Radiographs showing affected and unaffected animals at 12 months of age. 
The unaffected animals (A) showed no skeletal abnormalit ies. The affected animals (B & 
C) either showed a curved olecranon at one or both elbows (not shown in this figure),  or 
splayed ischia at the pelvis (Blue arrows), or abnormal bone growth at the knee joint (Red 
arrows), or a combination of phenotypes.   
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At the 18-month time point, in addition to the abnormalities noted at the ischia and 

olecranon at 3 months, and the abnormal bone formation at the knee joints noted at 12 

months, further animals developed abnormal bone formation at the knee joints.  The 

bone formations noted at 12 months had also increased in size (Table 3.3 and Figure 

3.6). 

18 months Ischia Olecranon Knee Total  
Affected 10* 8 20 21 
Unaffected 29 31 19 18 
Total 39 39 39 39 
Percentage Affected 25.64% 20.51% 51.28% 53.85% 

 

Table 3.3. Table showing numbers of animals with each phenotype at 18 months of age. 
The phenotypes are recorded in isolation in this table and therefore animals with multiple 
phenotypes may appear in more than one phenotype column, however the total number 
of animals affected are recorded in the last column. The number marked with an asterix 
(*) is lower than the number recorded at 3 months, due to some animals being culled for 
welfare reasons.  
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Figure 3.6.  Radiographs showing affected and unaffected animals at 18 months of age. 
The unaffected animals (A) showed no skeletal abnormalit ies. The affected animals (B & 
C) either showed a curved olecranon at one or both elbows (not shown in this figure),  or 
splayed ischia at the pelvis (Blue arrows), or abnormal bone growth at the knee joint (Red 
Arrows), or a combination of phenotypes.  

  



 

100 
 

The abnormalities observed at the ischia and olecranon of these animals did not 

progress in severity, or appear at later time points had they not already manifested by 

3 months of age.  Addressing each phenotype individually, the splayed ischia phenotype 

affected between 22 and 26% of animals, the increase in affected animals by percentage 

was due to a reduction in unaffected animals at the later time points. The curved 

olecranon phenotype affected between 16 and 21% of animals, again the increase in 

affected animals by percentage was due to a reduction in unaffected animals at the later 

time point.  The knee phenotype affected between 41 and 54%, this time the increase 

in affected animals by percentage was due to an increase in affected animals rather than 

a reduction in unaffected animals at the later time points. 

3.3. Mapping and Identification of the Causative Mutation in MP-107 

3.3.1. Mapping the Mutation 

In order to map the causative mutation(s), DNA was extracted from post mortem tail 

biopsies from 7 affected animals (with all three phenotypes) and an unaffected control 

animal. 350ng of DNA was sent to Geneseek® to be run on the GigaMUGA panel- 

143,259-probe Illumina Infinium II array.  The GigaMUGA panel identifies Single 

Nucleotide Polymorphisms (SNPs) which are unique to each particular background 

strain. As the G3 animals which underwent phenotyping have a mixed background, it is 

possible to use the SNPs to identify which portions of the genome were inherited from 

each ancestral strain. The original mutation was induced in a C57BL/6J mouse, therefore 

any mutation caused by the ENU will be within the C57BL/6J regions of the genome.  A 

dominant causative mutation would need to be homozygous or heterozygous for 

C57BL/6J SNPs, whereas if the mutation was recessive the region would need to be 

homozygous for C57BL/6J SNPs.  

 

A single region was identified on Chromosome 6 from the SNP rs13478719 located at 

Chr6:38545339 to the proximal end of the chromosome, where all affected animals 

were either heterozygous or homozygous for C57BL/6J, and an unaffected control 

animal was homozygous for C3H.Pde6b+.  This means all affected animals had at least 

one C57BL/6J region which could contain the causative mutation whilst the unaffected 

control animal had no C57BL/6J alleles, and cannot therefore contain the causative 
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mutation (Figure 3.7).  The mouse MP-107-2.11d was heterozygous for C57BL/6J at the 

SNPs proximal to SNP rs13478719 and homozygous for C3H.Pde6b+ at SNP rs13478719.  

This indicates the boundary of the region of interest, as any ENU mutation affecting the 

affected animals listed could only occur on the C57BL/6J genome, and therefore cannot 

be after Chr6:38545339. 

 

 
Figure 3.7. SNP mapping panel showing the region of interest on Chromosome 6. All  
affected animals have at least one C57BL/6J SNP in the ~39Mb region at the proximal end 
of Chromosome 6, indicating that the causative mutation or mutations are contained 
within that region. 

At this stage it was not possible to say if all phenotypes were caused by a single 

mutation, however as only one region was identified, if separate mutations are causing 

these phenotypes, all the causative mutations reside within the same region of the 

genome. 
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3.3.2. Whole Genome Sequencing 

Whole genome sequencing (WGS) was performed on DNA from the G1 founder animal, 

to identify all possible ENU induced mutations in the G3 cohort, which can subsequently 

be investigated. WGS was used over exome sequencing as although the ‘majority of 

disease-causing mutations’ are located within exons [246] for the purpose of this screen 

it was important not to be limited to only exonic information. 

The mapping data indicates that the causative mutation(s) must reside within the ~39 

Mb region at the proximal end of Chromosome 6.  The mutations detected within this 

region were assessed for candidates.  A total of 633 mutations were identified in this 

region, which are summarised in Table 3.4. Mutations are ranked by confidence, where 

the high confidence mutations have a quality score over 200 and a read depth of over 

3, medium confidence have a quality score of between 101 and 200 and a read depth of 

over 3, and the remaining mutations are classed as low confidence [238, 247]. Reduced 

read depth or quality scores may reduce confidence that the mutation identified is in 

fact present, and this is reflected in the confidence groups. 

Type of Variant 
Confidence 

Total High Medium Low 
3 prime UTR variant 2 0 5 7 
5 prime UTR variant 0 1 0 1 

Downstream gene variant 2 0 20 22 
Intergenic variant 31 31 253 315 

Intron variant 18 21 204 243 
Missense variant 0 0 0 0 

Non coding exon variant 0 0 1 1 
Synonymous variant 0 0 0 0 
Splice region variant 1 0 0 1 

Upstream gene variant 3 1 39 43 
Total 57 54 522 633 

 

Table 3.4.  Summary of al l mutations identified within the ~39Mb region on the proximal  
end of Chromosome 6, split by confidence (columns) and classification (rows). 

The 57 high confidence mutations are listed in Table 3.5.  
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Position Reference Alternate Functional Class Gene 
3215592 A G Intergenic variant - 
3625093 A G Intergenic variant - 
3877828 T G Intergenic variant - 
4228643 A G Intergenic variant - 
4276412 T G Intergenic variant - 
4521226 T A Splice region variant Col1a2 
4833259 T C Downstream gene variant - 
4920383 A T Intron variant Ppp1r9a 
6470041 A T Intron variant Gm20617 
7113185 A G Intergenic variant - 
7403048 A T Intergenic variant - 
7717449 A G Intergenic variant - 
8506789 C T Intron variant Gm16039 
8877658 G A Intergenic variant - 
8960717 A T Intron variant Nxph1 
9317785 C T Intergenic variant - 
9384727 G A Intergenic variant - 
9501174 A C Intergenic variant - 
9806235 T A Intergenic variant - 

10140012 A C Intergenic variant - 
10368340 A G Intergenic variant - 
10611992 A T Intergenic variant - 
11799123 T A Intergenic variant - 
12119199 T A Intergenic variant - 
13926012 G A Intron variant - 
14014424 G A Intron variant - 
14226943 G T Intergenic variant - 
14755277 A G Upstream gene variant Ppp1r3a 
14993940 T C Intron variant Foxp2 
16532319 A G Intergenic variant - 
19222245 G T Intergenic variant - 
20081045 C T Intergenic variant - 
20168585 G T Intergenic variant - 
20457452 C T Intergenic variant - 
23160716 G C Upstream gene variant - 
23445271 A G Intron variant Cadps2 
24374700 C G Intergenic variant - 
24530910 C A Intron variant Asb15 
25590535 C A Intergenic variant - 
26646401 T C Intergenic variant - 
27257089 A T Intergenic variant - 
29618661 G A Intergenic variant - 
29912296 T A 3' prime UTR variant Ahcyl2 
31247325 T C Intron variant 2210408F21Rik 
32653009 C A Intergenic variant - 
33093143 T C Upstream gene variant - 
34361912 C T Intron variant Akr1b8 
34807920 A T Intron variant Agbl3 
35978485 A C Downstream gene variant - 
36263578 C G Intron variant 9330158H04Rik 
37062707 T A Intron variant Dgki 
37160743 A G Intron variant Dgki 
37200104 T C Intron variant Dgki 
37283938 T C Intron variant Dgki 
37837022 A G Intergenic variant - 
38291687 G A 3' prime UTR variant Zc3hav1l 
38568926 T C Intron variant Luc7l2 

 

Table 3.5.  Summary of the 57 high confidence mutations identif ied within the ~39 Mb 
region on Chromosome 6. The Col1a2  mutation highlighted is the most l ikely candidate, 
as it is within 3 bases of a spl ice acceptor site and is therefore the most likely candidate 
to affect the coding sequence. 



 

104 
 

Previous publications on ENU mutagenesis screening have found that mutations 

affecting coding regions are the most common cause for detected phenotypes [235, 236, 

238, 245]. In this case, there were no coding mutations at any confidence level, however, 

there was a high confident splice region variant in Col1a2, a thymine (T) to adenine (A) 

transversion at position 4521226.  Splice region variants, can cause coding changes by 

affecting splicing. In this case the mutation is within 3 bases of the splice acceptor site 

flanking exon 22 in Col1a2 and could therefore affect the coding of Col1a2.   

3.3.3. Confirmation of Mutation 

The splice variant in Col1a2, was the candidate deemed to be the most likely to be the 

causative mutation, as there were no coding mutations, and this mutation may have an 

impact on protein sequence or expression. For this reason, Sanger sequencing was used 

to confirm the T to A transversion 3 base pairs from the splice acceptor site downstream 

of Exon 22 in Col1a2 was present.  

Genomic DNA (gDNA) was extracted from tail from the G1 founder animal, an affected 

G3 and unaffected control. This gDNA was sequenced, and both the G1 and affected G3 

proved to be heterozygous for the mutation, whilst the unaffected control was wild-type 

for the mutation (Figure 3.8). This demonstrates that the mutation identified in the G1 

WGS is a real mutation and that it has been inherited by at least one animal exhibiting 

the observed phenotypes.  

 

Figure 3.8. Sequencing data for  affected and unaffected animals. Both the G1 and a G3 
affected animal showed the presence of 2 peaks at the mutation site in both, due to being 
heterozygous for the mutation and therefore having one wild-type allele and one mutant  
allele.  The unaffected G3 animal shows a single peak at the mutat ion site as it  has two 
copies of the wild-type al lele.  
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3.4. Analysis of Initial Phenotyping by Genotype 

Having confirmed the presence of a Col1a2 mutation in the G1 animal and an affected 

G3, a Lightscanner assay was developed to enable quick and efficient genotyping. 

Animals which are homozygous, heterozygous or wild-type for the Col1a2 mutation will 

be referred to as Col1a2107/107, Col1a2+/107, and Col1a2+/+respectively.  The G3 animals 

from the original cohort were then genotyped, and the phenotyping data was then 

correlated to genotype. The genotyping revealed the absence of Col1a2107/107 animals in 

the G3 cohort indicating that the mutation is likely to be homozygous lethal, and this was 

supported by the ratio of the remaining genotypes of 2:1 Col1a2+/107 to Col1a2+/+, which 

is consistent with expected Mendelian ratios [248, 249] (Figure 3.9). 

 

Figure 3.9.  Genotyping data from the original G3 cohort. There were no homozygous 
(Col1a21 0 7/ 1 07) animals present and a 2:1 ratio of heterozygous (Col1a2+/ 10 7)  to wild-type 
(Col1a2+/ +) animals indicating that the mutation is homozygous lethal.  

 

3.4.1. X-ray Imaging of the MP-107 G3 cohort 

Genotyping of the animals imaged by X-ray revealed that all the animals displaying any 

phenotype were heterozygous, with the exception of 3 animals, which were of unknown 

genotype as the animals were culled due to welfare concerns and tissue for genotyping 

was not available. At 3 months of age, approximately 50% of the unaffected animals 
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were heterozygous, reducing to approximately 28% at 18 months. This data indicates 

that while it is likely that all three phenotypes are caused by the observed mutation in 

Col1a2, the mutation either has reduced penetrance, or is causing changes which are 

not observable using this phenotyping technique.  Although 100% of the affected 

animals with genotyping data are heterozygous for this mutation, it does not exclude 

the possibility that a separate mutation within this region could be causing any of these 

phenotypes.  

 

Table 3.6.  A table showing numbers of affected and unaffected animals at each t ime point, 

and the genotypes of those animals. A total of 5 animals included in the table were not 

genotyped, as they were culled for welfare reasons before the terminal time point, and 

there was no t issue available for genotyping. 

 

3.4.2. Dual Energy X-ray Analysis (DEXA) of the MP-107 G3 cohort 

DEXA, known as DXA in human studies, uses dual energy x-rays to analyse the body 

composition including BMC, BMD, fat and lean mass, and percentage fat. As part of the 

ageing screen pipeline, DEXA scans were performed on female animals at 3, 12 and 18 

months.  Length of the mouse from the nose tip to the base of the tail was measured 

and the animals were weighed prior to DEXA scan (10). The majority of the data 

collected showed no significant difference between the genotypes with the exception 

of BMD at the 12-month time point (WT-Mean-0.06441, StDev-0.0027, n-10; HET-Mean-

0.05786, StDev-0.004865, n-11; P=0.002, Student t-test), and length at 18-month time 

point (WT-Mean-10.85, StDev-0.32, n-11; HET-Mean-11.16, StDev-0.28, n-16; P=0.02, 

Student t-test).  Length was measured from nose to the base of tail using a ruler to the 

nearest millimetre, as such the measurement is not exact and subject to variability, and 

it is unlikely that this parameter is of any biological relevance. 
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Figure 3.10.  Graphs showing the DEXA data from female wild types and heterozygotes at 
3-,  12- and 18-month time points. (A) No significant difference in bone mineral content 
between genotypes at any time point. (B) Heterozygotes (HET, Col1a2+/ 1 0 7) have a 
significantly reduced bone mineral density at the 12-month t ime point compared to wild 
type (WT, Col1a2+/+).  (C) Heterozygotes (HET, Col1a2+/ 10 7) have a significantly higher 
length at the 18-month time point compared to wi ld type (WT, Col1a2+/ +).  No significant 
difference between genotypes at any time point in (D) Weight, (E) Fat mass, (F) Lean Mass 
or (G) Percentage Fat. *P<0.05, **P<0.01.  
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At 12 months, the heterozygous animals exhibited a reduced BMD compared with the 

wild-type animals, however at 18 months there was no significant difference between 

genotypes.  Comparing the means across the time points indicate that the heterozygous 

BMD increased between the 12-month and 18-month time points, meaning there was 

no difference at 18 months (Table 3.7). 

 Wild types Heterozygotes 
  

P Value 

 Mean SD N Mean SD N  
3 Months 0.060733 0.002531 9 0.05938 0.004296 10 0.446 

12 Months 0.06441 0.002715 10 0.057864 0.004865 11 0.002 

18 Months 0.064391 0.005814 11 0.062692 0.004787 12 0.605 

 

Table 3.7.  A table showing mean BMD for female animals of both genotypes across the 
three time points.  SD= standard deviation and N = numbers of heterozygotes (Col1a2+ / 1 0 7) 
and wild types (Col1a2+/ +)  across the three t ime points. Student T-test Significant P<0.05. 

It is possible that this was the result of 2 separate phenotypes, the mutation could be 

causing a reduction in BMD which is statistically significant at 12 months, this reduction 

is then mitigated due to the extra ossified tissue observed at 18 months by X-ray (Figure 

3.3.), which could increase the BMD. 

Although the male animals were not part of the X-ray/DEXA pipeline it was decided, 

after noting the extra bone growth at the knee in 12-month female animals, to scan 

male animals at 18-months.  As there are no other time points to compare the data to, 

the data is displayed with the 18-month female data, previously shown in Figure 3.10 

(Figure 3.11). 

It appears the only parameters with significant differences between genotypes in the 

male animals are to do with adiposity, as both % Fat (WT-Mean-18.61, StDev-3.498, n-

3; HET-Mean-26.33, StDev-4.360, n-9; T-Test-P=0.029) and Fat mass (WT-Mean-7.94, 

StDev-1.34, n-3; HET-Mean-12.58, StDev-2.84, n-9; T-Test-P=0.032) were significantly 

different between genotypes. The low n number of the wild types (3) coupled with one 

animal being considerably leaner (13.7% Fat) than the other animals sharing its 

genotype (20.4-21.7% Fat), mean that these results must be interpreted with caution. 
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Figure 3.11 .  Graphs showing the DEXA data from wild types and heterozygotes of both 
sexes at the 18-month time point. No significant difference in (A) Bone mineral content  
or (B) Bone mineral density between genotypes in either sex (C) Female heterozygotes 
(HET, Col1a2+ /1 0 7)  have a significantly higher length compared to female wi ld types (WT, 
Col1a2+ /+).  (D)  No significant difference in weight between genotypes in either sex. Male 
heterozygotes showed a signif icant increase in (E) Fat mass, and (G) Percentage Fat 
compared to male wild types, no significant differences were identified in females. (F) No 
significant difference in lean mass between genotypes in either sex. *P<0.05.  
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3.4.3. Clinical Chemistry of the MP-107 G3 cohort 

Blood was collected for a limited clinical chemistry panel at 6 and 12 months from 

female animals, from the lateral tail vein, and for a larger panel at the 18-month terminal 

time point, from the retro-orbital sinus.  The reason for only performing a limited panel 

at the earlier time points, is that this was part of a longitudinal study and therefore the 

amount of blood that could be collected was limited due to welfare regulations at 6 and 

12 months. There were no restrictions on the amount of blood that could be collected 

at the terminal time point, which enabled a larger panel of tests. Male animals in these 

pipelines were used for metabolic testing, and therefore not available for clinical 

chemistry. 

The plasma from these blood samples were separated via centrifugation and analysed 

by the clinical chemistry department at MRC Harwell using an Olympus AU400 

Bioanalyser (Table 3.8).  

To summarise the data presented below in Table 3.8- No significant differences between 

genotypes were detected in the following assays at any time point: urea, creatinine, 

calcium, inorganic phosphates, alkaline phosphatase (ALP), alanine aminotransferase 

(ALT), aspartate aminotransferase (AST), lactate dehydrogenase (LDH), amylase, 

creatine kinase (CK), sodium, potassium, total cholesterol, low-density lipoproteins 

(LDL), glucose, triglycerides, glycerol, free fatty acids, iron, uric acid, fructose. 

Significant differences were detected in 5 assays, but no assays showed significant 

differences at more than one time point. Details of these assays are listed below- 

 Total protein - The heterozygous animals displayed a significantly elevated level 

when compared with the wild-type animals in the 12-month cohort. No 

difference was identified in either the 6- or 18-month panel. 

 Albumin - The heterozygous animals displayed a significantly elevated level 

when compared with the wild-type animals in the 12-month cohort. No 

difference was identified in either the 6- or 18-month panel. 

 Bilirubin - The heterozygous animals displayed a significantly reduced level when 

compared with the wild-type animals in the 18-month cohort. No difference was 
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identified in the 12-month panel and this parameter was not included in the 6-

month panel. 

 Chloride - The heterozygous animals displayed a significantly elevated level 

when compared with the wild-type animals in the 18-month male cohort. This 

parameter was not included in either the 6- or 12-month panel. 

 High-density lipoproteins (HDL) - The heterozygous animals displayed a 

significantly reduced level when compared with the wild-type animals in the 18-

month cohort. This parameter was not included in either the 6- or 12-month 

panel. 

The significant differences that were identified in the 12-month samples, total protein 

and albumin, were not replicated in the 18-month samples, indicating that the 

differences noted between genotypes are either transient or false positives.   The 

chloride and HDL assays were only measured at 18 months and therefore it is not 

possible to know if these results are a late onset phenotype, or if these changes occurred 

in heterozygous animals from an earlier age. The significant difference in bilirubin only 

occurred at 18 months and there was no significant difference at 12 months indicating 

this may be a late onset phenotype. 
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3.4.4. Histology of the MP-107 G3 cohort 

To investigate the changes observed by X-ray, knee joints from heterozygous and wild-

type animals from the G3 cohort were fixed in 10% neutral buffered formalin before 

being processed for histology. Initial histology of heterozygote sagittal sections showed 

the observed bone growth appeared to be severe osteophyte formation, and that there 

was an absence of cartilage at the load bearing region of the tibial plateau and the 

femoral condyle (Figure 3.12). 

 

Figure 3.12.  H&E stained sections of knee joints from wild types and heterozygotes at 18 
months.  (A) The wild-type (WT, Col1a2+ /+) knee joint shows normal healthy carti lage at 
the articular surface (Blue arrow).  (B) The heterozygote (HET,  Col1a2+/ 1 07) knee joint 
shows severe osteophyte formation (Yellow arrow) and an absence of articular carti lage 
on the femoral condyle and tibial plateau (Red arrow).  

Due to the two-dimensional nature of histological sections, further sections on a 

different plane (coronal) were taken from knee joints from heterozygous and wild-type 

animals (Figure 3.13).  
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Figure 3.13.  Safranin O stained sections of knee joints from wild types and heterozygotes 
at 18 months.  (A) The wild-type joint (WT, Col1a2+/+) shows normal healthy carti lage at 
the articular surface (Blue arrow).  (B) The heterozygote knee (HET, Col1a2+/ 10 7) shows 
severe osteophyte formation (Yellow arrow) and an absence of articular cartilage on the 
femoral condyle and tibial plateau (Red arrow).(Medial  side indicated by M, Lateral side 
indicated by L).  

These coronal sections also showed the cartilage loss and severe osteophyte formation 

in heterozygotes.  However, it showed that the cartilage loss was not uniform across 

both tibial plateaus and femoral condyles, as appeared in the initial sections. This 

histology indicates a late onset OA phenotype develops in the heterozygotes. Col1a2 

mutations have previously been associated with osteogenesis imperfecta and Ehlers-

Danlos syndrome, but not with OA. 

3.5. Investigating the Effect of the Col1a2 Mutation on Coding DNA 

Having established the phenotypes present in this line, and that the Col1a2 mutation is 

present in all affected animals with genotyping data available, it is important to 

investigate what specific effect this mutation in the genomic DNA is having downstream. 

3.5.1. Sequencing of Embryo DNA Confirms the Homozygous Lethal 

Phenotype 

Genotyping of the original G3 cohort revealed that no homozygotes were present in the 

animals that were genotyped, and the ratios of heterozygotes to wild types indicated a 

homozygous lethal phenotype.  To investigate if this was the case, timed intercross 

matings between male heterozygotes (HET, Col1a2+/107) and female heterozygotes (HET, 

Col1a2+/107) were established to harvest embryos for genotyping.  Genotyping of 18.5 
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dpc embryos indicated that homozygotes (HOM, Col1a2107/107) were present.  Sanger 

sequencing of genomic DNA (gDNA) was used to confirm the presence of the mutation, 

that was indicated by the genotyping by Lightscanner (Figure 3.14).  The Sanger 

sequencing showed that in addition to the previously noted double peak for adenosine 

and thymine in the heterozygote and the single peak for thymine in the wild type, the 

homozygote displayed a single peak for adenosine, confirming that two copies of the 

mutation are present in these animals, and no wild-type allele is present. 

 

Figure 3.14.  Chromatographs showing the nucleotides present at position 4521226 for 
wi ld types, heterozygotes and homozygotes. The wild type (WT, Col1a2+/ + )  shows a single 
‘T’ peak indicating the presence of thymine on both alleles, the heterozygotes (HET,  
Col1a2+ /1 0 7) show a ‘T’ and an ‘A’ peaks indicat ing the presence of a thymine on one al lele 
and adenosine on the other, the homozygote (HOM, Col1a21 07 / 1 0 7)  shows a single ‘A’ peak 
indicating the presence of adenosine on both alleles.   
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3.5.2. Predicting the Impact of the Mutation on the Transcription of 

the Col1a2 Gene 

Splicing plays an essential role in the transcription of genomic sequence to coding 

sequence. Mutations in the splice region, either within or close to, the splice donor or 

acceptor site can have a profound effect on the splicing, leading to issues such as frame 

shifts and premature stop codons. Splice site prediction software was utilised to predict 

how this T to an A transversion might affect the coding DNA (cDNA) (Table 3.9). 

Using the reference sequence, the three software packages; Fruitfly, Netgene and ASSP, 

predicted 2 splice acceptor sites. One of which (AG2) was located immediately adjacent 

to the exon and was predicted by all three software packages, the other (AG1) was over 

80 bases away from the exon and was only predicted by one software package (Fruitfly). 

Using the mutant sequence, containing the T to an A transversion, 3 possible splice 

acceptor sites were predicted. The two mentioned in the paragraph above, which were 

identified in the reference sequence, and a third splice acceptor site (AG3) which was 

created by the T to an A transversion.  It should be noted that while Netgene and ASSP 

both predicted the novel splice acceptor site (AG3), they also predicted the splice 

acceptor site adjacent to the Exon (AG2) that was predicted using a reference transcript. 
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Reference Transcript 
CATATCTTTCCTCTTAG1GAGAAATGGTGCCCTGTCTTAGGAAACTCTATCTGATGAGATCTAAAGATTTCTCTA

ATCTCCTGCCATCTCATGCCCTTTCCTGCAG2GGCAGCCCTGGTTCTCGAGGTCTTCCTGGAGCTGATGGCAGA

GCTGGTGTAATGGTGAGTCACTCATCACTTACTTTCCAGGAAGGACCTTGATAA 

Intron       Exon       Predicted splice acceptor site       Site of  T to A transversion 

Software Type Score Confidence Cut off reached Predicted splice site Splice site 

FruitFly a Acceptor - 0.67# Yes cctgtcttAG^gaaactc AG1 

Acceptor - 0.94# Yes tttcctgcAG^ggcagcc AG2 

NetGene b Acceptor - 1* Yes tttcctgcAG^ggcagcc AG2 

ASSP c Acceptor 11.11 0.658 Yes tttcctgcAG^ggcagcc AG2 

AG- Splice acceptor site         ^ Intron/Exon boundary 

Mutant Transcript 
CATATCTTTCCTCTTAG1GAGAAATGGTGCCCTGTCTTAGGAAACTCTATCTGATGAGATCTAAAGATTTCTCTA

ATCTCCTGCCATCTCATGCCCTTTCCAG3CAG2GGCAGCCCTGGTTCTCGAGGTCTTCCTGGAGCTGATGGCAG

AGCTGGTGTAATGGTGAGTCACTCATCACTTACTTTCCAGGAAGGACCTTGATAA 

Intron       Exon       Predicted splice acceptor site       Site of  T to A transversion 

Software Type Score Confidence Cut off reached Predicted splice site Splice site 

FruitFly a Acceptor - 0.67# Yes cctgtcttAG^gaaactc AG1 

Acceptor - 0.8# Yes tttccAG^cagggcagcc AG3 

NetGene b 

 

Acceptor - 0.34* Yes tttccAG^cagggcagcc AG3 

Acceptor - 0.97* Yes tttccagcAG^ggcagcc AG2 

ASSP c Acceptor 7.867+ 0.468 Yes tttccAG^cagggcagcc AG3 

Acceptor 8.5+ 0.359 Yes tttccagcAG^ggcagcc AG2 

AG- Splice acceptor site         ^ Intron/Exon boundary 

Splice site predictor software 
a http://www.fruitfly.org/cgi-bin/seq tools/splice.pl (#Acceptor site cut off : 0.4) 

b http://www.cbs.dtu.dk/services/NetGene2 (*Acceptor site cut off:  0.2) 

c  http://wangcomputing.com/assp/evaluation.html (+Acceptor site cut off : 2.2) 

 

Table 3.9. A table showing the predicted splice acceptor sites from three different 
predictor tools.  All  three spl ice site prediction tools predicts an additional splice acceptor 
site in the mutant transcript,  created by the T to an A transversion 5 bases upstream of 
the intron-exon boundary.  
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This alternative splice acceptor site, occurring in the mutant sequence, is located 3 bases 

upstream of the original splice site, if this splice acceptor site is used three bases of 

intronic sequence would be incorporated into the exon as an extra codon. This is 

demonstrated in Figure 3.15 

 

Figure 3.15.  A diagram showing how the Col1a2  mutation affects the exon. The T to an A 
transversion creates a new splice acceptor site, leading to the incorporation of 3 bases 
of intronic sequence into the exon as an extra amino acid glutamine (Q).  

Collagen I alpha chains contain a repeating glycine motif, whereby every third amino 

acid is a glycine. This is very important for the formation of the tight triple helix of the 

heterotrimer. Disruption of this repeating motif is very often deleterious and causes a 

range of conditions including osteogenesis imperfecta (OI), Ehlers-Danlos Syndrome 

(EDS), and an overlap condition with elements of both diseases (OI/EDS). The 

incorporation of 3 intronic bases into Exon 22 will disrupt the repeating glycine motif, as 

the intronic bases ‘CAG’ codes for the amino acid Glutamine (Q), when incorporated into 

the exon.  This is demonstrated in Figure 3.16. 

 

Figure 3.16.  A diagram showing the disruption of the repeating glycine motif.  The 
alternative splice acceptor site disrupts the repeating glycine motif in the middle of the 
helical domain of Col1a2  by the insertion of the amino acid glutamine (Q). The glycines 
are represented by the red Gs and amino acids in the X-Y positions are shown in blue.  
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3.5.3. Confirmation of Effect of the Col1a2 Mutation on Coding DNA 

All splice site prediction tools used, predicted the creation of a novel splice acceptor site, 

which would be likely to cause the inclusion of intronic sequence as an extra amino acid. 

To validate this prediction Sanger sequencing of cDNA was used (Figure 3.17) 

The forward sequence using a 5’ primer (Figure 3.17A) shows the presence of two traces 

in both the heterozygous sample and in the homozygous sample, from the Exon 21/22 

boundary. The reverse sequence using a 3’ primer (Figure 3.17B) showed differences in 

the traces when compared with the forward sequence using a 5’ primer.  This is due to 

the 5’ primer starting to align the sequence in Exon 21 and then showing 2 traces from 

the splice site into Exon 22 and the 3’ primer starting to align the sequence in Exon 22 

and then showing 2 traces from the splice site into Exon 21.  In both cases the presence 

of the second trace is triggered at the Exon 21/22 boundary. 

The presence of a double trace in the heterozygous sample was expected as there is one 

wild-type allele and one mutant allele.  However, in the homozygous sample, where 

both alleles are mutant it was expected there would only be the single trace including 

the intronic sequence. The presence of a second trace indicates that, even in the 

presence of two copies of the mutant gDNA transcript, both splice sites located close to 

Exon 22 (AG2 and AG3 in Table 3.9), are being used. It is likely that this is because 

although a second splice site was created, the original splice site was not destroyed and 

the spliceosome is using both to some degree. It was predicted by 2 of the splice site 

prediction softwares (Netgene and ASSP) that the mutation would still allow for splicing 

at the original splice site. 
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Figure 3.17.  Sanger sequencing chromatograms from all three genotypes using both 
forward (5’->3’ primer) and reverse (3’->5’ primer). (A) Traces from wild type (WT, 
Col1a2+ /+),  heterozygotes (HET, Col1a2+ /1 0 7) and homozygotes (HOM, Col1a21 0 7/ 10 7) cDNA 
in the 5’->3’ direct ion.  The wild type displays the reference sequence only, and the 
heterozygote and homozygote display both the reference sequence and the mutant 
sequence (including the additional ‘CAG’ incorporated from the alternative splic ing), with 
multiple traces visible in  the region coding for Exon 22. (B) Traces from wild type (WT, 
Col1a2+ /+),  heterozygotes (HET, Col1a2+ /1 0 7) and homozygotes (HOM, Col1a21 0 7/ 10 7) cDNA 
in the 3’->5’ direct ion.  The wild type displays the reference sequence only, and the 
heterozygote and homozygote display both the reference sequence and the mutant 
sequence (including the additional ‘CAG’ incorporated from the alternative splic ing), with 
multiple traces visible in the region coding for Exon 21 and the insertion.  
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3.5.3.1. Confirmation of Alternative Splicing Using PCR 

Sanger sequencing confirmed the hypothesis that the mutation in Col1a2 would lead to 

alternative splicing and three bases of intronic sequence being incorporated into the 

cDNA, resulting in the insertion of an extra amino acid at the beginning of Exon 22. 

However, the sequencing chromatograms containing two separate traces are difficult to 

visualise, and could be interpreted incorrectly.  To confirm that the presence of multiple 

traces in the sequencing was due to the presence of multiple transcripts produced by 

the use of alternative splice acceptor sites, primers were designed across the Exon 21-

22 boundary to identify and confirm the alternative transcripts. One of the primers for 

the mutant primer set incorporated the inserted CAG, meaning that it would only 

amplify the mutant transcript with the insertion in the cDNA, the primers for the wild-

type primer set did not incorporate the inserted CAG, meaning that it would only amplify 

the wild-type transcript. The PCR products were then imaged on a gel (Figure 3.18). The 

results indicated that the homozygous and heterozygous animals contain both wild-type 

and mutant transcript, as previously seen in the sequencing chromatographs, and the 

wild type animal contains only the wild-type transcript. 

 

Figure 3.18.  PCR products showing the wild-type and mutant  transcripts across all  three 
genotypes. Mutant transcript was detected in heterozygous (HET, Col1a2+/ 10 7),  and 
homozygous (HOM, Col1a21 0 7/ 10 7) cDNA. Wild-type transcript was detected in wild-type 
(WT, Col1a2+/+),  heterozygous (HET, Col1a2+/ 1 07),  and homozygous (HOM, Col1a210 7/ 1 07) 
cDNA, despite the lack of wild-type alleles in the homozygous gDNA. For the primers used,  
see Section 2.2.2. 

3.5.3.2. Confirmation of Alternative Splicing Using qPCR 

The PCR of cDNA demonstrated that there was still wild-type transcript being produced 

in the mice that were homozygous for the mutation, despite not having a wild-type 
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allele.  In order to examine if the alternative use of the splice acceptor sites were uniform 

or random, relative expression of the 2 alternative transcripts were measured using 

custom Taqman probes (Figure 3.19). The expression data again showed that wild-type 

transcript was present in the homozygous mutant samples, however the wild-type 

transcript was present in much lower levels than in the heterozygous sample, indicating 

that the splicing occurs at the novel splice site preferentially.  The reason why splicing 

still occurs at the original splice site is unclear.  

 

Figure 3.19.  Graphs showing relative expression of wild-type and mutant transcript using 
custom Taqman probes across all three genotypes.  (A) The relative expression of the wild-
type transcript was shown to be significantly higher in wild types (WT, Col1a2+ /+),  than 
heterozygotes (HET, Col1a2+/ 10 7) and homozygotes (HOM, Col1a210 7/ 1 0 7),  and significantly  
higher in heterozygotes (HET, Col1a2+/ 1 07)  than homozygotes (HOM, Col1a210 7/ 1 07).  Note 
that homozygotes are producing wild-type transcript.  (B) The relat ive expression of the 
wild-type transcript was shown to be significantly lower in wild types (WT, Col1a2+/ +),  
than heterozygotes (HET, Col1a2+ /1 0 7) and homozygotes (HOM, Col1a21 0 7/ 10 7),  and 
significantly lower in heterozygotes (HET, Col1a2+/ 10 7) than homozygotes (HOM, 
Col1a21 07 / 1 0 7) . Note that wild types are not producing mutant transcript. (For all 
genotypes n=8, One-way Anova-*P<0.05, **P<0.01, *** P<0.001,  **** P<0.0001, ***** 
P<0.00001. For Taqman probe details see section 2.2.5).  

 

As previously stated, the disruption of the glycine repeating motif can have a severe 

effect on the collagen I heterotrimer. To investigate if the expression of Col1a1 was 

altered due to the mutation in Col1a2, relative expression of Col1a1 and Col1a2 was 

measured using Taqman probes (Figure 3.20). There is no significant difference between 

genotypes in the relative expression of Col1a2. The relative expression of Col1a1 is 

significantly reduced in the homozygotes, when compared to the heterozygotes and 

wild types.  This data likely means that in the homozygous Col1a2107/107 animals Col1a1 

is downregulated. The reason for this downregulation is unclear, however it may be 

related to impaired trimerisation of  the pro-collagen I molecule, as this is where the pro 
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α1 and pro α2 chains interact. Col1a1 expression has been found to be downregulated 

in chondrocytes of a mouse model of OI with a mutation in Col1a2 (G610C) [250].  

This reduction in relative expression may be dose dependant, as there is no difference 

between wild type and heterozygotes in Col1a1 expression, even with the increased 

levels of mutant transcript and decreased levels of wild-type transcript in the 

heterozygotes when compared with wild type. 

 

 

Figure 3.20.  Graphs showing relative expression of Col1a2  and Col1a1 across all three 
genotypes.  (A) There was no signif icant difference in relative expression of Col1a2 
between any of the genotypes.  (B) The relative expression of Col1a1 was shown to be 
significantly reduced in homozygotes (HOM, Col1a21 0 7/ 10 7),  when compared to 
heterozygotes (HET, Col1a2+/ 10 7) and wild types (WT, Col1a2+/ +),  there was no significant 
difference between to heterozygotes (HET,  Col1a2+/ 10 7) and wild types (WT, Col1a2+/ +).  
(For all genotypes n=8,     One-way ANOVA **P<0.01. Taqman probe used were Col1a1- 
Mn00801666_g1, Col1a2-Mm00483888_m1).  

 

3.6. Col1a2107/107 Phenotypes 

3.6.1. Identification of Perinatal Lethality in MP-107 Homozygotes 

We observed that there were no adult homozygous Col1a2107/107 animals in the G3 

cohort, or in subsequent cohorts produced. However, viable homozygous Col1a2107/107 

embryos were present at 18.5 dpc, indicating a perinatal lethal phenotype. In order to 

investigate the lethality and the phenotypes present in the homozygous Col1a2107/107 

embryos, intercross mating between heterozygous Col1a2+/107 male and heterozygous 

Col1a2+/107 female MP-107 animals were established. Initially the number of offspring 
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were recorded, and then genotyped 21 days postnatally (P21), and a subsequent cohort 

was harvested and genotyped at 18.5 dpc (Figure 3.21). 

The numbers of each genotype observed at 18.5 dpc do not differ significantly from 

Mendelian ratios (χ2= 5.13, 2df, P<0.05) and indicate that the homozygous animals are 

viable throughout gestation.  

By comparison, the analysis of P21 mice arising from the intercross mating between 

heterozygous Col1a2+/107 male and heterozygous Col1a2+/107 female MP-107 animals 

demonstrated a complete lack of homozygous Col1a2107/107animals. The numbers of 

surviving mice, heterozygotes and wild-type, conform to a 2:1 mendelian ratio that 

would be expected if homozygotes are embryonic lethal (χ2= 1.04, 1df, P<0.3).  In these 

intercross cohorts, the number of animals that were recorded at birth, but subsequently 

went missing prior to weaning were significant (11/50 animals born) suggesting that the 

Col1a2107/107 animals die shortly after birth.  If these missing animals were assumed to 

be homozygotes then the numbers conform to the expected mendelian ratio (χ2= 1.32, 

2df, P<0.5).   

In one subsequent litter, two animals were observed gasping and were culled for welfare 

reasons on the day of birth. Genotyping of these animals indicated that these animals 

were homozygote Col1a2107/107. 
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Figure 3.21.  Genotyping data of embryonic and weaned animals indicate a perinatal lethal 
phenotype. (A)Genotyping data from the original G3  cohort show that there were no 
homozygous (HOM, Col1a21 0 7/ 10 7) animals present and a 2:1 ratio of heterozygous (HET, 
Col1a2+ /1 0 7) to wild-type (WT, Col1a2+/+) animals indicating that the mutation is 
homozygous lethal. (B) Genotyping data for P21 animals produced from intercross 
matings between heterozygous Col1a2+/ 1 07  male and heterozygous Col1a2+/1 0 7  female MP-
107 animals showed that there were no homozygous (Col1a210 7/ 1 07) animals present.  
However, 22% of animals recorded at birth were found to be missing by weaning and were 
therefore not genotyped at P21. At P21 the heterozygous (Col1a2+/ 10 7)  to wild-type 
(Col1a2+/ +)  animals were not signif icantly different from the expected 2:1 Mendel ian 
ratios that would be expected if homozygotes are embryonic lethal (χ2= 1.04, 1df, P>0.3).   
(C) Genotyping data of the 18.5 dpc embryos collected from intercross mating between 
heterozygous Col1a2+/ 10 7  male and heterozygous Col1a2+/ 1 07  female MP-107 animals 
showed that homozygous (Col1a21 07 /1 0 7)  animals were viable at 18.5 dpc. The number of 
genotypes did not differ significantly from Mendelian rat ios (χ2= 5.13,  2df, P>0.05).   

 

3.6.2. Embryonic Lung Phenotype in MP-107 Homozygotes 

The perinatal lethal phenotype of the Col1a2107/107 animals could have a variety of 

causes. However, the observation of Col1a2107/107 pups gasping indicated that the 

respiratory system could be the cause. To investigate this, 18.5 dpc embryos were 

harvested and the lungs fixed for histological processing. Initial evaluation of H&E 

stained sections of the lungs showed a thickened interstitial mesenchyme with 

decreased space within the airways (Figure 3.22). 
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Figure 3.22.  Histological  sections of 18.5 dpc embryonic lung t issue of wild-type and 
homozygous embryos. Homozygous animals (HOM,  Col1a21 0 7/ 10 7)  (B&D) show a thickened 
interstit ial mesenchyme, and narrowed airways, compared to the wild-type animals (WT,  
Col1a2+ /+)  (A&C). Sections stained with haematoxylin and eosin (H&E), magnification of 
10x (A&B) and 40X (C&D). 

To quantify these apparent differences, the diameters of the airways and the number of 

airways were measured at X40 magnification [251] (Figure 3.23).  

 

Figure 3.23.  Analysis of airway size and airway number in the lungs of the three 
genotypes.  (A) Homozygotes (HOM, Col1a210 7/ 1 07) had significantly reduced airway 
diameters, when compared with wild types (WT, Col1a2+ /+),  no difference was detected 
between the heterozygotes (HET, Col1a2+/ 10 7  and the other two genotypes. (B) No 
significant difference was detected between genotypes in airway number. (ANOVA, * 
P<0.05, N- WT=8, Het=15,Hom=12).  

It was observed that the number of airways did not significantly vary between 

genotypes, however the Col1a2107/107 animals had significantly smaller airways, when 
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compared with the Col1a2+/+ animals.  There was no significant difference between the 

Col1a2+/107 animals, and either Col1a2+/+ or Col1a2107/107 animals.  This reduction in the 

size of the airways was likely due to the thickened interstitial mesenchyme expanding 

into the airways in the Col1a2107/107 animals. 

3.6.3. Whole Mount Embryonic Skeletal Staining of MP-107 Embryos 

Due to the lethal phenotype, it was not possible to observe any bone phenotype in the 

adult Col1a2107/107 animals. To investigate if there were any bone phenotypes in the 

Col1a2107/107 embryos, 18.5 dpc embryos were harvested and fixed, before undergoing 

skeletal staining using Alizarin red and Alcian blue. This staining allows the skeletal 

structure of the embryo to be visualised. Alizarin red binds to calcium, causing bones to 

be stained red, and Alcian blue binds to sulphated glycosaminoglycans present in 

cartilage, causing cartilaginous tissue to be stained blue [252] (Figure 3.24). 

 

Figure 3.24.  Whole-mount embryonic skeletal staining, of 18.5 dpc embryos of al l three 
genotypes using Alizarin red and Alcian blue.  All three genotypes, (A) wild type (WT,  
Col1a2+ /+),  (B) heterozygote (HET,  Col1a2+ /1 0 7) and (C) homozygote (HOM, Col1a210 7/ 1 07)  
show similar gross morphology at 18.5 dpc.  

There were no overt differences in size, including crown to rump length, however it was 

noted that the homozygous (Col1a2107/107) animals had some evidence of deformation 

in the long bones, including bones being angled rather than straight (Figure 3.25). The 

defects observed in the humeri and femurs are likely caused by breakage of the bones 

in utero, due to the angled rather than straight bone and deeper red staining indicating 
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presence of extra bone.  The presence of breaks in these bones indicate that the 

homozygous Col1a2107/107 mutation is leading to an OI phenotype. 

 

Figure 3.25 .  Dissected limbs of 18.5 dpc embryos of all three genotypes stained using 
Alizarin red and Alcian blue. (A) Wild type (WT,  Col1a2+ /+) and (B) heterozygotes (HET,  
Col1a2+ /1 0 7)  show no deformity of the long bones. (C) The humerus and femur of the 
homozygotes  (HOM, Col1a210 7/ 1 0 7)  shows apparent breakage, indicated by deeper red 
staining and a deviation in angle (red arrows) compared with the straight  bones seen in 
wi ld types (WT,  Col1a2+/+),  and heterozygotes (HET,  Col1a2+ /1 0 7) . Scale bar=5mm 

 

3.7. Deep Phenotyping of MP-107 Over a 2-18 Month Time Course 

3.7.1. Overview of Animals and Time Points 

The initial phenotyping cohort showed early mild bone abnormalities, and a late onset 

OA phenotype.  The main focus of this phenotyping was to investigate the OA 

phenotype, due to the progressive nature of the phenotype, and its clinical relevance. 

The ischia and olecranon phenotypes were also investigated, but to a lesser degree. 
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The presence of osteophytes was detectable by X-ray in a number of animals at 12 

months of age; however, the earliest point of detection is likely at some point between 

3 and 12 months. As part of an ageing pipeline, it was not possible to do histology on 

the joints until the terminal time point at 18 months, meaning there was no data on the 

early progression of the disease, only of late-stage OA. In order to overcome this, a time 

course was established with 7 cohorts, consisting of 10 wild type animals (5 of each sex) 

and 10 heterozygous animals (5 of each sex), totalling 140 animals.  These animals were 

aged to specific time points before undergoing a phenotyping pipeline, culminating in a 

terminal bleed, and harvesting of tissues to enable ex vivo analysis such as µCT and 

histology (Figure 3.26).  The time points chosen were 2, 4, 6, 9, 12, 15 and 18 months 

old.   

The fact that each cohort was bred only for a specific time point, not as part of a 

longitudinal study, has the benefit of allowing in-depth histology and µCT analysis at 

each time point, however it is not without its drawbacks. As previously mentioned, the 

splicing, and therefore effect of the mutation, varies and therefore there will be some 

variation between individual animals in each phenotype. The cohort size was designed 

to allow sufficient numbers for analysis, and to balance the logistics of ageing multiple 

cohorts before phenotyping. 
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Figure 3.26. A diagram showing the seven different cohorts and the phenotyping 
pipeline which each underwent. Each cohort was made up of 5 animals of each 
sex/genotype- (Male Het n=5, Male WT n=5, Female Het n=5, Female WT n=5), a ll 
animals underwent all  procedures, except a-only 4-, 9-,12- and 18-month cohorts, b-only 
4-,  9- and 18-month cohorts.  

 

3.7.2. X-ray Imaging of MP-107 Animals 

Each cohort underwent X-ray imaging to examine the bone phenotypes at the assigned 

time point. The main purpose of this imaging was to assess when the abnormal bone 

growth at the knee first presented, as the G3 cohort indicated the early phenotypes do 

not change in severity. Radiographs were taken under terminal anaesthesia, so that the 

resolution, and number, of images were not limited due to Home Office licence 

restrictions, and were evaluated for any abnormalities, blind to the genotype.   

High-resolution radiographs of examples of wild type and heterozygote pelvises at each 

of the time points, show evidence of splayed ischia in some heterozygotes at every time 

point (Figure 3.27), emphasising the variability in these phenotypes.  

High-resolution radiographs of examples of wild type and heterozygotes elbow joints at 

each of the time points, show evidence of curved olecranons in some heterozygotes at 
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every time point, with the exception of the 9-month time point where no animals 

exhibited the curved olecranon phenotype (Figure 3.28).  Additionally, radiographs of 

two heterozygous animals, one in each of the 4- and 6-month cohorts, which exhibited 

the curved olecranon, also exhibited evidence of a fracture in the ulna (shown in Figure 

3.28). While a break was only visible by X-ray in two of the animals exhibiting the curved 

olecranon phenotype, the phenotype may be the result of a fracture in the ulna, while 

the bone was growing. This could explain the variability in the phenotype, as only 

heterozygotes that sustained a fracture would develop this phenotype. 

High-resolution radiographs of examples of wild type and heterozygotes knee joints at 

each of the time points show evidence of abnormal bone growth at the knee in 

heterozygotes at the 9-, 12-, 15- and 18-month time points (Figure 3.29). 

Lower resolution full body radiographs of heterozygotes and wild types at each time 

point are included in Appendix 3. 
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Figure 3.27.  Examples of high-resolut ion radiographs of wild-type (WT, Col1a2+/+) and 
heterozygous (HET, Col1a2+/ 10 7) pelvises at each of the time points. At every time point,  
at least 40% of heterozygotes exhibited the splayed ischia phenotype. 
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Figure 3.28.  Examples of high-resolution radiographs of wi ld-type (WT, Col1a2+/+) and 
heterozygous (HET, Col1a2+/107) elbow joints at each of the time points. At every time 
point, with the exception of the 9-month time point, at least one heterozygote exhibited 
the phenotype. Two heterozygotes exhibiting the curved olecranon at 4- and 6-months 
showed evidence of a fracture in the ulna (Blue arrows). 
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Figure 3.29.  Examples of high-resolut ion radiographs of wild-type (WT, Col1a2+/+) and 
heterozygous (HET, Col1a2+/ 10 7) knee joints at each of the time points. At every time point 
after the 9-month t ime point, at least 50% of heterozygotes exhibited the abnormal bone 
growth phenotype (Blue arrows). At the 2-, 4- and 6-month t ime points no evidence of 
abnormal bone growth at the knee was detected.  
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Incidences of the three phenotypes observed by X-ray often coincided with each other.  

Figure 3.30 shows the number of animals in each cohort with each phenotype or 

collection of phenotypes. 

 

Figure 3.30.  A diagram displaying how many animals of each genotype displayed each 
phenotype, or combination of phenotypes at each of the time points: (A)2 Months, (B)4 
Months, (C)6 Months, (D)9 Months, (E)12 Months,  (F)15 Months, (G)18 Months.  
Heterozygote animals (Col1a2+ /1 0 7)  are displayed in purple and wild-type animals 
(Col1a2+/ +) are displayed in orange. 

The variable nature of the splice mutation, coupled with the resulting mixture of early 

and late phenotypes makes it difficult to assess what percentage of heterozygotes show 
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a phenotype.  Collating the X-ray data across all time points enables an estimation of the 

percentage of animals that display a phenotype.  

Approximately 78% of heterozygotes develop some form of phenotype identifiable by 

X-ray imaging. 65% of heterozygotes exhibit the splayed ischia, 22 % exhibit the curved 

olecranon, and 37% exhibit the abnormal bone growth at the knee (Table 3.10). The 

olecranon and ischia phenotypes are early onset phenotypes and therefore will be 

evident in heterozygotes of all ages, however the knee phenotype, which was originally 

identified as a late onset phenotype, is first identified in this time course experiment at 

9 months and becomes increasingly prevalent as the animals age. The incidence in all 

heterozygotes was 37%, and rises to 65% in heterozygotes above 9 months of age  

All time points  Ischia (%) Olecranon (%) Knee (%) Any phenotype (%) 

Male - Heterozygotes 65 17 34 80 % 
Male - Wild types 0 0 0 0% 
Female - Heterozygotes 65 25 40 77% 
Female - Wild types 0 0 0 0% 
Combined - Heterozygotes 65 22 37 78% 
Combined - Wild types 0 0 0 0% 

 

Table 3.10.  A table showing the percentage of affected animals across all genotypes and 
time points. 

The position of the abnormal bone growth raises the possibility that the abnormal bone 

growth could be due to ossification of ligaments and/or joint capsule, this will be 

discussed further in a later section. 

3.7.3. DEXA Analysis of MP-107 Animals 

DEXA scans were used to evaluate the body composition in each of the seven cohorts 

previously described and listed in Table 3.9. DEXA analysis allowed BMD and BMC to be 

calculated giving information about the skeleton of the animals and to compare 

genotypes.  In addition to these skeletal parameters, the DEXA analysis also allows 

calculation of lean and fat mass.  The weight and length, from base of tail to tip of nose, 

were determined immediately prior to DEXA scan. 

The results of all of these parameters are detailed in Table 3.11. The significant results 

are summarised below. 
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 Weight - In two cohorts, 4-month male animals and 12-month female animals, 

the heterozygous animals were significantly lighter than the wild-type animals. 

In one cohort, 15-month male heterozygous animals were significantly heavier 

than the wild-type animals. 

 Length - In one cohort, 4-month female animals, the heterozygous animals were 

significantly shorter in length than the wild-type animals 

 Lean Mass - In one cohort, 12-month female animals, the heterozygous animals 

had significantly lower lean mass than the wild-type animals. 

 BMC - In two cohorts, 4-month male animals and 6-month female animals, the 

heterozygous animals had significantly lower BMC than the wild-type animals. 

 BMD - In three cohorts, 4-month male animals, and 15- and 18-month female 

animals, the heterozygous animals had significantly lower BMD than the wild-

type animals.  

There was only one parameter where a significant difference was found in 2 consecutive 

time points of the same sex. Heterozygous female mice in the 15- and 18-months had 

significantly lower BMD than the wild-type mice at the same time points. 

It should be noted that this was not a longitudinal study and each cohort was only used 

for that specific time point. As seen in other phenotyping data, the mutation does not 

necessarily always result in a phenotype, and this coupled with the limited cohort size 

means that it is difficult to draw conclusions from this data, in isolation. 
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3.7.4. Clinical Chemistry of MP-107 Animals 

Clinical chemistry data from the G3 cohort was limited due to the nature of a longitudinal 

study, and the quantity of blood that can be taken, for both the health of the animals 

and to comply with Home Office Licence regulation. As this study was cross sectional 

and each cohort was culled at a different time point, it was possible to extract a much 

higher volume of blood via a retro-orbital bleed performed under terminal anaesthetic, 

than was possible in the initial screen.  The higher volume of blood collected enabled a 

large panel of assays to be run at each time point. The plasma from these blood samples 

were then separated via centrifugation and the plasma analysed by the clinical 

chemistry department at MRC Harwell using an Olympus AU400 Bioanalyser.  It should 

be noted that due to a freezer failure the samples from the 18-month cohort were 

unusable, and are therefore not included here. 

The means, standard deviation and n numbers for each cohort and parameters are 

presented in the Tables 3.12a and 3.12b. In addition to this data the P values from 

student t tests comparing genotypes in each cohort are also displayed.  

To summarise the data- No significant difference between genotypes in any of the 

cohorts was detected in the following assays– sodium, chloride, alanine 

aminotransferase (ALT), aspartate aminotransferase (AST), total protein, albumin, total 

cholesterol, high-density lipoproteins (HDL), low-density lipoproteins (LDL), free fatty 

acids, glycerol, total bilirubin, lactate dehydrogenase (LDH), amylase, creatine kinase 

(CK), fructose and uric acid.   

Significant differences were detected in 9 assays, however only 2 assay showed 

significant differences in more than one cohort, creatinine and calcium, and in the case 

of creatine, in one cohort the level was elevated and in the other reduced. Details of 

these assays are listed below: 

 Potassium - The heterozygous animals displayed a significantly reduced level 

when compared with the wild-type animals in the 6-month male cohort. 

 Urea - The heterozygous animals displayed a significantly elevated level when 

compared with the wild-type animals in the 6-month female cohort. 

 Creatinine - The heterozygous animals displayed a significantly reduced level 

when compared with the wild-type animals in the 4-month female cohort, and 



 

140 
 

in the 9-month male cohort, the heterozygous animals displayed a significantly 

elevated level when compared with the wild-type animals. 

 Calcium - The heterozygous animals displayed a significantly reduced level when 

compared with the wild-type animals, in the 2-month and 6-month male cohorts. 

 Inorganic Phosphate - The heterozygous animals displayed a significantly 

elevated level when compared with the wild-type animals in the 15-month male 

cohort. 

 Alkaline phosphatase (ALP) - The heterozygous animals displayed a significantly 

elevated level when compared with the wild-type animals in the 6-month male 

cohort. 

 Glucose - The heterozygous animals displayed a significantly reduced level when 

compared with the wild-type animals in the 2-month male cohort. 

 Triglycerides - The heterozygous animals displayed a significantly elevated level 

when compared with the wild-type animal in the 6-month female cohort. 

 Iron - The heterozygous animals displayed a significantly elevated level when 

compared with the wild-type animals in the 2-month female cohort. 

One of the disadvantages of this study is that as each cohort is independent, the result 

of each assay is only statistically analysed within each cohort, rather than across the 

time course.  Despite this, as each cohort contains the same number of animals of each 

genotype, it is reasonable to expect authentic results to be somewhat replicated across 

time points.  The vast majority of significant results occur at only one time point/sex, 

and are therefore not indicative of a clinical chemistry phenotype, especially when the 

clinical chemistry analysis from the original ageing cohort is taken into account. This 

indicates that the study may have been underpowered due to the variability in 

phenotypes.  
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3.8. Micro Computed Tomography of MP-107 Animals 

Ex vivo 3D imaging, such as micro computed tomography (µCT) is a far better tool for 

understanding the excess bone growth around the knee joint than the X-ray imaging 

used in vivo. µCT allows not only 3D imaging of bone at higher resolution, but also allows 

analysis of the trabecular bone, subchondral bone and subchondral bone plate. This 

analysis of the bone structure can inform about the changes the Col1a2+/107 mutation is 

causing prior to the overt phenotype observed. 

At the terminal time point, the limbs and pelvis were removed and fixed in 10% neutral 

buffered formalin for 48 hours before being transferred into 70% ethanol for storage. 

µCT was used to image examples of the elbow joint and pelvis of a wild-type and 

heterozygous animals. The early onset phenotypes including the splayed ischia and 

curved olecranon do not appear to progress in severity and for this reason only an early 

time point (2-months) was used. The knee phenotype consisting of abnormal bone 

growth and culminating in OA develops over time, so µCT was used to image the knee 

joints from both male and female animals in the 4- , 9- and 18-month cohorts, to 

investigate the progression of the OA phenotype and the formation of excess bone 

around the joint.  The three time points were chosen for the following reasons: the 4-

month cohort, as this was prior to any observed bone changes at the knee by X-ray; the 

9-month cohort, as this was the first time point where changes at the knee were 

observed; and the 18-month cohort as changes to the knee were most severe at this 

time point. 

++  
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3.8.1.  3D Imaging of Bone Phenotypes in of MP-107 Animals 

Curved olecranons were noted in radiographs of some heterozygotes, however, as the 

images are two-dimensional, it is not possible to know from the X-ray imaging the full 

extent of the bone abnormality.  µCT imaging of elbow joints from an affected 

heterozygote and an unaffected wild type were used to better understand the abnormal 

bone structure in three dimensions (Figure 3.31). 3D imaging revealed that in the 

heterozygote elbow, the ‘curved olecranon’ phenotype observed in the radiograph, was 

the result of the olecranon deviating from the trajectory of the ulna, in the direction of 

the humerus. 

In both the 4- and 6-month cohorts, evidence of a fracture in the ulna was identified in 

two individual heterozygotes exhibiting the curved olecranon phenotype.  There was no 

evidence of fracture in the radiographs of any of the 2-month old heterozygote animals 

exhibiting the curved olecranon phenotype. However, in the 3D rendering of the elbow 

joint of the randomly selected heterozygote from the 2-month cohort (MP-107-

C3H\58.1i), there is evidence of a fracture in the ulna that was not visible by X-ray 

imaging (Figure. 3.26). 
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Figure 3.31. 3D reconstructions of the elbow joints of a wild type (WT, Col1a2+/ +) (A-D) 
and a heterozygote (HET, Col1a2+ /1 0 7) (F-H) from the 2-month cohort. (E&F) show the clear 
curvature of the olecranon in the heterozygote, which is not present in the wild type 
(A&B).  (F&G) show evidence of fracture in the ulna of the heterozygote (red arrows).  

A cut through of the 3D reconstruction indicates that the evidence seen on the surface 

of the reconstruction is not an artefact, and that the fracture penetrates the whole way 

through the cortical bone (Figure 3.32). 
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Figure 3.32. 3D reconstructions of the elbow joints of a wild type (WT, Col1a2+/+) (A&B) 
and a heterozygote (HET,  Col1a2+/ 1 0 7) (C&D) from the 2-month cohort with cutaway. Wild 
type shows no evidence of fracture either in the whole 3D reconstruction (A) or  the 
sectioned reconstruction (B).  Heterozygote shows evidence of fracture in both the whole 
3D reconstruction (C) or the sectioned reconstruction (D)(red arrows)  

Radiographs in Section 3.7.2 (Figure 3.28), show the presence of fractures in some 

heterozygotes presenting the curved olecranon phenotype. Figure 3.31 and Figure 3.32 

show evidence of fracture in a heterozygote, presenting with the curved olecranon 

phenotype, which was not detectable by X-ray. 

While no conclusion can be drawn from presence of a fracture in these 3 heterozygote 

animals presenting with the curved olecranon phenotype, it does raise the possibility 

that fractures, even if undetectable by X-ray, could be the root cause of the curved 

olecranon phenotype and warrants further study. 

Splayed ischia were noted in radiographs, however, as the images are 2D and the ischia 

are just the dorsal section of the posterior part of the pelvis, it is not known exactly how 

the observed ‘splayed ischia’ relate to other parts of the pelvis.  µCT imaging of the pelvis 

from an affected heterozygote and an unaffected wild type were used to better 

understand the abnormal bone structure in three dimensions. 3D rendering showed the 

ischia in this heterozygote diverge from the trajectory of the ilia, as was expected from 
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the radiographs (Section 3.7.2, Figure 3.27), the ischia in the wild type appear to follow 

the trajectory of the ilia (Figure 3.33). 

 

 

Figure 3.33. 3D reconstructions of the pelvis of a wild type (WT, Col1a2+/+) (A&B) and a 
heterozygote (HET, Col1a2+/ 10 7) (C&D) from the 2-month cohort in  the dorsal and ventral 
views. Wild type shows no evidence of splayed ischia in either the dorsal (A), or the 
ventral (B) position.  Heterozygote shows evidence of splayed ischia in both the dorsal 
(A), and the ventral (B) position) (red arrows).  
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Viewing the 3D rendering from both anterior and posterior aspects revealed that in 

addition to splayed ischia, the pubis was also deformed in the heterozygote (Figure 

3.34). 

 

Figure 3.34. 3D reconstructions of the pelvis of a wild type (WT, Col1a2+/+) (A&B) and a 
heterozygote (HET, Col1a2+/ 10 7) (C&D) from the 2-month cohort in the anterior and 
posterior views. Wild type shows no evidence of an abnormal pubis in either the anterior 
(A), or the posterior (B) position.  Heterozygote shows evidence of a deformed pubis in  
both the anterior (A),  and the posterior (B) position (blue arrows).  

Cross sections of the 3D rendering in the transverse plane showed evidence of marked 

asymmetry in the heterozygous pelvis, where the wild-type pelvis showed no evidence 

of asymmetry.  The cross sections indicate that the divergences of the trajectories of the 

two coxae are anterior to the acetabulum, indicating that changes in the ilia are also 

present, in addition to the changes in the pubis and ischia (Figure 3.35). 
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Figure 3.35. Cutaways on the transverse plane of 3D reconstructions of the pelvis of a 
wi ld type (WT, Col1a2+/+)  (A-C) and a heterozygote (HET, Col1a2+/ 10 7) (D-F) from the 2-
month cohort.  Wild type shows no evidence of asymmetry in the transverse plane at the 
sacrum (A), the acetabulum (B), or the pubes (C).  Heterozygote shows no evidence of 
shows no evidence of asymmetry in the transverse plane at the sacrum (A), however there 
is evidence of marked asymmetry at both the acetabulum (B), and the pubes (C)(red 
arrows). This indicates the changes in the pelvis are also present in the ilia. An artefact 
from the reconstruction is present  in the image F (blue arrow); 3D imaging confirms this 
is an artefact, not a fracture.  
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No evidence of fractures was found, however micro-fractures leading to deformation of 

the bone cannot be ruled out. 

The X-ray images initially used to identify the abnormal bone growth at the knee only 

allowed a two-dimensional view of the joint, meaning that due to positioning it was 

possible to miss abnormal bone growth.  This proved to be the case in one of the 4-

month heterozygous animals, which was scored as unaffected by X-ray, but 

reconstructed 3D scans of the knee showed calcification of the medial collateral 

ligament (MCL), with possible involvement of the joint capsule (Figure 3.36). The earliest 

any abnormal bone growth or calcification had been observed by X-ray imaging was 9 

months of age (see Section 3.7.2, Figure 3.29). 

 

Figure 3.36. 3D reconstructions of the left knees of wild-type and heterozygous animals 
from the 4-month cohort. (A) Wild-type (WT, Col1a2+/+) knee joint with no obvious 
abnormal bone growth or calcification. (B)  Heterozygous (HET, Col1a2+ /1 0 7) knee 
exhibiting evidence of calci fication of the medial collateral l igament (red arrows).  
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In the 9-month cohort, abnormal bone growth was observed in 50% (5) of the 

heterozygous animals by X-ray imaging, and the 3D reconstructed scans confirmed these 

observations as calcification of the MCL, with involvement of the synovium and/or 

capsule. The calcification seen in the 9-month heterozygous animals were, where 

present, more severe than seen in the 4-month cohort. No calcification was observed in 

the wild-type scans (Figure 3.37). 

 

Figure 3.37.  3D reconstructions of the left knees of wild-type and heterozygous animals 
from the 9-month cohort. (A) Wild-type (WT, Col1a2+/+) knee joint with no obvious 
abnormal bone growth or calcification. (B)  Heterozygous (HET, Col1a2+ /1 0 7) knee 
exhibiting evidence of major calcif ication of the medial  collateral ligament and 
synovium/capsule, as wel l as osteophytes originating in the bone (red arrows).  

 

In the 18-month cohort, abnormal bone growth was observed in 60% (6) of the 

heterozygous animals by X-ray imaging, and the 3D reconstructed scans confirmed these 

observations as large osteophytes as well as ossification of the ligaments,  capsule or 
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possibly synovium, and meniscus. Some calcification of the ligaments was observed in 

the wild-type scans, albeit very mild and similar in appearance to the calcification 

observed in the 4-month heterozygous scan (Figure 3.38). 

 

Figure 3.38. 3D reconstructions of the left knees of wild-type and heterozygous animals 
from the 18-month cohort. (A) Wild-type (WT, Col1a2+ /+) knee joint appears normal and 
exhibits some minor calcification of the ligaments (blue arrows). (B)  Heterozygous (HET,  
Col1a2+ /1 0 7)  showed evidence of major calcif ication of the medial collateral ligament, 
synovium, capsule and menisci as well  as large osteophytes originating in  the bone (red 
arrows).  

The µCT imaging of the knee joints has shown that there is evidence of calcification at 

an earlier time point than detected by X-ray imaging, and that animals without the early 

onset splayed ischia phenotype develop the abnormal calcification, indicating that the 

knee phenotype is independent of the ischia phenotype (Table 3.13). 
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    X-Ray X-Ray µCT 

   

N 
number Ischia Knee Knee 

4 months Female WT 5 0 0 0 

  HET 5 3 0 5 

 Male WT 5 0 0 0 

  HET 5 5 0 2 
9 months Female WT 5 0 0 0 

  HET 5 3 4 5 

 Male WT 5 0 0 0 

  HET 5 3 1 4 
18 months Female WT 5 0 0 1* 

  HET 5 4 2 4 

 Male WT 4 0 0 2* 

  HET 5 4 4 5 
 

Table 3.13.  A table displaying the number of animals phenotyped at each time point and 
the  number of animals presenting with each phenotype. The µCT imaging showed that 
some heterozygotes (HET, Col1a2+/ 1 07),  which did not appear to show the abnormal bone 
growth at the knee by X-ray, actually did have abnormal bone growth at the knee. Some 
heterozygotes developed abnormal bone growth in the knee in the absence of the ischia 
phenotype. *At 18 months 3 wild types (WT, Col1a2+ /+) showed some very minor 
calcification of the MCL as see in Figure 3.34A. 

 

A comparison of the incidence of abnormal bone formation between genotypes of each 

sex, at each time point was carried out using the Mann-Whitney U test (Table 3.14) 

Statistical analysis revealed a significant difference between genotypes at 4 and 9 

months in female animals and at 9 months in male animals. At 18 months the minor 

calcification identified in 3 wild type animals (1 female and 2 males), meant that despite 

high incidence and severity of calcification, no significant difference was detected at 18 

months. 
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   N Abnormal U P Value 

   number bone identified   
4 months Female WT 5 0 25 0.004 

  HET 5 5 0  

 Male WT 5 0 17.5 0.177 

  HET 5 2 7.5  
9 months Female WT 5 0 25 0.004 

  HET 5 5 0  

 Male WT 5 0 22.5 0.020 

  HET 5 4 2.5  
18 months Female WT 5 1* 20 0.093 

  HET 5 4 5  

 Male WT 4 2* 15 0.128 

  HET 5 5 5  
 

Table 3.14.  A table comparing the number of animals identified with the abnormal bone 
phenotype at the knee,  by µCT at each time point. Statistical analysis revealed a 
significant difference between genotypes at 4 and 9 months in female animals and at 9 
months in Male animals. *At 18 months 3 wild types (WT, Col1a2+/ +) showed some very 
minor calcification of the MCL as see in Figure 3.34A. 

The µCT imaging of the elbow joint has shown additional evidence of ulna fractures in 

heterozygotes exhibiting the curved olecranon phenotype, and it is possible that the 

fractures lead to the curved olecranon phenotype. The µCT imaging of the pelvis has 

shown that there is evidence of asymmetry between the 2 sides of the pelvis in the ilia, 

ischia and pubes, and that the phenotype was more severe than the radiographs 

indicated.  No evidence of fractures was detected in the heterozygotes; however, 

fractures cannot be ruled out as a cause.  

3.8.2. Metaphyseal Trabecular Analysis of MP-107 Animals 

Analysis of the trabecular bone can help elucidate what changes the mutation may be 

having on the bone structure, and whether any changes could be leading to the 

phenotypes observed in the line MP-107. To explore whether there were changes to the 

underlying bone structure of the knee, a region of interest was identified in the 

trabecular bone below the growth plate of the tibia. Automated analysis of this region 

allowed comparison between genotypes at all three time points. The drawing of the 

region of interest was performed blind to genotype, and the genotypes were only 

synched with the data for comparison between genotypes. 
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Analysis of the trabecular bone in the tibia revealed a number of trends in males 

across time points (Figure 3.39). All results for µCT analysis available in Appendix  2. 

Heterozygotes consistently appeared to have lower bone volume fraction (Bone 

volume/trabecular volume- BV/TV) than wild-type animals, with a significant 

difference at both 9 months (WT Mean-10.75, SD-1.83, N-5, HET Mean-7.07, SD-

2.03, N-5, P=0.028) and 18 months (WT Mean-9.28, SD-2.72, N-4, HET Mean-5.15, 

SD-2.42, N-7, P=0.043) and difference just short of significance at 4-months (WT 

Mean-15.11, SD-1.44, N-5, HET Mean-12.54, SD-1.80, N-5, P=0.056). 

Heterozygotes consistently had a higher trabecular separation than wild-type 

animals, with a significant difference at both 4 months (WT Mean-0.161, SD-0.010, 

N-5, HET Mean-0.187, SD-0.015, N-5, P=0.028) and 9 months (WT Mean-0.205, SD-

0.016, N-5, HET Mean-0.253, SD-0.032, N-5, P=0.0257).  

Heterozygotes had a significantly higher trabecular thickness than the wild types at 

4 months (WT Mean-0.039, SD-0.0006, N-5, HET Mean-0.045, SD-0.0025, N-5, 

P=0.0028) with no significant difference at either 9 or 18 months, and there was no 

clear trend in trabecular thickness. 

Heterozygotes consistently had a significantly lower trabecular number than wild 

type animals at 4 months (WT Mean-3.84, SD-0.34, N-5, HET Mean-2.82, SD-0.47, N-

5, P=0.008), 9 months (WT Mean-2.58, SD-0.40, N-5, HET Mean-1.67, SD-0.48, N-5, 

P=0.020), and 18 months (WT Mean-2.04, SD-0.59, N-4, HET Mean-1.03, SD-0.56, N-

7, P=0.030).   

Bone volume fraction (BV/BT) and trabecular number appeared to decline with age 

in both genotypes and trabecular separation appeared to increase with age in both 

genotypes, however as each cohort was independent no statistical analysis was 

performed. No particular trend was observed in the trabecular thickness of either 

genotype. 
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Figure 3.39. µCT analysis of trabecular bone in male animals. (A) Heterozygotes (HET,  
Col1a2+ /1 0 7) show a reduction in the bone volume fraction when compared with wild types 
(WT, Col1a2+ /+)  at 9- and 18-months. (B) Heterozygotes (HET, Col1a2+ /1 07) show an 
increase in the trabecular separation when compared with wild types (WT, Col1a2+ /+) at 
4- and 9-months. (C) Heterozygotes (HET, Col1a2+ /1 07) show an increase in the trabecular 
thickness when compared with wild type (WT, Col1a2+ /+) at 4-months.  (D) Heterozygotes 
(HET, Col1a2+/ 1 07) show a reduction in the trabecula number when compared with wild 
types (WT, Col1a2+/ +) at 4-, 9- and 18-months. Student T-test *P<0.05, **P<0.01 

 

Analysis of the trabecular bone in the tibia revealed similar trends in females across time 

points, however the number of significantly different features was reduced compared 

to the males (Figure 3.40). 

The bone volume fraction (BV/TV) followed a similar pattern to that seen in the males 

with heterozygotes’ bone volume fractions appearing lower than wild-type animals, 

however there were no statistically different results. 

The trabecular separation followed a similar pattern to that seen in the males with 

heterozygotes’ bone volume fractions being higher than wild-type animals, however 

there was only one statistically significant difference at 9 months (WT Mean-0.151, SD-

0.024, N-5, HET Mean-0.203, SD-0.036, N-5, P=0.043). 
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Heterozygotes had a significantly higher trabecular thickness than the wild types at 9 

months (WT Mean-0.054, SD-0.005, N-5, HET Mean-0.063, SD-0.005, N-5, P=0.029), with 

no significant difference at either 4 or 18 months, there was no clear trend in trabecular 

thickness. 

The trabecular number followed a similar pattern to that seen in the males with 

heterozygotes’ trabecular number being lower than wild-type animals, however only 

the difference at 9 months was significant (WT Mean-3.56, SD-0.63, N-5, HET Mean-

2.17, SD-0.78, N-5, P=0.024). 

Bone volume fraction (BV/BT) and trabecular number appeared to decline with age in 

both genotypes and trabecular separation appeared to increase with age in both 

genotypes, however as each cohort was independent no statistical analysis was 

performed. No particular trend was observed in the trabecular thickness of either 

genotype. 
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Figure 3.40. µCT analysis of trabecular bone in female animals. (A) No significant 
difference in the bone volume fraction of heterozygotes (HET,  Col1a2+/ 1 07) was detected 
when compared with wild types (WT, Col1a2+/+) at any time point. (B) Heterozygotes (HET,  
Col1a2+ /1 0 7) show an increase in the trabecular separation when compared with wild types 
(WT, Col1a2+ /+) at 9-months. (C) Heterozygotes (HET, Col1a2+ / 1 0 7) show an increase in the 
trabecular thickness when compared with wild type (WT, Col1a2+/ +)  at 9-months.   (D) 
Heterozygotes (HET, Col1a2+ /1 0 7) show a reduction in the trabecula number when 
compared with wild types (WT, Col1a2+ /+) at 9- months. Student T-test *P<0.05. 

The analysis of the trabecular bone indicates that in the male heterozygote mice at 

various time points the bone volume fraction and trabecular number is reduced and the 

trabecular separation and trabecular thickness is increased. The female results were less 

consistent than the males; however, there were some time points that also showed 

these trends. Reduced bone volume fraction is seen in osteoporotic bones [253] and in 

a study of osteoporotic men, increased trabecular separation and decreased trabecular 

number were associated with an increased fracture risk [254]. This indicates that the 

trabecular bone is osteopenic and at increased risk of fracture.   
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3.8.3. Epiphyseal Trabecular Analysis of MP-107 Animals 

Analysis of the epiphyseal bone can help elucidate what changes the mutation may be 

having on the subchondral trabecular bone structure. The subchondral trabecular bone 

is directly below the subchondral bone plate.  Changes to this trabecular bone may have 

an impact on both the subchondral cortical bone and the articular cartilage 

To explore whether there were changes to the structure of the subchondral trabecular 

bone, a region of interest was identified between the subchondral bone plate and the 

growth plate for analysis. Automated analysis of this region allowed comparison 

between genotypes at all three time points. The drawing of the region of interest was 

performed blind to genotype and the genotypes were only synched with the data for 

comparison between genotypes. 

Analysis of the subchondral bone in the tibia revealed a number of trends in males across 

time points (Figure 3.41). 

Heterozygotes had a significantly lower bone volume fraction (BV/TV) than wild-type 

animals at 9 months (WT Mean-27.71, SD-1.53, N-5, HET Mean-23.44, SD-1.27, N-5, 

P=0.0026), there were no differences at 4 or 18 months. 

Heterozygotes had a significantly higher trabecular separation than wild-type animals at 

both 4 months (WT Mean-0.141, SD-0.009, N-5, HET Mean-0.159, SD-0.006, N-5, 

P=0.0091), and 9 months (WT Mean-0.146, SD-0.008, N-5, HET Mean-0.174, SD-0.006, 

N-5, P=0.0005). 

Heterozygotes had a significantly higher trabecular thickness than wild-type animals at 

both 4 months (WT Mean-0.023, SD-0.0003, N-5, HET Mean-0.026, SD-0.0008, N-5, 

P=0.0006) and 9 months (WT Mean-0.025, SD-0.0009, N-5, HET Mean-0.027, SD-0.0007, 

N-5, P=0.0425).  

Heterozygotes had significantly lower trabecular number than wild-type animals, at 

both 4 months (WT Mean-11.45, SD-0.51, N-5, HET Mean-9.91, SD-0.36, N-5, P=0.0011) 

and 9 months (WT Mean-10.92, SD-0.59, N-5, HET Mean-8.75, SD-0.43, N-5, P=0.0004). 

There did not appear to be any obvious trends with age as seen in the metaphyseal 

trabecular bone. 
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Figure 3.41. µCT analysis of the subchondral trabecular bone in male animals. (A) 
Heterozygotes (HET, Col1a2+ /1 0 7) show a reduction in the bone volume fraction when 
compared with wild types (WT, Col1a2+/+) at 9-months. (B) Heterozygotes (HET, 
Col1a2+ /1 0 7) show an increase in the trabecular separation when compared with wild types 
(WT, Col1a2+/+) at 4- and 9-months. (C) Heterozygotes (HET, Col1a2+/ 10 7) show an increase 
in the trabecular thickness when compared with wi ld type (WT, Col1a2+ / +)  at 4- and 9-
months.   (D) Heterozygotes (HET,  Col1a2+/ 1 0 7) show a reduction in the trabecula number 
when compared with wi ld types (WT, Col1a2+ /+)  at 4- and 9-months. Student T-test 
*P<0.05, **P<0.01, ***p<0.001. 

    

Analysis of the subchondral bone in the tibia revealed a number of trends in females 

across time points (Figure 3.42). 

Heterozygotes had a significantly lower bone volume fraction (BV/TV) than wild-type 

animals at 4 months (WT Mean-27.13, SD-0.78, N-5, HET Mean-24.04, SD-0.65, N-5, 

P=0.00028), there were no differences at 9 or 18 months. 

Heterozygotes had a significantly higher trabecular separation than wild-type animals at 

4 months (WT Mean-0.171, SD-0.008, N-5, HET Mean-0.200, SD-0.006, N-5, P=0.00045), 

at 9 months the difference was trending towards significance (WT Mean-0.177 SD-0.013, 

N-5, HET Mean-0.193, SD-0.005, N-5, P=0.054). 

Heterozygotes had a significantly higher trabecular thickness than the wild types at 9 

months (WT Mean-0.026 SD-0.0017, N-5, HET Mean-0.029, SD-0.0013, N-5, P=0.0071), 
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with no significant difference at either 4 or 18 months, there was no clear trend in 

trabecular thickness. 

Heterozygotes showed a significantly lower trabecular number than wild-type animals 

at 4 months (WT Mean-10.18 SD-0.41, N-5, HET Mean-8.71, SD-0.63, N-5, P=0.0045), 

and 9 months (WT Mean-10.01 SD-1.00, N-5, HET Mean-7.79, SD-0.36, N-5, P=0.0031), 

the 18-month cohort showed no difference. 

There did not appear to be any obvious trends with age as seen in the metaphyseal 

trabecular bone. 

 

Figure 3.42.  µCT analysis of the subchondral  trabecular bone in female animals. (A) 
Heterozygotes (HET, Col1a2+ /1 0 7) show a reduction in the bone volume fraction when 
compared with wild types (WT, Col1a2+/+) at 4-months. (B) Heterozygotes (HET, 
Col1a2+ /1 0 7) show an increase in the trabecular separation when compared with wild types 
(WT, Col1a2+ /+) at 4-months. (C) Heterozygotes (HET, Col1a2+ / 1 0 7) show an increase in the 
trabecular thickness when compared with wild types (WT, Col1a2+ / +)  at 9-months.   (D) 
Heterozygotes (HET, Col1a2+ /1 0 7) show a reduction in the trabecula number when 
compared with wild types (WT, Col1a2+/+) at 4- and 9-months. Student T-test *P<0.05, 
**P<0.01, ***p<0.001. 

The analysis of the subchondral trabecular bone is very similar to the metaphyseal 

trabecular bone indicating that the subchondral bone is osteopenic and at increased risk 

of fracture.  Interestingly there were no significant differences between genotypes in 
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the 18-month cohort, where you would perhaps expect more differences due to 

sclerosis. 

3.8.4. Subchondral Bone Plate Analysis of MP-107 Animals 

The subchondral bone plate (SBP) was assessed for average thickness for both the 

medial and lateral condyle of the tibial plateau. This measurement actually consists of 

the SBP and the zone of calcified cartilage (ZCC). An increase in thickness could be 

indicative of increased mineralisation of the un-mineralised cartilage by the ZCC or 

sclerosis of the SBP [180]. To explore whether there were changes to the SBP of the 

lateral and medial tibial plateaux, regions of interest were identified and outlined. 

Automated analysis of these regions allowed thickness be measured, and a comparison 

between genotypes made at all three time points (Figure 3.43).  The drawing of the 

region of interest was performed blind to genotype, and the genotypes were only 

synched with the data for comparison between genotypes. 

 

Figure 3.43. µCT analysis of the thickness of the subchondral bone plate (SBP) of the 
lateral and medial t ibial  plateaux. (A) No signif icant difference was detected in the 
thickness of the medial SBP between heterozygotes (HET, Col1a2+/ 10 7) and wild types (WT, 
Col1a2+ /+) females at any time point. (B) No significant difference was detected in the 
thickness of the lateral SBP between heterozygotes (HET, Col1a2+/ 1 07) and wild types (WT, 
Col1a2+ /+) females at any time point. (C) A significant increase in the thickness of the 
medial SBP was detected in the male heterozygotes (HET, Col1a2+/ 1 07) when compared 
with the male wild types (WT, Col1a2+ /+) at 4-months, no significant difference was 
detected at any other t ime point. (D) No signif icant difference was detected in the 
thickness of the lateral SBP between heterozygotes (HET, Col1a2+/ 1 07) and wild types (WT, 
Col1a2+ /+) males at any t ime point. Student T-test *P<0.05. 
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No significant difference in thickness of the subchondral bone was detected in any 

cohort with the exception of the 4-month male cohort, where the medial condyle of 

male heterozygotes was increased compared to the wild types. The absence of any 

differences at later time points indicates that the heterozygotes are not developing 

thickened sclerotic subchondral bone plates.  

The differences detected between heterozygotes and wild types in the metaphyseal and 

epiphyseal trabecular bone indicates that the bone is osteopenic, and structurally 

weaker in the heterozygotes.  

3.9. Time Course Histology of MP-107 Animals 

The µCT imaging indicated that there were changes occurring in the tissues surrounding 

the knee joint of heterozygote mice much earlier than was visible in radiographs. 

Histology was performed on the knee joints from animals in the 4-, 9-, 12- and 18-month 

cohorts, to investigate whether the changes seen in the µCT imaging led to changes 

within the joints, and whether the OA observed in the G3 cohort, occurred earlier than 

18 months.  

3.9.1. Histological analysis of MP-107 knee joints at 4 Months 

Histological analysis of Safranin O stained coronal section of knee joints from wild-type 

(WT, Col1a2+/+) and heterozygous (HET, Col1a2+/107) animals at 4 months of age show no 

differences in the articular cartilage, or signs of osteophytes (Figure 3.44). 
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Figure 3.44.   Safranin O stained histological section of knee joints from wild-type and 
heterozygous animals at 4 months of age. (A+B) Wild-type (WT, Col1a2+ /+) and (C-D) 
heterozygous (HET, Col1a2+/ 10 7) animals at 4 months of age show no differences in the 
articular carti lage, or signs of osteophytes. (Scale bar A+C-1mm, B+D 100µm, Medial and 
Lateral sides labelled with M and L respectively).  

 

3.9.2. Histological analysis of MP-107 knee joints at 9 Months 

Histological analysis of Safranin O stained coronal section of knee joints from wild-type 

(WT, Col1a2+/+) and heterozygous (HET, Col1a2+/107) animals at 9 months of age show 

that the heterozygotes have regular healthy articular cartilage; however there is 

evidence of osteophyte formation and hypertrophy of the soft tissues. The wild types 

have regular healthy articular cartilage and no evidence of osteophyte formation (Figure 

3.45). 
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Figure 3.45.   Safranin O stained histological section of knee joints from wild-type and 
heterozygous animals at 9 months of age. (A+B) Wild types (WT, Col1a2+/ +) have smooth 
healthy articular cartilage and no evidence of osteophyte formation,  Safranin O staining 
appears weaker, however there is no evidence of damage to cartilage. (C-D) Heterozygous 
(HET, Col1a2+/ 1 07) sections have smooth healthy articular carti lage, but also show 
evidence of hypertrophy of soft t issue (Black arrows) and some evidence of osteophyte 
formation (Yellow arrow). (Scale bar A+C-1mm, B+D 100µm, Medial and Lateral sides 
labelled with M and L respectively).  

 

3.9.3. Histological analysis of MP-107 knee joints at 12 Months 

Histological analysis of Safranin O stained coronal section of knee joints from wild-type 

(WT, Col1a2+/+) and heterozygous (HET, Col1a2+/107) animals at 12 months of age show 

that the heterozygotes have regular healthy articular cartilage however there is 

evidence of osteophyte and chondrophyte formation, and soft tissue ossification. The 

wild types have regular healthy articular cartilage and no evidence of osteophyte 

formation. The osteophytes in the heterozygous joints appear to be affecting the 

alignment of the joint and are having an effect on the quality of some of the 

heterozygous sections (Figure 3.46). 
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Figure 3.46.   Safranin O stained histological section of knee joints from wild-type and 
heterozygous animals at  12 months of age. (A+B) Wild types (WT, Col1a2+/ +) have smooth 
healthy articular cartilage and no evidence of osteophyte formation. (C-D) Heterozygotes 
(HET, Col1a2+/ 1 07) have smooth healthy articular carti lage, evidence of chondrophyte 
formation (Black arrows) and some evidence of osteophyte formation (Yellow arrows). 
(Scale bar A+C-1mm, B+D 100µm, Medial and Lateral sides labelled with M and L 
respectively).  

 

3.9.4. Histological analysis of MP-107 knee joints at 18 Months 

Histological analysis of Safranin O stained coronal section of knee joints from wild-type 

(WT, Col1a2+/+) and heterozygous (HET, Col1a2+/107) animals at 18 months of age show 

that the heterozygotes have irregular and damaged articular cartilage, large 

osteophytes, hypertrophy of the soft tissues and a damaged meniscus. The wild types 

have regular healthy articular cartilage and no evidence of osteophyte formation.  

Previous µCT imaging did appear to show some calcification of ligaments, but this was 

not obvious using histology (Figure 3.47). 
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Figure 3.47.   Safranin O stained histological section of knee joints from wild-type and 
heterozygous animals at 18 months of age. (A+B) Wild types (WT, Col1a2+/ +) have some 
minor signs of fissuring and no evidence of osteophyte formation. (C-D) Heterozygotes 
(HET, Col1a2+/ 10 7) have irregular severely damaged articular cartilage (red arrows), 
evidence of hypertrophy of the soft  tissues (Black arrows) and evidence of osteophyte 
formation (Yellow arrows). The meniscus is severely damaged. (Scale bar A+C-1mm, B+D 
100µm, Medial and Lateral sides label led with M and L respectively).  

Histological sections of heterozygous knees show evidence of abnormal bone formation, 

typically involving the ligament and joint capsule, and synovial fibrosis. This is similar to 

the effects observed by µCT.  Despite this, OARSI scoring of histological sections [255] 

reveals that there is only a difference in the cartilage between heterozygotes and wild 

types at 18 months (Figure 3.48).  The observed changes in the MCL and osteophyte 

development were visible as early as 9 months, both on histological sections and µCT, 

indicating that these changes precede the observed cartilage changes. 
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Figure 3.48.   Maximum OARSI scores of Safranin O stained histological section of knee 
joints across the four time points. (A-C) No significant differences were observed between 
genotypes of either sex at the 4-,  9- and 12-month time points.  (D) In both sexes 
heterozygotes (HET, Col1a2+/ 10 7) had significantly higher max OARSI scores than their wild 
type (WT, Col1a2+/+) counterparts. (All group n=5, with the exception of 18M male WT 
n=4, 9M male HET n=4, 9M male WT n=4, scoring included medial and tibial  sides of the 
femur and tibia. Statistical test used was Mann-Whitney * P<0.05, ** P<0.01- 18M males 
P=0.0095, 18M females P= 0.0317)  

3.10. Discussion 

The mutant line MP-107 was identified from the Harwell Ageing screen, with mild, early 

onset bone abnormalities, including splayed ischia and a curved olecranon. As the line 

was aged, a number of animals developed abnormal bone growth at the knee joint and 

histological analysis of the knee joint showed damaged articular cartilage, in addition to 

the abnormal bone growth. 

SNP mapping revealed a region on Chromosome 6 likely to contain the causative 

mutation, and WGS identified a splice region variant in Col1a2.  Subsequent Sanger 

sequencing confirmed that the affected animals, where DNA was available, were all 

heterozygous for this mutation. No homozygotes were identified in the G3 cohort, and 

homozygotes produced from intercross matings were found to be lethal at P0. 
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The observed perinatal lethality of the Col1a2107/107 animals appears to be attributable 

to respiratory insufficiency. This conclusion was reached due to the observation of a 

number of new-born Col1a2107/107 pups gasping and needing to be culled for welfare 

purposes, coupled with the reduction in airway size in the Col1a2107/107 animals. 

Histological analysis of embryonic lungs revealed that the airways of homozygous lungs 

were smaller than those of wild-type and heterozygous lungs, due to thickened 

interstitial mesenchyme. The alveolar walls and interstitium are primarily comprised of 

type I and III collagen, which provide a structural framework and contribute to the lung 

mechanics. Type I collagen provides mechanical stability and structure, and therefore 

abnormal collagen I may impair the ability of the alveoli to expand and contract properly, 

and fulfil their function [256]. The whole mount skeletal staining of 18.5 dpc embryos 

clearly show breaks in the long bones of Col1a2107/107 embryos, which indicate an 

osteogenesis imperfecta (OI) phenotype.  The perinatal lethality due to the lung 

phenotype and the in utero breakage of the long bones is very similar to the Brittle IV 

mouse model of OI [80]. 

The mutation was predicted to be a splice region variant, creating a new splice acceptor 

site affecting the splicing between Exon 21 and Exon 22. PCR and Sanger sequencing of 

cDNA showed that the mutation did cause a new splice acceptor site to be formed, 

causing 3 bases from the intron to be incorporated as a new amino acid within Exon 22, 

in effect causing an insertion of Glutamine into the protein disrupting the repeating 

glycine motif. Where normally there are two amino acids between each glycine (G-X-Yn), 

in this case there were three.  A large proportion of osteogenesis imperfecta cases are 

caused by glycine substitutions, which also cause the repeating glycine motif to be 

disrupted[46-48]. Glycine substitutions result in 5 amino acids between two glycines 

rather than the normal two [73]. This could explain the apparent mildness of the bone 

phenotypes in this line compared to those often seen in humans.  

A complicating factor was found to be that as the original splice site is not destroyed, 

the spliceosome produces both mutant and wild-type transcripts even when both alleles 

are mutant.  It appears that the amount of wild-type and mutant transcript varies 

between mice of the same genotype, which could account for the variability of the 

phenotype. Almost 300 unique splice variants in COL1A1 and COL1A2 have been shown 
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to cause OI phenotypes in human, 210 splice variants in COL1A1, and 84 in COL1A2 [46-

48]. 

An experiment was designed to allow more in-depth investigation of the phenotypes 

seen in the heterozygotes across a number of time points.  X-ray imaging confirmed that 

the incidence of the splayed ischia and curved olecranon did not increase at later time 

points, and that the incidences of the knee phenotype did. The phenotypes observed at 

the pelvis and the elbow are similar to those seen in some mouse model of OI, including 

the Brtl model, the phenotype observed in these lines were also variable [80, 81]. 

The experiment also showed the variability in phenotype: in the 15-month male cohort 

80 % of animals showed a phenotype including 4 animals with the knee phenotype, one 

of which also displayed the curved olecranon, but no animals displayed the splayed 

ischia phenotype. The X-ray imaging also indicated that some heterozygotes showed 

detectable bone growth at the knee as early as 9 months. 

Neither the DEXA analysis nor the clinical chemistry analysis produced any parameters 

that were consistently significantly different between genotypes. 

µCT imaging at 4, 9 and 18 months confirmed the presence of abnormal bone growth as 

early as 4 months, and that this phenotype develops over time. The mouse model of OA, 

Str/ort, exhibits similar abnormal bone growth, although this line exhibits a more severe 

phenotype at early timepoints[257]. A similar phenotype has also been identified in the 

experimental line known as Ubr5mt, UBR5 was shown to play a role in maintaining 

cartilage homeostasis and supressing metaplasia [258].  Analysis of the 3D imaging of 

trabecular bone revealed that male heterozygous animals had a significantly reduced 

bone volume fraction and trabecular number, and a significant increase in trabecular 

separation at multiple time points, in addition to a significant increase in trabecular 

thickness at a single time point.  This trend was replicated in the female heterozygotes, 

albeit with fewer significant results and both male and female heterozygotes showed 

similar trends in the subchondral bone. There was only a single time point where there 

was any significant difference in the cortex thickness of the tibial plateau.  The variability 

in the statistical difference is likely due to the small cohort size and the variability of the 

phenotype within heterozygotes.  However, the µCT results do indicate that the 

heterozygotes generally have weaker bones and may a mild form of osteogenesis 
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imperfecta. The Brtl mouse model of OI has been shown to exhibit similar phenotypes 

including reduced bone volume fraction and trabecular thickness in 6 month old 

animals, when compared to wild-types, although this analysis was performed on femoral 

trabecular bone, rather than tibial [259, 260]. 

Histology indicated that OA does develop in heterozygotes in the later cohorts, indicated 

by the damaged articular cartilage. However, the osteophytes, ossification of ligament 

and synovial inflammation seen in earlier cohorts without cartilage damage indicates 

that in this mutant line, these changes precede the articular cartilage damage.  It is 

therefore possible that the cartilage lesions could be a result of ossification of ligaments 

and meniscus, or the synovial inflammation that preceded them [261, 262]. 

The evidence in this chapter indicates that an ENU induced A to T transversion in the 

gene Col1a2 leads to a disruption of the repeating glycine motif in Col1a2. The 

homozygotes are lethal and the heterozygotes develop different bone structure leading 

to mild bone abnormalities and evidence of fracture. Although, heterozygotes develop 

OA, from the data in this chapter it is not possible to discern the specific mechanisms 

causing the OA. 
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Chapter 4: Tissue Specific Effects of the 

Col1a2107/+ Mutation
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4.1. Introduction 

The previous results chapter established that the MP-107 mutant, carrying a splice 

mutation in Col1a2, developed mild bone abnormalities and OA. Collagen I is a major 

constituent of bone, and therefore bone phenotypes arising from a mutation in Col1a2 

is not surprising. One of the major diseases associated with mutations in Col1a1 and 

Col1a2 in humans is Osteogenesis Imperfecta (OI), a disease characterised by brittle, 

fragile bones. In addition to OI, some types of Ehlers Danlos Syndrome (EDS) can also be 

caused by mutations in Col1a1 and Col1a2. EDS are a group of connective tissue 

disorders, primarily caused by abnormalities in the structure, production or processing 

of Collagens (including I, III, V). A common feature in many types of EDS is hypermobile 

joints and elastic skin.  

Col1a1 and Col1a2 mutations are not normally associated with OA.  However, as OA is 

an arthropathy involving all the various tissues of the joint, it is surprising that genes 

causing defects in bone and connective tissue are not always associated with the 

disease. 

In this chapter, I focus on investigating the phenotypes and behaviour of collagen I and 

collagen I rich tissues, such as bones, tendons and skin. I hypothesise that the mutation 

in Col1a2 is causing the phenotypes described in Chapter 3 as a result of an OI/EDS 

phenotype. If such phenotypes are observed it will be important to establish the 

relationship, if any, between the phenotypes observed in the Col1a2+/107 and reported 

in Chapter 3 and the spectrum of OI/EDS-like phenotypes. 

4.2. Mechanical Testing  

Collagen I is a very important protein in a wide range of tissues, especially those with 

mechanical function. Collagen I forms the organic matrix, which is then mineralised to 

give bones their strength, stores elastic energy in tendons and ligaments, and transmits 

force between tissues.  As such, observing how collagen I rich tissues behave in the MP-

107 mutant could elucidate the mechanisms by which a mutation in Col1a2 leads to the 

observed phenotypes. It is known that some mutations in collagen I genes lead to bone 

brittleness and breakage in OI, or joint laxity in EDS, it is therefore possible that the 

heterozygous mutation in MP-107, could be leading to such phenotypes.  The tissues 
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tested in this section include skin, tendon fascicles, bone and the articular surface of the 

tibial plateau and femoral condyles (subchondral bone and cartilage).  Due to the 

lethality observed in the homozygous Col1a2107/107 animals, mechanical testing was only 

performed on heterozygous Col1a2+/107 and wild-type Col1a2+/+ animals.  

4.2.1. Mechanical Testing of Tail Tendon Fascicles of MP-107 Animals 

Mechanical testing of tendon fascicles enables measurements of tensile strength and 

elasticity in the fascicles of the tendon.  As around 70-80% of the dry weight of tendons 

is collagen I, changes to the collagen I trimer are likely to have an impact in how this 

tissue behaves [28]. 

Fascicles were dissected from tail tendons of heterozygous Col1a2+/107 and wild-type 

Col1a2+/+ mice at 3 months of age and subjected to mechanical testing consisting of 10 

cycles of loading and unloading, followed by a pull to failure [38]. Before testing, the 

diameter of each fascicle was measured, and the cross-sectional area (CSA) calculated 

to facilitate the calculation of various mechanical parameters post-testing. 

Heterozygous fascicles had a significantly larger CSA than the wild-type fascicles 

(P=0.045, Figure 4.1).  The larger CSA of the heterozygous fascicles could be due to the 

disrupted glycine repeating motif causing micro-unfolding or a kink in trimers containing 

the mutant protein, increasing the diameter of the molecules, and in turn the collagen 

fibres. Another explanation could be that the abnormal protein causes an increase of 

water within the tissue, leading to a larger CSA. It is not possible at this point to 

determine which of these scenarios is more likely. 
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Figure 4.1. Calculated cross sectional area (CSA) of both heterozygous (HET,  Col1a2+/ 1 0 7) 
and wild-type  (WT, Col1a2+/+) fascicles.  The CSA from heterozygous (HET,  Col1a2+/ 10 7) 
fascicles were significantly larger than wild-type (WT, Col1a2+/+) fascicles (WT n=4 
animals, HET n=5 animals, replicates min 12 fascicles per animal). T-test *= P<0.05  

The data from the mechanical testing was analysed in two parts, the ‘cyclic loading’ 

phase and the ‘pull to failure’ phase. Parameters derived from cyclic loading included: 

1) maximum force at cycle 1, 2) stress relaxation and 3) hysteresis. Parameters derived 

from the pull to failure included: 1) failure stress, 2) failure strain, 3) failure load, 4) 

maximum modulus and 5) strain at maximum modulus. 

To view how the fascicles behave initially, force/extension data from the cyclic loading 

and unloading is plotted (Figure 4.2). The heterozygous fascicles appear to allow an 

initial extension under very little load (shown by the ‘toe’ near the origin), indicating a 

difference in the initial elastic behaviour. 
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Figure 4.2.  Representative force-extension graphs from wild-type  (WT, Col1a2+/ +) (A) and 
heterozygous (HET,  Col1a2+/ 10 7) (B) fascicles. The heterozygous fascicle (B) shows an 
altered ‘toe’ of the graph (red box) indicating an extension for very litt le force after the 
first loading, suggesting altered viscoelastic properties of the heterozygous fascicle when 
compared with the wild-type fascicle (A).  

In addition to this change in the force/extension behaviour, the area between the 

loading and unloading curves is reduced in the heterozygous animals, indicating a 

change in viscoelasticity.  This change can be calculated as percentage hysteresis, which 

is a measure of energy dissipation (Figure 4.3). 
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Figure 4.3.  Percentage hysteresis of wild-type  (WT, Col1a2+ /+)  and heterozygous (HET, 
Col1a2+ /1 0 7)  fascicles.  The heterozygous (HET,  Col1a2+ /1 0 7)  fascicles exhibit  a significant 
reduction in  percentage hysteresis,  when compared with wild-type  (WT, Col1a2+/ +)  
fascicles (WT n=4 animals, HET n=5 animals, replicates min 12 fascicles per animal).  
Student T-test *= P<0.05 

At least 12 fascicles from each animal were tested, and the mean value for each animal 

calculated, and it was observed that there was a significant reduction in the percentage 
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hysteresis in the fascicles of heterozygous Col1a2+/107 animals when compared with 

fascicles from wild-type Col1a2+/+ animals (P=0.219).  

The stress relaxation was also calculated as another measure of viscoelastic behaviour; 

however, the stress relaxation data were not analysable.  In all samples regardless of 

genotype, some fascicles produced negative stress relaxation values. This was caused by 

excessive noise in the load channel due to the small scale of mouse tail tendon fascicles. 

The maximum force exerted in the primary cycle of the cyclic loading was measured, as 

a constituent of the stress relaxation calculation, and there was no significant difference 

between genotypes (Figure 4.4) 

 

Figure 4.4.  Maximum force of wi ld-type (WT, Col1a2+/ +) and heterozygous (HET, 
Col1a2+ /1 0 7)  fascicles. No signif icant difference was detected in the maximum force 
between genotypes (WT n=4 animals, HET n=5 animals, replicates min 12 fascicles per 
animal). T-test*= P<0.05 

There were no significant differences between genotypes in any of the parameters 

derived from the pull to failure including: 1) failure stress, 2) failure strain, 3) failure load, 

4) maximum modulus and 5) strain at maximum modulus. (Figure 4.5).  
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Figure 4.5.  Graphs showing parameters from the ‘pull to failure’ phase of wild-type and 
heterozygous fascicles. (A) failure Strain, (B) failure Load,  (C) fai lure Stress, (D) maximum 
modulus and (E) strain at maximum modulus showed no significant difference between 
heterozygous (HET, Col1a2+/ 10 7) and wild-type  (WT, Col1a2+/+) samples, (WT n=4 animals,  
HET n=5 animals, replicates min 12 fascicles per animal). T-test*= P<0.05 

The lack of significant differences in the ‘pull to failure’ parameters indicate that the 

heterozygous fascicles are not inherently weaker or stronger than the wild-type 

fascicles. The significant difference in hysteresis between genotypes suggests a 

difference in the viscoelastic mechanical properties of collagen I in these mice.  

Hysteresis in tendons is generally thought of as a re-ordering of the multilevel fibre 

structure, and water movement leading to energy loss in the loading-unloading cycle 
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[263]. A reduced percentage hysteresis enables higher elastic energy return [264]. In 

behaviours where mechanical energy is absorbed, rather than stored and returned, such 

as absorbing impacts, a higher hysteresis is beneficial [265]. This means that the 

heterozygous tendons are likely to be less effective at absorbing impacts than the wild-

type tendons. 

It should be noted that the mice analysed were a mixture of males and females, however 

the literature suggests that there is no significant difference in the mechanical 

properties of tendons between sexes [266]. 

4.2.2. Three-point Bone Bending of MP-107 Animals 

The three-point bending test is a mechanical test of flexural strength, in bones a 

reduction of flexural strength could indicate brittle bones [267]. Due to limited 

resources, it was not possible to perform all mechanical tests on both sexes; female 

animals were selected over male animals, as previous studies indicate that the BMD is 

lower in females than males, and therefore any effect present would be more likely to 

be identified in females [268].  Humeri were harvested from 5 female heterozygotes 

Col1a2+/107 and 5 female wild types Col1a2+/+ at 3 months old.  

Three-point bending of these humeri using the Mach-1 multi-axial mechanical tester 

revealed a decrease in maximum flexural load (P=0.0136) and work to fracture (P=0.325) 

in the heterozygous animals, when compared to the wild-type animals (Figure 4.6).  This 

indicates that the bones of the heterozygotes are more brittle and fragile than the 

wildtypes. Coupled with the evidence of fracture in some of the heterozygous mice 

phenotyped indicates a mild OI phenotype in the heterozygotes, in addition to the OI 

phenotype observed in the homozygotes. 
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Figure 4.6.  Three-point bending analysis of wild-type and heterozygous humeri. In  
heterozygotes (HET,  Col1a2+/ 10 7) work to fracture (A),  and maximum flexural  load (B) were 
significantly reduced when compared to wild types (WT, Col1a2+ / +) . No signif icant 
difference was detected between genotypes in bending slope (C), outer diameter (E) and 
cortical wall  thickness (F).  (D) Shows a typical load-displacement graph showing the 
parameters in (A-C). T-test *P<0.05 (For all genotypes n=5).  

 

4.2.3. Tensile Skin Testing of MP-107 Animals 

Tensile skin testing is a mechanical test of tensile strength and elasticity [269]. Changes 

in elasticity or strength could be indicative of an EDS phenotype.  Abdominal skin was 

harvested from the same animals described in three-point bone bending (Section 4.2.2.), 

5 female heterozygotes Col1a2+/107 and 5 female wild types Col1a2+/+. 

Tensile rupture testing of this abdominal skin using the Mach-1 multi-axial mechanical 

tester showed no significant difference in load at rupture or elastic slope. However, 

there was a significant reduction in the initial elastic slope (P=0.0317) of heterozygous 
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animals when compared with wild type animals (Figure 4.7). This is very similar to the 

behaviour seen in the mechanical testing of fascicles, where there is an initial 

displacement for very little force (See section 4.2.1). 

 

 

Figure 4.7.   Tensile testing analysis of wild-type and heterozygous skin. No significant 
difference was detected between genotypes in elastic slope (A) or load at rupture (C). In 
heterozygotes (HET, Col1a2+/ 10 7) init ial elastic slope (B) was significantly reduced when 
compared to wild types (WT, Col1a2+/+).  (D) Shows a typical load-displacement graph 
showing the parameters in (A-C). T-test *P<0.05 (For all  genotypes n=5).  



 

182 
 

4.2.4. Micro-Indentation of the Articular Surface of MP-107 Animals 

Micro indentation can be used to investigate the structural stiffness of a material [270]. 

The articular cartilage of the femoral condyles and tibial plateau are often damaged in 

OA, and information about the structural stiffness of the tissues that make up these 

surfaces could inform about any underlying phenotypes that could be contributing to 

the MP-107 heterozygous animals developing OA. 

Whole hind legs were harvested from the same animals described in three-point bone 

bending (Section 4.3.3.), 5 female heterozygotes Col1a2+/107 and 5 female wild types 

Col1a2+/+.  The tibial plateaux and femoral condyles from these whole legs underwent 

automated indentation analysis using the Mach-1 Mechanical Tester (Figure 4.8). 

 

Figure 4.8 .  Structural stiffness analysis of the femoral condyles and tibial plateaux of 
heterozygotes and wild types. The medial femoral condyle of heterozygotes (HET,  
Col1a2+ /1 0 7)  exhibited increased structural sti ffness compared to wi ld types (WT, 
Col1a2+ /+).  No other region exhibited significant  differences between genotypes.  T-test 
*=P<0.05 (For all genotypes n=5).  
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The indentation analysis reveals that the medial femoral condyles of heterozygous 

animals exhibit higher structural stiffness than those of wild-type animals. No other 

region exhibited significant differences between genotypes. 

While the medial femoral condyle of heterozygotes exhibits a higher structural stiffness 

than the wild types, it should be noted that as the tissue tested included both articular 

cartilage and subchondral bone, it is not possible to attribute the change in the 

structural stiffness to either cartilage or bone specifically. 

 

4.3. Differential Scanning Calorimetry of MP-107 Tail Tendons 

Differential scanning calorimetry (DSC) is a method of thermal analysis. Heat flow is 

measured as the temperature in the crucible is varied, which can then be used to 

calculate a range of parameters which can inform the material analysed. Mechanical 

testing of fascicles extracted from tail tendons showed that the heterozygous fascicle 

behaved differently than wild type fascicles. DSC can provide information about the 

collagen heterotrimer within the tendon, and whether there is altered collagen 

heterotrimer in the heterozygotes [271].  

Tail tendons were harvested from female heterozygous Col1a2+/107 and wild-type 

Col1a2+/+ animals at 3 months of age and frozen at -80oC. Samples were later thawed 

and thermograms were produced using DSC (Figure 4.9).  
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Figure 4.9.  Representative differential scanning calorimetry thermograms from wild type 
and heterozygote tendons. The wild type (A) and heterozygotes (B) thermograms show 
similar peaks for the melt curve (Blue arrows) and the denaturation of collagen (Green 
arrows).  

 

The thermograms were then used to calculate a number of parameters including dry 

and wet enthalpy, collagen denaturation temperature and percentage bound water 

(Figure 4.10). 
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Figure 4.10.  Differential scanning calorimetry analysis of heterozygous and wild-type tai l 
tendons. (A) A significant reduction in dry enthalpy of heterozygous (HET,  Col1a2+ / 1 0 7)  
tendons was detected when compared with wild-type (WT, Col1a2+/ +)  tendons. No 
significant difference was detected between genotypes in (B) wet enthalpy, (C) 
percentage bound water,  or (D) collagen denaturation temperature. T-test*=P<0.05 (Wt 
n=3, Het n=4).  

The tendons showed no significant difference in collagen denaturation temperature, 

percentage bound water, or the wet enthalpy. However, there was a significant 

reduction in the dry enthalpy (P=0.398) of heterozygous samples compared to wild-type 

samples. This difference indicates that less energy is required to break apart the 

heterozygous trimer, due the trimer being less stable.  It is unknown at this time what is 

causing the increased instability in the heterozygous sample. It is likely for one of two 

reasons, either that there is homotrimer, consisting of three α1 chains, present due to 

the mutant α2 chain not being incorporated into the collagen I trimer, or the disrupted 

repeating glycine motif of the mutant α2 chain is impairing the structural integrity of the 

heterotrimer. 
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4.4. Collagen Secretion Analysis of MP-107 Tendons 

Radiolabelling using 14C- Proline can be used to investigate the composition of collagen 

I in tail tendons, and if there is impaired secretion [272]. This technique can answer the 

question raised by the DSC of what is causing the destabilisation of the Collagen trimer. 

The radiolabelled bands of the Proα1 (ProCol1a1), Proα2 (ProCol1a2), pCα1 (ProCol1a1 

with N terminal propeptide cleaved), pCα2(ProCol1a2 with N terminal propeptide 

cleaved), show no difference between genotypes in either intracellular or extracellular 

extracts.  This indicates that the mutant α2 chain is not being retained intracellularly, as 

if this was the case the extracellular band in the heterozygous samples would be lighter 

and the intracellular bands would be darker.  

 

Figure 4.11. Images of radio labelled collagen extracted from wild-type and heterozygous 
tendons. Similar levels of proα1, proα2 pCα1, pCα2 in the N (final detergent extract)  and 
S1(first salt extract) extracts in wild-type (WT1, WT3, WT3,  Col1a2+/ +) samples and 
heterozygous (HET1, HET2, HET3,  Col1a2+/ 10 7)  samples, indicate that the Collagens are 
being secreted normally. The S4 extract (fourth salt extract) is included to show that the 
majority of the extracel lular  collagens had been extracted prior to the N extraction 
indicating that the collagens found in the N extraction were intracellular collagens.   
(proα1 indicates an alpha I procol lagen with both n and c propeptides attached, pCα1 
indicates an alpha I procollagen with only the C propeptide attached.) The lanes of the 
gels were re-ordered for ease of viewing, the unmodified images of the gels are included 
in Appendix 1.  

SYPRO Ruby total protein staining of S1 (first salt extract) and N extracts (final detergent 

extract) show a similar amount of protein was extracted in samples of each genotype, 

in both the intracellular and extracellular extracts (Figure 4.12).  This confirms that any 

difference or similarity seen in the radiolabelling is not due to differences in protein 

levels between samples. 
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Figure 4.12.  Sypro Ruby total protein stained gels of tendon extracts.  S1 (first Salt extract)  
and N extracts (final detergent extract) run on Tr is-Glycine gels and stained with Sypro 
Ruby total protein stain,  show that there are similar levels of proteins extracted from 
both wild-type (WT1, WT3, WT3,  Col1a2+/+) samples and heterozygous (HET1, HET2,  HET3,  
Col1a2+ /1 0 7)  samples.  

The radiolabelling reveals that the mutant collagen is not being retained intracellularly 

and that the collagen I molecule produced is heterotrimeric rather than homotrimeric. 
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4.5. Transmission Electron Microscopy of MP-107 Embryonic Tail Tendon 

The mutant α2 chain appears, from previous experimental data (Section 4.6), to be 

incorporated into the collagen I molecule, and that this is having an effect on the stability 

of the heterotrimer (Section 4.5) and on the mechanical behaviour of tendon fascicles 

(Section 4.3.1).  Transmission electron microscopy (TEM) enables highly magnified 

viewing of the tendons, including the arrangement of the collagen I fibrils and the 

tenocytes. This imaging allows differences between the tenocytes and collagen fibrils to 

be identified [273]. Embryonic tail was harvested at 18.5 dpc and used for TEM, to 

enable the comparison between all three genotypes (Figure 4.13). TEM images show 

that the Endoplasmic Reticulum (ER) in the tenocytes is swollen and distended in the 

homozygotes and heterozygotes, when compared to the wild types.  It should be noted 

that the degree of swelling in the ER was more variable in the heterozygotes. The 

swollen and distended ER is likely an indication of ER stress [274, 275]. 
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Figure 4.13. TEM images of embryonic tail tendon from homozygous, heterozygous and 
wild-type embryos.   Homozygous (HOM, Col1a21 0 7/ 10 7)  and heterozygous (HET, 
Col1a2+/ 10 7)  samples show bloated Endoplastic Reticulum (ER) when compared with wi ld-
type (WT, Col1a2+/ +),  indicating ER stress within the cells. The homozygotes appears to 
be more affected by this ER stress than the heterozygotes (red arrows).  The bundles of 
collagen I fibres in the homozygous Col1a21 07 / 1 0 7 also appear to be less densely packed 
than those in either the heterozygous Col1a2+/ 10 7  or the wildtype Col1a2+/ +  samples 
(yellow arrows).For higher magnif ication TEM images see Appendix 4 (For all genotypes 
n=3, denoted by 1,2,3).  
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The bundles of collagen fibrils appeared to be smaller and more disorganised in the 

heterozygous and homozygous samples, when compared to the wild-type samples. To 

quantify this observation, the number of fibrils per bundle were counted blind to 

genotype, and subsequently assigned a genotype. (Figure 4.14). 

 

 

Figure 4.14.  Quantitat ive analysis of collagen fibri ls in TEM images of embryonic tail  
tendons from homozygous, heterozygous and wild-type embryos.  Collagen fibrils per 
bundle were counted in TEM images of embryonic tail tendons from animals of each 
genotype homozygote, heterozygote and wild type.  Homozygous (HOM, Col1a21 0 7/ 10 7) 
and heterozygous (HET, Col1a2+ /1 0 7) samples exhibit reduced number of f ibrils per f ibri l 
bundle when compared with wild-type (WT, Col1a2+ /+) samples. One-way ANOVA: ** 
P<0.01 (n=3 for all genotypes).  

Statistical analysis revealed that the heterozygote and homozygote had significantly 

fewer collagen fibrils per bundle than the wild type (P=0.0053).  There was no difference 

between heterozygote and homozygote. It should be noted that no determination was 

made on the sex of the embryos used for TEM. 

4.6. Analysis of ER Stress in MP-107 Mouse Embryonic Fibroblasts (MEFs) 

TEM imaging revealed evidence of ER stress in heterozygous (HET, Col1a2+/107) and 

homozygous (HOM, Col1a2107/107) tenocytes. To further investigate the ER stress, that 

the bloated ER implied was present, MEFS were harvested 2 days post confluence and 

homogenised in Cell lytic™  with the addition of phosphate inhibitors and protease 

inhibitors using a Pellet Pestle.  A positive control was created by treating wild-type 

MEFs with Thapsigargin to induce ER stress, prior to harvesting. 
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A western blot was run using cell lysate from each genotype and the positive control 

sample (Figure 4.15). 

 

Figure 4.15.  Western blot showing levels of BIP in MP-107 MEF cel l lysates. Untreated 
wild-type (Col1a2+/+),  heterozygous  (Col1a2+ /1 0 7) and homozygous (Col1a21 0 7/ 10 7) cell 
lysates run along with Thapsigargin treated wild type cell lysates label led with BIP and 
Act in (See section 2.3 for antibody details). Heterozygous  (Col1a2+/ 10 7) and homozygous 
(Col1a21 0 7/ 1 07) cell  lysates appear to show elevated levels of BIP protein when compared 
to wild-type (Col1a2+/+) lysates.  The uncropped gel is shown in Appendix 5.  

The western blot suggests that there BIP is present at higher levels in the heterozygous 

and homozygous samples, although not in as high levels as the thapsigargin treated 

sample. BIP (Binding immunoglobulin protein) is a chaperone protein located in the 

endoplasmic reticulum, and is commonly used as a marker of ER stress. The increased 

levels of BIP is another indication of ER stress in the heterozygous and homozygous MP-

107 cells. 

4.7. Immunohistochemistry Analysis of ER Stress in MP-107 Articular 

Cartilage 

Previous studies have shown that OA induction by destabilisation of the medial 

meniscus increases ER stress in chondrocytes [276]. Additionally, markers of ER stress 

such as BIP and Bag-1 have been shown to be upregulated in articular cartilage from OA 

patients with advanced disease [277]. It is therefore possible that any increase in 

markers of ER stress noted in the chondrocytes of animals with OA, could be as result of 

the cartilage degradation rather than the cause of it. It was therefore more appropriate 

to investigate if there was evidence of ER stress in the absence of cartilage degradation 
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in heterozygotes. As previously discussed, not all heterozygotes develop the ossification 

observed  by X-ray and µCT. 

Histological sections from MP-107 wild-type (WT, Col1a2+/+) and heterozygous (HET, 

Col1a2+/107) knee joints which showed no sign of OA by histology at 18 months were 

assessed, by immunohistochemistry, using an Anti-BIP Antibody as a marker of ER stress 

(for details see Section 2.3), before secondary antibodies and DAB staining were used to 

visualise the distributions of the protein. 

A negative control for this experiment was created by incubating a wild-type section 

with serum without the primary antibody. Neither wild-type section, either incubated 

with the primary antibody or without, showed any DAB staining in the chondrocytes. 

Some chondrocytes in the heterozygous section, which was incubated with the primary 

antibody, appeared to be stained with the DAB (Figure 4.16). 

The enhanced staining in the MP-107 heterozygotes suggests that the chondrocytes may 

have elevated levels of ER stress. 
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Figure 4.16.  Immunohistochemical staining of wild-type and heterozygous knee sections 
using BIP antibody. (A) Negative control wild-type (WT, Col1a2+/ +) section without primary 
antibody, (B) Wild-type (WT, Col1a2+/ +) section with primary antibody, (C) Heterozygous 
(HET, Col1a2+/ 1 0 7) section with primary antibody. Dark brown staining is only visible in the 
chondrocytes of the heterozygous section (black arrows), indicating increased levels of 
ER stress in the heterozygote chondrocytes. It  should be noted that only one 18-month 
heterozygous animal showed no evidence of joint  damage, and was therefore used for 
IHC, and therefore no statistical testing was carr ied out. For higher magnification images 
see Appendix 6.  
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4.8. Destabilisation of the Medial Meniscus (DMM) in MP-107 Knees 

DMM surgery is a method of surgically inducing OA, by severing the medial menisco-

tibial ligament to destabilise the medial meniscus [278]. This technique induces OA as a 

result of destabilising the joint, leading to accelerated damage.  In this case we are using 

DMM surgery as a challenge to investigate if the MP-107 heterozygotes (Col1a2+/107) are 

predisposed to developing OA as a result of joint instability. 

Cohorts of heterozygous and wild-type animals underwent DMM surgery to investigate 

if the mutation in Col1a2 increased the susceptibility to surgically induced OA.  Surgery 

was performed at 8 weeks of age, and animals were culled 6 weeks post-operatively, to 

take joints for histology. 

Histological analysis of Safranin O sections of DMM treated animals show damage to the 

articular cartilage in both heterozygotes (HET, Col1a2+/107) and wild types (WT, 

Col1a2+/+), in addition the heterozygotes displayed osteophytes. Histological analysis of 

H&E sections of sham treated animals show no increase in damage to the articular 

cartilage or  increase in the presence of osteophytes in heterozygotes (HET, Col1a2+/107) 

compared to wild types (WT, Col1a2+/+) (Figure 4.17).   
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Figure 4.17.  Safranin O stained histological section of knee joints from DMM operated 
and sham operated wild-type and heterozygous animals. DMM-treated animals show 
damage to the articular cartilage (Blue arrows) in both heterozygotes (HET, Col1a2+/ 1 07) 
and wild types (WT, Col1a2+ /+),  in addition the heterozygotes displayed severe 
osteophytes (black Arrows).  Sham-treated animals show no damage to the articular 
cartilage or osteophytes in either heterozygotes (HET, Col1a2+/ 1 07) or wild types (WT, 
Col1a2+ /+).   Medial and tibial orientation indicated by M and T respectively.  

As with other phenotypes observed in MP-107, the histology of the DMM treated 

heterozygotes was variable, with some animals having severe cartilage loss and others 

comparable cartilage loss to wild types. An F test between genotypes, reveals that there 

is a significant variance in the females, but not the males (Female- F-74.76, DFn-4, DFd-

3, P=0.0049, Males- F-1.316, DFn-2, DFd-4, P=0.3496). The histology from the operated 

and sham operated samples were scored using the OARSI scoring system [279], 

unfortunately no OARSI scoring data is available for the female sham operated animals.  

There was no significant difference detected between the DMM operated 

heterozygotes (HET, Col1a2+/107) and wild types (WT, Col1a2+/+) in either sex. In males, 

where sham operated OARSI scoring data was available there was a significant increase 

in OARSI score in the DMM operated wild types (WT, Col1a2+/+) compared with the sham 

operated wild types (WT, Col1a2+/+), but no significant difference with the DMM 

operated heterozygotes (HET, Col1a2+/107) (Figure 4.18). 
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Figure 4.18.  Histological analysis of Safranin O stained histological section of knee joints 
from wild-type and heterozygous animals including from DMM operated and sham 
operated. No significant difference in carti lage damage was detected between the 
heterozygotes (HET, Col1a2+/ 10 7) and the wild types (WT, Col1a2+/ +) in either sex.  Where 
the OARSI data for Sham surgery was available, there was a significant increase in OARSI 
scores in  the DMM operated wild types (WT, Col1a2+/ +) compared to the sham operated 
wild types (WT, Col1a2+/ +).  

It should be noted that although the OARSI scoring did not reveal a significant difference 

in the cartilage, all heterozygotes of both sexes that were DMM operated showed 

osteophytes in the histology. Incidence of osteophytes in the wild-type DMM operated 

animals varied between 33% (1/3 males) and 50% (2/4 female). Statistical testing using 

the Mann-Whitney U test found that there was no statistical difference between 

genotype, this is likely due to the small cohort sizes making this experiment 

underpowered (Males-WT- n=3, U-12.5, HET- n=5, U-2.5, P=0.076; Females-WT- n=4, U-

15, HET- n=5, U-5, P=0.128). The relatively early end-point for this experiment of 6 weeks 

post-surgery may have led to less severe cartilage degradation than would have been 

seen at 8 or 10 weeks, and therefore no significant difference was detected between 

genotypes.  
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4.9. Discussion 

The mechanical testing of bones indicated that the humeri of heterozygous Col1a2+/107 

animals were significantly more brittle than the humeri of wild-type Col1a2+/+ animals, 

indicating a mild OI phenotype  [80]. Bone fractures were only observed by X-ray in the 

humeri of two heterozygotes, which also exhibited the curved olecranon phenotype, 

however µCT imaging revealed further evidence of fracture in the humerus of another 

heterozygote exhibiting the curved olecranon phenotype.  These examples of fractures 

occurring in tandem with the olecranon phenotype, coupled with the observation of in 

utero fractures leading to bone deformation in homozygous embryos Col1a2107/107 (See 

Section 3.5.3), raise the possibility that minor fractures in utero, while not visible by X-

ray, could be leading to the mild bone abnormalities observed, including the curved 

olecranon and splayed ischia seen in the heterozygotes [280]. It is also conceivable that 

the OI phenotype could be related to microfractures in the subchondral bone, although 

these have not been observed at this time. 

Mechanical testing of tendon fascicles and skin indicate that both tissues have altered 

viscoelastic properties.  Both tissue types have an altered initial elastic slope and the 

tendon fascicles also had a reduction in hysteresis, meaning that there is less energy loss 

on each cycle. While this can be viewed as advantageous in terms of higher elastic 

energy return [264], it reduces the ability of the tendon to absorb energy [265]. These 

changes to the visco-elastic properties could be indicative of an EDS phenotype, where 

skin is often hyperextensible, and joints are hypermobile [281, 282]. The model 

proposed by Frantzl et al. indicates that initial extension is a result of the removal of the 

macroscopic crimp followed by straightening of molecular kinks in the gaps between 

Collagen molecules [36].  It is likely that the altered mechanical properties are a result 

of micro-unfolding at the site of the repeating glycine motif disruption. This could 

explain why the initial elastic slope differs between genotypes, but the elastic slope does 

not (see section 4.2.3). This demonstrates that the MP-107 heterozygotes exhibit an 

EDS-like phenotype in addition to the OI phenotype.  Some models of osteogenesis 

imperfecta, such as oim exhibit changes in the tendon mechanical strength, which while 

not replicated here, does demonstrate the connected phenotypes [283, 284]. It should 

be noted that due fascicles, extracted from mouse tail tendon, being very small and 
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delicate, they can dry out quickly which can affect mechanical properties, and can 

increase noise on the load channels [285]. 

The differential scanning calorimetry (DSC) data showing a reduced dry enthalpy in the 

heterozygotes Col1a2+/107 when compared with the wild types Col1a2+/+, could explain 

why these tissues exhibit these behaviours. The reduced stability indicated by the 

reduced dry enthalpy could be due to micro unfolding of the collagen I heterotrimer, or 

the presence of homotrimers [271]. The radiolabelling of tendons indicated that there 

was no issue with α2 chains being retained intracellularly, and that the levels of α1 and 

α2 in the extracellular extract were similar in both genotypes [272]. This demonstrates 

that the α2 is being incorporated into the trimer, and micro-unfolding is likely impairing 

the formation of the collagen fibres and fibrils, leading to altered visco-elastic 

properties.  The DSC data also showed that there was no significant difference between 

bound water content in the tendons between genotypes. This indicates that the 

increased CSA of fascicles observed in Section 4.2.11, is unlikely to be due to increased 

water content. 

TEM imaging shows enlarged, bloated endoplasmic reticulum (ER), a marker of ER stress, 

in the heterozygotes and homozygotes, which can be indicative of physiologic or 

pathological stress [286]. Protein analysis of cell lysates from MEFs indicated that there 

was increased ER stress in homozygous and heterozygous MEFs. MEFs are a useful tool 

to enable investigation of the homozygotes despite a lethal phenotype, however there 

are limitations in using MEFs including  phenotypically heterogeneous subtypes of MEFS, 

and the potential for other cell types to be present in the culture [287]. Immunostaining 

indicated an increase BIP staining in chondrocytes in the heterozygous articular 

cartilage, compared to the wild-type articular cartilage, however due to a lack of suitable 

samples, only sections from one heterozygous animal were used, and therefore while 

this information appears to support other evidence of ER stress, no conclusions should 

be drawn from the IHC alone. TEM imaging of dermis of EDS patients has shown 

evidence of ER stress, including dilated ER in fibroblasts of dermis of patients with EDS 

[288] and reduced number of fibrils [289, 290]. 

 



 

199 
 

The radiolabelling and DSC results indicate that mutant protein is being secreted; 

however, it is possible that a fraction of the mutant protein is being retained 

intracellularly, and this could be causing an unfolded protein response, leading to ER 

stress. Boot-Handford et al. have stated that it is rare ERAD causes upregulation of BIP, 

indicating that this is probably not what is causing the ER-stress [70]. The biosynthesis, 

folding and secretion of collagens is a very complicated process, and delays in the 

processing can also lead to ER stress, and therefore further investigation into what is 

causing the ER stress is warranted. Quantification of the collagen fibrils in the tendons 

demonstrated that both heterozygote and homozygote tendons contain significantly 

fewer collagen fibrils per bundle. Micro-unfolding due to the disrupted glycine motif 

could explain this phenotype, in addition to the mechanical behaviours and reduced 

stability of the heterozygotes, as the micro-unfolding will cause the collagen 

heterotrimer, and in turn the collagen fibres and fibrils to require more space. 

Indentation analysis indicates that there are some regions of the articular surface which 

have increased structural stiffness in the heterozygous Col1a2+/107 animals when 

compared with the wild-type Col1a2+/+ animals. The articular cartilage is primarily made 

up of collagen II, with only small amounts of collagen I, it is therefore unlikely that the 

changes are directly due to changes in the collagen I protein in the articular cartilage. It 

is more likely we are either observing a difference in the subchondral bone, or a 

secondary change in the articular cartilage perhaps caused as a by-product of ER Stress. 

[291]. The µCT data (Section 3.6.5.3) does indicate the subchondral bone of the 

heterozygotes is structurally altered, however this does not rule out ER stress as a cause, 

and this warrants further investigation. 

The DMM experiment was likely underpowered, and the results were inconclusive. The 

severe OA and osteophytes observed in some heterozygotes were not replicated in all 

heterozygotes, and there was no significant difference between genotypes.  

There are four types of EDS caused by mutations in COL1A1 and COL1A2. A specific 

arginine to cysteine mutation (Arg134Cys) in COL1A1 has been observed to cause a 

classical EDS phenotype [96]. Mutations in COL1A2, leading to a complete deficiency of 

pro α2 (I) collagen, including splice mutations and nonsense mutations have been shown 

to lead to cardiac-valvular EDS [98]. Arginine to cysteine mutations including the 



 

200 
 

previously mentioned example(Arg134Cys) as well as others (including Arg312Cys, 

Arg574Cys, Arg1093Cys) in COL1A1 have been observed to cause a vascular EDS 

phenotype, possibly due to the extra cysteine residue causing additional intermolecular 

bonding [96, 101]. Mutations in COL1A1 and COL1A2 preventing the cleavage of the N-

propeptide (most commonly skipping exon 6) leads to arthrochalasia EDS. Due to the 

mutation in MP-107 being in Col1a2, only cardiac-valvular EDS and arthrochalasia EDS 

subtypes would fit with this mutation. However, the mutation in MP-107 does not cause 

a deficiency in pro α2 (I) collagen and is unlikely to impair the cleavage of N-propeptide 

due to the location of the mutation being in the middle of the helical domain. It is 

therefore unlikely that MP-107 is modelling one of these EDS subtypes. 

In addition to EDS caused by mutations in COL1A1 or COL1A2, there is also an OI/EDS 

overlap disorder, where symptoms of both disorders were observed. Until recently 

OI/EDS overlap disorder was associated only with mutations preventing or delaying the 

cleavage of the procollagen N-propeptide. However, a different type of OI/EDS overlap 

syndrome was identified where the mutations did not affect the cleavage of the N-

propeptide [115]. Over 20 patients were identified from 13 families, with this novel type 

of EDS, with mutations identified right across both COL1A1 and COL1A2, including in the 

c-terminal half of the helical domain, and subsequently named COL1-related overlap 

disorder. Interestingly, even in families where all individuals carried identical mutations 

in COL1A1 or COL1A2, the phenotypes presented varied. The presence of phenotypes 

associated with both OI and EDS in MP-107 heterozygotes indicates that rather than 

modelling OI or EDS, the line MP-107 likely models Col-1 related overlap disorder as 

described in Morlino et al., 2019 [115]. 

A mouse model of OI/EDS (published prior to the term Col-1 related disorder) called Jrt 

published by Chen et al. [117] showed similar phenotypes at the ischia and olecranon to 

those seen in MP-107, which were again attributed to fractures. The presence of the 

phenotypes was variable across animals of the same phenotype (Col1a1Jrt/+), and the 

affected animals showed altered mechanical and material properties of skin, indicating 

skin fragility. This adds further weight to the hypothesis that MP-107 heterozygotes have 

an overlap disorder. 
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These results show a novel association of an osteoarthritis phenotype with a Col-1 

related disorder caused by a mutation in Col1a2. In addition to providing knowledge 

about the genotype/phenotype relationship in Col-1 related disorder, this model could 

be used to further understand how changes in Collagen I can lead to osteoarthritis. 
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Chapter 5: Identification and Initial 

Characterisation of Phenotypes 

Associated with a Point Mutation in 

Col1a1 
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5.1. Introduction 

Prior to the start of the Harwell Ageing Screen, several ENU mutagenesis screens were 

undertaken at MRC Harwell [235, 245, 292]. One of these was a G1 dominant screen, 

whereby cohorts of G1 animals underwent phenotyping to identify any early onset 

phenotypes caused by dominant mutations. To produce the G1 mice, C57BL/6J male 

animals (G0) were injected with ENU, and mated with C3H females to produce cohorts 

of mice (G1) heterozygous for the mutations induced in the spermatogonia of the G0 

animal. Once a phenotype had been identified, the G1 animal was crossed with C3H, to 

produce a cohort of G2 animals to confirm the phenotype and identify the causative 

mutation, see Section 2.6.2, Figure 2.1 for the breeding scheme. 

Among the phenotyping procedures was X-ray imaging, and a G1 animal was identified 

as having mild bone abnormalities.  The subsequent G2 line was named Bone-TM\44. 

The initial phenotyping, mapping and exome sequencing of this line was performed prior 

to the start of this project by Dr Chris Esapa. The line was then banked and no further 

work was undertaken. Where work was previously carried out by Dr Esapa, it will be 

noted.  Due to the similarities between early phenotypes in this line, and the early 

phenotypes in the line MP-107, this line was re-derived to allow further phenotyping 

and analysis of the mutations. For ease, the line was renamed TM44 upon re-derivation.  

The aim of this chapter is to establish if the phenotypes in this line mirror those observed 

in MP-107 and if the causative mutation affects the Collagen I heterotrimer. 

5.2. Identification of Early Phenotype in the line TM44 

X-ray imaging at 4 months of age revealed that a female G1 animal displayed mild bone 

abnormalities, including curved olecranon and splayed ischia (C.Esapa) (Figure 5.1).  
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Figure 5.1.  An X-ray image of the G1  founder animal of the l ine TM44.  The animal displays 
curved olecranon at both elbows (orange arrows) and splayed ischia at the pelvis (blue 
arrows).   

A G2 cohort was established by crossing the G1 founder female animal with a male C3H 

animal to produce 4 litters of progeny, comprising 19 females and 19 males.  This cohort 

was phenotyped by X-ray imaging at 3 months of age.  Of these 38 animals, 12 animals, 

8 males and 4 females showed skeletal abnormalities, including curved olecranon and 

splayed ischia, in isolation or in combination (C.Esapa) (Figure 5.2).  

No further phenotyping was performed on the G2 cohort at this time.  DNA was 

extracted from tissue harvested from affected animals, and sperm from the affected 

male animals was banked. 
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Figure 5.2.  Representative X-ray images showing affected and unaffected animals. (A) An 
unaffected animal with a normal olecranon and ischia. (B&C) Affected animals showing 
curved olecranon (orange arrows) and splayed ischia at the pelvis (blue arrows), in  
combination or isolation.  

5.3. Mapping and Identification of the mutation in the line TM44 

5.3.1. Mapping the Mutation in TM44 

DNA from 8 affected animals underwent SNP mapping to identify a region which would 

contain the causative mutation (C.Esapa). As the G2 animals which underwent 

phenotyping have a mixed background, it is possible to use the SNPs to identify which 

portions of the genome were inherited from each ancestral strain. The original mutation 



 

206 
 

was created in a C57BL/6J mouse, therefore any mutation caused by the ENU will be on 

the C57BL/6J regions of the genome. The original phenotype was identified in a G1 

animal, which must be heterozygous for any ENU induced mutation; therefore, the 

mutation must be dominant. The G2 cohort, being an outcross cohort, will only contain 

animals that are wild-type or heterozygous for the mutation and a dominant causative 

mutation would need to be heterozygous for C57BL/6J SNPs.   A region was identified 

on Chromosome 11, from 82.70 Mb to the distal end of the chromosome, where all 

affected animals were heterozygous, indicating that the causative mutation was within 

this region at the distal end of Chromosome 11 (Figure 5.3). 

 

 

Figure 5.3. SNP mapping panel showing the region of interest on Chromosome 11. All  
affected animals have one C57BL/6J allele and one C3H al lele in the ~40Mb region at the 
distal end of Chromosome 11, indicating that  the causative mutation is dominant and 
contained within that region. 
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5.3.2. Exome Sequencing of TM44 

Exome sequencing performed by C.Esapa identified two high confidence mutations 

within the region on Chromosome 11. The first was a cytosine to thymine transition at 

base 2029 (C2029T), causing a premature stop in place of a glutamine (Gln677Stop) in 

Exon 31 of the gene Col1a1.  The second was an adenine to a guanine transition at base 

413 (A413G), causing an amino acid change, a glutamic acid in place of a glycine  

(Glu138Gly) in Exon 4 of the gene Sectm1a. 

5.3.3. Confirmation of Mutations in the line TM44 

The two mutations identified by exome sequencing were subsequently confirmed using 

Sanger sequencing in affected animals, showing the animals to be heterozygous for both 

mutations (C.Esapa). Unfortunately, at the time, unaffected animals were not 

sequenced so the reference trace included in Figure 5.4 and Figure 5.5 is from an 

unaffected animal from the re-derived TM44 line at a later date. This confirms that these 

mutations were only present in affected animals and that one of these mutations is likely 

causative. 

 

Figure 5.4.  Sanger sequencing traces confirming the presence of a heterozygous mutation 
in Col1a1  in affected animals. An affected animal from the G2 cohort shows two peaks 
indicating a heterozygous mutation and an unaffected animal from the re-derived line 
showing no mutation in Col1a1 (indicated by a blue arrow).  
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Figure 5.5.  Sanger sequencing traces confirming the presence of a heterozygous mutation 
in Sectm1a  in affected animals. An affected animal from the G2 cohort shows two peaks 
indicating a heterozygous mutation and an unaffected animal from the re-derived line 
showing no mutation in Sectm1a (indicated by a blue arrow).  

 

5.3.4. Segregation of Mutations in the line TM44 

Due to the nature of the ENU mutagenesis screen, the line TM44 was on a mixed 

C3H/HeH and C57BL6/J background. To reduce the amount of C57BL6/J and segregate 

the different mutations, the line was backcrossed to C3H/HeH for multiple generations. 

Sequencing of the two identified mutations at backcross 6 (BC6) showed segregation of 

the mutations eliminating Sectm1a as a candidate gene (Figure 5.6).  Much of the work 

in this chapter was carried out prior to the successful segregation of mutations. To 

indicate where animals with the segregated mutation are used, the designation of both 

genes will be used i.e., the affected animal TM44\14.1d from Figure 5.6 would be 

described as heterozygous (HET, Col1a1+/TM44, Sectm1a+/+). 
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Figure 5.6.  Sanger sequencing traces showing the segregation of mutations in affected 
animals. Affected animals from backcross 6 were heterozygous for the Col1a1  mutation 
(C/T), but wild-type for the Sectm1a mutation (A/A); and unaffected animals were wild-
type for both the Col1a1  mutation (C/C), and wild-type for the Sectm1a mutation (A/A).  
The sites of the mutations in both genes are marked by blue arrows. 

 

5.4. Identification of a Lethal Phenotype in TM44 Homozygotes 

The G2 cohort only contained heterozygotes and wild types, due to being the product of 

matings between the heterozygote G1 founder female animal with a male wild-type 

C3H/HeH animal. It was therefore unknown what phenotypes the homozygote would 

display.  The line was re-derived using banked G2 sperm and C3H/Heh oocytes, to 

produce wild-type and heterozygous offspring. After genotyping to confirm genotype, 

intercross matings between male heterozygotes (Col1a1+/TM44) and female 

heterozygotes (Col1a1+/TM44) were set up to produce to an intercross (IC) cohort 

containing homozygotes (Col1a1TM44/TM44), heterozygotes (Col1a1+/TM44) and wild types 

(Col1a1+/+).  Genotyping of the IC cohort at P21 revealed that there were no 

homozygotes present (Figure 5.7).  The proportion of heterozygous animals to wild-type 

animals was 2:1, indicating a homozygous lethal phenotype; a Chi squared test shows 

that the numbers are statistically different from the expected (χ2= 9.91, 2df, P<0.01). 

This experiment was carried out prior to the segregation of the mutations. 
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Figure 5.7  Proport ions of animals of each genotype at weaning (stage P21). Heterozygotes 
(HET, Col1a1+/ T M4 4) making up 65% percent of the offspring and wild types (WT, Col1a1+/ +)  
making up 35% is indicative of a homozygous lethal phenotype.  

To investigate the time point of the embryonic lethality, analysis of 14.5 dpc embryos 

from intercross matings between male heterozygotes (Col1a1+/TM44) and female 

heterozygotes (Col1a1+/TM44) was undertaken.  At 14.5 dpc homozygous embryos were 

present at the expected ratios (χ2= 0.67, 2df, P>0.5), however none of the homozygous 

embryos were alive and there was evidence of reabsorption (Figure 5.8). The animals 

that were alive replicated the ratios observed at weaning.  
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Figure 5.8.  Proportions of embryos of each genotype at 14.5 days post-coitum. (A) The 
ratios of the total number of homozygote (HOM, Col1a1TM 4 4/ T M 44),  heterozygote (HET, 
Col1a1+/ TM 4 4)  and wild type (WT, Col1a1+/+) embryos does not differ from expected values 
from an intercross mating (χ2= 0.67, 2df, P>0.5). (B) When dead animals were excluded,  
the ratios of the l iving embryos mirrored that of the IC P21 cohort, with no homozygotes 
(HOM, Col1a1T M4 4/ TM 4 4)  present, and heterozygotes (HET, Col1a1+ /T M 44 )  accounting for 67% 
and wild types (WT, Col1a1+/+) 33%. 

 

Having established that homozygous embryos were not viable at 14.5 dpc, further 

embryos were analysed at 12.5 dpc. Homozygous embryos were found to be alive and 

present in the expected ratios at this embryonic stage (χ2= 0.73, 2df, P>0.5) (Figure 5.9), 

indicating that lethality occurs between 12.5 dpc and 14.5 dpc. 
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Figure 5.9.  Proportions of embryos of each genotype at 12.5 days post coitum. The ratios 
of the total number of homozygote (HOM, Col1a1T M 44 / T M 44),  heterozygote (HET,  
Col1a1+/ TM 4 4)  and wild type (WT, Col1a1+/+) embryos does not differ from expected values 
from an intercross mating (χ2= 0.73, 2df, P>0.5).  This indicates that the point of lethal ity 
is between 12.5dpc and 14dpc.  

 

5.5. Optical Projection Tomography of TM44 Embryos 

We employed optical projection tomography (OPT) imaging to analyse the phenotypes 

of the homozygous embryos.  OPT is a useful technique as it allows 3D imaging without 

the laborious preparation involved in µCT imaging of whole embryos. The resulting 

images can be reconstructed to allow 3D modelling and segmentation to allow for 

examination of specific planes throughout the embryo [293]. Initial measurements such 

as crown to rump length showed no significant difference between genotypes (Figure 

5.10).   
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Figure 5.10.  A graph showing the measured crown to rump length of wild-type (WT, 
Col1a1+ /+) and homozygous (HOM, Col1a1T M4 4/ T M 4 4) embryos.  Statistical analysis showed 
no signif icant difference in length between the two genotypes. (T-test) 

Further analysis demonstrated that a number of homozygous animals had enlarged 

conical skulls, and in some cases evidence that a build-up of pressure had forced a large 

hole to appear in the skull.  Segmentation revealed that in a number of cases this 

pressure, likely caused by a build-up of cerebrospinal fluid (CSF) in the skull, was leading 

to hydrocephaly and deformation of the ventricles (Figure 5.11). 
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Figure 5.11.  Representative OPT imaging of wild-type and homozygous embryos. (A-C) The 
wild-type (WT, Col1a1+/+)  embryos display a normal gross morphology for embryos at this 
stage when viewed in 3D, and a 2D section through the brain shows normal ventricles. (D-
F) The homozygous (HOM, Col1a1T M 44 /T M 44)  embryos display abnormal gross morphology 
when viewed in 3D, including elongated, conical skulls (blue arrows) in (D-F),  in addition 
one homozygote (E) showed evidence of damage to the skull in what appears to be a 
release of pressure from within the skull (yellow arrow) and one homozygote (F) shows 
evidence of deformation inwards (red arrow).  2D section through the brains of the 
homozygotes shows abnormal brain and ventricles in (D-F).  

 

5.6. Phenotyping of the TM44 line 

X-ray imaging from the original G2 Cohort identified early onset mild bone abnormalities, 

including curved olecranon and splayed ischia. To investigate whether the line TM44 

also displayed a late onset OA phenotype, similar to that seen in MP-107, a cohort of re-

derived animals was aged to 18 months and underwent X-ray imaging and DEXA analysis 

and histology at 18 months, with addition X-ray imaging at 12 months of age. Following 
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the successful segregation of the Col1a1 and Sectm1a mutations in the TM44 line, a 

small cohort uniquely carrying the Col1a1 mutation was bred for phenotyping at 2 

months of age in order to confirm that the Sectm1a mutation was not causative, and to 

allow a direct comparison of early phenotypes with MP-107.  Unfortunately, due to the 

segregation of mutations occurring late in the project, it was not possible to age animals 

with solely the Col1a1 mutation.  

5.6.1. X-ray Imaging of TM44 Animals 

X-ray imaging of animals with the segregated mutations at 2 months of age revealed 

that animals that were heterozygous for the Col1a1 mutation in the absence of the 

Sectm1a mutation (HET, Col1a1+/TM44, Sectm1a+/+) exhibited the early bone phenotypes 

of curved olecranon and splayed ischia. This indicates that Col1a1 is the causative 

mutation for these phenotypes. The combination of phenotypes is shown in Figure 5.12, 

and examples of the radiographs are shown in Figure 5.13.  

 

Figure 5.12.  Diagram showing the number of animals that exhibited each phenotype, or 
combination of phenotypes for wild-type and heterozygous animals at 2 months of age. 
All heterozygous (HET, Col1a1+/ T M4 4,  Sectm1a+ /+) animals exhibited at least one 
phenotype, no wild-type (WT, Col1a1+ /+,  Sectm1a+/ +) animals exhibited a phenotype.  
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Figure 5.13.  Representative X-ray images of wild-type and heterozygous animals at 2 
months.  (A) Wild type (WT, Col1a1+/ +,  Sectm1a+/ +) animals exhibited no evidence of the 
curved olecranon or splayed ischia (B&C) heterozygous (HET, Col1a1+/ TM 4 4,  Sectm1a+/+) 
animals either exhibited the curved olecranon (orange arrow), or the splayed ischia (Blue 
arrow), or a combination,  confirming Col1a1  as the causative mutation. 
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All animals which were heterozygous for the Col1a1 mutation showed some 
phenotype regardless of sex (Table 5.1). 

2 months N Ischia Olecranon Knee 
Total 

Affected 
Percentage 

Affected 
Male - Col1a1+/TM44, Sectm1a+/+ 5 3 2 0 5 100 % 
Male - Col1a1+/+, Sectm1a+/+ 5 0 0 0 0 0% 
Female - Col1a1+/TM44, Sectm1a+/+ 5 5 2 0 5 100% 
Female - Col1a1+/+, Sectm1a+/+ 5 0 0 0 0 0% 

 

Table 5.1.  A table displaying the number of animals phenotyped in the 2-month cohort 
and the number of animals presenting with each phenotype. 100 % of heterozygotes 
(Col1a1+/ TM 4 4,  Sectm1a+/+) exhibited either the curved olecranon, the splayed ischia, or a 
combination of phenotypes. No phenotype was observed in the wild types (Col1a1+ / +,  
Sectm1a+/ +).  

In addition to the previously noted phenotypes of curved olecranon at the elbow and 

splayed ischia at the pelvis, in the heterozygotes (HET, Col1a1+/TM44, Sectm1a+/+), one 

heterozygote (HET, Col1a1+/TM44, Sectm1a+/+) appeared to have extra bone formation at 

the elbow rather than the curved olecranon seen in other heterozygous animals (Figure 

5.14).  It should be noted that this animal was included, in Figure 5.12 and Table 5.1 as 

having an olecranon phenotype, however as this was not the only phenotype in this 

animal, it would not affect the percentage affected if excluded. 
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Figure 5.14. X-ray images of wild-type and heterozygous animals at 2 months showing the 
olecranon phenotypes. (A) Wild type (WT, Col1a1+/+,  Sectm1a+ / +) exhibits no evidence of 
the curved olecranon, (B) a heterozygote (HET, Col1a1+ / T M4 4,  Sectm1a+ / +) exhibits the 
curved olecranon (orange arrow), (C) a heterozygote (HET, Col1a1+/ TM 4 4 ,  Sectm1a+/+) 
exhibits apparent abnormal bone growth at the olecranon (Purple arrow) (only seen in 
one animal).  

A small cohort of TM44 animals were aged to 18 months to investigate whether the 

TM44 animals exhibited late onset phenotypes. These animals were bred prior to the 

segregation of mutations, and therefore carry the Sectm1a mutation in addition to the 

Col1a2 mutation.  Animals were X-rayed at 12 and 18 months.  At 12 months, in addition 
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to the early phenotype previously noted, a number of heterozygotes (HET, Col1a1+/TM44) 

were starting to show abnormal bone growth at the knee (5/8, 62.5% male 

heterozygotes and 5/6, 83.3% female heterozygotes), similar in appearance to the 

phenotype seen in MP-107.  Four heterozygotes were also observed to have a mild bone 

abnormality at the heel. No phenotype was observed in the wild types (Col1a1+/+) (Figure 

5.15). 

 

Figure 5.15.  Representative X-ray images of wild-type and heterozygous animals at 12 
months.  (A) Wild-type (WT, Col1a1+/+) and (B&C) heterozygous (HET, Col1a1+/ TM 4 4)  animals 
at 12 months of age. (A) Wild types (WT, Col1a1+ /+) display no evidence of the curved 
olecranon splayed ischia or abnormal bone growth at the knee. (B-C) Heterozygotes (HET,  
Col1a1+ /T M 44)  displays curved olecranon (not shown in this figure), abnormal bone growth 
at the knee (red arrow), splayed ischia (blue arrow), abnormal calcaneus (green arrow) or 
a combination of phenotypes. 
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At the 18-month time point, two animals that did not display the abnormal bone growth 

at the knee had developed the phenotype. At 12-months, 100% of heterozygotes 

exhibited some form of phenotype, and at 18-months 100% of heterozygotes exhibited 

the knee phenotype.  No phenotype was observed in the wild types (Figure 5.16). 

 

Figure 5.16.  Representative X-ray images of wild-type and heterozygous animals at 18 
months.  (A) Wild-type (WT, Col1a1+/+) and (B&C) heterozygous (HET, Col1a1+/ TM 4 4)  animals 
at 12 months of age. (A) Wild types (WT, Col1a1+ /+) display no evidence of the curved 
olecranon splayed ischia or abnormal bone growth at the knee. (B-C) Heterozygotes (HET,  
Col1a1+ /T M 44)  displays curved olecranon (not shown in this figure), abnormal bone growth 
at the knee (red arrow), splayed ischia (blue arrow) or a combination of phenotypes. No 
heterozygous (HET, Col1a1+/ TM 4 4)  animals exhibited the abnormal calcaneus at 18 months 
as affected animals were culled due to welfare reasons.  
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Table 5.2 shows the number of animals displaying each phenotype in each cohort, and 

Figure 5.17 shows the actual combination of phenotypes that were observed. 

 

Cohort Genotype N Ischia Olecranon Knee Heel 
Total 
Affected 

Percentage 
Affected 

12-month 
Male 

Col1a1+/TM44  8 2 3 5 3 8 100 % 

Col1a1+/+ 6 0 0 0 0 0 0% 
12 month 
Female 

Col1a1+/TM44  6 5 0 5 0 6 100% 

Col1a1+/+ 4 0 0 0 0 0 0% 

18-month 
Male 

Col1a1+/TM44  3 1* 1* 3* 0* 3 100 % 
Col1a1+/+ 4 0 0 0 0 0 0% 

18-month 
Female 

Col1a1+/TM44  5 4* 0 5 0 5 100% 
Col1a1+/+ 4 0 0 0 0 0 0% 

 

Table 5.2.  A table displaying the number of animals phenotyped in the 12- and 18-month 
cohorts and the number of animals presenting with each phenotype. 100% of 
heterozygotes (Col1a1+/ T M4 4)  exhibited either the curved olecranon, the splayed ischia, 
abnormal bone growth at the knee, the abnormal calcaneus, or a combination of 
phenotypes. No phenotype was observed in the wild types (Col1a1+ /+) *numbers reduced 
from 12 months due to 6 animals being culled for welfare purposes.  
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Figure 5.17.  Diagram showing the number of animals that exhibited each phenotype, or 
combination of phenotypes for wild-type and heterozygous animals at 12- and 18-months.  
(A) At 12-months all heterozygous (HET, Col1a1+ /T M4 4 )  exhibit at least one of the following 
three phenotypes, curved olecranon, splayed ischia or abnormal bone growth at the knee, 
either in isolation or in combination. Additionally,  four heterozygotes also exhibited an 
abnormal calcaneus; this phenotype was only ever observed in combination with another 
phenotype. No wild-type (WT, Col1a1+/+)  animals exhibited any phenotype. (B) At 18-
months all heterozygous (HET, Col1a1+ /T M 44)  exhibit at least one of the following three 
phenotypes, curved olecranon, splayed ischia or abnormal bone growth at the knee,  
either in isolation or in combination. No heterozygotes exhibited the abnormal calcaneus 
phenotype, as those animals were all culled for welfare reasons. No wild-type (WT, 
Col1a1+ /+) animals exhibited any phenotype. Reduced N numbers at 18 months were due 
to animals being culled for welfare reasons. 

The X-ray data shows that the TM44 heterozygotes exhibit similar phenotypes to MP-

107, with the addition of a phenotype affecting the calcaneus. These three cohorts show 

higher incidence of the observed phenotypes in TM44 than in MP-107. 
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5.6.2. DEXA Analysis of TM44 Animals 

DEXA allows accurate analysis of bone composition. DEXA analysis was undertaken for 

the 2-month cohort of TM44 animals with segregated mutations and the 18-month 

cohort of TM44 animals bred at a previous backcross, before the segregation of 

mutations, and therefore contains both the Sectm1a and the Col1a1 mutation. 

The 2-month cohort showed that heterozygotes (HET, Col1a1+/TM44, Sectm1a+/+) had a 

significantly decreased BMC and BMD when compared to wild types (WT, Col1a1+/+, 

Sectm1a+/+). This significant difference was observed in both sexes (Figure 5.18) (BMC-

Male P=0.000009, Female P=0.00285, BMD- Male P=0.0240, Female P=0.00074). No 

significant differences were observed in any other parameter. The phenotypes observed 

are an indication that the line TM44 may be osteoporotic, and at a higher risk of bone 

fracture, indicating a mild osteogenesis imperfecta phenotype.  
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Figure 5.18.  DEXA analysis of wild types and heterozygotes of both sexes at 2-months. (A) 
A significant reduction in bone mineral content was observed in the heterozygotes (HET, 
Col1a1+ /T M 44,  Sectm1a+/ +)  compared to wi ld types (WT, Col1a1+/+,  Sectm1a+/+) in both 
sexes. (B) A significant reduction in bone mineral density was observed in the 
heterozygotes (HET,  Col1a1+ /T M4 4,  Sectm1a+ /+)  compared to wild types (WT, Col1a1+/ +,  
Sectm1a+/ +) in both sexes. No significant difference between genotypes was observed in 
(C) Weight, (D) Percentage Fat or (E) Length.  (N = 5 Female HET, 5 Female WT, 5 Male 
HET, 5 Male WT, *P<0.05, **P<0.01, *** P<0.001, **** P<0.0001) 

DEXA analysis of the 18-month cohort showed that heterozygotes (HET, Col1a1+/TM44) 

had a significantly reduced percentage fat when compared to wild types (WT, Col1a1+/+) 

in females (P=0.025). No significant difference was observed in the BMD, BMC, body 

weight or body length between genotypes of either sex, and no significant difference 

between genotypes in percentage fat in males (Figure 5.19).   
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Figure 5.19. DEXA analysis of wild types and heterozygotes of both sexes at 18-months. 
No signif icant difference was observed between genotypes in either sex in (A) bone 
mineral content,  (B) bone mineral density, (C) body weight or (E) body length. (D) No 
significant difference was observed in percentage fat between genotypes in males,  
however, females heterozygotes (HET, Col1a1+/ TM 4 4)  exhibited a reduced percentage fat 
when compared with wild types (WT, Col1a1+/+) (N = 5 Female HET, 4 Female WT, 3 Male 
HET, 4 Male WT T-Test *P<0.05).  

It is not known why the female heterozygotes show a reduction in percentage fat; 

however, this could be a result of the knee abnormalities making it more difficult for the 

female heterozygotes to over-eat, as food is stored in a hopper. The reduction in both 

BMC and BMD seen in the 2-month cohort is not replicated here.  This could be due to 

the 2-month cohort being a much later backcross, as this was required to segregate 

mutations, and therefore has a reduced proportion of the C57BL/6J genome, or it could 

be that the effect diminishes with age. 
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5.6.3. Histological analysis of TM44 Knee Joints 

Histological analysis of 18-month old knee joints reveal that in addition to the abnormal 

bone formation observed by X-ray imaging, the heterozygotes (HET, Col1a1+/TM44) also 

show a profound loss of articular cartilage indicating an OA phenotype (Figure 5.20).  

 

Figure 5.20. Safranin O stained sections of knee joints from a wi ldtype and a heterozygote 
at 18 months.  (A-B) The wild-type (WT, Col1a1+/+) joint shows normal healthy cartilage 
at the articular surface (Blue arrow) and no evidence of osteophytes.  (C-D) The 
heterozygous (HET, Col1a1+ /T M4 4)  knee shows severe osteophyte formation (Yellow 
arrows), synovial inflammation and an absence of articular carti lage on the medial  
femoral condyle and medial t ibial plateau (Red arrow).  Medial and lateral  side denoted 
by M and L respectively.  

OARSI scoring of histological sections from heterozygous and wild-type knees indicates 

that there is a significantly elevated maximum OARSI score in the heterozygotes when 

compared with wild types (P=0.0357). This comparison was only carried out in male 

mice, as there were too few tissue samples taken from the female cohort to do statistical 

analyses. 
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Figure 5.21.  Maximum OARSI scores of Safranin O stained histological section of knee 
joints from wild-type and heterozygous male animals at 18-months of age. Heterozygote 
(HET, Col1a2+/ 1 07) max OARSI scores were significantly higher than their wild type (WT, 
Col1a2+ /+) counterparts (Het- N=5, WT- N=3, Mann Whitney test *p<0.05).  

5.7. Collagen Content of TM44 Tendons 

Mutations in the collagen I genes could reasonably be assumed to cause changes in the 

folding and make-up of the collagen I heterotrimer. It is known that collagen I can exist 

as a homotrimer made up solely of α1 chains.  Analysis of radiolabelled collagen in MP-

107 tail tendons in Chapter 4 (Section 4.5) revealed that there was no difference in either 

the extracellular, or the intracellular collagen I between wild-type and heterozygous 

samples, indicating that the mutant COL1A2 was being produced and incorporated into 

the collagen fibrils.  

The radiolabelling assay was not available for the analysis of TM44 lines.  For this reason, 

to analyse the secretion of collagen I, Collagen was extracted from 4-month old tail 

tendons using a pepsin/acetic acid extraction, before being analysed using gel 

electrophoresis. Separating out the α1 and α2 bands on a gel before staining allows a 

comparison of the ratio of α1 and α2. The theory behind this is that as normal collagen 

I is a heterotrimer of two α1 chains and one α2 chain, the expected ratio would be 

approximately 2:1 (provided the bands are solely α1 and α2). If a mutation impairs the 

production of the heterotrimer, homotrimer may be produced instead, which would 

modify the ratio in the heterozygote. The collagen extracts from wild-type and 

heterozygous tendons from both MP-107 and TM44, were diluted to 0.25mg/ml and 
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samples were run on a 4-12% Tris-Bis gel, before staining with Brilliant Coomassie blue 

stain. (Figure 5.22).  

 

Figure 5.22. Coomassie stained collagen extracts from wild-type and heterozygous 
tendons for the l ines MP-107 and TM44. The ratio of α1: α2 is d isplayed beneath each 
lane. The analysis shows no visible difference in ratio of α1 to α2 between genotypes in 
either MP-107 or TM44, indicating the TM44 heterozygote is not producing homotrimer.  

Comparison of the ratio of α1 to α2 between wild type (WT, Col1a2+/+) and 

heterozygotes (HET, Col1a2+/107) are similar in MP-107. Indicating that this assay is a 

suitable alternative to the unavailable radiolabelling assay. No obvious difference was 

identified between ratio of α1 to α2 in wild types (WT, Col1a1+/+) and heterozygotes 

(HET, Col1a1+/TM44) in TM44, indicating that the heterozygote is not producing 

homotrimer. It should be noted that as the extract from the tendon will contain other 

proteins, these bands may contain similar sized proteins, which could account for the 

ratios not being exactly 2:1. 
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5.8. Discussion 

 

The line TM44 was originally incorporated into this project due to the similarities in the 

early onset phenotypes, consisting of splayed ischia and curved olecranon, between this 

line and MP-107.  The subsequent identification of a late onset knee phenotype 

consisting of abnormal bone growth, and cartilage loss at the articular surface mirrored 

the late phenotype seen in MP-107.  

The initial work of Dr Esapa in mapping the causative mutation to a region on 

Chromosome 6, and the identification of Col1a1 and Sectm1a as possible candidate 

genes, laid the groundwork for the eventual segregation of these mutations. The 

segregation of the Sectm1a and Col1a1 mutations occurred after many rounds of 

backcrossing, and therefore happened towards the end of the project.  As a result, it 

was not possible to age the animals heterozygous for the Col1a2 mutation and wild-type 

for the Sectm1a mutation (Col1a1+/TM44, Sectm1a+/+) in order to confirm that the late 

phenotype occurred in the absence of the Sectm1a mutation.  However, early 

phenotyping did confirm that the splayed ischia and curved olecranon do occur in the 

presence of the Col1a1 mutation alone. The segregation of the mutations and the 

presence of the early bone phenotypes indicate that the premature stop in Col1a1 is the 

causative mutation. 

Like the MP-107 line, the TM44 is found to be homozygous lethal, although the TM44 is 

lethal far earlier in development than MP-107. The homozygous embryos were found to 

be lethal between 12.5 and 14.5 dpc and showed evidence of hydrocephalus. 

Interestingly, parallels can be drawn between this lethal phenotype and the Mov-13−/− 

model of Type II OI, which is recorded as having arrested development between day 11 

and day 12 of gestation, and being lethal between days 13 and 14. The first observation 

of type I collagen in the embryo is around day 9, however day 11-12 is when high 

transcription of Col1a1 occurs [294].  
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The three phenotypes observed by X-ray in heterozygotes of both lines, appear with 

greater frequency in the TM44 line, with 100% of heterozygotes (Col1a1+/TM44) exhibiting 

at least one of the phenotypes, while in the MP-107 line 20-40% of heterozygotes 

(Col1a2+/107) exhibited no phenotype. The histology of the knee joints of heterozygotes 

from the line TM44 (Col1a1+/TM44) is very similar to the histology of the knee joints of 

heterozygotes from the line MP-107 (Col1a2+/107), including the presence of large 

osteophytes and articular cartilage erosion. In addition to the phenotypes noted in the 

MP-107 line, X-ray imaging revealed that three male TM44 heterozygotes (Col1a1+/TM44) 

also displayed an abnormal calcaneus at 12 months. These animals were culled for 

welfare reasons due to impaired mobility. 

DEXA analysis indicates that the heterozygotes (Col1a1+/TM44) have osteopenia. The 

osteopenic phenotype shown by DEXA analysis in the TM44 heterozygotes 

(Col1a1+/TM44), was not replicated in the MP-107 heterozygotes (Col1a2+/107).  However 

the µCT analysis did indicate evidence of osteopenia in the heterozygotes (Col1a2+/107) 

[295]. That both lines show evidence of osteopenia is not surprising given the similarities 

in the bone phenotype. The fact that osteopenia was not detected by DEXA in MP-107, 

and only by µCT analysis indicates again that the phenotype in TM44 is more severe than 

in MP-107. 

The similarities in phenotypes between heterozygous (Col1a1+/TM44) TM44 animals and 

heterozygous (Col1a2+/107) MP-107 animals are numerous and are summarised in Figure 

5.23 along with images from wild-type (Col1a2+/+) MP-107 animals for reference.  Both 

lines display the same early phenotypes of curved olecranon, splayed ischia, the same 

late phenotypes including abnormal bone growth at the knee and loss of articular 

cartilage with osteophyte formation. 
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Figure 5.23.   A f igure comparing the observed phenotypes between the lines MP-107 and 
TM44. (A) MP-107 wild types (Col1a2+/+) show no abnormalit ies at the pelvis or olecranon 
at 3 months of age, and no evidence of abnormal bone growth or osteoarthritis at the 
knee at 18 months. (B) MP-107 heterozygotes (Col1a2+/ 10 7) and (C) TM44 heterozygotes 
(Col1a1+/ TM 4 4)  exhibit  the splayed ischia at the pelvis and the curved olecranon at the 
elbow at 3 months of age, in addition to the abnormal bone growth at the knee, and 
osteoarthritis at 18 months of age. 

Both lines contain mutations in collagen I alpha chains, the mutation in MP-107 is a 

splice variant in Col1a2 leading to the inclusion of an extra amino acid in the protein 

coding sequence, while the mutation in TM44 is a premature stop in Col1a1 which may 

be far more deleterious.  This is borne out in the phenotype data, with homozygous 

lethality at an earlier developmental time point in TM44 accompanied by a more severe 

adult phenotype in the heterozygote reflected in the number of affected animals and a 
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more severe osteoporosis phenotype. Moreover, in MP-107, wild-type transcript is 

produced even in the homozygote (Col1a2107/107).  This may be mediating the damaging 

effects of the mutation, leading to lethality at a later time point and a less severe 

phenotype. We will return to a more detailed discussion of the genetic mechanisms of 

each mutation in Chapter 7.
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Chapter 6: Initial Characterisation of 

Phenotypes Exhibited by Col1a2 Null Mice 
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6.1. Introduction 

The ENU mutation in MP-107 is within the gene Col1a2, and leads to early onset 

phenotypes such as a curved olecranon and splayed ischia, and late phenotypes such as 

OA.  The mechanism by which the mutation leads to the phenotypes is not yet clear.  To 

help elucidate the mechanism, it is important to understand what happens in the 

absence of the gene that contains the mutation.  For this reason, the knockout of the 

Col1a2 gene (Col1a2-KO) was generated. Viability testing and phenotyping, such as X-

ray imaging and DEXA analysis, were carried out to investigate the phenotype of a null 

Col1a2 allele, and to determine if similar phenotypes were observed in the Col1a2-KO 

line and MP-107.  The aim of this chapter is to investigate if knocking out Col1a2 results 

in similar phenotypes to those observed in MP-107 and TM44, and to provide further 

information about the mechanisms by which the phenotypes occur. 

6.2. Creation of the Col1a2-KO Line 

A knockout of the Col1a2 gene (Col1a2-KO) was created by the gene editing team at 

MRC Harwell using CRISPR-Cas9 technology to delete critical exons in the gene Col1a2. 

A large region of 2087 nucleotides encompassing EXON 2 (ENSMUSE00001291037), 

Exon 3 (ENSMUSE00001247742) and Exon 4 (ENSMUSE00001305705) was deleted to 

induce a premature stop codon and a null allele.  

Briefly, Cas9 mRNA and sgRNAs (detailed in section 2.2.6) were diluted and mixed in a 

microinjection buffer to the working concentrations of 100 ng/μl and 50 ng/μl each 

respectively.  The sgRNAs in the buffer were then delivered by pronuclear injection into 

1-cell stage C57BL/6N embryos.  Injected embryos were re-implanted in CD1 pseudo-

pregnant females. Host females were allowed to litter and rear F0 progeny.   

An F0 animal was identified with the desired deletion, and an F1 cohort was then 

produced by crossing to C57BL/6N, producing 7 offspring, 5 heterozygotes (Col1a2+/-) 

and 2 wild types (Col1a2+/+).  The heterozygotes were then backcrossed to C57BL/6N to 

bulk up the colony before heterozygous animals were intercrossed to produce the 

cohorts containing Col1a2-/- mice. 
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6.3. Viability analysis of the Col1a2-KO Line 

Intercross matings between male heterozygotes (HET, Col1a2+/-) and female 

heterozygotes (HET, Col1a2+/-) were established to investigate the viability of the 

Col1a2-KO line.  Genotyping of the offspring of these intercross revealed that animals of 

all three genotypes wild types (WT, Col1a2+/+), heterozygotes (HET, Col1a2+/-) and 

homozygotes (HOM, Col1a2-/-) were present.  Statistical analysis indicates that there is 

no reduced viability and that all genotypes are represented in the expected ratios (χ2= 

0.51, 2df, P>0.7) (Figure 6. 1). 

 

Figure 6.1.   Proportions of animals of each genotype at weaning from intercross matings. 
Homozygotes (HOM, Col1a2 - / -) accounted for 22% of animals, heterozygotes (HET, 
Col1a2+ / -) accounted for 23% of animals and wild types (WT, Col1a2+/+) accounted for the 
remaining 55%. The number of animals of each genotype does not significant ly differ from 
the expected, indicating all genotypes are viable (χ2= 0.51, 2df,  P>0.7).   
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6.4. Phenotyping of the Col1a2-KO Line 

The Col1a2-KO line is the first of the three lines investigated where the homozygous 

animals are viable into adulthood.  As such, intercross cohorts of animals including all 

three genotypes were bred for phenotyping. Due to an unusually high number of male 

animals that were culled for welfare purposes only female animals were included in this 

analysis, the reasons for these welfare concerns will be addressed later in this chapter. 

The phenotyping included X-ray imaging and DEXA analysis at an early time point (2 

months) and a late time point (12 months). 

6.4.1. X-ray Imaging of the Col1a2-KO line 

X-ray imaging at 2 months of age indicated the presence of mild bone abnormalities in 

heterozygotes (HET, Col1a2+/-) and homozygotes (HOM, Col1a2-/-). The heterozygotes 

(HET, Col1a2+/-) exhibited only a mild splayed ischia phenotype, and homozygotes (HOM, 

Col1a2-/-) exhibited mild splayed ischia and a curved olecranon phenotype. As seen 

previously in MP-107 and TM44, these phenotypes are variable. Not all heterozygotes 

or homozygotes exhibited phenotypes.  There was no evidence of abnormal bone 

growth at the knee at either time point (Figure 6.2). 
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Figure 6.2.  Representative X-ray images of female animals of al l  three genotypes at 2-
months of age. (A) Wild types (WT, Col1a2+ /+)  exhibited no evidence of the curved 
olecranon or splayed ischia (B) 40% of heterozygotes (HET,  Col1a2+/ -) exhibited a splayed 
ischia phenotype (Blue arrow), and (C) 60% of homozygotes (HOM, Col1a2 - / -) exhibited a 
splayed ischia phenotype (Blue arrow) with some animals also exhibit ing a curved 
olecranon phenotype (Orange arrow). No evidence of abnormal bone growth at the knee 
was detected in any genotype. 

X-ray imaging at 12 months of age indicated the presence of mild bone abnormalities in 

heterozygotes (HET, Col1a2+/-) and homozygotes (HOM, Col1a2-/-). The heterozygotes 

(HET, Col1a2+/-) exhibited only splayed ischia phenotype, and homozygotes (HOM, 
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Col1a2-/-) exhibited splayed ischia and a curved olecranon phenotype. As seen previously 

in MP-107 and TM44, these phenotypes are variable. Not all heterozygote and 

homozygotes exhibited phenotypes.  There was no evidence of abnormal bone growth 

at the knee (Figure 6.3). 

 

 

Figure 6.3.  Representative X-ray images of female animals of al l three genotypes at 12-
months of age. (A) Wild types (WT, Col1a2+ /+)  exhibited no evidence of the curved 
olecranon or splayed ischia, (B) 60% of heterozygotes (HET, Col1a2+/ -) exhibited a splayed 
ischia phenotype (Blue arrow), and (C) 70% of homozygotes (HOM, Col1a2 - / -) exhibited a 
splayed ischia phenotype (Blue arrow) with some animals also exhibit ing a curved 
olecranon phenotype (Orange arrow). No evidence of abnormal bone growth at the knee 
was detected in any genotype. 
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No heterozygotes (HET, Col1a2+/-) exhibited the curved olecranon at all, and no 

homozygotes (HOM, Col1a2-/-) exhibited the curved olecranon in isolation, it only 

occurred in tandem with the splayed ischia phenotype (Table 6.1). This indicates that 

the heterozygotes exhibit a less severe phenotype than the homozygotes. 

Cohort Genotype N Ischia Olecranon Knee Total 
Affected 

Percentage 
Affected 

2-month 
 

Col1a2+/+ 7 0 0 0 0 0% 

Col1a2-/+ 5 2 0 0 2 40% 

Col1a2-/- 6 4 1 0 4 67% 

12-month 
 

Col1a2+/+ 3 0 0 0 0 0% 
Col1a2-/+ 5 3 0 0 3 60% 
Col1a2-/- 7 5 3 0 5 71% 

 

Table 6.1.  A table displaying the number of animals presenting with each phenotype in 
the 2- and 12-month female cohorts.  

 

6.4.2. DEXA Analysis of the Col1a2-KO line 

DEXA analysis was carried out on the same cohorts that were used for X-ray imaging, at 

2 and 12 months of age, to investigate whether the loss of one or more Col1a2 alleles 

caused changes in parameters such as BMC and BMD. Statistical analysis showed that 

there was no significant difference in either BMD or BMC between the genotypes (Figure 

6.4). 
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Figure 6.4 DEXA analysis of al l three genotypes in the 2- and 12-month female cohorts.  
No significant differences were detected in either (A) bone mineral content (BMC) or (B) 
bone mineral  density (BMD) between wild types (WT, Col1a2+ /+),  heterozygotes (HET, 
Col1a2+ / -) and homozygotes (HOM, Col1a2 - / -) at 2- and 12-months of age. (2 month cohort-
WT-N=7,  HET-N=5,  Hom-N=6, 12 month cohort- WT-N=3,  HET-N=5,  Hom-N=7- Statistical 
test- one way ANOVA).  

 

6.5. Welfare Observations of the Col1a2-KO line 

It was noted that a number of male animals, older than 6 months of age, had swollen 

ankles and were culled for welfare reasons. In male homozygotes swollen ankles 

occurred with an incidence of 31% (5/16), in heterozygotes 13% (7/53) and in wild types 

3% (1/27).  Initially, the occurrence of swollen ankles was attributed to fighting. However 

due to the genotypes of the affected animals, two affected homozygotes and an 

unaffected wild types were X-ray imaged to try to identify a possible cause for the 

swollen ankles.  Both affected homozygotes imaged exhibited calcification of the 

Achilles tendon, while the unaffected wild types did not (Figure 6.5).  In 2020, a preprint 

paper [296] found similar swollen ankles in their Col1a2 null male animals, although they 

did not attribute a cause. 
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Figure 6.5. X-ray images from a male wild type and a male homozygote,  showing the 
calcified Achi lles tendon in the homozygote. Neither the (A) wild type (WT, Col1a2+ /+),  or 
the (B) homozygote (HOM, Col1a2 - / -) animals exhibited any overt phenotypes. High-
resolution X-ray imaging of the ankles of (C) a wild type (WT, Col1a2+ / +),  and (D) a 
homozygote (HOM, Col1a2 - / -) reveals that the homozygote with swollen ankles exhibited 
a calcified Achilles tendon (blue arrow). 

 

6.6. Collagen Content of Col1a2-KO Tendons 

As discussed in section 5.11, the radiolabelling assay was not available for the analysis 

of TM44 lines and this was the case for this line too. To confirm that this line produced 

homotrimer α1 (I), the collagens were extracted from tail tendon from all three 

genotypes in this line, as previously explained. 
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The collagen extracts from wild-type and heterozygous tendons from both MP-107 and 

TM44, and all three genotypes in the line Col1a2-KO were diluted to 0.25mg/ml and 

samples were run on a 4-12% Bis-Tris gel, before staining with Brilliant Coomassie blue 

stain. (Figure 6.6).  

 

Figure 6.6. Coomassie stained  collagen extracts from all available genotypes for each of 
the lines, MP-107, TM44 and Col1a2-KO. The ratio of α1: α2 is displayed beneath each 
lane. The analysis shows no visible difference in ratio of α1 to α2 between genotypes in 
either MP-107 or TM44.  In the case of the Col1a2-KO differences were detectable 
between all three genotypes.  

The ratios of α1 to α2 in the MP-107 and TM44 have been discussed previously (Section 

5.7), and are included here to validate the Coomassie staining as an alternative for the 

unavailable radiolabelling assay. In both MP-107 and TM44, the wild-type and 

heterozygous ratios are comparable.  The ratios varied between the three genotypes in 

the Col1a2-KO line, as expected with a Col1a2 null allele. The heterozygote (HET, 

Col1a2+/-) exhibits a 37% increase in the ratio between the α1 to α2 band compared to 

the wild type (WT, Col1a2+/+). The homozygous (HOM, Col1a2-/-) collagen sample 

exhibited a 200-fold increase in the ratio between α1 and α2. These results in the 

Col1a2-KO line, are due to the null alleles of Col1a2, causing an increase in α1 production 

and homotrimer.  It should be noted that as the extract from the tendon will contain 

other proteins, these bands may contain similar sized proteins, which could account for 

the ratios being lower than the expected 2:1 for heterotrimers, and why a very subtle 

band is detected in the homozygous Col1a2-KO extract (HOM, Col1a2-/-) allowing for a 

ratio to be calculated. 
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6.7. Discussion 

The viability testing analysis outlined in this chapter shows that the Col1a2-KO 

homozygotes are viable, and that all genotypes are represented at the expected ratios.  

While the homozygotes Col1a2-KO (Col1a2-/-) are viable, homozygote MP-107 

(Col1a2107/107) and homozygote TM44 (Col1a1TM44/TM44) both have lethal phenotypes. 

The Mov-13 model is effectively a null Col1a1 allele, while the oim model is effectively a 

null Col1a2 allele. The Mov-13 homozygote is lethal, and the oim homozygote is viable 

[66, 76]. It is therefore not surprising that the Col1a2-KO homozygote is also viable as 

the null Col1a2 allele appears to have a less severe effect, presumably as homotrimers 

can be formed. The reduced severity of the Col1a2 null compared with the Col1a2 

mutant is very informative and we will return to a more detailed discussion of the 

genetic mechanisms of the respective mutations in Chapter 7. 

The early phenotypes observed by X-ray in heterozygous MP-107 (Col1a2+/107) and TM44 

(Col1a1+/TM44) animals, were also observed in the heterozygous Col1a2-KO (Col1a2+/-) 

animals at slightly lower frequency than either MP-107 or TM44. Homozygous Col1a2-

KO (Col1a2-/-) also exhibited the early bone phenotypes, with the frequency being higher 

than heterozygous MP-107 (Col1a2+/107), but still lower than the TM44 (Col1a1+/TM44) 

animals. No evidence of any abnormal bone growth at the knee was detected in either 

the heterozygous (Col1a2+/-) or homozygous (Col1a2-/-) Col1a2-KO animals at the later 

time point, although it should be noted that animals were only aged to 12 months due 

to time constraints. These results indicate that the bone phenotypes are less severe in 

the Col1a2-KO animals than in the MP-107 and TM44 lines. As is also seen in human 

patients, null COL1A2 alleles tend to result in less severe OI phenotypes, than mutations 

affecting the glycine repeating motif [46-48]. 

DEXA analysis of Col1a2-KO animals showed there were no significant differences 

between genotypes in BMD and bone mineral content at either, the early, or the late 

time point. This indicates that if any osteoporosis phenotype is present, it is less severe 

than the TM-44 heterozygotes (Col1a1+/TM44). No direct comparison can be drawn with 

the MP-107 heterozygotes (Col1a2+/107), as they showed no phenotype using DEXA, but 

a phenotype was detected using µCT, a technique which was not used for these mice. 
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The calcification of the Achilles tendons in some of the Col1a2-KO mice, appears to be 

another variable phenotype that is not present in all mice, and appears to be limited to 

male mice over the age of 2 months.  This may be due to the increased likelihood of 

fighting in adult male mice housed together.  The preprint paper by Lee et al. observed 

a similar ‘swollen ankle’ phenotype in their male Col1a2 null animals, however no cause 

was attributed to the swollen ankles [296]. No ‘ankle phenotype’ phenotype was 

observed in MP-107 mice, however 3 male heterozygous TM44 animals were found to 

have abnormalities at the calcaneus at 12 months of age by X-ray imaging (See section 

5.6.1, Figure 5.15 and Table 5.3). These animals were kept under observation and were 

culled before the 18-month time point due to impaired movement.  

The collagen analysis of tendons confirmed that in the homozygote, the collagen I in 

tendon was homotrimer, and both heterotrimer and homotrimer were present in the 

heterozygote tendons.   

The data presented in this chapter indicates that a single or double null Col1a2 allele 

results in a less severe OI phenotype than either a mutation affecting the glycine 

repeating motif in Col1a2 or a non-sense mutation in Col1a.
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Chapter 7: Investigating the Genetics 

and Effects of Mutations in Col1a1 and 

Col1a2 Using Compound Crosses 
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7.1. Introduction 

The similarities and differences between the two ENU lines and the knockout line raises 

a number of mechanistic questions about the severity of the mutations in Col1a1 and 

Col1a2 alleles. Both MP-107 and TM44 heterozygous animals display very similar overt 

phenotypes such as the skeletal abnormalities and the late onset severe OA at the knee 

joint (See Chapter 5, Figure 5.19). Homozygotes of both lines were lethal embryonically 

or perinatally (See Chapter 3, Figure 3.21 and Chapter 5, Figure 5.8).  In contrast, the 

Col1a2 null homozygote was viable (See Chapter 6, Figure 6.1). The homozygotes 

exhibited a similar early phenotype including the splayed ischia and curved olecranon, 

but showed no evidence of abnormal bone growth at the knee at 12-months. The 

heterozygotes exhibited a milder early phenotype displaying the splayed ischia 

phenotype only (See Chapter 6, Figure 6.3). 

In addition, TM44 heterozygotes (Col1a1+/TM44) exhibit low BMD and low bone mineral 

content phenotypes at 2 months of age when compared to the wild-type animals, while 

MP-107 heterozygotes (Col1a2+/107) and Col1a2-KO heterozygotes (Col1a2+/-)  and 

homozygotes (Col1a2-/-) do not (See Chapter 3, Table 3.11; Chapter 5, Figure 5.19, and 

Chapter 6, Figure 6.4). 

Whilst all of these lines have mutations in genes coding for collagen I alpha chains, the 

nature of the mutations are very different, and the roles each of the alpha chains play 

are different, leading to questions about the mechanisms by which these mutations lead 

to the phenotypes we see. 

To observe how these genes interact and to throw light on the genetic mechanisms 

involved, the two ENU mutant lines, TM44 and MP-107, and the Col1a2 knockout line, 

were intercrossed in a compound cross experiment. After an initial viability assessment 

involving all animals at weaning (P21), a small cohort of male animals were X-ray imaged 

and DEXA scanned at 4 months of age. 

It should be noted that there is some variation in the backgrounds of these animals, and 

this should be taken into account when interpreting results. The MP-107 animals used 

in these crosses are congenic C3H/HeH. The TM44 animals are incipient congenic 

C3H/HeH, and therefore still have a small amount of C57BL/6J in their genome (<1%). 



 

247 
 

The Col1a2-KO line was created on the C57BL/6N genome. Ideally these crosses would 

be carried out with all lines on the same congenic background, however due to time 

constraints this was not possible. 

The crosses included in this chapter are  

 TM44 (Col1a1+/TM44) x MP-107 (Col1a2+/107) – Section 7.2 

 Col1a2-KO (Col1a2+/-) x MP-107 (Col1a2+/107) – Section 7.3 

 TM44 (Col1a1+/TM44) x Col1a2-KO (Col1a2+/-) – Section 7.4 

 

7.2. TM44 x MP-107 Compound Cross 

7.2.1. Viability Assessment of the TM44/MP-107 Compound Cross 

Intercross matings between heterozygous TM44 (Col1a1+/TM44) and heterozygous MP-

107 (Col1a2+/107) animals were used to produce a cohort of compound genotypes, which 

would in theory contain animals of the following genotypes- 

Wild type MP-107 / Wild type TM44 - Col1a2+/+, Col1a1+/+ 

Wild type MP-107 / Heterozygous TM44 - Col1a2+/+, Col1a1+/TM44 

Heterozygous MP-107 / Wild type TM44- Col1a2+/107, Col1a1+/+ 

Heterozygous MP-107 / Heterozygous TM44 -Col1a2+/107, Col1a1+/TM44    

The total number of pups was recorded at birth, and animals were genotyped at 

weaning, at approximately P21.  Of 88 pups born, 9 pups went missing between birth 

and weaning, and the remaining 79 pups were genotyped (Table 7.1).  It is likely that the 

9 missing animals had a lethal phenotype, and were ingested by the mother.  

Statistical analysis indicates that the ratios of genotypes differ from the expected 

Mendelian ratios (χ2= 7.86, 3df, P<0.05). The genotyping data revealed that the pups 

were present in the expected ratios for all the genotypes except for the Col1a2+/107, 

Col1a2+/TM44, which were present at around half the expected numbers (using total 

number of animals born). Although it is not possible to confirm whether the missing 
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pups were Col1a2+/107, Col1a2+/TM44, as they went missing prior to genotyping, the ratios 

do indicate that approximately half of the Col1a2+/107, Col1a2+/TM44 pups died postnatally 

(Figure 7.1). 

 

Genotype Number 

Col1a2+/107, Col1a1+/TM44 10 

Col1a2+/+, Col1a1+/TM44 20 

Col1a2+/107, Col1a1+/+ 27 

Col1a2+/+, Col1a1+/+ 22 

Unknown 9 

 

Table 7.1.  A table displaying the number of animals of each genotype from intercross 
matings between TM44 heterozygotes and MP-107 heterozygotes.  Nine animals went 
missing without genotyping and are therefore included in their own category.  

 

 

Figure 7.1.  Proportions of animals of each genotype produced from intercross matings 
between TM44 heterozygotes and MP-107 heterozygotes. Ten percent of animals born 
subsequently went missing, presumed dead and ingested by the mother.  
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As noted in previous chapters, Col1a1+/TM44 and Col1a2+/107 animals are viable, so the 

reduced viability of the Col1a2+/107, Col1a1+/TM44 animals indicates that there is some 

interaction between the mutant genes. 

 

7.2.2.  X-ray Imaging of the TM44/MP-107 Compound Cross at 4-months 

X-ray imaging of animals in the MP-107xTM44 male cohort at 4 months of age revealed 

that the majority of animals with at least one mutant allele, Col1a2+/107 or Col1a1+/TM44, 

exhibited a similar early phenotype to the heterozygote MP-107 (Col1a2+/107) and 

heterozygote TM44 (Col1a1+/TM44), including splayed ischia at the pelvis, a curved 

olecranon or a combination of both phenotypes. The animals with both mutant alleles 

also exhibit a similar phenotype (Col1a2+/107, Col1a1+/TM44), however the incidence is 

increased with all double heterozygotes exhibiting a phenotype (Table 7.2 and Figure 

7.2).  A single Col1a2+/107, Col1a1+/TM44 animal also exhibited the abnormal calcaneus 

phenotype (Figure 7.3), similar to the phenotype observed in some TM44 heterozygotes 

(See Chapter 5, Figure 5.15). 

Genotype N Ischia Olecranon Calcaneus 
Total 

Affected 
Percentage 

Affected 

Col1a2+/107, Col1a1
+/TM44

 4 4 1 1 4 100% 

Col1a2+/+,  Col1a1
+/TM44

 4 3 0 0 3 75% 

Col1a2+/107, Col1a1
+/+

 4 3 1 0 3 75% 

Col1a2+/+, Col1a1
+/+

 4 0 0 0 0 0% 

 

Table 7.2. A table showing the number of animals exhibiting each phenotype, for each 
genotype in the phenotyping cohort resulting from the TM44 and MP-107 intercross.  
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Figure 7.3.  Radiographs comparing the calcaneus of a compound wild type and a 
compound heterozygote result ing from intercross matings between TM44 heterozygotes 
and MP-107 heterozygotes at 4-months. (A) The calcaneus of the Col1a2+/ +,  Col1a1+/ +  
animals appears normal,  (B) the calcaneus of the Col1a2+/ 10 7,  Col1a1+/ T M4 4  animal appears 
curved, and to have abnormal bone growth, only one of the four Col1a2 +/ 10 7 ,  Col1a1+ / T M 44  
animals exhibited this phenotype. 

 

7.2.3. DEXA Analysis of the TM44/MP-107 Compound Cross at 4-months 

DEXA analysis of animals in the MP-107xTM44 male cohort revealed that there were no 

differences between genotypes in either BMD or BMC (Figure 7.4).  The phenotyping on 

each individual lines showed that the Col1a1+/TM44 animals exhibited a significantly 

reduced BMD and BMC when compared with Col1a1+/+ animals at the 2-month early 

time point, while the Col1a2+/107 animals showed no difference in reduced BMD and 

BMC when compared with to the Col1a2+/+ animals (See Chapter 3, Table 3.11 and 

Chapter 5, Figure 5.16).  

The Col1a1+/TM44, Col1a2+/+ animals would logically behave similarly to the Col1a1+/TM44 

from the individual TM44 line, as there should be no effect of the Col1a2 allele, however 

no significant difference was found.  It is likely that this loss of effect is due to the 

experiment being underpowered, as the individual original TM44 line only contained 

two genotypes, Col1a1+/TM44 and Col1a1+/+, and this compound cohort contains 4 

genotypes and therefore an ANOVA was used.  While there is a slight variation in 

background, it is unlikely this would play a role, as both lines were over 99% C3H. 
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Figure 7.4. DEXA analysis of all four compound genotypes resulting from intercross matings between 
TM44 heterozygotes and MP-107 heterozygotes at 4-month. Neither (A) Bone mineral density 
(BMD) nor (B) Bone mineral content (BMC) differed between genotypes (one-way ANOVA, 
N=4 for all genotypes).  
 

7.2.4. X-ray Imaging of the TM44/MP-107 Compound Cross at 12-months 

A limited number of animals (only 1 of each genotype) were aged to 12 months of age 

and X-ray imaged. While no conclusions can be drawn due to the limited numbers, the 

Col1a2+/107, Col1a1+/TM44 and Col1a2+/+, Col1a1+/TM44 animals both displayed a knee 

phenotype observable by X-ray imaging, while the Col1a2+/107, Col1a1+/+ and Col1a2+/+, 

Col1a1+/+ animals did not (Figure 7.7). 
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As seen in the individual MP-107 line phenotyping (Chapter 3, Section 6), upwards 

of 20% of heterozygotes (Col1a2+/107) show no phenotype by X-ray, so the lack of 

phenotype in the single Col1a2+/107, Col1a1 +/+ animal is not surprising.  

7.3. MP-107 x Col1a2 KO Compound Cross 

7.3.1. Viability Assessment of the Col1a2-KO/MP-107 Compound Cross 

Intercross matings between heterozygous Col1a2-KO (Col1a2+/-) and heterozygous MP-

107 (Col1a2+/107) animals were used to produce a compound cohort, which would in 

theory contain animals of the following genotypes- 

Wild type MP-107 / Wild type Col1a2-KO - Col1a2+/+ 

Wild type MP-107 / Heterozygous Col1a2-KO - Col1a2+/- 

Heterozygous MP-107 / Wild type Col1a2-KO - Col1a2+/107 

Heterozygous MP-107 / Heterozygous Col1a2-KO - Col1a2-/107 

The total number of pups was recorded at birth, and animals were genotyped at 

weaning, at approximately P21 (Table 7.3 and Figure 7.6).   

 

Genotype Number 

Col1a2-/107 10 

Col1a2+/- 7 

Col1a2+/107 11 

Col1a2+/+ 13 

 

Table 7.3.  A table displaying the number of animals of each genotype from intercross 
matings between MP-107 heterozygotes and  Col1a2-KO heterozygotes.  
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Figure 7.6 .  Proportions of animals of each genotype produced from intercross matings 
between Col1a2-KO heterozygotes and MP-107 heterozygotes.  

Statistical analysis indicates that the ratios of genotypes do not differ from the expected 

Mendelian ratios (χ2= 1.83, 3df, P>0.5), and that there are no lethal phenotypes 

observed in this cross. 

The homozygote MP-107 (Col1a2107/107) was non-viable, so the fact that the double 

heterozygote (Col1a2-/107) is viable is intriguing.  It suggests that the MP-107 mutation is 

a dominant negative mutation and indicates that the mode of action of the mutation is 

via the presence of the mutant protein, not the lack of wild-type protein. 
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7.3.2. X-Ray Imaging of the Col1a2-KO/MP-107 Compound Cross at 4-Months 

X-ray imaging of animals in the MP-107/Col1a2-KO male cohort at 4 months of age 

revealed that only animals containing a mutant MP-107 allele (Col1a2+/107 or Col1a2 -

/107) exhibited any phenotype and then the incidence was only 25%. No evidence of 

splayed ischia at the pelvis was observed, and a curved olecranon was observed in each 

of the Col1a2+/107 and Col1a2-/107 animals (Table 7.4 and Figure 7.7).  It should be noted 

that this cohort only contained two Col1a2+/+ animals. No animals displayed the 

abnormal calcaneus. However, as this phenotype has only been observed in 

heterozygote TM44 animals (Col1a1+/TM44) or animals with a compound genotype 

containing Col1a1+/TM44, it would not be expected to appear in this compound cross. 

Genotype N Ischia Olecranon Calcaneus 
Total 

Affected 
Percentage 

Affected 

Col1a2-/107
 4 0 1 0 1 25% 

Col1a2+/-
 4 0 0 0 0 0% 

Col1a2+/107 4 0 1 0 1 25% 

Col1a2+/+ 2 0 0 0 0 0% 

 

Table 7.4. A table showing the number of animals exhibiting each phenotype, for each 
genotype in the phenotyping cohort resulting from the Col1a2-KO and MP-107 intercross.  

Both the heterozygote MP-107 (Col1a2+/107) and heterozygote Col1a2-KO (Col1a2+/-) 

animals from the individual lines showed a degree of variability in the phenotype. 

However, in this cross in both genotypes, where there should be no impact from the 

other allele: Col1a2+/107 and Col1a2+/- the incidences are much lower than seen in the 

individual line. Col1a2+/107 in the MP-107 line was 80% affected at early time points, but 

in this compound cross only 25% affected. Col1a2+/- in the Col1a2-KO line was 40% 

affected at early time points, but in this compound cross 0% affected. It is unlikely that 

this is due to the different genetic backgrounds of the progenitor lines, as both were 

congenic on their respective background and therefore a reduction in both compound 

heterozygotes (Col1a2+/107 and Col1a2+/-) would not be expected if the backgrounds 

were the cause. It is possible that the reduced percentage of affected animals is due to 

the small cohort size, with only 4 animals of each of these compound heterozygotes 

genotypes (Col1a2+/107 and Col1a2+/-). 
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7.3.3. DEXA of the Col1a2-KO/MP-107 Compound Cross at 4-Months 

DEXA analysis of animals in the MP-107/Col1a2-KO male cohort at 4 months of age 

revealed that there were no significant differences in BMD or bone mineral content in 

any of the genotypes. (Figure 7.8).   It should be noted that this cohort only contained 

two Col1a2+/+ animals, and therefore the statistical testing should be interpreted with 

caution. The one-way ANOVA was repeated both with and without this genotype and in 

neither case were any differences detected. As there was no DEXA phenotype detected 

in either of the individual lines, it is not surprising that a phenotype is not detected here. 

However, as the cohort size here was similar to that used in (Section 7.2.3) and would 

therefore have the same limitation of power, a larger cohort would be required to rule 

out any additive effects of the two mutant alleles.   

 

Figure 7.8. DEXA analysis of all four compound genotypes resulting from intercross 
matings between TM44 heterozygotes and MP-107 heterozygotes at 4-month. Neither (A) 
Bone mineral density (BMD) nor (B) Bone mineral content (BMC) differed between 
genotypes.  (One-way ANOVA N=4 for all genotypes, except for Col1a2+ /+  where N=2) 
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7.4. TM44 x Col1a2 KO Compound Cross 

7.4.1. Viability Assessment of the TM44/Col1a2-KO Compound Cross 

Intercross matings between heterozygous TM44 (Col1a1+/TM44) and heterozygous 

Col1a2-KO (Col1a2+/-) animals were used to produce a compound cohort, which would 

in theory contain animals of the following genotypes- 

Wild type Col1a2-KO / Wild type TM44 - Col1a2+/+, Col1a1+/+ 

Heterozygous Col1a2-KO / Wild type TM44 - Col1a2+/-, Col1a1+/+ 

Wild type Col1a2-KO / Heterozygous TM44 - Col1a2+/+, Col1a1+/TM44 

Heterozygous Col1a2-KO / Heterozygous TM44 - Col1a2+/-, Col1a1+/TM44 

The total number of pups was recorded at birth, and animals were genotyped at 

weaning, at approximately P21 (Table 7.5 and Figure 7.9).   

 

Genotype Number 

Col1a2-/+, Col1a1+/TM44 11 

Col1a2+/+, Col1a1+/TM44 12 

Col1a2-/+, Col1a1+/+ 9 

Col1a2+/+, Col1a1+/+ 15 

 

Table 7.5.  A table displaying the number of animals of each genotype from intercross 
matings between TM44 heterozygotes and  Col1a2-KO heterozygotes.  
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Figure 7.9.  Proportions of animals of each genotype produced from intercross matings 
between Col1a2-KO heterozygotes and TM44 heterozygotes.  

 

Statistical analysis indicates that the ratios of genotypes do not differ from the expected 

Mendelian ratios (χ2= 1.60, 3df, P>0.5), and that there is no lethal phenotype in this line. 

As noted earlier in this chapter the Col1a2+/107, Col1a1+/TM44    animals arising from the 

intercross between heterozygous TM44 (Col1a1+/TM44) and heterozygous MP-107 

(Col1a2+/107) animals exhibited some level of lethality.  In this line, the mutant Col1a2+/107 

allele is replaced by a null Col1a2+/- and this prevents the lethal phenotype.  Again, it 

suggests that the MP-107 mutation is a dominant negative mutation and indicates that 

the mode of action of the MP-107 mutation is via the presence of the mutant protein, 

not the lack of wild-type protein. 

7.4.2. X-ray Imaging of the TM44/Col1a2-KO Compound Cross at 4-Months 

X-ray imaging of animals in the Col1a2-KO/TM44 male cohort at 4 months of age 

revealed that all animals with a mutant TM44 Col1a1 allele (Col1a1+/TM44) exhibited a 

similar early phenotype to the heterozygote TM44 (Col1a1+/TM44), including splayed 

ischia at the pelvis, a curved olecranon, or a combination of both phenotypes, whether 

or not a null Col1a2 allele (Col1a2+/-) was present (Table 7.6 and Figure 7.10). 
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Additionally, one animal of each of these genotypes (Col1a2+/-, Col1a1+/TM44) and 

Col1a2+/+, Col1a1+/TM44) exhibited the abnormal calcaneus phenotype observed in the 

original TM44 line (See Chapter 5, Figure 5.15) and in the TM44/MP-107 compound 

cross (Figure 7.3) 

The animals with a null Col1a2 allele (Col1a2+/-), without the presence of a mutant 

Col1a1 allele (Col1a1+/TM44) exhibit no phenotype, a lower incidence to what was 

previously seen in the individual line (40%) and similar to the effect seen in the 

MP107/Col1a2-KO compound cross (See Section 7.3.2).  

As with the MP107/Col1a2-KO compound cross, the lines crossed here were on different 

genetic backgrounds, with TM44 being incipient congenic on C3H, and Col1a2-KO being 

congenic C57BL/6N. The addition of C57BL/6N genome to the animals with the TM44 

mutant allele (Col1a2-/+, Col1a1+/TM44 and Col1a2+/+, Col1a1+/TM44) has not reduced the 

percentage of affected animals.  

The animals with added C3H to their C57BL/6J genome (Col1a2+/-, Col1a1+/+and 

Col1a2+/+, Col1a1+/+) showed no phenotypes although only the Col1a2+/-, Col1a1+/+ 

animals would be expected to display a phenotype, and only 40%. While it is possible 

that the addition of C3H is responsible for the reduction in affected animals, it is equally 

possible that this is due to the small cohort size.  

 

Genotype N Ischia Olecranon Calcaneus 
Total 

Affected 
Percentage 

Affected 

Col1a2
+/-

, Col1a1
+/TM44

 4 3 0 1 4 100 % 

Col1a2+/+, Col1a1
+/TM44

 4 3 0 1 4 100% 

Col1a2
+/-

, Col1a1
+/+

 4 0 0 0 0 0% 

Col1a2+/+, Col1a1
+/+

 4 0 0 0 0 0% 

 

Table 7.6. A table showing the number of animals exhibiting each phenotype, for each 
genotype in the phenotyping cohort resulting from the Col1a2-KO and TM44 intercross.  
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7.4.3. DEXA Analysis of the TM44/Col1a2-KO Compound Cross at 4-Months 

DEXA analysis of animals in the TM-44/Col1a2-KO male cohort at 4 months of age 

revealed that there were no significant differences in BMD or bone mineral content in 

any of the genotypes. (Figure 7.11).   

 

 

Figure 7.11.  DEXA analysis of all  four compound genotypes resulting from intercross 
matings between TM44 heterozygotes and Col1a2-KO heterozygotes at 4-month. Neither 
(A) Bone mineral density (BMD) nor (B) Bone mineral content (BMC) differed between 
genotypes (One-way ANOVA N=4 for al l genotypes). 

As mentioned previously (See Section 7.2.3), it is possible that the statistical testing here 

may be underpowered to observe if there is a difference in this cohort. 

7.5. Discussion 

The compound cross experiment revealed interesting insights into the mutations and 

their modes of action. As noted in previous chapters, Col1a1 +/TM44 and Col1a2 +/107 

animals are viable, so the reduced viability of the double heterozygotes from the 
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compound cross between the MP-107 and TM44 (Col1a2+/107, Col1a1+/TM44) indicates 

that there is some interaction between the mutant genes.  It also provides additional 

confirmation that the mutations are causative. 

The double heterozygotes from the compound cross between the Col1a2-KO and TM44 

(Col1a2+/-, Col1a1+/TM44) were viable. Thus, comparing the 2 double heterozygotes, 

(Col1a2+/107, Col1a1+/TM44 and Col1a2+/-, Col1a1+/TM44), the mutant Col1a2+/107 allele in 

(Col1a2+/107, Col1a1+/TM44), is replaced by a null Col1a2+/- in (Col1a2+/-, Col1a1+/TM44), and 

this restores the viable phenotype.  This reflects the nature of the mutation in MP-107, 

as its presence in tandem with the TM44 mutation is more deleterious than the presence 

of the TM44 mutant allele and a null Col1a2 allele.   

The compound cross experiment revealed that the Col1a2+/107, Col1a1+/TM44 animals 

were less viable than either Col1a2+/107 animals or Col1a1+/TM44 animals confirming 

epistasis between mutant genes. This experiment also revealed that the Col1a2 -/107 was 

less deleterious than Col1a2107/107, which indicates that the MP-107 mutation is likely a 

gain of function mutation, possibly acting as a dominant negative. The presence of a 

single mutant Col1a2 allele and a null allele was less deleterious than two copies of the 

mutant Col1a2 allele, which indicates that the severity of phenotype is related to the 

quantity of mutant protein, rather than the absence of wildtype protein. 

Due to the variable nature of the phenotypes, the small cohort sizes and the limitations 

of X-ray imaging, drawing conclusions from the X-ray imaging data of the compound 

crosses is difficult. Table 7.7 shows collated incidence of early phenotype across the 

three individual lines and the compound crosses at the early time points. 
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  TM44 MP-107 Col1a2-KO 

  Col1a1+/+ Col1a1+/TM44 Col1a2+/+ Col1a2+/107 Col1a2+/+ Col1a2+/- 

TM44 
Col1a1+/+ 0% 100% c 0% 75% 0% 0% 
Col1a1+/TM44 100% c N/A 75% 100% a 100% 100% 

MP-107 
Col1a2+/+ 0% 75% 0% 80% 0% b 0% 
Col1a2+/107 75% 100% a 80% N/A 25% 25% 

Col1a2-KO 
Col1a2+/+ 0% 100% 0%b 25% 0% 40% 
Col1a2+/- 0% 100% 0%g   25% 40% 67% 

 

Table 7.7.  A table displaying the incidence of early phenotype in the lines TM44, MP-107 
and Col1a2-KO, and the compound l ines.  The unshaded boxes indicate the data from the 
individual lines (with grey shading where the animals were non-viable). Green shading 
indicates the data from the MP-107 x TM44 cross, blue shading indicates the data from 
the Col1a2-KO x TM44 cross, and yellow shading indicates the data from the Col1a2-KO x 
TMP-107 cross.  a  indicates that the genotype had reduced viability,  b  indicates only 2 
animals were X-rayed. c  It should be noted that in the case of heterozygous TM44 
(Co1a1+/ TM 4 4) animals from original cohort, although 100% of the early cohort exhibited 
an early phenotype,  some of the 12-month old cohort did not exhibit any of the early  
phenotypes (ischia/olecranon/calcaneus) and therefore this 100% incidence is a snapshot 
and is not a true representation of all Co1a1+ /T M 44  animals.  

It is clear that the TM44 line has the highest incidence of phenotypes detectable by X-

ray in the individual lines, followed by MP-107 and then by Col1a2-KO, where even the 

homozygous animals had a lower incidence than the heterozygotes of the other two 

lines (Table 7.7, white boxes).  Any compound cross genotype which contained a single 

Col1a1 allele (Col1a1+/TM44) in any of the genotypes in the compound crosses causes the 

highest incidence within each compound cross, with a lower incidence of 75%. The 

compound cross of MP-107 and Col1a2-KO contains the lowest incidence of X-ray 

phenotypes, with animals containing an MP-107 mutant allele (Col1a2+/107) having an 

incidence of only 25%, much lower than the 80% seen in the individual line MP-107 

(80%). The animals with the Col1a2-KO allele in the absence of any other mutant allele 

(Col1a2-/+ and Col1a2-/+, Col1a1+/+) show incidence of 0%, compared with 40% for 

heterozygotes from the Col1a2-KO line (Col1a2-/+). It is possible to explain this variance 

due the inherent variances in the phenotypes in all three lines, and the limitations of 

small cohort sizes and X-ray imaging. Larger cohorts would reveal if this were the case. 
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Chapter 8: General Discussion 
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8.1. Summary of Results 

To summarise these results, each line will be addressed individually before discussing 

how each of these lines provides information about the other and leads to general 

synthesis and conclusions. 

8.1.1. MP-107 

The majority of this thesis has focused on the line MP-107. The direction of the project 

changed over time, from identifying the causative gene behind the observed phenotype 

in the original cohort, to identifying a range of other phenotypes in a wide range of 

tissues and the mechanisms underlying the observed phenotypes. There were a number 

of complicating factors in this investigation including alternative splicing, resulting in 

variable levels of mutant transcript, and in the case of homozygous mutant, wild-type 

transcript in the absence of the wild-type genomic sequence; variable phenotypes 

between animals of the same genotype; and the possibility that some phenotypes could 

be secondary to one or more other phenotypes. 

Initial phenotyping of MP-107 revealed the presence of two early phenotypes, a curved 

olecranon at the elbow, and splayed ischia at the pelvis and a third late onset phenotype 

at the knee involving abnormal bone growth and cartilage erosion.  

8.1.1.1 Causative mutation in MP-107 

A T to A transversion was identified at position 4521226 of Chromosome 6. The effect 

of this splice region variant was the incorporation of three intronic bases into the exon 

as an extra amino acid, which disrupted the repeating glycine motif. A large proportion 

of osteogenesis imperfecta cases are caused by glycine substitutions, which also cause 

the repeating glycine motif to be disrupted [46-48].  

Further analysis of the cDNA using both PCR and qPCR revealed that even in the absence 

of wild-type genomic sequence, wild-type cDNA was produced indicating that the 

original splice acceptor site was used, in addition to the novel splice acceptor site, albeit 

at a far lower rate. From the data obtained, it appeared that the levels of mutant and 

wild-type transcript varied. Genotyping of affected and unaffected animals revealed 

that there was a degree of variability in the phenotypes, including heterozygotes, which 

did not show any of the phenotypes. It is therefore possible that the variability in 
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phenotype could be linked with the level of mutant, or wild-type transcript, but this has 

not been shown here. However, expression of Col1a1 was shown to be downregulated 

in the homozygotes compared with both the wild types and heterozygotes. Col1a1 

expression has previously been found to be downregulated in chondrocytes of a mouse 

model of OI with a mutation in Col1a2 (G610C) [250]. 

8.1.1.2 Homozygous Lethal Phenotype of MP-107 

Homozygous animals were found to have a perinatal lethal phenotype. Homozygous 

embryos were viable at 18.5 dpc, however some homozygous pups were identified in 

‘respiratory distress’ at P0. Approximately a quarter of pups from intercross matings 

went missing shortly after birth.  It is likely that this was causing the gasping phenotype 

observed in some homozygotes, which in turn caused the death of the homozygotes. 

The disappearance is likely due to the mothers consuming the cadavers soon after 

death. An OI mouse model (Brtl),  with a mutation in Col1a1, has previously been 

reported to die shortly after birth from respiratory distress [250]. 

8.1.1.3 OI phenotypes of MP-107 

In addition to the mild bone abnormalities including curved olecranons and splayed 

ischia in the heterozygous animals, other bone phenotypes were detected, including a 

reduced BMD in female heterozygotes at 12 months of age. Due to the possible 

confounding effect of the mixed background, further phenotyping was carried out on 

incipient congenic cohorts, with a cleaner C3H/HeH background, particularly as 

C57BL/6J animals have been shown to have lower BMD than C3H/HeH or F1 hybrids 

[271]. The BMD phenotype was replicated in some cohorts, but not others and a lowered 

BMC phenotype was noted in two cohorts.  

Three-point bending of humeri showed a decrease in maximum flexural load and work 

to fracture in the heterozygous animals. Analysis of the trabecular bone of the epiphysis 

and metaphysis showed a number of differences between genotypes including in the 

bone volume fraction, trabecular number, trabecular separation and trabecular 

thickness. Taking all of these bone phenotypes together, in addition to the bone 

breakages identified in some heterozygous animals, by X-ray and µCT imaging, it appears 

that a mild type IV OI phenotype is present in the heterozygotes.  Additionally, the mild 

bone phenotypes of splayed ischia and curved olecranons look similar to phenotypes 



 

269 
 

seen in an OI model, Brtl, which have been attributed to fractures [80]. The Brtl model 

has a glycine substitution in Col1a1and exhibits  variable phenotypes including similar 

ischia and olecranon phenotypes and some lethality. The lethal phenotype of the MP-

107 homozygotes, coupled with the evidence of bone breakage in utero, indicates a 

more severe OI phenotype than the type I/IV seen in heterozygotes, similar to type II OI 

in humans. The presence of an OI phenotype is perhaps not surprising given that 

approximately 90% of cases of OI in humans are due to mutations in either COL1A1 or 

COL1A2 [53], the vast majority of which affect the repeating glycine motif.   

8.1.1.4 EDS phenotypes of MP-107 

Mechanical testing of skin and tendons revealed that both tissues have altered visco-

elastic properties. There was no difference in the load at rupture in either tissue, 

however the skin appeared to be hyperextensible, likely due to the removal of the 

macroscopic crimp followed by straightening of molecular kinks in the gaps between 

Collagen molecules [36]. The radio labelling experiment indicated that there was no 

observable difference between the genotypes either intracellularly or extracellularly, 

indicating that the mutant protein is being secreted. Pepsin digestion and Coomassie 

staining of tendon fascicles also indicated that there was no difference in α1/ α2 ratio, 

indicating that the collagen I in the heterozygous tendons is heterotrimer. Tendon 

fascicles underwent DSC analysis, which revealed a difference in the dry entropy of the 

samples suggesting that the collagen molecules are less confined within the fibril 

structure [271, 297]. Together these results indicate that mutant α2 chains are being 

incorporated into the collagen fibrils.  The DSC data suggests that the mutation may be 

causing micro-unfolded regions within the molecule, making them less stable, and 

therefore requiring less energy to break apart the collagen I molecule [73]. It is therefore 

likely that the altered mechanical properties are a result of this micro-unfolding at the 

site of the repeating glycine motif disruption. This could explain why the initial elastic 

slope differs between genotypes, but the elastic slope does not (see section 4.2.3). 

Additionally, the TEM imaging of tendon revealed that the homozygous and 

heterozygous tendons had a reduced number of fibrils compared to wild-type tendons, 

which could also alter the mechanical properties. A reduction in the number of fibrils 

may lead to a reduction in the amount of ground substance in the ECM, and therefore 



 

270 
 

the amount of water that can be retained. This implies an EDS, or EDS like phenotype, 

as two common phenotypes shown by patients with EDS are hyperextensible skin, and 

ligament laxity leading to joint hypermobility [298].  

8.1.1.5 OA phenotypes of MP-107 

The heterozygous MP-107 (Col1a2+/107) animals showed ossification of the collateral 

ligaments and synovium, from as early as 4 months in the female animals and 9 months 

in the males by µCT, although it should be noted that no tissue from animals between 

these time points underwent µCT analysis. Significant differences were detected 

between the genotypes at the early time points due to the lack of any ossification in the 

wild types, however at 18 months there was evidence of some minor ossification in the 

wild types, which is not surprising as the incidence of ossified ligaments in human 

increase with age [299, 300]. Between 80% (female) and 100% (male) of heterozygotes 

exhibited severe ossification, and between 20% (female) and 50% (male) of wild types 

exhibited some mild ossification (see Chapter 3, Figure 3.38 for a comparison). As this 

analysis was based on the presence or absence of the ossification, rather than severity, 

no significant difference was detected at 18 months. A volumetric analysis of this 

ossified tissue, would likely remedy this [257]. Ossification and inflammation of the 

synovium was noted in histological sections of heterozygotes in the 12- and 18-month 

cohorts. 

OARSI scoring of histological sections of the knee revealed that in both males and 

female, the heterozygotes had significantly higher scores at 18 months than their wild 

type counterparts, confirming the OA phenotype. It is worth noting that the ligament 

and synovium changes in heterozygotes precede the cartilage damage.  Ramos-Mucci et 

al., reported increased volume of mineralised tissue in joint space, and increased 

ossification of the meniscus and collateral ligaments in animals with spontaneous and 

induced OA [257].  

The ossification of ligaments occurring before the cartilage damage in MP-107, does not 

necessarily indicate causation, but this would be worthy of further investigation. It has 

been suggested that pathological calcification of joint tissues is likely a disease initiator, 

for example there is a strong association between the presence of calcium crystals in 

synovial fluid and disease severity in OA patients [301]. The calcification of the soft 
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tissues could disrupt normal mechanoadaptive joint responses and lead to increased 

levels of potentially pro-inflammatory crystals in the synovial fluid [301, 302]. 

OA was surgically induced using DMM surgery on a small cohort of animals. There was 

a large degree of variability in the levels of OA that were produced, meaning that no 

significant difference was detected. Due to the variability in phenotype observed in the 

heterozygotes, it is extremely likely that this experiment was underpowered. Animals 

were culled 6 weeks post-surgery; it is likely that a stronger effect would have been seen 

if there had been a longer period between the surgery and culling of the animals[278]. 

Analysis of µCT data in Chapter 3 demonstrated an increased incidence of abnormal 

bone growth in heterozygotes when compared to wild types at multiple time points, and 

this is similar to what is seen in the DMM surgical model of OA.  The histological analysis 

in Chapter 3 also indicated that the osteophyte formation in heterozygotes preceded 

cartilage changes, and that may also be the case with this DMM experiment. However, 

to further investigate this, a longer period of time between surgery and harvesting tissue 

should be used. 

Micro-indentation analysis of the femoral condyles revealed a significant increase in 

structural stiffness in the medial femoral condyle of the heterozygotes compared with 

the wild types. No difference was detected in the lateral femoral condyles or the tibial 

plateaux. It should be noted that while the indenter was applied to the cartilage, the 

subchondral bone will have an effect, and therefore this difference cannot be attributed 

to a single tissue. 

8.1.1.6 ER stress phenotypes in MP-107 

TEM imaging revealed the presence of dilated ER in homozygous and heterozygous 

tenocytes.  Cell lysates of MEFs harvested from 12.5 dpc embryos of all genotypes, were 

probed with BIP, a marker of ER stress, which indicated that homozygotes and 

heterozygotes had increased levels of ER stress compared to wild types. IHC was 

undertaken on 18-month knee sections, again using an Anti-BIP antibody, and DAB 

staining revealed evidence of ER stress in the chondrocytes of the heterozygous articular 

cartilage. Combined with the evidence that the mutant protein is secreted rather than 

retained intracellularly, it appears that the ER stress is likely linked to a delay in the 
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collagen folding process. The G610C mouse of OI, which has a glycine substitution in 

Col1a2, exhibits ER stress in the chondrocytes and osteoblasts [250]. 

Chondrocytes are particularly sensitive to ER stress, due to their secretory role, and ER 

stress has been associated with OA [70]. BIP has also been reported to be upregulated 

in osteoarthritic tissue in both humans and mice [276, 303]. For this reason, the sections 

used for the IHC experiment were from a heterozygote that did not show signs of OA, 

to reduce the risk of ER stress being secondary to the OA itself. However, further 

experiments with additional samples are required to be able to draw conclusions. 

 

8.1.2. TM44 

6.1.1.1. Causative mutation in TM44 

Mapping of affected animals and unaffected controls identified a region on 

Chromosome 11; exome sequencing revealed two mutations, which were confirmed by 

Sanger sequencing. Subsequent segregation of mutations revealed the causative 

mutation as a nonsense mutation causing a premature stop codon in Exon 31 of the 

gene Col1a1.   

8.1.2.1 Bone Phenotypes of TM44 

Phenotyping of the line TM44 was not as extensive as MP-107. Nevertheless, initial 

phenotyping of TM44 revealed the presence of similar early phenotypes to those 

observed in MP-107, including a curved olecranon at the elbow, and splayed ischia at 

the pelvis, abnormal bone growth and cartilage erosion in the knee. Three animals also 

exhibited abnormal calcaneus.  The phenotypes observed were variable, as seen in MP-

107, however every heterozygote TM44 animals in the studied cohort displayed at least 

one of the bone phenotypes.  

DEXA analysis indicates that the heterozygotes (Col1a1+/TM44) have significantly lower 

BMD and BMC in both sexes at 2 months of age, indicating that the animals are 

osteopenic. The presence of similar phenotypes at the olecranon and pelvis, to those 

seen in models of OI (Brtl), OI/EDS overlap (Jrt) and MP-107, which have been attributed 

to bone breakage, coupled with this observed osteopenic phenotype indicates an OI 

phenotype [80, 117]. Additionally, in another model of OI with a mutation in Col1a1 
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(seal), 50% of homozygous animals exhibited swollen heels and footpads due to 

pathological fractures, which could explain the phenotype at the calcaneus of this line 

[304]. 

8.1.2.2 OA Phenotype of TM44 

100% of animals exhibited abnormal bone growth at the knee by 12 months, indicating 

an earlier onset disease, although OARSI scoring was only performed at 18 months, so 

it is not possible to confirm the large deposits of abnormal bone were coinciding with 

cartilage degradation at the earlier time point.  At 18 months 100% of the heterozygotes 

displayed evidence of OA, a higher proportion than observed in MP-107.  

8.1.2.3 Homozygous Lethal Phenotype of TM44 

 The homozygous embryos were found to be lethal between 12.5 and 14.5 dpc and 

showed evidence of hydrocephalus, similar to the Mov-13−/− model of Type II OI, which 

is recorded as having arrested development between day 11 and day 12 of gestation 

around the time when high transcription of Col1a1 occurs, and death shortly [294]. 

8.1.2.4 EDS or Col1 Related Overlap Phenotype of TM44 

Analysis of tendon collagen extracts reveals that the α1/ α1 ratio is similar between 

genotypes (and to MP-107) indicating that homotrimer is not formed, and the molecular 

weight of the α1 band is also similar, indicating that a truncated protein is not present. 

This indicated that the mutant protein is unlikely to be able to trimerise, and is likely 

removed by ERAD. Likely leading to a reduction of collagen I produced. Further work is 

required to establish if this is in fact the nature of the TM-44 mutation. 

There are examples of similar nonsense mutations in Exon 31 leading to OI (Type I/IV) in 

humans [305, 306] and to Col1-related overlap disorder [80, 115]. Due to the 

phenotyping analysis on TM44 being limited in scope, it is not possible to discern what 

specific disorder TM44 models.   
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8.1.3. Col1a2-KO 

8.1.3.1 Bone Phenotypes of Col1a2-KO 

As with TM44, phenotyping of the line Col1a2-KO was not as extensive as MP-107. 

However, initial phenotyping of Col1a2-KO revealed the presence of similar early 

phenotypes to those observed in MP-107 and TM44, including a curved olecranon at the 

elbow, and splayed ischia at the pelvis.   These phenotypes were present in both 

homozygous and heterozygous animals.  No difference in BMC or BMD was detected. 

Nevertheless, as shown for MP-107, this does not mean that the bones are not 

osteopenic, just that any difference is not detectable by whole body DEXA analysis. 

8.1.3.2 OA Phenotype of Col1a2-KO 

No heterozygotes or homozygotes were identified as having abnormal growth at the 

knee at 12 months. Animals were not aged further so it is not possible to say whether 

Col1a2-KO animals, either heterozygotes or homozygotes would have gone on to 

develop abnormal bone formation at the knee or an OA phenotype. 

8.1.3.3 EDS or Col1 Related Overlap Phenotype of Col1a2-KO 

The collagen analysis of tendons, confirmed that in the homozygote, the collagen I in 

tendon was homotrimer, and both heterotrimer and homotrimer were present in the 

heterozygote tendons.   

8.1.4. Genetics 

The viability of the Col1a2-KO homozygotes (Col1a2-/-) indicates that the absence of 

COL1A2 protein is less deleterious than the mutation seen in MP-107, where 

Col1a2107/107 animals were not viable. Moreover, the presence of a single mutant MP-

107 Col1a2 allele and a null allele in the double mutant (Col1a2-/107) was less deleterious 

than two copies of the mutant Col1a2 allele, which indicates that the severity of 

phenotype is related to the quantity of mutant protein, rather than the absence of wild-

type protein. 

In addition the compound cross experiment revealed that the  Col1a2+/107, Col1a1+/TM44 

animals were less viable than either Col1a2+/107 animals or Col1a1+/TM44 animals 

confirming epistasis between mutant genes. Overall, we can conclude from the 

extensive genetic analysis that the MP-107 mutation is likely a gain of function mutation. 
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8.2. Overall Conclusions 

All three lines show evidence of an OI phenotype. The more thorough phenotyping of 

MP-107 allows a more in-depth analysis of this model. The Col1a2-KO appears to have 

a mild type I/IV OI phenotype in both heterozygotes and homozygotes. The TM44 

heterozygotes also appear to have a type IV OI phenotype, with late onset OA, and the 

homozygotes appear to have a type II OI phenotype, it is important to note that this line 

did not undergo phenotyping which would reveal the presence of an EDS phenotype so 

this cannot be ruled out.  The MP-107 homozygotes, have an OI type II phenotype, and 

the heterozygotes have an OI, EDS and OA phenotype. Due to the presence of both OI 

and EDS phenotypes, it is likely that this line is a model for Col1-related overlap disorder. 

The cause of the OA phenotype in the MP-107 line and TM44 line is not entirely clear.  

There is more evidence for possible mechanisms in the MP-107 line, due to the variety 

of phenotyping procedures undertaken. 

As previously stated, OA is a disorder involving the whole joint, and many of the tissues 

that make up the joint are made up of collagen I. It is therefore highly likely that 

abnormal collagen I could alter the behaviour, and interactions of these tissues. 

A large proportion of ligament, tendon, joint capsule and meniscus are composed of 

collagen I fibres.  Mechanical testing of tendons provided evidence that in MP-107 

heterozygous fascicles, the hysteresis is reduced, making tissues less effective at 

absorbing energy. The collagen I tissues within the joint all play a stabilising role in the 

knee joint, to varying degrees.  Ossification of soft tissues is often a response to trauma, 

micro trauma or repetitive mechanical stress [307]. Therefore the ossification of the 

ligaments, which precedes the cartilage erosion, could be a sign that the joint is not 

behaving normally. Ossification in tendons and meniscus is known to occur in animals 

with OA, however it is not known which process precedes the other [257]. It is also 

known that modifying the heterotypic nature of tendons, such as targeted deletion of 

Collagen V, can result in EDS and early onset OA [104]. 

The EDS phenotypes seen in the skin and tendon may indicate that there is a level of 

joint hypermobility in heterozygotes. It is well established that joint injury is a major 
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predictor of developing OA [308-310]. Patients with EDS are at a far higher risk of 

complications of hypermobility which include symptomatic subluxation, dislocation, and 

tendon ruptures [298]. It is therefore possible the OA observed in the MP-107 line could 

be secondary to joint injury. Although there is little published evidence that inherited 

hypermobility predisposes to OA in humans, Sun et al. have shown that a mouse model 

of classic EDS, does exhibit OA [104]. 

The µCT of MP-107 heterozygotes revealed altered subchondral trabecular bone. The 

relationship between articular cartilage and subchondral bone is well established. 

Additionally, it has been shown in multiple cases that abnormal COL1A1 and COL1A2 can 

lead to altered mineralisation and affect osteoblast differentiation, which could modify 

the remodelling process that occurs in the subchondral bone 

The presence of markers for ER stress in the chondrocytes of heterozygotes, could 

indicate that the mutation may be having an effect on the chondrocytes which could 

then lead to apoptosis, or impede the ability of the chondrocytes to modulate 

homeostasis. Chondrocytes produce collagen I as a minor ECM collagen and it is 

therefore not surprising that a collagen processing delay may cause knock on affects in 

this tissue.  The Aga model of OI leads to osteoblast ER-stress mediated apoptosis [71]. 

A simple mechanical explanation for the development of OA could be that the breakage 

in the pelvis, could be leading to an abnormal gait, which in turn causes abnormal 

loading, and OA.  This is unlikely to be the cause due to the OA phenotype occurring in 

animals, which did not exhibit the splayed ischia phenotype, however gait analysis could 

be used to investigate if this is the case.   

The possible mechanisms listed above are all direct results of the collagen I mutations, 

however there are instances where mutations in collagen I lead to dysregulation of other 

genes, which could lead to altered cartilage or bone homeostasis; these possibilities will 

be discussed in the next section. 

8.3. Implications for the Study of Osteoarthritis 

One of the aims of this project was to elucidate the mechanism by which the mutations 

in either of the collagen I genes resulted in OA. The experiments have shown lots of 

potential causes of OA, without showing that any one phenotype directly causes the OA 
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phenotype observed in our mice. Some of these mechanisms have been discussed in the 

previous chapter. However, the interaction of the tissues within the joint has been 

shown to play a role in OA [161], and it is therefore possible  the changes observed could 

be leading indirectly to OA. For example, cross-talk of bone and cartilage at the 

osteochondral junction is known to occur, and therefore the OI phenotype and changes 

to the subchondral trabecular bone may influence the biomechanical response to joint 

loading indirectly [311]. 

Figure 8.1. shows many of the interactions between the joint tissues that can have an 

effect on the progression of OA.  

 

 

Figure 8.1.  A representation of an osteoarthrit ic knee, including the main contributing 
tissue and their interactions. Articular carti lage loss typifies OA but the exact balance of 
tissue involvement and interaction is dependent on both joint site and OA subtypes. 
Taken from Mimpen and Snelling, 2019 [312].   

OA is a disease of the joints, and involves all the tissues of the joint. Given so many of 

the components of a joint are tissues which contain collagen I, it is perhaps surprising 

that the genes COL1A1 and COL1A2 have not been found to be associated with OA, with 

the exception of a study of a small founder population in Canada, where an association 
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was found between COL1A2 and hip OA [313]. This study is likely underpowered, 

however, due to the nature of a founder population, mutations are more likely to be 

replicated within the population. Loughlin et al., found a weak association between 

COL1A1 and OA, however upon correcting for multiple testing the result was not 

significant [314]. It is therefore possible that mutations in collagen I genes may be having 

an effect on a small subset of patients, making them more difficult to identify. 

It is feasible that the mutation in Col1a1 or Col1a2 is impairing a cartilage repair process 

within the osteoarthritic cartilage. Several different studies have shown that 

chondrocytes in OA cartilage express matrix genes that are expressed at very low levels, 

or not at all, in normal cartilage, including collagen I genes [315-318]. Styczynska-Soczka 

et al. suggest that the increased production of collagen type I during cartilage 

degeneration implies that there may be a change in the differentiation status of some 

chondrocytes towards a fibroblastic phenotype. They also suggest that a mechanically 

weak fibro-cartilaginous repair tissue is present in otherwise macroscopically non-

degenerate human cartilage, which then degenerates [319]. Miosge et al. found that the 

levels of collagen type I mRNA were increased as the degeneration worsened, 

supporting the conclusion that collagen type I gradually becomes one of the factors 

involved in the pathogenesis of OA [315]. Impairment of a repair process could certainly 

explain the severity of the late onset OA phenotype that the MP-107 animals develop.  

The line MP-107 was noted to exhibit signs of ER stress in tenocytes, fibroblasts and 

chondrocytes. This ER stress may lead to ER stress mediated apoptosis of these cells, 

which could result in altered cartilage homeostasis and degeneration [71]. Apoptosis is 

observed in OA, but it is not clear if it is the cause of irreversible cartilage degeneration 

or if it is initiated by it [320, 321]. Nevertheless, Uehara et al. demonstrated that ER 

stress induced apoptosis contributes to articular cartilage degradation using a Chop 

knockout [322]. 

The surgical induction of OA in the line MP-107 was inconclusive and would need to be 

repeated in an appropriately powered study. 

It appears that in the line MP-107 the ossification of the soft tissues including the 

synovium, ligaments and capsule precedes the destruction of the cartilage, however as 

the degradation of cartilage occurs at the molecular level long before it is observable by 
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histology it is not possible to say with certainty that it precedes the degradation of 

cartilage. While it may not be the case that the bone changes precede cartilage 

destruction in other models or in OA patients, it could prove a useful tool for 

investigating the downstream effects of this ossification including alterations to the 

synovial fluid, both from the release of crystallites, and the impairment of the type A 

and B cells in the synovium. 

Finally, Bianchi et al., showed that modification of Col1a1 can affect cytoskeletal 

organization, affecting osteoblast proliferation, collagen deposition, integrin and TGF-β 

signalling [81]. It would therefore be prudent to investigate if this is having an effect on 

the pathogenesis of OA as TGF-β levels have been found to be elevated in the synovial 

fluid of OA patients and TGF-β is thought to play a role in synovitis [323-326]. While the 

elevated TGF-β levels may be part of a pro-repair mechanism, other downstream effects 

of altering Col1a1 expression should be investigated.   

There are many ways in which a mouse model that develops late onset OA could be used 

to help elucidate the mechanisms that lead to OA, either due to the genetic component, 

or the mechanical or chemical pathways identified. For example, studies have shown 

that genetic predisposition to hip OA is often due to altered shape of the joint, leading 

to altered mechanical load [327, 328]. It is possible that a similar mechanism is 

happening here, and modelling the joint to investigate change associated with the 

genetic changes could elucidate mechanisms leading to OA.  

8.4. Implications for the Study of OI/ EDS 

Generally the mechanisms causing OI as a result of mutations in Collagen I genes are 

fairly well understood, and it is unlikely that the work discussed here will have much of 

an impact in the field of OI as a single disorder, additionally there are many mouse model 

of OI caused by mutations in Collagen I genes. 

 Classical EDS and vascular EDS  are very rarely caused by mutations in Collagen I genes, 

the more common types of EDS caused by mutations in Collagen I genes are 

arthrochalasia EDS and cardiac-valvular EDS.  There are no mouse models of EDS caused 

by mutations in Collagen I genes, and therefore these models could be used to improve 
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the understanding of how mutant collagen I affects the material and mechanical 

properties of collagen rich tissues, such as skin, tendons and ligaments. 

OI/EDS overlap, or Col-1 overlap disorder, appear to be almost exclusively caused by 

mutations in Collagen I genes, and therefore these mouse lines would be a useful 

resource to help understand the development of this disorder and why it appears to be 

distinct from the both OI and EDS.  

8.5. Future Work 

The work detailed here has not been able to elucidate the specific mechanism by which 

mutations in Col1a1 and Col1a2 lead to OA, only possible mechanisms.  Were time not 

limited, several avenues of investigation could have been undertaken. 

8.5.1 Further Study of Bone Phenotypes 

The bone phenotyping undertaken in this study was limited to mechanical testing and 

µCT imaging and analysis. However, the µCT work undertaken in this study did not 

investigate the structure of cortical bone. However, the mechanical testing of humeri 

indicated that there were differences in the mechanical properties in the cortical bone. 

Further µCT analysis of cortical bone provides information about why the MP-107 

heterozygote bones are weaker than the wild types. 

OI phenotypes can arise from abnormal osteoblast function. A wide variety of 

phenotyping tests were carried out by Jeong et al. on the G610C model of OI, including 

dynamic and static histomorphometry, which could indicate if the mutations had an 

effect on the bone remodelling, as well as the effect on all the cell types involved in the 

remodelling process [329]. Additionally, the effect of the mutation on steady state bone 

resorption in vivo could be determined by analysis of the serum level of the type I 

collagen α1 chain C-terminal telopeptide (CTX), a biomarker for osteoclast activity [304]. 

To investigate the quality of the osteoid which is subsequently mineralised, the 

hydroxyproline content could be measured in demineralised bone hydrolysate, to 

indicate the collagen content [304]. 

8.5.2 Further Study of Collagen Phenotypes 

DSC analysis revealed that the collagen molecules had a lower dry enthalpy, indicating 

the collagen molecules are less confined within the fibril structure. Atomic force 
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microscopy could be used to investigate what the structural changes to the collagen 

molecules are, and how these impact the formation of the fibrils. 

The mechanical testing of tendons indicated that there was an increased initial 

extension for little force in the so-called ‘toe’ of the graph. It is believed that the toe of 

the extension is the straightening of the crimped fibres. Polarised light microscopy could 

be used to investigate if the abnormal collagen fibrils in MP-107 heterozygotes have an 

impact on the crimp waveform of fascicles, which might help explain the mechanical 

differences in these animals. 

TEM showed that the collagen fibrils in MP-107 heterozygous and homozygous tail 

tendons were less densely packed than in wild types. 3D TEM would allow imaging of 

the fibrils to understand how the less densely packed fibril bundles interact with each 

other. 

 

8.5.3 Further Study of OA Phenotype 

The calcification of ligaments in heterozygous mice was visible in µCT imaging from as 

early as 4 months of age. Ramos-Mucci et al. investigated the calcification of the 

ligaments and meniscus of STR/ort animals with OA, using a volumetric analysis of 

ossified tissue.  This technique could provide clear evidence as to the development of 

the phenotype observed in the MP-107 heterozygotes over time [257]. 

The presence of crystals in the synovial fluid as a result of the ossification of the soft 

tissues of the joint could be increasing the severity of disease and therefore assessing 

the crystals in synovial fluid prior to articular cartilage degradation could be informative. 

Recovering synovial fluid from the murine joint is difficult, however, Seifer et al. have 

published a method [330].  It should be noted that the presence of crystals in the 

synovial fluid of OA patients does not necessarily indicate that they are pathogenic 

[331]. A compound cross with the Toll like receptor 4 (TLR4) knock out could be 

informative in this regard.  

Although the OA phenotype was present in animals that did not show an abnormal 

pelvis, it is still possible that there was a mild pelvis abnormality that wasn’t identified, 

but that still had an impact on gait. Gait analysis could therefore be used to investigate 
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whether heterozygotes had a gait abnormality that might cause abnormal loading, 

leading to OA.  

Phenotyping of skin and tendons of MP-107 indicated that there were altered 

mechanical properties of these tissues, and indicated that the heterozygous animals 

may have some degree of joint laxity. Ex vivo joint laxity experimentation may indicate 

if this is the case, and using an in vivo non-invasive murine joint loading model such as 

described by Poulet et al., may indicate if this instability is leading to OA [225]. 

Analysis of the subchondral bone of MP-107 via µCT imaging and analysis did not show 

any difference between genotypes, due to the effect the Col1a2 mutation had on bones 

including trabecular bone alteration, mechanically weaker bone and increased fracture 

risk, it is surprising no difference was detected here. It is possible that the resolution of 

the imaging undertaken was insufficient, and therefore imaging using advanced higher 

resolution techniques such as synchrotron X-ray tomography may enable a better 

understanding of the bone changes within the joint [332]. 

To investigate if the OA phenotype is a result of alterations in the joint shape during 

development as a result of the mutations in Col1a1 or Col1a2, an inducible knock in of 

the mutations could be used to ensure the joint forms normally. Should the OA 

phenotype still appear, then it is likely that the phenotype is as a result of one of the 

mechanism discussed here, where as if no phenotype occurred this would indicate that 

the OA phenotype is caused due to changes during development, such as altered joint 

morphology. 

With the exception of the micro-indentation assay and histological analysis, changes to 

the articular cartilage were not investigated in these lines. Further µCT imaging using 

phosphotungstic acid as a contrast agent will allow visualisation and comparison of the 

cartilage in 3 dimensions [243, 333]. 

8.5.4 Further Study of Genetics 

The MP-107 mutation leads to the production of both wild-type and alternatively spliced 

mutant transcripts. It is unknown what effect variation in the levels of these transcripts 

between cells, or between animals might have on phenotype. It would be of 

considerable interest to investigate the levels of the two possible transcripts in 
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heterozygous animals with varying phenotypes and to establish if there is a link between 

levels of mutant transcript expression and phenotype severity. 

While GWAS studies have not identified either COL1A1 or COL1A2 as being associated 

with OA, the knowledge that a mutation in either of these genes can lead to an OA 

phenotype, regardless of the mode of action, could make these genes a possible target 

for further study. OA clinics often have DNA biobanks for patients with OA, and a 

possible research angle could be screening these DNA samples for mutations in either 

of these genes.  
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Appendices 

Appendix 1 - Radiolabelling Gels 

 

 

Figure 9.1. S1 (f irst Salt extract),  S4 (fourth Salt extract) and N extracts (final detergent 
extract) run on Tris-Glycine gels and then exposed to a phosphor plate, show that there are 
similar levels of proα1,  proα2 pCα1, pCα2 in the N and S1 extracts of the wild type (WT, 
Col1a2+ /+)samples when compared to the heterozygous Col1a2+/ 10 7   samples,  indicating that  
the Collagens are being secreted normally. The S4 extract is included to show that the 
majority of the extracellular collagens had been extracted prior to the N extract ion 
indicating that the Collagens found in then extraction were intracellular.  
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Appendix 2- Full µCT Results 
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Appendix 3- Time Course Full Body X-rays 

2 Months X-ray 

 

Figure 9.2.  Representative X-ray images of wild type (WT, Col1a2+/ +) and heterozygous (HET,  
Col1a2+ /1 0 7)  animals at 2 months of age. At this t ime point the majority of heterozygous animals 
either showed a curved olecranon at one or both elbows (orange arrows), or splayed ischia at 
the pelvis (blue arrows) or a combination of both phenotypes.  
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4 Months X-ray 

 

Figure 9.3.  Representative X-ray images of wild type (WT, Col1a2+/ +) and heterozygous (HET,  
Col1a2+ /1 0 7)  animals at 4 months of age. At this t ime point the majority of heterozygous animals 
either showed a curved olecranon at one or both elbows (orange arrows), or splayed ischia at 
the pelvis (blue arrows) or a combination of both phenotypes.  
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6 Months X-ray 

 

Figure 9.4.  Representative X-ray images of wild type (WT, Col1a2+/ +) and heterozygous (HET,  
Col1a2+ /1 0 7)  animals at 6 months of age. At this t ime point the majority of heterozygous animals 
either showed a curved olecranon at one or both elbows (orange arrows), or splayed ischia at 
the pelvis (blue arrows) or a combination of both phenotype
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9 Months X-ray 

 

Figure 9.5.  Representative X-ray images of wild type (WT, Col1a2+ / +)  and heterozygous 
(HET, Col1a2+/ 1 0 7) animals at 9 months of age.  At this time point the majority  of 
heterozygous animals either showed splayed ischia at the pelvis (blue arrows), abnormal 
bone growth at the knee (red arrows), or a combination of both phenotypes, no animals 
were observed to have the curved olecranon phenotype. 
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12 Months X-ray 

Figure 9.6. Representative X-ray images of wild type (WT, Col1a2+ / +) and heterozygous 
(HET, Col1a2+/ 10 7) animals at 12 months of age. At this time point the majority of 
heterozygous animals either showed a curved olecranon at one or both elbows (orange 
arrows), splayed ischia at the pelvis,  abnormal bone growth at the knee (red arrows), or 
a combination of phenotype. 
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15 Months X-ray 

 

Figure 9.7.  Representative X-ray images of wild type (WT, Col1a2+ / +)  and heterozygous 
(HET, Col1a2+/ 10 7) animals at 15 months of age. At this time point the majority of 
heterozygous animals either showed a curved olecranon at one or both elbows (orange 
arrows), splayed ischia at the pelvis,  abnormal bone growth at the knee (red arrows), or 
a combination of phenotypes. 
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18 Months X-ray 

 

Figure 9.8.  Representative X-ray images of wild type (WT, Col1a2+ / +)  and heterozygous 
(HET, Col1a2+/ 10 7) animals at 18 months of age. At this time point the majority of 
heterozygous animals either showed a curved olecranon at one or both elbows (orange 
arrows), splayed ischia at the pelvis(blue arrows), abnormal bone growth at the knee (red 
arrows), or a combination of phenotypes.  
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Figure 9.9.  Higher resolution X-ray images of the knees of a wild type (WT, Col1a2+ / +) and 
a heterozygous (HET, Col1a2+ /1 0 7) animal at 18 months of age. The heterozygous animals 
show abnormal excess bone growth at the knee (Red arrows).  



 

310 
 

Appendix 4- High Magnification TEM Images 

 
Figure 9.10.  TEM images of embryonic tail tendon from wild-type embryos.  Red arrows 
indicate the ER and yellow arrows the collagen f ibrils. 
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Figure 9.11.  TEM images of embryonic tail tendon from heterozygous embryos.  Red 
arrows indicate the ER and yellow arrows the collagen fibrils. 
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Figure 9.12.  TEM images of embryonic tail tendon from homozygous embryos.  Red 
arrows indicate the ER and yellow arrows the collagen fibrils. 
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Appendix 5- Full Gels for ER Stress of MEFs 

 

 

Figure 9.13. Western blot showing levels of BIP in cell lysates from MP-107 MEFS. A and 
B both show the same blot, with brightness adjusted. Samples are as described in Figure 
8.2.  
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Appendix 6- Immunohistochemistry Analysis of ER Stress in Articular Cartilage 

 

Figure 9.14.  Immunohistochemical staining of wild-type and heterozygous knee sections 
using BIP antibody. (A) Negative control wild-type (WT, Col1a2+/+) section without 
primary ant ibody, (B) Wild-type (WT, Col1a2+/+) sect ion with primary antibody, (C) 
Heterozygous (HET,  Col1a2+/107) section with primary antibody. Dark brown staining is 
only visible in the chondrocytes of the heterozygous section (black arrows),  indicating 
increased levels of ER stress in the heterozygote chondrocytes. It should be noted that 
only one 18-month heterozygous animal showed no evidence of joint damage, and was 
therefore used for IHC, and therefore no statist ical testing was carried out.   


