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Abstract 

My PhD research consists of a series of studies on the application of metagenomic next-

generation sequencing (mNGS) to search for viral etiology in patients presenting with 

community-acquired sepsis or central nervous system (CNS) infections. I first developed a 

mNGS workflow for the sensitive detection of a broad range of viruses in clinical samples 

(Chapter 2). I then used this optimized method to search for viruses in 665 patients presenting 

with community-acquired sepsis of unknown origin enrolled in an observational study across 

Thailand and Vietnam in 2013-2015. While the mNGS analysis revealed significant insights into 

the epidemiology of sepsis in both countries, the analysis also led to the first detection of a 

recently discovered flavivirus - human pegivirus 2 (HPgV-2) - in a serum sample of a 

Vietnamese patient co-infected with HIV and HCV. This represents the first detection of HPgV-

2 in Vietnam. Therefore, I conducted further research to unravel its epidemiology in Vietnam 

(Chapter 4). In Chapter 5, I used mNGS to analyze 204 cerebrospinal fluid (CSF) from patients 

with CNS infections of unknown origin enrolled from hospitals across central and southern 

Vietnam in 2012-2016. Enteroviruses were the most common viruses detected, especially in 

children and young adults. To inform future research directions, I conducted a pilot of 66 

consecutive CSF samples collected from patients presenting with CNS infections admitted to the 

Hospital for Tropical Diseases in Ho Chi Minh City, Vietnam (Chapter 6). mNGS accurately 

detected a wide range of pathogens that were also detected by routine diagnostic methods, but 

also increased the diagnostic yield from 22.7% (15/66) to 34.8% (23/66) (Chapter 6). Finally, in 

Chapter 7, I provide an overview about my research findings, and propose some future directions 

based on the main findings obtained during my PhD research. 
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Chapter 1: Introduction 

1. Sepsis 

Sepsis is the presence of systemic host responses to an infection. It is one of the leading causes 

of intensive care units admission of all age groups worldwide, and is considered as a serious 

public health problem (1). Sepsis is known as the final common pathway to death from severe 

infectious diseases (2). 

1.1. Definition: 

The definitions of sepsis and its diagnostic criteria have evolved over time. Major milestones 

have been the establishment of the first case definition in 1991, and its revised version in 2001, 

2012 and 2014. According to the 1991 consensus conference, sepsis was defined based on the 

concept of the Systemic Inflammatory Response Syndrome (SIRS). Accordingly, sepsis was 

defined by the presence of two or more of SIRS including (1) temperature >380C or <360C; (2) 

an elevated heart rate (>90 beats/minute); (3) tachypnea (respiratory rate >20 breaths/minute or 

PaCO2 <32 mmHg); and (4) an alteration in white blood cell count (>12,000/cu mm, <4,000/cu 

mm, or >10% immature forms) (3). Ten years later, the 2001 consensus conference proposed to 

expand the list of sepsis diagnostic criteria (4). The expanded diagnostic criteria were then 

adopted and recommended by the surviving sepsis campaign in subsequent years, especially in 

2012 (Table 1.1). Most recently, the international conference was held in 2014 to deliver a new 

consensus definition for sepsis. According to the 2014 Sepsis-3 Task Force, sepsis is defined 

life-threatening organ dysfunction caused by a dysregulated host response to infection (5).  
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Table 1.1 Diagnostic criteria for sepsis. Table was adapted from “Surviving Sepsis Campaign: 

International Guidelines for Management of Severe Sepsis and Septic Shock: 2012” by Dellinger et al, 

2013 (5). 
 

General variables   

Fever (> 38.30C) 

Hypothermia (Core body temperature < 360C) 

Heart rate > 90 beats per minute or more than 2 SD above the normal value for age 

Tachypnea  

Altered mental status 

Significant edema or positive fluid balance (> 20ml/kg over 24hr) 

Hyperglycemia (plasma glucose >140mg/dL or 7.7mmol/L) in absence of diabetes  

Inflammatory variables 
Leukocytosis (white blood cell count > 12,000/µL) 

Leukopenia (white blood cell count < 400/µL) 

Normal white blood cell count with greater than 10% immature forms 

Plasma C-reactive protein more than 2 SD above the normal value 

       Plasma procalcitonin >2 SD above the normal value 
Hemodynamic variables  

       Arterial hypotension (systolic blood pressure (SBP) < 90 mmHg, mean arterial pressure < 70 mmHg, or 

SBP decrease > 40 mmHg in adults or less than 2SD below normal for age) 

Organ dysfunction variables  

      Arterial hypoxemia (PaO2 / FIO2 < 300) 

      Acute oliguria (urine output < 0.5 ml/kg/hr for at least 2hrs despite adequate fluid resuscitation) 

      Creatinine increase > 0.5 mg/dL or 44.2 µmol/L 
      Coagulation abnormalities (international normalised ratio >1.5 or activated partial thromplastin time >60 

seconds) 

      Ileus (absent bowel sounds) 

      Thrombocytopenia (Platelet count < cells 100,000/µL) 

      Hyperbilirubinaemia (plasma total bilirubin > 4 mg/dL or 70 µmol/L)  

Tissue perfusion variables  

      Hyperlactatemia (> 1 mmol/L)  

      Decreased capillary refill or mottling  

 

The organ dysfunction is assessed by the Sequential Organ Failure Assessment (SOFA) scores 

(Table 1.2). A patient with a SOFA score of 2 or more is considered to have sepsis and is 

associated with a mortality rate of approximately 10%. The higher SOFA score is associated 

with a greater mortality risk. qSOFA (quick SOFA) was introduced by Sepsis-3 as a simple, 

quick assessment without the need of laboratory test at bedside for adult patients with suspected 

infection, who are likely have poor outcome (6).   
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Table 1.2 Sequential Organ Failure Assessment Score. The table was adapted from “The third 

international consensus definitions for sepsis and septic shock” by Singer et al, 2016 (6). 
 

 

According to Sepsis-3 task force, septic shock is defined as a subset of sepsis in which 

underlying circulatory and cellular/metabolic are profound enough to substantially increase 

mortality (5). More specifically, septic shock is defined by the clinical criteria of sepsis with the 

persistence of hypotension requiring vasopressor to maintain the mean arterial pressure of 

65mmHg or above, and a serum lactate greater than 2 mmol/L (18 mg/dL) despite adequate 

fluid resuscitation (6). The hospital mortality among patients with a sepsis shock is >40% as 

compared to ≈10% among those with sepsis. 

It should however be noted that the definition of sepsis has largely been based on patients with 

bacterial or fungal infection. So far, the definition has not validated for other infections such as 

malaria, dengue or other viruses (7). 

 

 

System 
Score 

0 1 2 3 4 

Respiration 

PaO2/FIO2, 

mmHg (kPa) 
≥400 (53.3) <400 (53.3) <300 (40) 

<200 (26.7) with 

respiratory support 

<100 (13.3) with 

respiratory support 

Coagulation  

Platelet, x 103 /μl ≥ 150 <150 <100 <50 <20 

Liver  

Bilirubin, mg/dL 

(μmol/L) 
<1.2 (20) 

1.2-1.9  

(20-32) 

2.0-5.9  

(33-101) 
6.0-11.9 (102-204) >12.0 (204) 

Cardiovascular MAP ≥ 70 

mmHg 

MAP < 70 

mmHg 

Dopamine <5 

or dobutamine 

(any dose) 

Dopamine 5.1-15 or 

epinephrine ≤0.1 or 

norepinephrine ≤0.1 

Dopamine >15 or 

epinephrine >0.1 or 

norepinephrine >0.1 

Central nervous system 

Glasfow Coma 

Scale score 
15 13-14 10-12 6-9 <6 

Renal 

Creatinine, 

mg/dL (μmol/L) 
<1.2 (110) 

1.2-1.9 

(110-170) 

2.0-3.4  

(171-299) 

3.5-4.9  

(300-440) 
>5.0 (440) 

Urine output, 

ml/d 
   <500 <200 
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1.2. Global burden: 

The true global epidemiological burden of sepsis has not been fully documented. Available 

epidemiological data have been derived from hospital-treated sepsis data in high-income 

countries (8). There is a severe lack of population-based sepsis data globally. The incidence of 

sepsis is less well described in the low and middle-income countries (LMCs), where 87% of the 

world’s population lives (2). A recent Global Burden of Disease (GBD) study conducted across 

195 countries and territories estimates global incidence of sepsis was 48.9 million (38.9–62.9) 

cases, and a total of 11 million sepsis-related deaths were reported worldwide in 2017, 

representing 19.7% of all deaths that year (Figure 1.1)(9).  

The incidence of sepsis peaks in early childhood and again in elderly adults. About 41.5% (20.3 

million) of sepsis cases and 26.4% (2.9 million) deaths related to sepsis worldwide are among 

children younger than five years (9). According to global age-standardised estimation, in 2017 

sepsis incidence was higher among females than males (716.5 cases per 100,000 vs. 642.8 cases 

per 100,000), while sepsis-related mortality was higher among males than females (164.2 per 

100,000 vs. 134.1 per 100,000). In the same year, diarrheal disease is the largest contributor of 

sepsis incidence (9.2 million), whereas the highest number of sepsis-related deaths were caused 

by lower respiratory infections (1.8 million) (9). Of these, 70% was community-acquired (CA) 

sepsis (8). The intensive care unit (ICU) and hospital mortality rates of patients with sepsis were 

significantly higher than those in the general population (25.8% vs. 16.2%; 35.3% vs. 24.2%, 

respectively) (10).  
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Figure 1.1 Age-standardised sepsis incidence per 100,000 population for both sexes, in 2017 (A), and 

percentage of all deaths related to sepsis, age-standardised for both sexes, in 2017 (B) ATG=Antigua 

and Barbuda. FSM=Federated States of Micronesia. LCA=Saint Lucia. TLS=Timor-Leste. 

TTO=Trinidad and Tobago. VCT=Saint Vincent and the Grenadines. The figure was adapted from 

“Global, regional, and national sepsis incidence and mortality, 1990–2017: analysis for the Global 

Burden of Disease Study” by Rudd et al, 2020 (9). 
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In high income countries (HICs), sepsis accounts for approximately 2% of all hospitalizations 

(11). A meta-analysis study of 27 studies from 7 high-income countries estimated that the 

incidence rates of hospital-treated sepsis and severe sepsis were 437 and 270 cases per 100,000 

people during 2003-2015, respectively. The mortality rates were 17% and 26% for sepsis and 

severe sepsis, respectively (12). In the US, the National Center for Health Statistics reported 

that over a period of 8 years (2000 – 2008) the annual incidence of sepsis rose by 7 to 8% per 

year (13), and more than 200,000 persons died of sepsis in 2007 (14). In Germany, the average 

annual incidence of sepsis cases increased by 5.7% over a period of 6 years (2007-2013). 

Meanwhile, the hospital mortality of sepsis and severe sepsis fell from 27% to 24.3% and from 

49.5% to 43.6%, respectively (15). The reported annual incidence of severe sepsis increased by 

8.6% in Spain (16) and 43% in the United Kingdom during 1996-2004 (17). Elsewhere in 

Australia and New Zealand, of 12,512 critically sick patients, the reported mortality was 20% 

(18).  

Scarce data exists regarding the epidemiology of sepsis in LMICs. In these settings, the burden 

is apparently higher than that in the developed countries. Notably, the GDB study estimated that 

around 85% of sepsis cases and 84.8% of related deaths worldwide occurred in LMICs, 

particularly in sub-Saharan Africa and South-East Asia (9). In Malawi, a recent report showed 

that the estimated incidence rates of emergency department attending sepsis and severe sepsis 

in adults between 2013 and 2016 were estimated to be 1772 and 303 cases per 100,000 person-

years, respectively (19). The highest incidence was observed in the group of oldest patients (≥ 

80 years of age). Meanwhile, the estimates of fatality rates of sepsis and severe sepsis were 

23.7% and 28.1%, respectively, and the rate increased with age (19). A prospective 

observational study conducted in a tertiary care hospital in Northeast Thailand during 2013-

2017 reported that about 13% (3,716/28,752) of the screened patients had evidence of sepsis 
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and 21% of these patients died (20). In Indonesia, a very high mortality rate of sepsis reported 

was 58.3% (21). 

More than 50% of patients with severe sepsis would require intensive care services (22). 

Therefore, sepsis causes significant economic burden as it is costly and tends to consume a lot 

of resources. A systematic review of hospital-related costs of sepsis based mostly on data from 

HICs showed that the median of the mean hospital-wide cost and ICU costs of sepsis were 

approximately more than US$ 32,000 and US$ 27,000 per patient per stay, respectively (23). In 

the US, sepsis treatment is listed as the most expensive condition in hospitals (US$ 20 billion 

annually) (24). However, measuring the precise costs of sepsis treatment was complicated due 

to the heterogeneity in the definition and nature of the disease.  

1.3. Etiology: 

A broad range of pathogens (bacteria, fungi and viruses) can cause sepsis, while many infections 

(respiratory, central nervous system or enteric infections) may lead to sepsis. The causative 

organisms of sepsis have evolved over time. This is in part attributable to the emergence of 

novel pathogens, such as SARS-CoV-2, and the implementation of vaccination programmes 

globally. Available data have shown that respiratory infection is the most common source of 

sepsis followed by genitourinary and abdominal sources (25,26). However, nearly 50% of sepsis 

patients had no etiological agent identified (26–28).  

1.3.1. Bacteria: 

Bacteria are the most common causes of sepsis. Historically, sepsis was regarded as a disease 

related to gram-negative bacteria infection (29). However, recent studies demonstrated that 

gram-positive bacteria were as common as gram-negative bacteria in causing sepsis (30,31). 

The most common gram-positive bacteria isolated from sepsis patients were Staphylococcus 

aureus and Streptococcus pneumoniae, whereas Escherichia coli, Klebsiella species, and 
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Pseudomonas aeruginosa were predominant gram-negative bacterial pathogens of sepsis 

(26,32,33). Moreover, the increasing antimicrobial resistance has greatly impacted the 

management of sepsis. As a consequence, drug-resistant pathogens cause higher mortality 

(34,35). Important emerging multi-drug resistant pathogens include methicillin-resistant S. 

aureus, vancomycin-resistant enterococci, extended-spectrum beta-lactamase-producing gram 

negatives, and multiresistant strains of P. aeruginosa and Acinetobacter species. 

1.3.2. Fungi:  

Sepsis associated with fungal infection has been reported with increasing frequency, causing 

substantial morbidity and mortality (36). Fungal infections are responsible for around 5% of 

sepsis cases (30,31,37). Candida species is the most frequent causative agent of severe sepsis 

or septic shock in ICU patients (30,36,37). 

1.3.3. Viruses: 

Historically, sepsis caused by viral infection was neglected in part due to the lack of diagnostic 

capacity. Yet, a wide range of viruses, including emerging viruses such as SARS-CoV-2, can 

cause sepsis. Previous studies showed around 1% of sepsis cases were associated with viral 

infection (38,39). Most recently, an etiological study of sepsis conducted in Southeast Asia 

using a comprehensive panel PCR targeting at multiple viruses demonstrated that viruses were 

responsible for 29% of 1582 sepsis patients (26). Of the detected viruses, dengue virus was most 

predominant virus, accounting for 7.7% of sepsis cases. Dengue viruses (DENV) belong to the 

family Flaviviridae (40), and is a well-known cause of viral infection in tropical countries.  The 

global estimated incidence of DENV is around 390 million infections per year (41). Reported 

data from Thailand showed that about 14% of patients with community acquired (CA) sepsis 

were tested positive for dengue viruses by PCR (42). 
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Herpes simplex virus and enteroviruses are the most common viral causes of neonatal sepsis 

(43). Among young children, enteroviruses and human parechoviruses are the most common 

causes of viral sepsis (44).  

Respiratory infections are the major source of sepsis. A recent retrospective study included 

hospitalised patients showed that sepsis was documented in 61% of the patients presenting with 

viral CA pneumonia (45). Respiratory viruses can cause sepsis include influenza virus, 

rhinovirus, respiratory syncytial virus, parainfluenza virus types 1-3, and adenovirus. A 

retrospective cohort study from the US revealed that the incidence rate of influenza-associated 

severe-sepsis was 8.8 per 100,000 person-years (46). Additionally, severe sepsis was 

documented in 73% of hospitalizations attributable to influenza-associated critical illness (46). 

Infections with novel respiratory viruses such as SARS-CoV-1, avian influenza A virus subtype 

H5N1, MERS-CoV, and SARS-CoV-2 can lead to sepsis with high mortality (47–49). A report 

from China early this year showed that of 191 patients with confirmed SARS-CoV-2 infection, 

59% and 20% had sepsis and septic shock, respectively with the median time from illness onset 

to sepsis of 9 days (range: 7.0–13.0 days) (50). 

 Central nervous system infections: 

2.1. Definition: 

Infectious diseases involving the central nervous system (CNS) have long been recognized as 

the most serious diseases with devastating clinical consequences that affect millions of people 

around the world. According to the WHO, they constitute the sixth cause of neurological 

consultation in primary care services (51). Significant morbidity and mortality often occur if 

patients with CNS infection are not recognized and promptly treated (52). The classification of 

CNS infections is based on the site of infections, with meningitis and encephalitis being major 

clinical entities. Meningitis and encephalitis will be further discussed herein. 
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 Meningitis: 

The term “meningitis” is used to define the inflammation of the leptomeninges and subarachnoid 

space, and is a neurologic emergency (53). Bacterial meningitis is an inflammation of the 

meninges affecting the pia, arachnoid, and subarachnoid space that happens in response to 

bacteria and bacterial products (54). A case of bacterial meningitis is defined with sudden onset 

and fever, intense headache, nausea, vomiting, and neck stiffness. In some specific 

circumstances, such as meningococcal disease, petechial rash with pink macules can be 

observed. A confirmed meningitis case requires a combination of clinical diagnosis and 

laboratory evidence demonstrating the presence of the respective pathogen in the cerebrospinal 

fluid (CSF) sample (51).  

Bacterial meningitis is associated with serious morbidity (55). The  outcomes following 

meningitis include seizure disorder, and motor and cognitive deficits (51). Bacterial meningitis 

is listed as a top 10 leading cause of death among communicable diseases (56). 

In contrast to bacterial meningitis, viral meningitis is usually much less severe. It accounts for 

the majority of viral CNS infections cases (53). The inflammation occurs when viruses reach 

the meninges from the bloodstream or reactivate from a dormant state within the nervous system 

(57). Viral meningitis is usually self-limited without sequelae, especially in immunocompetent 

patients (58).  

A case of viral meningitis is defined with an acute onset of meningeal symptoms, fever and CSF 

pleocytosis with no growth on routine bacterial culture (59). In adults, the general clinical 

features of viral meningitis include an acute onset of headache, neck stiffness, photophobia, and 

often nausea and vomiting, which are similar with those of bacterial meningitis (60,61). 

However, clinical features in children are often nonspecific depending on the child’s age and 

the duration of illness (57). Seizure disorder is less frequently observed in pediatric patients with 
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viral meningitis (62,63). Clinically, bacterial and viral meningitis are often difficult to 

distinguish.  

 Acute encephalitis: 

Acute encephalitis is considered a serious neurological condition, of which viruses are the most 

important and common pathogens. Encephalitis is an inflammation of the brain parenchyma due 

to direct brain invasion of neurotropic viruses through the blood–brain barrier or by retrograde 

axonal transport means (64). Sometimes, the inflammation can be caused by an indirect 

immunologically mediated injury accounting for approximately one-third of acute encephalitis 

cases (65).  

Unlike viral meningitis, viral encephalitis can be life threatening and results in permanent 

neurological disability in both adults and children (58). Patients with viral encephalitis may 

present with a wide range of clinical features include an altered level of consciousness, fever, 

headache, psychiatric symptoms, cognitive defects, seizures, and focal neurologic deficits 

(66,67). A consensus definition of a viral encephalitis case was suggested by the International 

Encephalitis Consortium meeting in Atlanta, US in 2012. The major criterion is the alteration 

of mental status (defined as decreased or altered level of consciousness, lethargy or personality 

change) lasting for 24 hours or more with no alternative cause identified. Minor criteria (two for 

possible and at least three for probable or confirmed) include documented fever ≥38°C within 

72 hours, seizures, new focal neurologic findings, CSF pleocytosis (≥5 white blood cells 

[WBCs]/µL), neuroimaging with brain parenchymal abnormality or electroencephalogram 

(EEG) consistent with encephalitis. A confirmed encephalitis case requires the demonstration 

of the presence of an infectious pathogen in brain biopsy or the detection of the pathogen genetic 

material or specific antibodies in the CSF (68).  
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Autoimmune encephalitis (AIE) is a newly recognized non-infectious encephalitis form. The 

principle of AIE is an immune response against neuronal auto antigens with production of 

antibodies against neuronal cell-surface or synaptic proteins (69). It is estimated the AIE 

accounts for some 21% of all encephalitis cases in England (70).  First recognized in 2007 (71), 

anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis is considered as the most common 

causes of AIE.  AIE has a wide variety of clinical manifestations resembling other infectious 

encephalitis (72). AIE, especially anti-NMDAR encephalitis, occurs more frequently in children 

and young female patients (73). 

2.2. Burden, epidemiology and incidence of CNS infections: 

CNS infections affect millions of people around the world. The diseases are associated with 

high morbidity and mortality, thus posing substantial economic burden for individuals, families 

and the health care systems worldwide (51). According to the Global Burden of Disease (GBD) 

study 2015, meningitis and encephalitis globally caused 379,000 and 150,000 deaths 

respectively in 2015 (74). As a consequence, together with neurologic injuries, and nutritional 

deficiencies and neuropathies category, CNS infections are listed as one of the three categories 

that have the highest YLD (years lived with disability) in low income countries (51). According 

to global age-standardised estimation, CNS infection disorders were the largest cause of DALYs 

(disability adjusted life years) at low levels of SDI (Socio-demographic Index) (74). 

According to the GBD study of meningitis 2016, the global incidence rates of meningitis 

increased from 2.50 million in 1990 to 2.82 million in 2016, while the global death rate 

decreased by 21% from 1990 (403,012 deaths) to 2016 (318,400 deaths) (75). Although the 

global mortality has declined, substantial disparities in geographical distribution and age groups 

persist. The incidence peaked during the neonatal period, and death rate is highest in children 

younger than 5 years (75). 
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The estimated number of people affected by bacterial meningitis worldwide was 2,907,146 each 

year. The highest incidence was observed in Africa, with 65 cases per 100,000 people, and the 

lowest incidence was recorded in the US or Canada, with 2/100,000 (76). The overall average 

of fatality was 15.9% (76), with the highest rate in Swaziland (32.7%) (77) and the lowest rate 

in Singapore (2.4%) (78). In developed countries, bacterial meningitis incidence rate is 

approximately 3 cases per 100,000 persons, while this rate is at least 10-times higher in 

developing countries (79). The variation of incidence, morbidity and mortality rates depend on 

several factors including age, geographical region, causative organism and immunization status 

(80). In some countries, bacterial meningitis is common in children younger than four years, 

with a peak in those aged 3–8 months (81). Vaccination targeting the major bacterial pathogens 

(such as Haemophilus influenzae, Neisseria meningitidis, S. pneumonia) have successfully 

reduced the incidence of meningitis in Africa, the Americas, Asia, Australasia, and Europe (75). 

However, due to the low or a drop in vaccination coverage in some low-income countries, the 

disease still affects a large number of children, especially those in the resource-constrained 

settings (82).  

The estimated incidence of viral CNS infections is 20–30 per 100,000 per year (62), roughly 

three times as common as bacterial infections (83). The incidence of viral meningitis is 

estimated to range from 0.26 and 17 cases per 100,000 people (57). The incidence rate tends to 

decrease with age, presumably attributable to the immune status. Many studies reported the 

highest incidence rate in young children (84,85). In countries where there is a high immunization 

coverage for bacterial pathogens, viruses are major causes of meningitis (57). In the US, an 

average hospitalization incidence of viral meningitis was around 36,000 persons per year (14 

per 100,000 population), which resulted in an annual estimated cost of US$ 234-310 million 

during 1988-1999 (86). Viral meningitis commonly presents in the summer and autumn months 
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in temperate climates, while it exhibits a year-round incidence in areas with tropical and 

subtropical climates (84,87,88). 

Despite the high morbidity and mortality, the magnitude of epidemiology of viral encephalitis 

is understudied due to the lack of harmonized definition and the variations in diagnostic criteria 

(89). The global incidence of viral encephalitis is estimated around 3.5–7.4 cases per 100,000 

patient-years. Of these, the incidence of pediatric encephalitis is more than 16 cases per 100,000 

patient-year (65,90). The fatality of viral encephalitis ranges from 4.6% to 29% (91). In the 

western world, the reported incidence of encephalitis ranges from 0.7 to 13.8 per 100,000 for 

all ages; approximately 0.7 – 12.6 per 100,000 in adults, and 0.7 – 12.6 per 100,000 in children 

(92). In the US, the average annual hospitalization incidence rate of viral encephalitis was 6.9 

per 100,000 persons with the fatal rate of 5.8% during 1998-2010. The median cost of an 

encephalitis-associated hospitalization was US$ 23,518 in 1998 and US$ 48,852 in 2010 (93).  

In Vietnam, the median incidence of bacteria and non-bacteria CNS infections in children during 

2010-2015 were 64.5 and 51.4 per 100,000 district population in southern Vietnam, respectively 

(94). High morbidity and mortality were reported in both the north and south of Vietnam; 

mortality rate was 8-12% and residual disability rate was 10-30% (95,96). 

2.3. Viral etiology of CNS infection: 

There are many infectious organisms that have been recognized to cause CNS infections 

including broad categories of bacteria, viruses, fungi, mycobacteria and parasites. Yet, around 

>60% of patients presenting with CNS infections had no etiology identified (70,93,99–101). 

Likewise, previous studies from Vietnam failed to identify a causative agent in more than half 

of the patients (91,95,100,101). The non-viral pathogens are listed in Table 1.3 and 1.4. More 

than 100 viral pathogens have been recognized to cause CNS infections (65). Because of the 
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focus of the present PhD research, here I will focus on common viral causes of CNS infections 

(Table 1.5), especially those circulating in Asia. 

Table 1.3 Common non-viral pathogens cause meningitis 

Bacterial/mycobacterial 
pathogens 

Streptococcus pneumonia, Haemophilus influenzae, Neisseria meningitidis, Listeria 
monocytogenes, Group B streptococcus, Escherichia coli, Mycobacterium 
tuberculosis. 

Fungal pathogens Cryptococcus neoformans, Coccidioides immitis, Blastomyces dermatitidis, 
Histoplasma capsulatum, Candida spp, Aspergillus spp, Zygomycetes 

Parasites Strongyloides stercoralis, Naegleria fowleri, Angiostrongylus cantonensis 

 

Table 1.4 Other organisms can cause meningitis. Table was adapted from “Epidemiology of Central 

Nervous System Infection” by Riddell et al, 2012 (52). 

 

Table 1.5 Common viral causes of Central Nervous System infections. Table was adapted from 

“Management of Viral Central Nervous System Infections: A Primer for Clinicians” by Bookstaver et 

al, 2017 (102). 

Viral type Pathogen 

dsDNA Herpes simplex virus, Varicella zoster virus, Epstein-Barr virus, Cytomegalovirus, Human 
hespervirus 6  

(+) ssRNA Enteroviruses, Dengue virus, Japanese encephalitis virus, West Nile virus, Zika virus, Rubella 
virus, tick-borne encephalitis virus, Murray Valley encephalitis virus, St Louis encephalitis 
virus. 

(-) ssRNA Rabies virus, Measles virus, Mumps virus, Nipah virus, Hendra virus 
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2.3.1. Enteroviruses: 

Enteroviruses (EVs) are regarded as the most common pathogens of viral meningitis. EVs are 

non-enveloped single-stranded RNA viruses of the family Picornaviridae. EVs account for 23% 

to 61% of meningitis cases with a pathogen identified, especially in young children (59).  

There are more than 110 genetically distinct human EV serotypes that have been identified and 

known to cause human infection. Echovirus 6 and 30 are responsible for the majority of 

meningitis cases caused by EVs (103–106). Less common causes include enterovirus A71, 

echovirus 9, 13, 14 and 16, coxsackievirus A9 and B5 (59).  Enterovirus A71 infection can lead 

to brain stem encephalitis, which can be fatal. The circulation of enterovirus A71 in Asia has 

triggered 2-3 year cycles of hand foot and mouth disease outbreaks associated with severe 

condition such as encephalitis and high mortality (107,108). In recent years, enterovirus D68 

has emerged and has been linked with CNS infections, especially acute flaccid myelitis in young 

children (109).  

Infants and young children with no immunity are most susceptible to EVs, and the incidence 

decreases with age (110).  The peak of EV infections falls in late summer and autumn (111). 

Infection occurs by the fecal-oral route, followed by viral replication in the gastrointestinal tract 

and subsequent viral dissemination into the blood and occasionally the CNS. Most EVs 

meningitis cases are self-limited and have a good prognosis. However, considerable morbidities 

could occur with moderate or high fever despite the use of antipyretics and several days of 

severe headache warranting opiate analgesia (112).  

2.3.2. Herpes simplex virus: 

Herpes simplex encephalitis (HSV) is a member of the family Herpesviridae. HSV is the most 

important cause of viral encephalitis worldwide. If untreated, the mortality of HSV associated 

encephalitis can be up 70%, and a substantial proportion of the survivors still suffer from long 
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term severe sequelae (51). Sporadic HSV encephalitis is caused by HSV type 1 (HSV-1), 

commonly occurs in patients younger than 20 or those older than 50 years of age (111). In the 

US, the annual incidence of HSV encephalitis is 1 case per 250,000 population (113). In 

Sweden, the reported incidence is 2.2 cases per million population of HSV-1 related encephalitis 

per year (113).  

HSV type 2 (HSV-2) is associated with benign recurrent aseptic meningitis and recurrent benign 

lymphocytic meningitis. HSV meningitis accounts for 0.5% to 18% of viral meningitis cases 

(59). HSV-2 is a common sexually transmitted infection associated with oral and genital 

mucocutaneous lesions (114). 

Other latent viruses belong to the family Herpesviridae that can cause CNS infections due to 

reactivation are Varicella zoster virus (VZV), Epstein-Barr virus (EBV), Cytomegalovirus 

(CMV) and Human hespervirus 6 (HHV-6). A previous report showed VZV was responsible 

for 8% of meningitis and 12% of encephalitis in adults (84).  Although EBV infection were 

detected in 25% of meningitis and 43% of encephalitis cases in a retrospective descriptive study 

in Qatar from 2011-2015 (115), EBV and CMV may not be directly linked with the ongoing 

CNS infections. 

2.3.3. Rabies virus:  

Rabies is one of the oldest and the most feared diseases documented in the medical literature. 

Rabies viruses are single negative-stranded RNA viruses belonging to the genus Lyssavirus of 

the family Rhabdoviridae. Rabies is a viral zoonotic disease, with dogs being the most common 

reservoir. Infection with the rabies virus can result in severe encephalitis with the mortality of 

almost 100%. There has been only one report of a single case surviving from rabies to date who 

did not receive any rabies vaccines prior her presentation (116). It is estimated that 59,000 

persons die of rabies each year, of which more than 95% occurs in Africa and Asia (117). 
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However, rabies virus infection is preventable by vaccination. In the US where canine 

vaccination coverage is high, the incidence of rabies has declined substantially from 33 cases in 

1943 to 3 cases in 2006 (118). 

2.3.4. Flaviviruses: 

Flaviviruses are single-stranded RNA viruses, and belong to the family Flaviviridae.  

Encephalitis-associated flaviviruses (dengue virus, Japanese encephalitis, West Nile virus, and 

Zika virus) are geographic dependent (Figure 1.2). Figure 1.2 shows global distribution of 

common flaviviruses causing CNS infections. Flaviviruses are responsible for a significant 

proportion of CNS infections worldwide. 

 

Figure 1.2 Global distribution of common flaviviruses causing CNS infection. Figure was adapted 

from “The continued threat of emerging flaviviruses” by Pierson et al, 2020 (119). 
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Dengue virus 

There are four serotypes of dengue viruses (DENV) (1-4). DENV is transmitted to human via 

the bites of Aedes mosquitoes but mostly Ae. Aegypti mosquitoes carrying the virus (119). 

According to WHO, the number of reported dengue cases globally in 2019 was 4.9 million 

(120). Meningitis or encephalitis is a rare clinical condition of DENV infection, and is more 

frequently observed in South, Central America and Southeast Asia where the prevalence of 

DENV is high. 

Japanese encephalitis virus:  

Japanese encephalitis virus (JEV) is transmitted by Culex mosquitoes, particularly Culex 

tritaeniorhynchus. Pigs serve as an amplifying host of the zoonotic cycle, of which humans is 

the dead end host (119). The estimated annual incidence and death of JE are 67,900 and 13,600–

20,400, respectively with the majority of the cases occurring in Asia (121). JEV is endemic in 

Asia with annual peaks occurring during late summer and fall (58). Despite the availability of 

effective vaccines, JEV remains an important causes of encephalitis in children in Asia, 

including Vietnam (65). 

West Nile virus: 

West Nile virus (WNV) can caused serious outbreaks of meningoencephalitis and has 

established its endemic cycles in the US since its first arrival in there in 1999. WNV is 

transmitted to humans by Culex mosquitoes from its natural host, birds. WNV is primarily 

transmitted by the Culex species mosquito (111). After the report of the first 59 confirmed cases 

in New York city in 1999, WNV caused a widespread epidemics across the US along bird-

migratory routes during the summer of that year (122). In 2002, the reported number of 

neuroinvasive cases related to WNV was 2942, accounting for 71% of the cases of viral 

meningoencephalitis reported in the US (123). In 2009, there were only 373 cases of encephalitis 
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or meningitis reported in the US (124), and over a 10-year period, the fatality rate of WNV 

disease was about 10% (58). 

Zika virus:  

Zika virus (ZIKV) is an emerging virus and is transmitted by daytime-active Aedes mosquitoes. 

ZIKV was first discovered in 1947 in Africa. The virus was not detected in the Western 

hemisphere until 2015 (58). In 2015, the first case of ZIKV infection was recognized in Brazil. 

In subsequent months, the virus rapidly spread through the region and many other parts of the 

world. It was estimated that over 1.3 million ZIKV cases were recorded by the end of 2015 in 

Brazil alone (125). The geographic distribution of ZIKV has now been expanded to sub-Saharan 

Africa, most of Central America, South America, and the Caribbean, and the United States 

(125). Infection with ZIKV during pregnancy may lead to microcephaly in the newborn (126). 

The risk of ZIKV infection to the fetus has been understudied (127). 

2.3.5. Measles viruses: 

Measles virus is a single negative-stranded RNA virus of the genus Morbillivirus and the family 

Paramyxoviridae. Measles is highly contagious exanthematous viral infection with 20 million 

cases reported annually worldwide (128). Clinical features of measles includes a combination 

generalized rash lasting in 3 days or more, fever, and cough, coryza, or conjunctivitis (58). 

Measles infection occurs by inhalation of aerosolized droplets. Viremia can occur when local 

dendritic cells pick up the virions and carry to lymph nodes (129) . Acute meningoencephalitis 

caused by measles infection is rare, about 0.1% of the infected cases, with a mortality of 

between 10% and 15%, and one-fourth of the survivors suffered permanent neurologic sequelae 

(129).  

Subacute sclerosing panencephalitis (SSPE) is a fatal neurological complication associated 

with persistent measles infection, which might occur from 4 to 10 years after an acute measles 
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infection, and the latency period varies from 1 month to 27 years (130). The intracerebral 

spread of measles virus leads to destruction of neurons (131). SSPE is common in children and 

young adults with high mortality but no specific treatment available (132). The incidence of 

SSPE in the US and Israel are from 4 to 11 per 100,000 and 23 per 100,000 measles cases, 

respectively (130). Measles can be eliminated by routine vaccination of children, however 

outbreak can still occur due to the importation of unvaccinated cases (133) or a drop in 

vaccination coverage. A recent outbreak of measles in Vietnam in 2014 caused some 15,033 

confirmed cases and 140 deaths (134). 

2.3.6. Mumps and Rubella viruses: 

Mumps virus (MuV) was first isolated in 1945. It belongs to the genus Orthorubulavirus of the 

subfamily Rubulavirinae and the family Paramyxoviridae. Mumps virus is highly contagious 

and the infection can lead to meningitis. During the 1940s and 1950s, MuV meningitis 

accounted for 15% of cases presenting with viral meningitis (88).  

Rubella virus (RuV) is a single positive-stranded RNA virus, which is a member of the genus 

Rubivirus and the family Matonaviridae. Neurological complications caused by RuV infection 

are known as the congenital rubella syndrome with significant parenchymal volume loss in the 

brain and a static encephalopathy (58). In 1996, an estimated 22,000 babies in Asia, 46,000 in 

South-East Asia and 13,000 in West Pacific were born with the congenital rubella syndrome 

(135).  

Both MuV and RuV are preventable through vaccination. As such, the incidence of mumps and 

rubella has significantly been reduced over the last decades because of the vaccination 

programme worldwide. Meningitis associated with MuV infection is rare, especially in 

developed countries nowadays (136). Likewise, acute encephalitis related to RuV is also rare, 

https://en.wikipedia.org/w/index.php?title=Orthorubulavirus&action=edit&redlink=1
https://en.wikipedia.org/wiki/Rubulavirinae
https://en.wikipedia.org/wiki/Paramyxoviridae
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accounting for 0.02% of the reported encephalitis cases but the mortality can be up to 20% 

(135). 

2.3.7. Nipah and Hendra viruses: 

Hendra and Nipah virus are recently discovered zoonotic viruses that can cause encephalitis. 

Genetically, they are two closely related paramyxoviruses but have different geographic 

distribution. Nipah virus was first discovered during an outbreak of encephalitis of unknown 

origin occurring in Malaysia and Singapore in 1998 among abattoir workers (137). 

Subsequently, pigs were then recognized as the sources of the transmission, and bats were the 

natural reservoirs of Nipah virus (137).  After 1998, Nipah virus has been reported to cause 

human infections in India and Bangladesh. Hendra virus was discovered in 1994 when it caused 

deaths of a horse trainer and many horses in Australia in 1994 (138). To this end, Hendra virus 

infection has only been reported in Australia (139).    

 Laboratory diagnosis of sepsis and CNS infections: 

Rapid and accurate detection of the causative agents is crucial for timely clinical intervention, 

thereby improving outcome in patients with sepsis or CNS infections. Bacterial culture of blood 

and CSF samples are considered as the gold standard for sepsis diagnosis and CNS infections. 

The method detects viable microbial pathogens in the tested samples, therefore allows for 

subsequent antimicrobial susceptibility assessment. The results are critical to initiate appropriate 

antimicrobial therapy (140). However, bacterial culture has several limitations including long 

turnaround time and low sensitivity, especially in patients with prior use of antimicrobials. A 

routine culture procedure could take 6h to 5 days or even longer to complete, including the time 

required for species identification (24h) and antimicrobial susceptibility testing (48h) (141). 

About 25-50% of sepsis patients had a negative culture result (142). Contributing factors include 

blood volume, microbial titers in the tested samples and the prior use of antimicrobial agents 
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(143,144)(145). Meanwhile, microscopic examination of CSF or blood samples can tell whether 

there is a presence of a gram negative or positive bacterium in the samples under investigation. 

The sensitivity of gram stain for diagnosis of bacterial meningitis is also highly dependent on 

the bacterial loads and the prior use of antimicrobials of the patients. Under an ideal 

circumstance, the diagnostic yields of gram stain can reach 70%-90% in patients without 

antimicrobial treatment and 40%-60% in patients with antimicrobial treatment (146). Because 

of the focus of the current thesis study, I will focus my literature review more on the methods 

commonly used for virus diagnosis. 

3.1. Virus culture: 

Virus cultures from clinical specimens are usually performed in common cell lines such as 

African green monkey kidney (Vero) cells, human amniotic epithelial cells and human 

embryonic skin fibroblasts (147). The inoculation is subjected to daily inspection for cytopathic 

effect. Immunofluorescence test or nucleic acid based detection methods are often used for 

detection of the virus causing cytopathic effect in culture materials. A positive culture result of 

brain tissues offers a definitive diagnosis of CNS infections (148). However, collecting biopsies 

are highly invasive and are not allowed in most of the settings. CSF is thus the useful sample 

for routine diagnosis of CNS infections. While the specificity of virus isolation of CSF samples 

can be up to 100%, its sensitivity is usually poor because of late admission and/or the lack of 

appropriate culture cell lines that can recover all possible viruses causing CNS infections. The 

sensitivity of CSF culture of EVs is however approximately 65-75% (149). The most common 

cell lines used for EVs culture are Vero cells. In addition to the low sensitivity, virus culture is 

time-consuming. It may take up to 6 days or more to complete a virus culture experiments (150). 

This might delay the initiation of appropriate clinical interventions. As such virus isolation is 
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no longer a method of choice for routine diagnostics, although it remains an important approach 

in research.  

3.2. Serology: 

The principle of serological diagnostic test is to detect the presence of pathogen specific 

antibodies, often IgM/IgG in the tested specimens, including serum and CSF samples. A 

seroconversion is often required to establish the diagnosis. This method may be useful for the 

diagnosis of viruses such as flaviviruses (JEV, DENV and WNV) because the presence of these 

viruses in CSF is often transient (147,151). However, serological tests might fail to diagnose an 

infection due to delay in antibody response after symptom onset. Additional limitation is the 

high cross-reactivity usually occurring between closely related viruses, especially between JEV 

and DENV (152). 

3.3. Nucleic acid based detection methods: 

Molecular methods based on the detection of viral nucleic acids encompass viral specific 

polymerase chain reaction (PCR), pan viral family PCR and pan micro-array. These methods 

represent an advance for the diagnosis of viral infection because of its short turnaround, high 

sensitivity and specificity. A PCR assay procedure might take about 2-6 hours to complete 

(153), and the method can detect the presence of the pathogen genomes in the tested samples as 

low as 1-10 copies per PCR reaction. Because of these advantages, molecular methods, 

especially PCR are widely used of the diagnosis of viral infections (126,154–158).  

In clinical settings, PCR methods are routinely used for the diagnosis of a wide range of viral 

pathogens such as HSV, measles, mumps virus, EVs, rabies viruses and flaviviruses (155,158). 

PCR is considered as gold standard for the diagnosis of HSV encephalitis. The reported 

sensitivity of CSF HSV PCR was around 98% (159), compared to the sensitivity of 50% of HSV 
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culture (160). However, CSF PCR is not useful for flavivirus detection at symptom onset, 

whereas the IgM ELISA is the test of choice (151).  

A wide range of different PCR assays are often required to allow for the detection of a broad 

range of common viral pathogens in patient samples (26). Occasionally, multiplex PCR, which 

allow for simultaneous detection of multiple pathogens in a single test can be used, although the 

sensitivity can be compromised. Pan viral microarrays could detect several hundred viral species 

in a single test. It is however more relevant for research, and is often not available in resource 

constrained settings. 

 Sequencing technologies: 

After being developed by Sanger in 1977 (161), Sanger sequencing technology quickly became 

the method of choice for sequencing because of its high throughput at the time and the 

requirement of less toxic chemicals (162). To this end, Sanger sequencing remains a reference 

sequencing method. However, due to the increasing demand of sequencing a large number of 

human genomes and other organisms, several next generation sequencing (NGS) technologies 

have been developed over the last two decades. Figure 1.3 shows the timeline of novel 

sequencing technologies that have been introduced over the last decades. The general features 

of NGS technologies and their applications in the field of virus detection and discovery are 

summarized in Table 1.6. Roche shut down 454 pyrosequencing in 2013; so the technique will 

not be discussed further in this thesis. I will be focusing on sequencing technologies developed 

by Illumina, Ion Torrent, Pacific Biosciences and Oxford Nanopore because these are common 

sequencing technologies used in the field of infectious diseases research and diagnostics, 

especially for pathogen detection and discovery.  
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Figure 1.3 Timeline of introduction of next-generation sequencing technologies during past decades. 

SBS, sequencing by synthesis; SMS, single-molecule sequencing; SBL, sequencing by ligation. The 

figure was adapted from “DNA sequencing technologies : 2006 – 2016” by Mardis, 2017 (161).
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Table 1.6 Summary of general features and applications of NGS technologies. The table was adapted from “DNA sequencing technologies: 

2006 – 2016” by Mardis, 2017 (161) 

NGS technologies 
Sequencing 

chemistry 
Output Read length Error rates Applications 

454/Roche 

Sequencing 

by 

synthesis 

700 MB 400 bp High 

Bacterial and viral genomes, multiplex-PCR products, 

validation of point mutations, targeted somatic-mutation 

detection 

Illumina 

Sequencing 

by 

synthesis 

1.2– 330 

Gb 
150–300 bp Low 

Small and large genomes (humans, mouse, plants, bacteria, 

viruses etc) and genome-wide association studies, RNA-seq, 

hybrid capture or multiplex-PCR products, metagenomics, 

somatic-mutation detection, forensics, noninvasive prenatal 

testing 

ABI Solid 

Sequencing 

by   

ligation 

2.5-9GB 50-75bp Low 

Complex genomes (human, mouse, plants) and genome-wide 

NGS applications, RNA-seq, hybrid capture or multiplex-PCR 

products, somatic-mutation detection 

Ion Torrent 

Sequencing 

by 

synthesis 

10–1,000 

MB 
200–400 bp High 

Multiplex-PCR products, microbiology and infectious diseases, 
somatic-mutation detection, validation of point mutations 

PacBio 

sequencing 

Single-

molecule 

sequencing 

70 to 140 

MB 
10-50kbp High 

Complex genomes (human, mouse and plants), microbiology 

and infectious-disease genomes, transcript-fusion detection, 

methylation detection 

Oxford Nanopore 

Single-

molecule 

sequencing 

10-300 

GB 
up to 5.4 kbs High 

Pathogen surveillance, targeted mutation preparation detection, 

metagenomics, bacterial and viral genomes 

Qiagen 

GeneReader 

Sequencing 

by 

synthesis 

 107bp  Targeted mutation detection, liquid biopsy in cancer 
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4.1. Illumina: 

Next generation sequencing (NGS) is deep, high-throughput, in-parallel DNA sequencing. It 

provides a massively parallel analysis with extremely high-throughput from multiple samples. 

Illumina technologies are the most commonly used sequencing system worldwide (163). 

Illumina purchased the Solexa Genome Analyzer in 2006 and commercialized it in 2007 (163). 

Illumina sequencing adopted the technology of reversible-termination sequencing by synthesis 

(SBS) with fluorescently labeled nucleotides. Illumina technology uses flow cells consisting of 

optically transparent slides with individual lanes. Small oligonucleotide anchors are immobilized 

on surface of each lane. The target template DNA is fragmented, phosphorylated at 5’ end and 

adenylated at 3’ end. Adaptors are ligated to DNA fragment. The adaptor-ligated 

oligonucleotides are complementary and attached to flow cell anchors. Cluster generation is 

featured by bridge amplification. DNA fragment flips over and forms a bridge by hybridizing to 

an adjacent and complementary anchor. Bound libraries are then extended by polymerase. On 

denaturation, double-strand molecules are separated. The original template is washed away. The 

newly synthesized strand is covalently attached to the flow cell surface. After multiple 

amplification cycles, a single DNA template is amplified as a clonally cluster consist of 

thousands of clonal molecules.  Millions of clusters of different template molecules can be 

generated per flow cell (Figure 1.4).  
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Figure 1.4 Illustration of cluster generation procedure of Illumina sequencing. Figure was adapted 

from” Explore Illumina sequencing technology: Massively parallel sequencing with optimized SBS 

chemistry” in https://sapac.illumina.com/science/technology/next-generation-sequencing/sequencing-

technology.html (164). 

 

Four fluorescently labeled nucleotides are used to sequence millions of clusters on the flow cell 

surface in parallel. In each growing chain, a single labeled dideoxynucleoside triphosphate 

(ddNTP) is added in each cycle. Due to the incorporation of the labeled nucleotide, DNA 

polymerization terminates, and the fluorescent dye is imaged to identify the incorporation. Then 

the fluorophore and terminator are enzymatically cleaved to allow for the incorporation of the 

next nucleotide (Figure 1.5) (162).  

https://sapac.illumina.com/science/technology/next-generation-sequencing/sequencing-technology.html
https://sapac.illumina.com/science/technology/next-generation-sequencing/sequencing-technology.html
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Figure 1.5 Illustration of sequencing by synthesis procedure of Illumina sequencing. Figure was 

adapted from” Explore Illumina sequencing technology: Massively parallel sequencing with optimized 

SBS chemistry” in https://sapac.illumina.com/science/technology/next-generation-

sequencing/sequencing-technology.html (164). 

 

Illumina provides five benchtop sequencer platforms (iSeq 100, MiniSeq, MiSeq, NextSeq 550 

and NextSeq 1000&2000) with a wide range of output (1.2Gb – 330Gb) with short-length reads 

(150-300bp) (Table 1.7). Generating high throughput with low errors (accuracy of over 99%) 

(165), Illumina sequencing has thus becomes the most commonly used technology (including 

in the field of virus discovery) (166–170). MiSeq, a compact laboratory sequencer, has an output 

of 0.3-15Gb and can provide sequencing results within 2-3 days. It is currently widely used 

(165,171–177).  

 

 

 

 

https://sapac.illumina.com/science/technology/next-generation-sequencing/sequencing-technology.html
https://sapac.illumina.com/science/technology/next-generation-sequencing/sequencing-technology.html
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Table 1.7 Summary of features and application of Illumina benchtop sequencers. 

Sequencer 

platforms 

Maximum 

Output 

(Gb) 

Maximum 

read length 

(bp) 

Run time 

(hours) 
Applications 

 
iSeq 100 

1.2 2 × 150 9.5–19 

• Small Whole-Genome Sequencing  

• Targeted Gene Sequencing  

• Targeted Gene Expression Profiling 

• miRNA & Small RNA Analysis 

 
MiniSeq 

7.5 2 × 150 4–24 

• Small Whole-Genome Sequencing  

• Targeted Gene Sequencing  

• Targeted Gene Expression Profiling 

miRNA & Small RNA Analysis 

• 16S Metagenomic Sequencing 

 
MiSeq 

15 2 ×300 4–55 

• Small Whole-Genome Sequencing  

• Targeted Gene Sequencing  

• Targeted Gene Expression Profiling 

miRNA & Small RNA Analysis 

• 16S Metagenomic Sequencing 

• DNA-Protein Interaction Analysis  

 
NextSeq 550 

120 2 × 150 12–30 

• Small Whole-Genome Sequencing  

• Targeted Gene Sequencing  

• Targeted Gene Expression Profiling 

miRNA & Small RNA Analysis 

• 16S Metagenomic Sequencing 

• DNA-Protein Interaction Analysis  

• Exome & Large Panel Sequencing 

• Single-Cell Profiling 

• Transcriptome Sequencing 

• Methylation Sequencing 

• Metagenomic Profiling  

• Cell-Free Sequencing & Liquid Biopsy 

Analysis 

 
NextSeq1000&2000 

330 2 × 150 11-48 

• Small Whole-Genome Sequencing  

• Targeted Gene Sequencing  

• Targeted Gene Expression Profiling 

miRNA & Small RNA Analysis 

• 16S Metagenomic Sequencing 

• DNA-Protein Interaction Analysis  

• Exome & Large Panel Sequencing 

• Single-Cell Profiling 

• Transcriptome Sequencing 

• Methylation Sequencing 

• Metagenomic Profiling 

• Cell-Free Sequencing & Liquid Biopsy 

Analysis 
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4.2. Ion Torrent:  

Ion Torrent sequencing technology was released by Life Technologies/Thermo Fisher Scientific 

in 2010. The principle of this technology is detection of hydrogen ion releasing during 

incorporation of new nucleotides into the growing DNA template. Particularly, adapter-ligated 

DNA templates are clonally amplified by emulsion-PCR on the surfaces of beads. These beads 

are distributed into micro wells where a sequencing-by-synthesis reaction occurs. An ion sensor 

is used to detect signal from protons releasing during nucleotide incorporation (Figure 1.6) 

(178). Despite of generating low output, Ion Torrent offer low cost and short run time. 

Therefore, it is a reasonable choice in some cases, such as detection of targeted virus in clinical 

samples (179) or viral  genome sequencing (180). 

 

Figure 1.6 Illustration of overall workflow of Ion torrent sequencing. (a) library preparation, (b) clonal 

amplification of adapter-ligated template on a bead, (c) binding of sequence on chip, sequencing 

primers and DNA polymerase to the beads by pipetting into wells on chip, (d) sequencing-by-synthesis 

reaction. At each flow, the electrical signal at each well is measured, indicating the number of 

incorporations. The figure was adapted from “Using state machines to model the Ion Torrent 

sequencing process and to improve read error rates” by Golan, 2013 (178). 
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4.3. PacBio sequencing: 

The technology was introduced by Pacific Biosciences in 2010, which is a single molecule real 

time sequencing platform for generating long reads without bias of clonal amplification. PacBio 

sequencing uses Zero Mode Waveguide (ZMW), a nano-hole made in a 100 nm metal film on a 

glass surface. In brief, a single DNA polymerase molecule is anchored at the bottom of the ZMW. 

Four types of nucleotides labeled with different colored fluorophore are flooded above the 

ZMWs. Labeled nucleotides travel down into the ZMW within microseconds. After reaching the 

DNA polymerase, they diffuse back up and exit the hole. During polymerization, fluorescent tag 

of nucleotides is cleaved off and diffuses out of the observation area of the ZMW and detected 

by detector in real time (Figure 1.7). Single molecule sequencing with long read length is ideal 

for viral metagenomics (181). However, PacBio sequencing has several limitations including 

low throughput with high error rate and high cost per sequenced base.  

 

Figure 1.7 Illustration of Pacific Biosciences’ four-color real-time sequencing method. Figure was 

adapted from “Sequencing technologies-the next generation” by Metzker, 2009 (182). 
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4.4. Oxford Nanopore sequencing: 

Oxford Nanopore sequencing or third generation sequencing was developed with the aim to 

generate long reads with low cost and simple sample preparation procedures. MinION, a 

portable sequencer of Oxford Nanopore Technologies (Figure 1.8) was first released in 2014. It 

is the first handheld device for DNA and RNA sequencing that attaches directly to a 

laptop/computer via a USB port.  

 

Figure 1.8 MinION flow cell 

 

Nanopore sequencing works on the principle of measuring minute changes in electric current 

across the nanopore immersed in a conducting fluid with voltage applied that are induced when 

a moving biological molecule (DNA/RNA) passes through it. Nanopore is a small hole with 

internal diameter of 1nm that is made up of certain transmenbrance cellular protein (162). The 

sequence of the passing DNA is identified by detecting changes of current generated specific 

for passed bases. The advantages of Nanopore are that it is the first device could deliver real-

time sequencing of single molecule, and able to generate very long DNA molecules (up to 5.4 

kbs genome) in a single read. The MinION platform was successfully used to sequence ebola 

virus genomes during a recent outbreak in the Democratic Republic of Congo (183). MinION 

was also successfully applied to track the transmission of ZIKV during the outbreak in South 
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America in 2015 (184). Most recently, MinION was used to generate complete genome 

sequence of SARS-CoV-2 (185).  

High-throughput sequencing benchtop platforms were released including GridION and 

PromethION. These platform incorporate multi flow cells in one therefore could generate higher 

yield with comparable prices (186). However, current limitation of MinION is its high error rate 

of around 10% compared to the low error rate of Illumina sequencing technologies (185). 

 Metagenomic next generation sequencing for virus detection and discovery:  

Metagenomic next-generation sequencing (mNGS) is a generic procedure that can sequence all 

type of genetic materials, including those derived from the pathogens present in a sample under 

investigation (187). mNGS overcomes the limitations of conventional  diagnostic methods such 

as PCR and culture, because it does not require prior knowledge/assumptions about the targeted 

causative agents present the tested samples (188,189). In principle, in a single assay mNGS 

could detect all viral agents (including known and previously unknown viruses) in any clinical 

sample types (188). This strategy could detect wide range of virus pathogens in the tested 

samples and offer a new opportunity for virus detection and discovery. From a literature review, 

around 35 novel viruses or new viral variants were discovered by mNGS assays from 2008 to 

2019. The number of new discovered viruses by mNGS has gradually increased over the last 10 

years with peak at 2015 (Figure 1.9). 
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Figure 1.9 Number of novel viruses recently detected by mNGS assay during 2008-2019 

 

However, mNGS based detection of viral infections remains a challenge because viruses are 

naturally small in size, genetically highly diverse, and have a low abundance as compared to the 

host DNA background in clinical samples. Therefore, various sample pretreatment approaches 

have been developed to increase the sensitivity of mNGS. The commonly used approaches are 

descried herein.  

5.1.  Pre-extraction viral enrichment methods: 

Pre-extraction viral enrichment methods are based on the physical properties of virions, 

including the size of virus particles, their density, and the presence or absence of viral capsid 

covering the virus genome (189). Accordingly, three complementary approaches for viral 

nucleic acid purification and enrichment have been used: filtration, density gradient 

centrifugation and enzymatic removal of non-capsid protected nucleic acids. 
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5.1.1. Filtration: 

Filtration is a common method used for purifying viral particles from environments or clinical 

specimens prior sequencing. The size of most animal viruses ranges from 200 to 300 nm in 

diameter. Accordingly, the common pore sizes of filters are often from 0.2 to 0.45 micrometer 

(174,190–192). 

5.1.2. Ultra centrifugation: 

The compact nature of viral particles allows for the use of density gradient centrifugation 

method to purify viral nucleic acids. The differences in density of enveloped and non-enveloped 

viruses require the collection and subsequent analysis of several gradient fractions. Moreover, 

the presence of contaminating nucleic acids in the density gradient solution can lead to 

subsequent contamination in target sample (189). Therefore, this method is not widely applied 

for the analysis of clinical samples. 

5.1.3. Nuclease treatment: 

Nuclease treatment prior to viral nucleic acid extraction is an efficient approach to digest naked 

host DNA present in clinical samples. The incorporation of DNase I treatment for virus 

discovery approach was firstly reported by Allander et al. (193). It was a key step for removal 

of host DNA in serum prior amplification of viral nucleic acids. DNase I treatment removes 

naked DNA by its exonuclease digestion activity, while viral DNA is protected within viral 

capsids. Similarly, RNase treatment is used for removal of exogenous RNA in clinical samples 

(194,195). 

5.2. Enrichment of viral nucleic acids prior to sequencing: 

Viral genomes are much smaller than the human genome. Therefore, the proportion of viral 

reads relative to host derived reads in mNGS data would be extremely low. Selective 

amplification of viral nucleic acids prior to sequencing is critical to enhance the sensitivity of 

mNGS, thereby increasing the chance of detecting a virus in the tested samples (188). 
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Commonly used approaches include sequence-independent single primer amplification, random 

PCR and PhiX29.  

5.2.1. Sequence-independent single primer amplification (SISPA): 

SISPA utilized restriction enzymes to first digest the targeted DNA, followed by the ligation of 

adaptors complementary to the overhanging ends of the target DNA. For RNA virus, a cDNA 

synthesis step followed by double strand DNA (dsDNA) synthesis is required prior to the 

restriction enzyme digestion step. Next the ligated products are amplified using adaptor specific 

primer. Before NGS becomes available, after the amplification step, the amplified products are 

subcloned, then plasmid inserts are sequenced (193). The method was successfully used to 

characterized a Norwalk virus from faeces (196) and a human astrovirus from culture 

supernatants (197), new parvoviruses in human plasma (198). Nowadays, SISPA products are 

subjected to NGS without the cloning step.  

5.2.2. Random PCR: 

Random PCR (rPCR) utilizes a primer consisting of a random or viral specific hexamer at the 

3’ end and a unique second primer sequence at the 5’ end (188). The hexamer part is used for 

the synthesis of the cDNA and ds DNA. During this step, the second part of the primer sequence 

(5’ end sequence) is thus introduced into the resulting double-stranded sequences. It will then 

serve as the binding site of the PCR primers during the amplification step.  Subsequently the 

resulting PCR products, including those derived from viral nucleic acids are sequenced.    

rPCR method theoretically could amplify all genetic materials present in the tested sample. 

rPCR based approaches have been used to characterize a new parvovirus and numerous viral 

agents in respiratory secretions (199), a new gyrovirus in children’s faeces (200), and a new 

bunyavirus in serum samples (201). 
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5.2.3. PhiX29: 

PhiX29 DNA polymerase based amplification method is based on the ability of bacteriophage 

PhiX29 DNA polymerase to generate multiple displacement amplification reactions. The DNA 

polymerase is primed with a set of modified random hexamer oliogonucleotides, which is 

resistant to the 3’-5' exonuclease activity of PhiX29. This method successfully amplifying 

circular DNA anellovirus (202,203). 

5.3. Bioinformatics: 

Advanced bioinformatic methods are required to detect virus sequences from NGS data and to 

reconstruct the sequenced viral genomes. Many published computational workflows with a 

range of computer tools for taxonomic classification have been developed to analyse 

metagenomic data. They could be web-services with a graphical user-interface working fast on 

any PC such as Taxonomer (204), Kraken (205) or IDseq (206). Or they can be command line 

pipelines such as SURPI (207) or in-house viral bioinformatic pipeline (190). The processing 

time per sample ranges from minutes to several days (208). The web-services are friendly to 

use, but they often require uploading large output NGS data to a distant server. 

In general, a metagenomic workflow basically consists of five steps: pre-processing, filtering 

out DNA sequences from the respective hosts, assembly, searching for viral reads and post-

processing (208). The pre-processing step may include: removing adapter sequences, trimming 

and low quality reads, removing low complexity reads, short reads, duplicating reads, matching 

paired-end reads and unresolved nucleotides.  The second step is to filter out non-viral reads. 

This step helps to reduce false positive results and prevent assembly of chimearic virus-host 

sequences. The third step is to assemble the short mNGS into long contigs. Consensuses may 

be generated by mapping individual reads to these obtained contigs. This is also regarded as de 

novo assembly. This step allows for remove errors from individual reads and reduce the amount 

of data for further analysis. The fourth step is to conduct database searching whereby contigs 
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are mapped to a reference database. The searching approach is based on the alignment the reads 

or contigs to a reference database (199). The reference database can be retrieved from the NCBI 

GenBank, RefSeq or BLAST nucleotide and non-redundant protein databases. Searching at 

protein level allow for detecting more remote homology that enhance detection of highly 

divergent viruses (188). Finally, the post-processing step is to classify the sequencing reads. 

This is the process of finding the most likely or best-supported taxonomic assignment among 

reference database. This step can use phylogenetic or other computational methods. 

5.4. Application of viral mNGS in sepsis: 

There have been several published papers reporting the use of mNGS for the diagnosis for 

bloodstream infection. However, to the best of my knowledge there have been few studies 

describing the use of mNGS to study the etiology, especially bacterial causes in patients 

presenting with sepsis or sepsis shock (209–212). mNGS methods successfully detected HSV-

1 sequences in Chinese fatal patients with sepsis of unknown origin (210) and 15 viral pathogens 

in 14 blood samples of ICU patients with suspected sepsis (212). 
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5.5. Application of viral mNGS in CNS infection: 

A recent literature review showed that there has been an exponential increase in the number of 

studies utilizing mNGS for the detection of CNS pathogens (Figure 1.10) (175).  

 

Figure 1.10 Temporal trends in the Publication of Encephalitis Cases involving Next-Generation 

Sequencing in the last Decade. (Brown et al, 2018) 

 

Although the clinical studies were conducted in many countries worldwide, the laboratories 

performing the analysis were mainly based in developed countries such as the US and in Europe 

(175).  

Often mNGS is used when the diagnostic work-up based on conventional assays failed to 

identify a pathogen (173,177,213–215). The diagnostic yield of mNGS might be sample 

dependent. Indeed, previous studies showed brain biopsies gave a higher yield than CSF did 

(175,216). Due to the uncertainty about the specificity of mNGS, confirmatory testing of mNGS 

results is needed. For this purpose, viral-specific PCR assays are commonly used. In contrast to 

cell culture, serological assays and immunohistochemistry methods are rarely used.  
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 Global emerging infectious disease hotspots: 

Worldwide, there are over 320,000 mammalian viruses remaining uncharacterized (217). Of 

note, Asia including Vietnam is one of the major hotspots for the emergence of novel pathogens 

as illustrated by the emergence of Nipah in 1998, SARS-CoV-1 in 2003, avian influenza A virus 

subtype H5N1 in 2004, enterovirus A71 and influenza A virus subtype H7N9 in 2013. Most 

recently, SARS-CoV-2 was first discovered in a patient suffering from community-acquired 

pneumonia of unknown origin in China in late 2019 (218). SARS-CoV-2 has now spread 

globally and is responsible for the ongoing COVID-19 pandemic. The high density of the human 

population and the fact that humans are living in a close proximity to domestic and wildlife 

animals in Asia are considered risk factors of disease emergence.  

 

Figure 1.11 Heat maps of predicted relative risk distribution of zoonotic emerging infectious disease 

events. Figure was adapted from “Global hotspots and correlates of emerging zoonotic diseases” by 

Allen et al, 2017 (219). 
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 Aims: 

Collectively, studies to date (including those from Vietnam) have demonstrated a wide range of 

causative agents (especially viruses) can cause CNS infections and sepsis. Yet, despite the use 

of advanced molecular diagnostic assays (PCR and metagenomics), it remains a challenge to 

identify a viral culprit in patients with CNS infections. Few studies however from Vietnam and 

Asia reported the use of metagenomics to actively study the etiology in patients with CNS 

infections and sepsis. In this region of the world, novel CNS infections pathogens (EV-A71, 

Nipah, hendra and Zika viruses) are however likely to emerge. Therefore, improving our 

knowledge about the causes of sepsis and CNS infections, and active surveillance for novel 

pathogens in Southeast Asia are of clinical and public health significance. I hypothesize that 

next-generation sequencing based viral metagenomics will identify known or unknown viruses 

in undiagnosed patients with CNS infections and community-acquired sepsis in Southeast Asia. 

Therefore, within my PhD research program, I aimed to: 

1. Develop a sensitive viral metagenomic pipeline for sequence-independent detection of a 

broad range of viral pathogens in clinical samples 

2. Explore viral content in patients with sepsis of unknown cause across Southeast Asia 

3. Explore viral content in CSF from patients with acute CNS infections of unknown cause 

sampled from provincial hospitals throughout Vietnam  

4. (If relevant), demonstrate proof of causation of recently described viruses/novel virus(es) 

discovered by metagenomic analysis 

5. Explore the utility potential of metagenomics for the diagnosis of central nervous system 

infections 
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Chapter 2: Development of a sensitive viral metagenomic pipeline for 

sequence-independent detection of a broad range of viral pathogens in 

clinical samples 

1. Background: 

Designed by Endoh et al in 2005 (220), non-ribosomal primer consists of a set of 96 

hexanucleotides, which are specific for amplification of viral sequences. Using this primer set, 

I have recently developed a non-ribosomal random amplification and next-generation 

sequencing based assay for sensitive detection and direct whole-genome sequencing of hand, 

foot and mouth disease pathogens from throat and rectal swabs (221).  For my PhD research, I 

further optimized this method for sensitive sequence-independent detection of a broad range of 

viral pathogens in patient samples. 

Clinical samples may contain low pathogen load but high concentration of contaminating host 

and bacterial nucleic acids. To enrich for viral nucleic acid and to reduce the unwanted 

background, sample pretreatment steps such as centrifugation and nuclease (DNase and RNase) 

digestion are often employed as part of viral metagenomic pipelines. However, few studies have 

assessed the efficiency of these pretreatment strategies. To identify to the optimal approach for 

viral metagenomic analysis, herein these sample pretreatment steps were compared. For the 

purpose of assay comparison, the number of viruses detected and the level of genome coverage 

were taken into account.  

2. Methods and materials: 

2.1. Patient samples and positive controls: 

A biological reagent containing 25 different DNA and RNA viral pathogens prepared for viral 

metagenomic pipeline evaluation by National Institute for Biological Reagents and Control, UK 

(190) was used. Additionally, sera, CSF   and zika virus culture spiked in human sera were also 
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use. The PCR positive clinical samples included a pooled serum sample derive from sera that 

were positve for either hepatitis A/B/C virus (222), and a total of six CSF samples that were 

PCR positive for dengue virus (n=3), herpes simplex virus (n=2) and mumps virus (n=1) (223). 

The zika virus (strain # MR766) was obtained from the European Virus Archive.  

2.2. Methods: 

2.2.1. Sample pretreatments and nucleic acid isolation: 

A combination of i) sample pre-centrifugation and/or ii) RNase/DNase digestion was taken into 

account for assay development. Consequently, four different combinations of sample 

pretreatments were selected for comparison, including 1) simultaneous DNase and RNase 

treatment of the original sample without pre-centrifugation, 2) DNase treatment of the original 

sample without RNase treatment and pre-centrifugation, 3) sample pre-centrifugation followed 

by DNase treatment of the resulting supernatants, and 4) sample pre-centrifugation followed by 

simultaneous DNase and RNase treatment of the resulting supernatants. Specifically, prior to 

nucleic acid (NA) isolation 110µl of clinical sample was centrifuged for 10 minutes at 

13,000rpm and then 100µl supernatant was collected. For both collected supernatant and non-

centrifuged samples, 100µl was treated with 2U/ul of turbo DNase and with/without 0.4U/ul 

RNase I (Ambion, Life Technology, Carlsbad, 130 CA, US) at 37 °C for 30 min. The treated 

sample was then preceded to a viral NA isolation step using QIAamp viral RNA kit (QIAgen 

GmbH, Hilden, Germany), and finally recovered in 50ul of the elution buffer provided with the 

extraction kit. 

2.2.2. Double stranded DNA synthesis and Sequencing: 

Double stranded DNA was then synthesized from the isolated viral NA using a set of 96 non-

ribosomal random primer (Appendix 1) (220), followed by PCR amplification to enrich for viral 

NA prior to sequencing (224,225). Finally the amplified products were sequenced on an 

Illumina MiSeq platform (Illumina, San Diego, CA, US) available at OUCRU. 
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In details, 10μl of extracted RNA was firstly mixed with 2μl of non-ribosomal random primer 

mixture and 1μl of dNTPs (10mM each) (Roche Diagnostics GmbH, Mannheim, Germany). 

The mixture was incubated at 65oC for 5 min, and was then immediately chilled on ice for 1 

min. Secondly, 7μl of a reaction mix containing 200U of Super Script III reverse transcriptase 

(Invitrogen, Carlsbad, CA, US), 40U of RNase OUT (Invitrogen), 0.1M DTT (Invitrogen) and 

5X first strand buffer (Invitrogen) was added into the first reaction mixture. The reaction was 

then continued at 25oC for 10 min, 37oC for 1 min and 94oC for 2 min, and immediately chilled 

on ice for 2 min. Next, 5U of exo-Klenow fragment (Ambion) and 10U of Ribonuclease H 

(Ambion) were then added into the reaction mixture. The mixture was subjected to a thermal 

condition consisting of 25oC for 5 min, 37oC for 1h and 94oC for 2 min. This exo-Klenow 

fragment associated step was repeated once more time with the omission of the last incubation 

step on ice after the second thermal cycle.  

Finally, 5μl of the resulting dsDNA was pre-amplified using FR20RV primer (5’-

GCCGGAGCTCTGCAGATATC-3’). Random amplification (rPCR) was carried out in a total 

reaction volume of 50μl consisting of 3μl of dsDNA, 2μl of primer FR20RV at a final 

concentration of 40nM and 45μl of Platinum PCR supermix (Invitrogen). The thermal cycling 

condition consisted of 94oC for 2 min and followed by 40 cycles of 94oC for 30s, 55oC for 30s 

and 72oC for 3min and 1 cycle of 72oC for 2min. List of reagents and thermal conditions used 

for these procedures are summarized in Table 2.1. 
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Table 2.1 List of reagents and thermal conditions of pretreatment, dsDNA synthesis and random 

amplification procedures. 

Procedures Reagents Concentration 
Used volume 

(per reaction) 
Thermal cycling condition 

Pretreatment 

Turbo DNase 2U/μl 10μl 

37 °C for 30 min RNase I 100U/μl 1μl 

DNase buffer 10X 12μl 

Double 

strand DNA 

synthesis 

Non-ribosomal 

primer mixture 

1μM 2μl 

85oC for 2 min 

dNTPs 10μM 1μl 

Super Script III 

reverse 

transcriptase 

200U/μl 1μl 

25oC for 10 min, 37oC for 1 min 

and 94oC for 2 min RNase OUT 40U/μl 1μl 

DTT 0.1M 1μl 

First strand buffer 5X 4μl 

exo-Klenow 

fragment 

5U/μl 0.5μl 25oC for 5 min, 37oC for 1h and 

94oC for 2 min 

25oC for 5 min, 37oC for 1h and 

75oC for 10 min 
Ribonuclease H 10U/μl 0.5μl 

Random 

amplification 

FR20RV primer 10μM 1μl 94oC for 2 min, 40 cycles of 94oC 

for 30s, 55oC for 30s and 72oC for 

3min and 1 cycle of 72oC for 2min 
Platinum PCR 

supermix 

 22μl 

 

The obtained random PCR product was then purified with use of QIAquick PCR purification 

kit (QIAgen GmbH, Hilden, Germany) and quantified by Quibit dsDNA HS kit (Invitrogen). 

Finally, 1ng of purified product was subjected to library preparation using Nextera XT sample 

preparation kit (Illumina, San Diego, CA, US). Prior to sequencing, the quantity of the prepared 

library was measured by using KAPA Library Quant Kit (Kapa Biosystems, Wilmington, MA, 

US). The prepared library was sequenced by using MiSeq reagent kit v3 (600 cycles) (Illumina, 

San Diego, CA, US) in a MiSeq platform (Illumina, San Diego, CA, US). For each run, samples 

were multiplexed and differentiated by double indexes using Nextera XT Index Kit (Illumina, 

San Diego, CA, US).  

2.2.3. Sequence analysis and statistical analysis: 

The obtained MiSeq data was analysed using publically available bioinformatic pipelines, 

including SURPI and Taxonomer (204,207,226) to identify the presence of viral sequences in 

the tested specimens. A reference-based mapping approach (Geneious 8.1.5) was then employed 

to assess the level of genome coverage of the sequenced viruses.  
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Chi-square test (Prism 9.0.0) was applied to measure the differences in the number of viral used 

reads generated by different sample-pretreatment approaches. A p value of less than 0.05 was 

considered statistical significance. 

2.2.4. Contributions from others: 

Clinical samples and data collection were carried out by participating clinicians and research 

staff of the respective collaborating hospitals. Although, I led the experiment design and conduct 

the most of the laboratory work, I also received support in conducting some of the PCR 

confirmatory experiments from Ms Le Nguyen Truc Nhu and Ms Nguyen Thi Thu Hong from 

Emerging Infections group, OUCRU. 

3. Results: 

3.1. Efficiency of viral metagenomic approaches in detecting a wide range of viruses:  

Table 2.2 summarized the results of viral detection by 4 different sample-pretreatment 

approaches followed by random PCR amplification and Illumina MiSeq sequencing. In terms 

of viral detection, 16-18 out of 25 viruses included in the original biological reagent were 

detected by the viral metagenomic approaches under comparison, of which approaches #1 

(simultaneous DNase and RNase treatment of the original sample without pre-centrifugation) 

and #2 (DNase treatment of the original sample without RNase treatment and pre-

centrifugation) gave the best performances (Table 2.2 and 2.3). Indeed, approaches #1 and #2 

generated a higher proportion and number of viral reads mapped to a reference genome than 

approaches #3 and #4 did (p<0.0001, Table 2.2). 

In terms of genome coverage, of the 18 detected viruses, 5 complete or nearly complete genome 

sequences (Appendix 2) were generated by approach #1, while 1-3 complete or nearly complete 

genome sequences were generated by the other approaches (Table 2.2). Six out of 7 viruses that 

were not detected by my assay, were real-time PCR negative after pooling (190). My assay had 
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a comparable sensitivity with metagenomic pipelines developed by other groups elsewhere 

(190,227) (Table 2.3). 

Collectively, based on the obtained result, the viral metagenomic approach utilizing a 

simultaneous DNase and RNase treatment step of the original sample without pre-centrifugation 

was the most sensitive approach and was therefore selected for additional evaluation on clinical 

samples.  

Table 2.2 Number of total reads and viral reads generated by viral metagenomics using different 

samples pretreatment approaches 

 #1 

+DNase+RNase 

-Centrifugate 

#2 

+DNase-RNase          

-Centrifugate 

#3 

+DNase-RNase 

+Centrifugate 

#4 

+DNase+RNase 

+Centrifugate 

Number of total reads 2,102,000 2,225,000 2,171,000 2,072,000 

Number of reads mapped to a 
reference viral genome (%) 

801774 (38) 884507 (39) 72533 (3.5) 62820 (2.8) 

Number of viral species 
detected 

18 18 16 16 

Number of viruses detected 
with a complete genome 
obtained 

5 3 1 1 
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Table 2.3 Summary of viral metagenomics detection results for viral mixture using different sample pretreatment approaches. 

 
 

 

 

 

 
 

 

 

 

 
 

 

 

 

 
 

 

 

 

 
 

 

 

 

 
 

 

 

 
 

 

 

 

 
 

 

 

 

 
 

 

 

 

 
 

 

Note: ND: not detected by real time PCR after pooling, *complete/nearly complete coding sequence were obtained.

Species 

Ct 

values 

(190) 

Numbers of viral reads detected by my metagenomic approaches 

Numbers of viral reads 

detected by viral 

metagenomic pipelines from 

other studies 

#1 

+DNase+RNase 

-Centrifugate 

#2 

+DNase-RNase          

-Centrifugate 

#3 

+DNase-RNase 

+Centrifugate 

#4 

+DNase+RNase 

+Centrifugate 

US study 

(190)  

Zurich study 

(227) 

Adenovirus 2 29.71 998 800 140 244 260 299.1 

Astrovirus 30.53 1388 761 1003 823 14 8040.6 

Coxsackievirus B4 30.72 4765 6219 3946 7735 24 22,707 

Human herpesvirus 1 30.59 38 0 0 0 11 81.4 

Human herpesvirus 2 32.48 176 120 0 0 7 7 

Human herpesvirus 3 29.02 68740* 54414* 19331 14516 330 84.2 

Human herpesvirus 4 31.27 1246 662 425 509 34 104.7 

Human herpesvirus 5 28.95 21000 14676 7517 3737 447 7028.5 

Human 

Metapneunmovirus A 
31.86 10938* 2041* 756 1364 26 0 

Influenza A virus H1N1 32.02 251 363 0 0 2 0 

Parainfluenzavirus 1 34.43 3794* 3129 3085 2215 44 9601.2 

Parainfluenzavirus 2 33.87 25286* 477 60 6 253 33.1 

Parainfluenzavirus 4 31.83 4508 2696 1929 1404 24 10,089 

Parechovirus 3 29.35 637000* 772000* 1073* 1204* 3507 565.22 

Respiratory syncytial 

virus A2 
34.33 10 18 17 36 4 229.4 

Rhinovirus A39 31.16 1475 598 340 1011 6 2238.4 

Rotavirus A 24.9 20054 25391 32634 27668 2896 8.5 

Sapovirus C12 33.37 107 98 275 252 14 62.8 

Adenovirus 41 ND 0 0 0 0 4 13.9 

Coronavirus 229E 36.48 0 0 0 0 0 0 

Influenza A virus H3N2 ND 0 0 0 0 0 0 

Influenza B virus ND 0 0 0 0 0 0 

Norovirus GI ND 0 0 0 0 0 0 

Norovirus GII ND 0 0 0 0 0 0 

Parainfluenzavirus 3 ND 0 44 2 96 0 0 

Total number of detected 

viruses 
 18 18 16 16 19 17 



 70 

 

3.2. Viral metagenomic assay performance on clinical samples: 

The selected viral metagenomic assay (approach #1) was further evaluated on clinical samples 

(including CSF and serum) that were PCR positive, or zika virus culture spiked in human sera. 

Subsequently, the assay was able to detect the expected viral pathogens in the corresponding 

tested materials (Table 2.3).  

Table 2.3 List of viral pathogens used for further evaluation of the viral metagenomic assay 

Virus Sample type Viral type 
Clinical 

presentation 

Diagnostic 

Ct value 

Number of 

viral reads 

Percentages 

of genome 

coverage 

Hepatitis A virus 

Pooled serum* 

(+) ssRNA Hepatitis   3 NA 

Hepatitis B virus dsDNA Hepatitis   3,256 100% 

Hepatitis C virus (+) ssRNA Hepatitis   10 NA 

Zika virus (10^-1)# 

virus culture 

spiked in a human 

serum sample 

(+) ssRNA NA 20 252,732 99% 

Zika virus (10^-3)# 

virus culture 

spiked in a human 

serum sample 

(+) ssRNA NA 27 2,135 80% 

Dengue virus 1$ 
Cerebrospinal 

fluid 
(+) ssRNA 

CNS 

infections 

32 
13,813 96% 

Dengue virus 1$ 
Cerebrospinal 

fluid 
(+) ssRNA 

CNS 

infections 

32 
1,467 50.4% 

Dengue virus 2 
Cerebrospinal 

fluid 
(+) ssRNA 

CNS 

infections 

39 
4 NA 

Herpes simplex virus 
Cerebrospinal 

fluid 
dsDNA 

CNS 

infections 
24 8 NA 

Herpes simplex virus 
Cerebrospinal 

fluid 
dsDNA 

CNS 

infections 
27 2 NA 

Mumps 
Cerebrospinal 

fluid 
(-) ssRNA 

CNS 

infections 

34 
14 NA 

Note: * derived from three different sera positive for one of these three viruses, # dilution ratio of viral culture in serum samples, NA: none 

applicable, $ two different specimens. 
 

4. Discussion and Conclusion: 

In this chapter, I set out to develop a viral metagenomic pipeline for broad-range detection of 

viral pathogens in clinical samples. The obtained results showed that the metagenomic assay 

employing a DNase/RNase treatment step of the specimen without sample pre-centrifugation is 

a sensitive method for sequence-independent detection of a wide range of viral pathogens 

(including both DNA and RNA viruses), especially emerging virus such as zika virus, in clinical 

samples. Its sensitivity is comparable with pipelines developed by other research groups from 

the US (190) and Switzerland (227) when evaluation was carried out on the reference biological 
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reagent. In addition to providing the diagnostic information, the method can also generate viral 

pathogen genome sequences that can be used for additional investigation about the origin and 

spread of the pathogen. 

Herpes simplex viruses are large DNA viruses and are a cell-associated virus. As such they can 

be partially deposited in the pellets during centrifugation. This explains why the centrifugation 

associated procedures (approach #3 and #4) failed to detect both HSV-1 and HSV-2 in the virus 

mixture.  

In summary, here I show that a metagenomic approach incorporating nuclease (DNase and 

RNase) treatment without centrifugation is a sensitive method for sequence-independent 

detection of a wide range of viruses in clinical samples. This method will be used for analysis 

of clinical samples. The results of these analyses are presented in subsequent chapters.  
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Chapter 3: Viruses in patients presenting with community-acquired sepsis 

of unknown cause in Thailand and Vietnam 

 

1. Introduction: 

A recent etiological study of 1578 patients with CA sepsis, conducted by the Southeast Asia 

Infectious Diseases Clinical Research Network, reported that the etiology (viruses, bacteria and 

parasites) was established in only 48% (26). Improving our knowledge about the causative 

agents of CA sepsis can inform clinical management, whilst active surveillance for novel 

pathogens in this region is of public health significance. Herein, I use mNGS to characterize the 

viral contents in clinical samples collected from patients enrolled in the aforementioned 

etiological study of sepsis of unknown etiology across Southeast Asia between 2013 and 2015 

(26). 

2. Materials and Methods:  

2.1. Clinical specimens and patient data: 

Clinical specimens and patient data used for mNGS analysis were derived from an etiological 

study of CA sepsis conducted at multiple hospitals across Indonesia (n=3, Dr. Cipto 

Mangunkusumo Hospital, Jakarta; Dr. Sardjito Hospital, Yogyakarta; and Dr. Wahidin 

Soedirohusodo Hospital, Makassar), Thailand (n=4, Queen Sirikit National Institute of Child 

Health and Siriraj Hospital, Bangkok; Chiang Rai Prachanukroh Hospital, Chiang Rai; and 

Sappasithiprasong Hospital, Ubon Ratchathani) and Vietnam (n=6, National Hospital of 

Paediatrics and National Hospital of Tropical Diseases, Hanoi; Hue Central Hospital, Hue; 

Children’s Hospital 1, Children’s Hospital 2 and Hospital for Tropical Diseases, Ho Chi Minh 

City) between 2013 and 2015  (Figure 3.1) (26).  
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Figure 3.1 Maps of study sites of the original studies. (1) Jakarta, (2) Yogyakarta and (3) Makassar in 

Indonesia; (4) Bangkok, (5) Chiang Rai and (6) Ubon Ratchathani in Thailand; and (7) Hanoi, (8) Ho 

Chi Minh City and (9) Hue in Viet Nam. The figure was adapted from “Causes and outcomes of sepsis 

in southeast Asia: a multinational multicentre cross-sectional study” by Southeast Asia Infectious 

Disease Clinical Research Network, 2017 (26). 

 

Hospitalized patients with suspected or documented CA infection, fulfilling the diagnostic 

criteria for sepsis of the 2012 Surviving Sepsis Campaign (adults) (5) or the Pediatric Sepsis 

Consensus Conference definitions (228)  and within 24 h of admission were enrolled (Table 3.1 

and 3.2) (26).  

Table 3.1 Inclusion criteria used by the original study for patient enrollments 

• Age ≥30 days old and weighing at least 3 kg or more on the day of enrollment into the study 

• Required hospitalization as decided by the attending physician 

• Documented by attending physician that an infection is the primary cause of illness leading to the 

hospitalization. These can be infections due to any pathogens (bacteria, viruses, fungi and parasites). 

• Presence of Systemic Inflammatory Response Syndrome (SIRS)# 

• Informed Consent has been obtained 

Note: #Systematic response syndrome is described in detail in Table 3.2 
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Table 3.2 Presence of systematic response syndrome used in the original study 

For adults (≥ 18 years old), any combination of a 

minimum of any 3 of the following 20 parameters 

 

For pediatric patients (>30 days old and <18 years old), 

all of the 3 following symptoms: 

• Fever or hypothermia (Core body temperature 

defined as >38.3°C or <36.0°C) 

• Tachycardia (heart rate >90 beats per minute) 

• Tachypnea (respiratory rate >20 per minute) 

• Arterial hypotension (systolic blood pressure (SBP) 

<90 mmHg, mean arterial pressure (MAP) 

<70mmHg, or SBP decrease >40 mmHg) 

• White blood cell (WBC) >12,000 u/L or <4000 u/L 

or immature forms >10% 

• Platelet count <100,000 u/L 

• Altered mental status with Glasgow Coma Score 

(GCS) <15 

• Hypoxemia (Pulse Oximetry Level <95) 

• Ileus 

• Significant edema or positive fluid balance 

• Decreased capillary refill or mottling 

• Hyperglycemia (plasma glucose >140 mg/dL) in 

the absence of diabetes 

• Plasma C-reactive protein >2 SD above the normal 

value 

• Plasma procalcitonin > 2 SD above the normal 

value 

• Arterial hypoxemia (PaO2 / FIO2 <300) 

• Acute oliguria (urine output <0.5 mL/kg/hr or 

45mmol/L for 2 hours) 

• Creatinine increase >0.5 mg/dL 

• INR >1.5 or a PTT >60 seconds 

• Plasma total bilirubin >4 mg/dl or 70 mmol/L 

• Fever or hypothermia (rectal temperature defined 

as >38.5°C or <35.0°C [or equivalent]) 

• Tachycardia (heart rate >2 SD above the normal 

value for age). This could be absent in hypothermic 

subject. 

• Tachypnea (respiratory rate >2 SD above the 

normal value for age) 

  

AND at least one of the following parameters: 

 

• Altered mental status (e.g., drowsiness, poor quality 

of cry, poor reaction to parent stimuli, and poor 

response to social overtures) 

• Systolic blood pressure <2 SD below the normal 

value for age OR narrow pulse pressure (<20 

mmHg) OR poor perfusion (capillary refill >2 sec) 

• Hypoxemia (Pulse Oximetry Level <95) 

• White blood cell >15,000 u/L or <5,000 u/L or 

immature forms >10%. 

 

A total of 1582 patients were enrolled (n=750 each from Vietnam and Thailand, and 82 from 

Indonesia) (Figure 3.2). Per the study protocol, sera samples were collected from all patients; 

additional samples including pooled nasal and throat swabs, cerebrospinal fluid and stools were 

collected when clinically indicated. After collection, all clinical samples were stored at -80oC. 

Additionally, information about demographics, clinical entities and outcome of the patients was 

retrieved from a publically available dataset of the original study which was deposited at 

https://figshare.com/articles/Data_set__Causes_and_outcomes_of_sepsis_in_southeast_Asia_

a_multinational_multicentre_cross-sectional_study_NCT02157259_/3486866/1. 

 

https://figshare.com/articles/Data_set__Causes_and_outcomes_of_sepsis_in_southeast_Asia_a_multinational_multicentre_cross-sectional_study_NCT02157259_/3486866/1
https://figshare.com/articles/Data_set__Causes_and_outcomes_of_sepsis_in_southeast_Asia_a_multinational_multicentre_cross-sectional_study_NCT02157259_/3486866/1
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Figure 3.2 Flowchart showing an overview about the diagnostic output of the original study 

Notes: *see the original study and Appendix 3 for more details; #the causative agents detected were detailed in the report of the original study; 
$more details about the analysis of those patients can be found in Figure 3.3. 

 

Clinical samples available for mNGS: 

Of 749 Vietnamese patients included in the original study, 402 (54%) had no etiology identified 

via extensive clinical and reference laboratory work-up (Figure 3.2 and Appendix 3); of whom, 

386 (96%) had clinical materials available for additional etiological investigation, and were thus 

included for viral metagenomic analysis in this study (Figure 3.2) (26). In total, 492 samples (6 

321 from Thai sites 

1582 community acquired sepsis patients enrolled in the etiological study 

816 adults: 375 from Thailand, 375 from Vietnam and 66 from Indonesia 

766 children: 375 from Thailand, 375 from Vietnam and 16 from Indonesia 

402 from Vietnam sites 

Etiology identified in 813 (52%)
#
 

(388 (48%) adults and 425 (56%) children) 

1578 patients (815 adults and 763 children) with available clinical 

materials included for etiological investigations 

36,853 diagnostic tests were done per protocol* 

No etiology identified in 765 (48%) 

(427 (52%) adults and 338 (44%) children) 

42 from Indonesian sites 

386 patients$ 279 patients$  

665 patients with available clinical 

materials for mNGS analysis 
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CSF, 92 pooled nasal and throat swabs, 384 sera, and 10 stool samples from these 386 patients 

of unknown etiology were included for analysis.  

Of 321 patients from Thailand, there were 279 (87%) patients in whom there was no etiology 

identified by the original study (Figure 3.2). In total, 351 samples were collected from these 279 

patients of unknown origin, including 258 sera, 70 pooled nasal and throat swabs, 22 stools and 

1 CSF samples. 

Settings 

The analysis of samples from Vietnam was conducted at the laboratory of Oxford University 

Clinical Research Unit in Ho Chi Minh City, Vietnam where I am based. Meanwhile, for the 

analysis of samples from Thailand, I made two visits with two weeks each to the Mahidol 

Oxford Tropical Medicine Research Unit in Bangkok, Thailand. Due to the availability of the 

materials and resources, most samples from Vietnam sites were analyzed individually (n=458) 

or in pools of multiple samples (n=8) (Figure 3.3). In contrast, because of the resource and time 

constraints most of samples from Thailand sites were analyzed in pools samples; the only one 

CSF sample available was analyzed individually (Figure 3.3). Because of these heterogeneities, 

the results were combined or separately presented when appropriate.  
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Figure 3.3 Flow chart illustrating how samples were analyzed. 

 

 

 

 

 

DNase and RNase treatment   

Random amplification using a non-ribosomal primer set 

Viral sequence detection using an in-house bioinformatic pipeline 

Viral PCR confirmatory testing of mNGS results  

492 samples from 386 Vietnamese patients 

sera= 384; nasal-throat swabs= 92; stools= 10; 

CSF=6 

Number of samples analyzed individually: n=458 

(100μl of each) 

Number of samples analyzed as pools: n=8 

    + Pools of 5: n=4 (20μl of each) 

    + Pools of 4: n= 3 (25μl of each) 

    + Pool of 2: n= 1 (50μl of each) 

Deep sequencing 

351 samples from 279 Thai patients 

sera = 258; nasal-throat swabs= 70;  

stools= 22; CSF=1 

Number of samples analyzed individually: n=1 CSF 

(100μl) 

Number of samples analyzed as pools: n=87 

      + Pools of 4: n= 82 (100μl of each) 

      + Pools of 3: n= 3 (133μl of each) 

      + Pools of 5: n= 2 (80μl of each) 

QIAamp viral RNA extraction kit for nucleic acid 

isolation  
MagMAX

TM 
viral RNA extraction kit for nucleic 

acid isolation  
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2.2. mNGS assay: 

The procedure of mNGS incorporating sample pre-treatment approach #1 (simultaneous DNase 

and RNase treatment of the original sample without pre-centrifugation) described in Chapter 2 

was used to analyse the selected samples, with some modifications for samples from Thailand. 

Specifically, 400μl of pooled sample was treated with 2U/μl of turbo DNase and 0.4U/μl RNase 

one (Ambion, Life Technology, Carlsbad, 130 CA, US) at 37 °C for 30 min. The viral NA of 

treated sample was then isolated by using MagMAXTM viral RNA kit (Ambion, Life 

Technology, Carlsbad, CA, US), and finally recovered in 50μl of elution buffer. The following 

dsDNA synthesis, random amplification and sequencing steps are exactly same as described in 

Chapter 2. 

2.3. mNGS data analysis: 

Potential viral reads were identified using an in-house viral metagenomic pipeline running on a 

36-node Linux cluster as described in detail elsewhere (229). In brief, after duplicate reads and 

reads belonging to human or bacterial genomes were filtered out, the remaining reads were 

assembled de novo. The resulting contigs and singlet reads were then aligned against a 

customized viral proteome database using a BLAST (Basic Local Alignment Search Tool)-

based approach. Next, the candidate viral reads were aligned against a non-redundant non-virus 

protein database to remove any false-positive reads (i.e., reads with expected [E] values higher 

than those against viral protein databases). Any virus-like sequence with an E value of ≤10-5 

was considered a significant hit. Finally, a reference-based mapping approach (Geneious 8.1.5) 

was employed to assess the levels of identity and genome coverage of the corresponding viruses. 

2.4. PCR confirmation of viral reads: 

Because of the focus of the present study, specific PCRs were used to confirm the mNGS hits 

for viral species that are known to be infectious to humans and for recently discovered viruses 

that have previously been reported in human tissues but remain of uncertain clinical 
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significance. Depending on the availability of the clinical materials, viral specific PCRs were 

either carried out on leftover NA after mNGS experiments or on newly extracted NA. A mNGS 

result was only considered positive if it was subsequently confirmed by a corresponding viral 

PCR analysis of original NA materials derived from corresponding individual samples. All PCR 

primers and probes used were either derived from previous publications or newly designed 

based on the sequences generated by mNGS (Table 3.3). 

For Thailand specimens, confirmatory PCR was firstly performed on leftover NA of pooled 

samples. And if positive, individual samples of positive pools were then analysed. Accordingly, 

NA was isolated from the corresponding individual samples using QIAamp viral RNA kit 

(Qiagen GmbH, Hilden, Germany) for subsequent confirmatory PCR analysis.  
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Table 3.3 List of primers and probes used for subsequent PCR confirmation experiments 

Viruses 
Oligo sequence (5'-3') Sources 

Forward Reverse Probe  

Measles ATTACATCAGGATCCGG GTATTGGTCCGCCTCATC  (230) 

HBV GGACCCCTGCTCGTGTTACA GAGAGAAGTCCACCMCGAGTCTAGA FAM-TGTTGACAARAATCCTCACAATACCRCAGA-TAMRA 
Newly 

designed 

Rotavirus ACC ATC TWC ACR TRA CCC TC GGT CAC ATA ACG CCC CTA TA 
FAM-ATG AGC ACA ATA GTT AAA AGC TAA CAC TGT 

CAA-BHQ1 
(231) 

Enterovirus CCCTGAATGCGGCTAAT ATTGTCACCATAAGCAGCC CY5-ACCCAAAGTAGTCGGTTCCG -BHQ3 (232) 

Dengue AAGGACTAGAGGTTAGAGGAGACCC CGTTCTGTGCCTGGAATGATG FAM- AACAGCATATTGACGCTGGGAGAGACCAGA-BHQ1 (233) 

Dengue 2 CCATACACGCCAAACATGAA GGGATTTCCTCCCATGATTCC FAM-AGGGTGTGGATTCGAGAAAACCCATGG-BHQ1 (234) 

HIV1 
GGTGCGAGAGCGTC ATGCTRTCATCATYTCTTC  

(235) 
ATGGGTRAARGTARTAGAAGAAAAGGG CTGCCTGRTGYCCYCCCACTA  

HCV AGACTGCTAGCCGAGTAGYGTTGG TGCTCATGDTGCACGGTCTACGA FAM-TTGTGGTACTGCCTGATAGGGTGCTT -BHQ1 
Newly 

designed 

PIV 1 
ATCTCATTATTACCYGGACCAAGTCTAC

T 

CATCCTTGAGTGATTAAGTTTGATGAAT

A 

CYAN500-

AGGATGTGTTAGAYTACCTTCATTATCAATTGGTGATG-DB 
(236) 

PIV2 CTGCAGCTATGAGTAATC TGATCGAGCATCTGGAAT LCRED610-AGCCATGCATTCACCAGAAGCCAGC-BBQ (236) 

PIV3 ACTCTATCYACTCTCAGACC TGGGATCTCTGAGGATAC LCRED670-AAGGGACCACGCGCTCCTTTCATC-BBQ (236) 

PIV4 GATCCACAGCAAAGATTCAC GCCTGTAAGGAAAGCAGAGA HEX-TATCATCATCTGCCAAATCGGCAA-BHQ1 (236) 

Coronavirus OC43 GGTGGYTGGGAYGATATGTTACG KRTTTGGCATAGCACGATCACA 
6-FAM-ATGTTGACAAYCCTGTWCTTATGGGTTGGG-

MGBNFQ 
(236) 

Coronavirus NL63 GCTRAGCATGATTTCTTTACTTGG CARTYTTKTTCATCAAAGTTACGCA 
6-FAM-CAGARTCATTTATGGTAATGTTAGTAGACA-

MGBNFQ 
(236) 

PEV 
GGGTGGCAGATGGCGTGCCATAA CCTRCGGGTACCTTCTGGGCATCC  

(237)  YCACACAGCCATCCTCTAGTAAG GTGGGCCTTACAACTAGTGTTTG  

Rhinovirus AGSCTGCGTGGCKGCC ACACGGACACCCAAAGTAGT CYAN500-TCCTCCGGCCCCTGAATGYGGCTAAYC-DB (236) 

MPV AGCTTCAGTCAATTCAACAGAAG CCTGCAGATGTYGGCATGT LCRED670-TGTTGTGCGGCAGTTTTCAGACAATGC-BBQ (236) 

FA GACAAGACCAATCCTGTCACYTCTG AAGCGTCTACGCTGCAGTCC LCRED610-TTCACGCTCACCGTGCCCAGTGAGC-BBQ (236) 

FB TCGCTGTTTGGAGACACAAT TTCTTTCCCACCGAACCA CYAN500-AGAAGATGGAGAAGGCAAAGCAGAACT-DB (236) 

RSV 

ATGAACAGTTTAACATTACCAAGT GTTTTGCCATAGCATGACAC LCRED610-TGACTTCAAAAACAGATGTAAGCAGCTCC-BBQ 

(236)    LCRED610-

TTATGACATCAAAAACAGACATAAGCAGCTCAG-BBQ 

ADV CAGGACGCCTCGGRGTAYCTSAG GGAGCCACVGTGGGRTT LCRED670-CGGGTCTGGTGCAGTTTGCCCGC-BBQ (236) 

Saffold virus 
CTAATCAGAGGAAAGTCAGCAT GACCACTTGGTTTGGAGAAGCT  

(238)  CAGCATTTTCCGGCCCAGGCTAA GCTATTGTGAGGTCGCTACAGCTGT  

Salivirus 

CCCTGCAACCATTACGCTTA CACACCAACCTTACCCCACC  (239) 

ATTGAGTGGTGCAYGTGTTG ACAAGCCGGAAGACGACTAC  Newly 

designed 

Wu-polyomavirus TGTTACAAATAGCTGCAGGTCAA GCTGCATAATGGGGAGTACC  (240) 

Human herpesvirus 6 TTTGCAGTCATCACGATCGG AGAGCGACAAATTGGAGGTTTC  (241) 

Human herpesvirus 4 GAGGAATTGCCCTTGCTATT CCTTAGTGGGCCAGGTTGT FAM -TCGTCTCCCCTTTGGAATGGC-TAMRA 
Newly 

designed 

Human herpesvirus 5 CCAAGCGGCCTCTGATAACCA GGTCATCCACACTAGGAGAGCAGA FAM-ATGAAGCGCCGCATTGAGGAGATCT-TAMRA (242) 

Gemycircularvirus 

GTGGTAATGGTCGTCGGTATTC CCTCATCATTCGTAGTAAGCAATCTCA  (243) 

AGTCCTGAATGTTTCCACTCG CAAGCGTTCCCTCGAAAATGAC  Newly 

designed 

Cyclovirus VN GAGCGCACATTGAAAGAGCTAAA TCTCCTCCTTCAATGACAGAAACAAC FAM-CGADAATAAGGMATACTGCTCTAAAGSTGGCG-BHQ1 (244) 

Human pegivirus 2 CGCTGATCGTGCAAAGGGATG GCTCCACGGACGTCACACTGG CY5-GCACCACTCCGTACAGCCTGAT-BHQ2 (245) 
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2.5. Phylogenetic analysis: 

Sequence alignment and phylogenetic tree reconstructions of the obtained sequences were 

carried out using ClustalW alignment and Maximum Likelihood methods available within 

Geneious 8.1.5 (Biomatters) and IQ tree (246), respectively.  

2.6. GenBank accession numbers: 

Metagenomics data was deposited to NCBI (GenBank) under the accession number 

PRJNA526981. 

2.7. Ethics:  

The study was reviewed and approved by the Institutional Review Boards of collaborating 

hospitals in Vietnam and Thailand, and the Oxford Tropical Research Ethics Committee 

(OxTREC), University of Oxford, Oxford, United Kingdom. Written informed consent was 

obtained from either the participant. Or the participant’s patents or legal guardian. 

2.8. Contributions from others: 

Clinical samples and data collection were carried out by participating clinicians and research 

staff of the respective collaborating hospitals. Although, I led the experiment design and conduct 

the most of the laboratory work of the laboratory work, I also received support in conducting 

some of the PCR confirmatory experiments from Ms Le Nguyen Truc Nhu and Ms Nguyen Thi 

Thu Hong from Emerging Infections group, OUCRU. The in-house viral metagenomic pipeline 

was conducted at the lab of Prof Eric Delwart at Blood Systems Research Institute, San 

Francisco, California, United State, with help from Dr Xutao Deng. 
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3. Results: 

3.1. Demographics, clinical features and outcomes for patients with sepsis of unknown 

origin: 

Baseline characteristics and 28-day mortality of all patients (including those of unknown origin 

from both Vietnam and Thailand) are presented in Table 3.4. Retrospectively, 180 adult patients 

(including 25% (54/213) and 73.3% (126/172) of the adult patients from Vietnam and Thailand, 

respectively) had a SOFA score of ≥2, fulfilling the presently used diagnostic criteria for sepsis 

in adults as defined by sepsis-3 (6). Unlike sepsis in adults, similar harmonized criteria for 

pediatric sepsis have not been established (247). 

There was considerable homogeneity between groups of patients included and not included for 

mNGS analysis (Table 3.4). Of the patients with unknown cause and included for mNGS, the 

most frequent clinical entity was acute respiratory infection followed by systemic infection, 

diarrhea, and central nervous system (CNS) infection (Table 3.4). Thirty-nine patients (37 adults 

and 2 children) were recorded as deceased by day 28, accounting for 5.9% of the total patients.  
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Table 3.4 Demographics and clinical data of CA sepsis patients with unknown origin 

 Vietnamese patients Thailand patients 

Baseline characteristics 

Patients of unknown etiologies 

included for mNGS analysis# 

Patients not included for mNGS 

analysis 

Patients of unknown etiologies included 

for mNGS analysis 

Patients not included for mNGS 

analysis 

Total 

(n=386) 

Adults 

(n=213) 

Children 

(n= 173) 

Total 

(n=363) 

Adults 

(n=162) 

Children 

(n= 201) 

Total 

(n=279) 

Adults 

(n=172) 

Children 

(n=107) 

Total 

(n=471) 

Adults 

(n=203) 

Children 

(n=268) 

Gender (male) 224 (58) 122 (57.3) 102 (59) 204 (56) 84 (41) 120 (59) 156 (56) 100 (58) 56 (52.3) 265 (56.3)  117 (57.6) 148 (55.2) 

Age  

<12 months NA NA 45 (26) NA NA 75 (37.3) NA NA 8 (7.5) NA NA 38 (14.2) 

>=1 – <5 years NA NA 100 (57.8) NA NA 106 (52.7) NA NA 41 (38.3) NA NA 133 (49.6) 

>=5 – <18 years NA NA 28 (16.2) NA NA 20 (10) NA NA 58 (54.2) NA NA 97 (36.2) 

>=18 – <40 years NA 94 (44.1) NA NA 68 (42) NA  30 (17.4) NA  50 (24.6) NA 

>=40 – <60 years NA 67 (31.5) NA NA 60 (37) NA  55 (32) NA  64 (31.5) NA 

>=60 years NA 52 (24.4) NA NA 34 (21) NA  87 (50.6) NA  89 (43.8) NA 

Geographic location 

North Vietnam 123(32) 68 (32) 55 (32) 127 (35) 57 (35) 70 (34)       

Central Vietnam 141(37) 79 (37) 62 (36) 108 (30) 46 (28) 62 (31)       

South Vietnam 122(32) 66 (31) 56 (32) 128 (35) 59 (37) 69 (34)       

Chang Rai       83 (29.7) 68 (39.5) 29 (27.1) 167 (35.5) 80 (39.4) 87 (32.5) 

Bangkok       97 (34.8) 45 (26.2) 38 (35.5) 153 (32.5) 57 (28.1) 96 (35.8) 

Ubon Ratchathani       99 (35.5) 59 (34.3) 40 (37.4) 151 (32) 66 (32.5) 85 (31/7) 

SOFA score$  

<=1 NA 159 (75) NA NA 87 (53.7) NA NA 46 (26.7) NA NA 51 (25.1) NA 

>=2 NA 54 (25) NA NA 75 (46.3) NA NA 126 (73.3) NA NA 152 (74.9) NA 

Clinical presentation*  

Respiratory infection 158(41) 97 (45) 61 (36) 212 (58) 70 (43) 142 (71) 109 (39.1) 72 (41.9) 37 (34.6) 204 (43.3) 81 (39.9) 123 (45.9) 

Diarrhea 36 (9) 25 (12) 11 (6) 15 (4) 10 (6) 5 (2) 36 (12.9) 20 (11.6) 16 (15) 62 (13.2) 30 (14.8) 32 (11.9) 

CNS infection 40 (10.5) 8 (4) 32 (18) 42 (12) 14 (9) 28 (14) 46 (16.5) 24 (14) 22 (20.6) 66 (14) 32 (15.8) 34 (12.7) 

Systemic infection 152 (39.5) 83 (39) 69 (40) 94 (26) 68 (42) 26 (13) 59 (21.1) 35 (20.3) 24 (22.4) 72 (15.3) 39 (19.2) 33 (12.3) 

Respiratory and diarrhea       29 (10.4) 21 (12.2) 8 (7.5) 67 (14.2) 21 (10.3) 46 (17.2) 

28-day mortality   

Yes 10 (2.6) 8 (3.7) 2 (1) 16 (4) 9 (5) 7 (3) 29 (10.4) 29 (16.9) 0 32 (6.8) 32 (15.8) 0 

No 373 (96.6) 203 (95.3) 170 (98) 337 (93) 149 (92) 188 (94) 236 (84.6) 140 (81.4) 96 (89.7) 424 (90) 170 (83.7) 254 (94.8) 

Unknown 3 (<1) 2 (1) 1 (<1) 10 (3) 4 (3) 6 (3) 14 (5) 3 (1.7) 11 (10.3) 15 (3.2) 1 (0.5) 14 (5.2) 

Notes to Table 3.3: #Data were presented as n (%); NA: not applicable; $only available for adult patients; *defined based on major clinical symptom: Acute respiratory infection was defined as 

manifestation of at least one respiratory symptom for no longer than 14 days. Acute diarrhea was defined as diarrhea for no longer than 14 days. Acute CNS infection was defined as manifestation of 

CNS symptoms for no longer than 14 days or presence of signs of CNS infection on admission. Systemic infection was defined as absence of acute respiratory infection, acute diarrhea and acute 

CNS infection
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3.2. An overview of viral-like sequences detected by mNGS: 

Six MiSeq runs (5 for samples from Vietnam and 1 for samples from Thailand) were conducted. 

Subsequently, a total of over 26 million reads; median (reads/sample): 432,682; range: 540 – 

1,916,73 (Appendix 4A) were obtained from 8 pools and 458 individual samples from Vietnam. 

As for Thai patients, over 24 million reads (median number of reads per samples (range): 

139,142 (6,508 – 999,198)) was generated from 87 pools and one single sample (Appendix 4B). 

Despite the inclusion of a nuclease digestion step prior to NA isolation, viral reads only 

accounted for a small proportion of total reads, ranging from 168,028 (2.5%) to 287,307 (8.4%) 

reads/run for Vietnamese samples, and 109,472 (0.44%) reads/run for Thai samples. 

Evidence of sequences related to 47 viral species belonging to 21 families were detected in the 

samples included for analysis (details below). The detected viruses included those known to 

cause human infections, those with unknown pathogenicity, and viruses that have previously 

been reported to be contaminants found in mNGS datasets or have not been reported in human 

samples as detailed below. Additionally, co-detection of ≥2 viruses in the same samples/patients 

was recorded in 16 patients (Table 3.5). None of the 10 Vietnamese fatal cases had a viral 

etiology identified by mNGS. Two of 29 Thailand fatal cases were detected with EBV 

sequences.  
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Table 3.5 Co-detection of ≥2 viruses in the same samples/patients 

 Detected 

in 
Serum Pooled nasal-throat swabs Stool 

Vietnamese 

patients 

1 Adult HBV  
HBV and Measles 

virus 

1 Child  
Enterovirus, Influenza A and 

Cytomegalovirus 
ND 

1 Child 
Cyclovirus VN and 

Gemycircularvirus 
Cytomegalovirus ND 

1 Child  
Enterovirus and 

Human rhinovirus A 
ND 

1 Child  
Enterovirus and 

Epstein Barr virus 
ND 

1 Child Enterovirus 
Cytomegalovirus and 

Epstein Barr virus 
ND 

1 Adult 

Human immunodeficiency 

virus, Hepatitis C virus and 

Human Pegivirus 2 

ND ND 

1 Adult HBV and Dengue ND ND 

1 Adult ND ND 
Measles and 

Salivirus A 

1 Child ND 

Cytomegalovirus and 

Human respiratory syncytial 

virus 

ND 

1 Child ND 
Cytomegalovirus and Human 

mastadenovirus 
ND 

1 Child ND 
Human herpesvirus 6 and 

Saffold virus 
ND 

1 Child ND 
Enterovirus and 

Human metapneumovirus 
ND 

Thailand 

patients 

1 Adult  
Human alphaherpesvirus 1, 

Epstein Barr virus 
 

1 Child  Epstein Barr virus 
Human 

mastadenovirus 

1 Child  Human mastadenovirus 
Human 

mastadenovirus 

 

3.2.1. Detection of viruses known to cause human infection: 

Samples from Vietnam: 

Of 466 samples including 458 single samples and 8 pools, NA sequences of 21 viral species 

known to be infectious to humans were detected in 137 (137/466, 29%) clinical samples from 

125 (125/386, 32%) individuals by viral metagenomics. The detection rate was reduced to 

12.8% (60/466) samples from 13.4% (52/386) of 386 patients included for mNGS after specific 

PCR confirmatory testing. There was a significant difference in the number of viral reads 

generated by mNGS between the groups of samples that were subsequently PCR positive and 
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negative (Appendix 5), while the total number of reads obtained was similar between the two 

groups (median (range): 493,794 (11,076 – 1,203,206) vs. 461,486 (16,470 – 1,770,372), 

p=0.58). The number of reads per samples in the group of samples in which a virus was found 

by mNGS and subsequently confirmed by PCR was significantly higher than that in the group 

without a virus found (median (range): 493,794 (11,076 – 1,203,206) vs. 365,974 (540 – 

1916732), p=0.004), suggesting that the diagnostic yield of mNGS is dependent on the 

sequencing depth (i.e. the number of reads generated per sample). 

Of the detected viruses, EV was the most common virus (14/386, 3.6%) followed by HBV 

(9/386, 2.3%), CMV (9/386, 2.3%), human rhinovirus (HRV) (5/386, 1.3%), EBV (5/386, 

1.3%), rotavirus (3/386, 0.7%) (Figure 3.4A). The detailed information about the number of 

viral reads and genome coverage is summarized in Appendix 6.  
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Figure 3.4 Bar chart showing the number of viruses known to be infectious to humans or previously 

reported in human tissues detected by mNGS followed by PCR confirmation testing. (A) Vietnamese 

samples, (B) Thailand samples. 

 

Samples from Thailand 

Samples were grouped into 87 pools and one single sample for analysis (Figure 3.3.) Evidence 

of sequences related to 13 human viral species belonging to 6 different families was documented 

in 63 (71.6%) pools (Figure 3.4B). Only one CSF had no evidence of viral sequences detected 

by mNGS. After virus-specific PCR confirmatory testing, the detection rate was reduced from 

71.6% (63/88) to 34% (30/88) (Figure 3.4B). Subsequent PCR testing of individual specimens 

of pools with positive PCR results confirmed the presence of 11 virus species in 39/351 (11.1%) 

of samples from 36/279 (13%) of patients with CA sepsis of unknown cause in Thailand. Among 

detected viruses, EBV (10/279, 3.6%) and DENV (9/279, 3.2%) were the most common virus 

detected, followed by HCV (4/279, 1.4%), CMV (4/279, 1.4%), ADV (3/279, 1%), HBV (3/279, 

1%) and HIV (2/279, 0.7%) (Figure 3.5).  

B 
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Figure 3.5 Bar chart showing viruses detection by PCR confirmation on individual samples collected 

from Thailand patients with suspected CA sepsis. 

 

3.2.2. Detection of sequences related to viruses with unknown pathogenicity:  

Of 386 Vietnamese patients included for mNGS analysis, sequences related to four recently 

discovered viruses (gemycircularviruses, WU-polyomavirus, human pegivirus 2 (HPgV-2) and 

cyclovirus-VN), whose pathogenicity or tropism remains unknown, but genetic materials have 

previously been reported in human samples, were identified by mNGS in 3.4% of samples. After 

specific PCR testing, the confirmed number of positive patients was reduced to 2.1% (including 

gemycircularvirus (5/386, 1.3%), WU-polyomavirus (1/386, 0.26%), HPgV2 (1/386, 0.26%) 

and cyclovirus-VN (1/386, 0.26%)) (Figure 3.5A). For data generated from Thailand samples, 

no sequences related to such viruses of unknown pathogenicity was found. 

 Annellovirus-like sequences were found in the majority of the tested samples, 362/466 (77%) 

and 62/88 (70%) in Vietnam and Thailand samples, respectively. While sequences related to 

GB virus C were found in 5 tested samples (4/466 (<1%) individual samples from Vietnam and 

1/87 (1%) pooled sample from Thailand), human papillomavirus sequences were found in 1/466 
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(<1%) Vietnamese sample. Because these viruses are common non-pathogenic infections, they 

were not subjected to subsequent PCR confirmatory testing.  

3.2.3. Detection of sequences related to contaminants and or viruses not previously 

reported in human samples: 

Sequences related to common contaminants of mNGS datasets (including parvo-like hybrid 

virus (248), and kadipiro virus (249)) were detected in 96 and 5 samples, respectively 

(Appendix 7). Additionally, sequences related to numerous viruses that have not previously 

been reported in human tissues were also found (Appendix 7).  

3.3. Virus detection by mNGS followed by PCR confirmatory testing in different sample 

types: 

After confirmatory testing, results of individual samples were available for informative pool 

analysis (i.e. combining data from both sites). The detection rates for human viruses or viruses 

reported in human tissues were 8% (52/642) for sera/EDTA plasma, 34% (55/162) for pooled 

nasal-throat swabs and 25% (8/32) for stool samples, while all 7 CSF samples were all negative. 

More viruses were found in pooled nasal-throat swabs than in other sample types (Figure 3.6A). 

Of the tested sera, 12 different viral species were detected (including well-established human 

pathogens; HBV (n=12), DENV (n=11), EV (n=9), HCV (n=6), rotavirus A (n=3), HIV (n=3), 

human parechovirus (n=1), HRV (n=1) and EBV (n=1) (Figure 3.6A).  

Overall, viral richness documented in Vietnamese patient samples was higher than that of Thai 

patient samples. For instance, influenza A and B viruses were detected in respiratory samples 

of Vietnamese patients but in none of Thai samples. While HBV and EVs together made up the 

majority of viruses detected in sera of Vietnamese patients (Figure 3.6B), DENV dominated 

among viruses detected in sera/EDTA plasma of Thailand patients (Figure 3.6C). 
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Figure 3.6 The number of viruses detected by mNGS, which were then confirmed by viral specific PCR, in different clinical sample types. (A) 

Combined data from Vietnam and Thailand samples, (B) Vietnamese samples, (C) Thailand samples.
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3.4. Viral detection in different patient groups and clinical entities by mNGS followed by 

PCR confirmatory testing: 

Regardless of clinical sample types, pooled analysis for combined data from both sites showed 

that the highest number of distinct viral infections was recorded in patients presenting with CNS 

infection (18/86, 21%), followed by patients with respiratory infection (57/306, 18.6%), and 

patients with diarrhea (10/74, 13.5%) (Figure 3.7A and 3.8A). A similar trend was observed for 

data from Vietnam (Figure 3.7B and 3.8B). However, of the patients from Thailand, those with 

virus respiratory infections had more viral species detected and highest diagnostic yield 

compared to other clinical entities (Figure 3.7C and 3.8C).  

Of the Vietnamese patients presenting with CNS infection, picornaviruses were the most 

common viruses detected (Figure 3.8B), including enterovirus accounting for 7/15 (47%) 

detected viruses (6 in sera and 1 in a pooled nasal-throat swab), and HRV detected in a serum 

sample. Of the diarrhea patients, rotavirus, a well-known cause of diarrhea, was detected in 

blood of three patients (2 children and one adult). Meanwhile, EBV was the predominant virus 

detected in Thai patients presenting with respiratory illness. Otherwise, the remaining viruses 

were sporadically detected in samples of patients from both sites.    

In terms of age groups, EV, CMV and other respiratory viruses (e.g. respiratory syncytial virus 

(RSV) and HRV) were more frequently detected in children than in adults (Figure 3.7C). 

Meanwhile, blood-borne viruses (HIV, HCV and HBV) were more often found in adults than 

in children (Figure 3.7B). DENV and EBV were commonly found in both age groups. 

Parechovirus, an established cause of pediatric infections, was detected in one Vietnamese adult 

presenting with systemic infection.
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Figure 3.7 The numbers viruses detected by mNGS, which were then confirmed by viral specific PCR, in different patient groups and clinical 

entities (including in different samples); A) all included patients; B) adults and C) children. 
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Figure 3.8 Viral detection by mNGS, which were then confirmed by viral specific PCR, in different clinical entities. (A) Combined data from 

Vietnam and Thailand samples, (B) Vietnamese samples, (C) Thailand samples. 

C 
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Of the 180 adults with a SOFA score of ≥2, 6 Vietnamese and 13 Thailand patients had a 

potential viral etiology identified. The detected viruses included EBV (n=6), HBV (n=4), DENV 

(n=4), measles (n=3), HCV (n=3), rotavirus A (n=2), Gemycircularvirus, Salivirus A and HSV 

(1 each)) (Table 3.6). 

Table 3.6 Viral species found in adult patients with a SOFA score of ≥2 

 
Patients 

Sera/EDTA 

plasma 

Pooled nasal and throat 

swabs 
Stool 

Vietnamese 

patients 

1 Rotavirus A ND ND 

2 Hepatitis B virus ND 
Measles and hepatitis B 

virus 

3 Dengue ND ND 

4 Gemycircularvirus ND ND 

5 ND Epstein-Barr virus ND 

6 ND ND Measles and Salivirus A 

Thailand 

patients 

7 Hepatitis C virus ND ND 

8 Hepatitis C virus ND ND 

9 Hepatitis C virus ND ND 

10 Hepatitis B virus ND ND 

11 Hepatitis B virus ND ND 

12 Dengue virus ND ND 

13 Dengue virus ND ND 

14 Dengue virus ND ND 

15 ND Epstein-Barr virus ND 

16 ND 
Human alphaherpesvirus 1, 

Epstein-Barr virus 
ND 

17 ND Epstein-Barr virus ND 

18 ND Epstein-Barr virus ND 

19 ND Epstein-Barr virus ND 
Note to Table 3.6: ND: not detected 

3.5. Genetic characteristics of detected human viruses in samples of CA sepsis patients 

from Vietnam and Thailand: 

Excluding anellovirus related sequences; mNGS generated sufficient sequence data for 

informative genetic characterization and phylogenetic inference of EVs, HBV, Dengue virus in 

19 samples of CA sepsis patients from Vietnam (n=15) and Thailand (n=4). 

All seven complete viral capsid protein 1 (VP1) sequences of EVs were isolated from 

Vietnamese samples. Phylogenetically, all were classified into six different serotypes of 

enterovirus A or B (echovirus 3, echovirus 6, echovirus 9, echovirus 16, coxsackievirus A2 and 
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coxsackievirus A6) (Figure 3.9), supporting previous reports about circulating EVs in Vietnam 

(250,251). 

Seven complete HBV genomes isolated from Vietnam (n=6) and Thailand (n=1) samples. While 

Vietnamese strains belonged to genotypes HBV-B (n=5) and HBV-C (n=1), Thailand strain 

belonged to genotype HBV-C (Figure 3.10). Within genogroup HBV-C lineages, Vietnamese 

and Thailand strains located in two distinct clusters. However, Vietnamese strain showed 

closely related with previously reported strains from Thailand.  

For DENV, the reconstructed tree derived from six complete E gene sequences obtained by 

mNGS and global representatives (Figure 3.11) showed that the Thailand sequences belonged 

to serotypes 3 and 4, while Vietnamese sequences were classified into serotype 2.  As for other 

viruses, due to the small number of genomic sequences recovered (Vietnam: gemycircularvirus 

(2), RSV, influenza B virus, HCV, measles, WU-polyomavirus and cyclovirus-VN (1 each); 

Thailand: ADV (2), HIV (1)), similar phylogenetic inference was deemed uninformative.  
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Figure 3.9 Maximum Likelihood tree based on complete VP1 sequences of different enterovirus 

serotypes illustrating the relatedness between enterovirus serotypes recovered in the present study by 

mNGS (blue triangles) and representative EV serotypes. 
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Figure 3.10 Complete coding sequence based Maximum Likelihood tree showing the relationship 

between Vietnamese (red) and Thailand (blue) strains recovered by mNGS assay (red arrow) with 

representative HBV genotypes. 
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Figure 3.11 Maximum likelihood tree based on complete E gene sequences of dengue virus serotypes 

illustrating the relatedness between Vietnamese (red) and Thailand (blue) strains recovered by mNGS 

assay (red arrow) with representative Dengue virus serotypes. 
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4. Discussion: 

I present the results of mNGS to explore the human virome in 665 patients presenting with CA 

sepsis of unknown cause enrolled in a multicenter observational study across Vietnam (n=386) 

and Thailand (n=279) from 2013 to 2015. I identified 22 viral species known to be infectious to 

humans in 90 (13.5%) of 665 patients presenting with CA sepsis of unknown cause. Similar 

diagnostic yields were also obtained for samples from each site. The study, however, cannot 

directly impute sepsis causation involving the viruses identified. More specifically, on several 

occasions, viral detection in non-sterile materials such as respiratory (including EBV and CMV) 

and stool samples may simply reflect the carriage of such viruses in those bodily compartments 

rather than a clinical association. Similarly, viral detection (e.g. enterovirus) in blood of cases 

with asymptomatic infection has previously been reported (252). Additionally, the detection of 

blood-borne viruses such as HBV, HIV and HCV in sera samples might represent underlying 

diseases and not the causative pathogens leading to the hospital admission, although the 

detection of HIV RNA in a serum sample of patients presenting with systemic infection and 

CNS infection may suggest acute HIV infection. However, together with the clinical and 

epidemiologic data, the results present a provocative argument for a wide range of viral 

pathogens that might be associated with CA sepsis in Southeast Asia.  

Epidemiologically, my results support previous findings regarding the frequent detection of 

common viruses in corresponding clinical entities and age groups. For examples, I only found 

rotavirus in patients with acute diarrhea and RSV, and detected viruses of the Picornaviridae 

family (HRV and EV) mostly in children, while HBV, HCV and HIV mainly are detected in 

adults. Additionally, I detected parechovirus in blood of an adult presenting with acute systemic 

infection. Parechoviruses are a well-known cause of disease in children, ranging from acute 

gastrointestinal/respiratory infections to meningitis, but have increasingly been reported to 

cause infections in adults (253).  
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Additionally, my analysis also demonstrated the levels of viral richness and diversity were 

slightly different between Thailand and Vietnam. For instance, more viral species were found 

in Vietnamese patients than in Thai patients, despite similar diagnostic yields for both patient 

groups. Additionally, I found more samples positive for Dengue in Thai patients than in 

Vietnamese patient, while influenza viruses were only detected Vietnam. Both Thailand and 

Vietnam are endemic countries for Dengue, whilst influenza viruses are circulating globally. 

Thus, the differences might simply reflect the association with the fluctuation in prevalence of 

these viruses in respective countries during the study period.  

Non-polio enteroviruses like EV-A71 and EV-D68 have become serious global threats. In fact, 

EV-A71 has overwhelmed countries of the Asia-Pacific region (including Vietnam) with large 

outbreaks of severe hand, foot and mouth disease since 1997 (254,255). Recently, EV-D68 has 

emerged and caused large outbreaks of respiratory infections in the U.S. and is 

epidemiologically linked with acute flaccid myelitis (109). Collectively, the data presented here 

combined with results of the original report (26) expand our knowledge about the clinical burden 

posed by non-polio enteroviruses (HRV and particularly diverse EV serotypes) and 

parechoviruses in Vietnam. 

mNGS detected several recently discovered viruses (saffold virus, salivirus A, Wu-

polyomavirus, gemycircularvirus and HPgV-2), representing the first detection of these viruses 

in Vietnam and Thailand, and adding to the growing literature about the geographic distribution 

of these newly identified viruses. Saffold virus and salivirus A have been linked to 

gastrointestinal and/or respiratory infection, respectively (238,256–258), while the former has 

also been reported to be associated with myocarditis and aseptic meningitis (259,260). 

Additionally, using a mouse model, studies have shown the neurotropic potential of saffold virus 

(260–262). The pathogenicity of Wu-polyomavirus, gemycircularvirus and HPgV-2 remains 

unresolved. Likewise, it is imperative to conduct follow-up studies to determine whether the 
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detected sequences related to viruses that have not previously been reported in human tissues 

are derived from other sources, and whether the respective viruses are infectious to humans. 

The results of the present investigation also emphasize the utility of sera samples for assessing 

the etiology of sepsis. Indeed, viruses of the family Picornaviridae (enterovirus, rhinovirus, and 

parechovirus), Flaviviridae (DENV) and Caliciviridae (rotavirus) were detected by mNGS in 

the included sera. Notably, as per the design of the original etiological study, sera were not 

tested for these viruses by PCR (26). Likewise, while it remains unknown why the original study 

failed to detect common causes of respiratory/enteric infections (influenza A/B virus, EV, etc.) 

in pooled-nasal swabs by multiplex PCR assays and substantial cases of DENV in serum/plasma 

samples (26), a slight decrease in sensitivity of the multiplex PCR assays used as compared to 

that of respective monoplex PCR assays has been reported elsewhere (236).  

Virus detection by mNGS is based on the detection of matching viral reads regardless of their 

number or resulting genome coverage. While few metagenomic studies published to date 

reported the use of specific PCR to subsequently verify metagenomic results, the failure of viral 

specific PCR to confirm the original mNGS detections for many patients in the present study 

may be a consequence of cross-talk (bleed over) contamination occurring as part of the 

sequencing procedure, a well-documented phenomenon (263–265). An alternative explanation 

is the low sensitivity, likely attributed to nucleotide mismatches, of some of PCR primers used 

to confirm infection.  

The analytical approaches were slightly different for samples from Vietnam (mostly individual 

samples were analysed) and Thailand (mostly samples were analysed in pools). Despite these 

variations, comparable detection rates by mNGS were obtained, 13.4% (52/368) for Vietnamese 

patients and 13.6% (38/279) for Thai patients. Thus, the data suggest that the absence of human 

viral pathogens in 87% of 665 patients may be attributed to some possibilities. It might be the 

case that the sensitivity of current mNGS approach was not sufficient to detect pathogens 
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presenting in the tested samples with low viral load. This is even more prominent in cases where 

the number of reads obtained were supposedly insufficient (Supplementary Figure 1), as 

suggested by the difference in the number of obtained reads between the groups of samples with 

and without a virus identified. Clearly, future research should address at what level of 

sequencing depth mNGS based approaches need to achieve in order to reach the required 

sensitivity, while maintaining the cost effectiveness. Of equal importance is to identify the 

factors (e.g. sample types and library preparation/sequencing methods) that may affect the 

sequencing depth (i.e. the number of reads obtained) and the assay sensitivity. Additional 

possibilities include the presence of sepsis pathogen in non-analyzed tissues, the presence of 

non-viral pathogens (e.g. bacteria and parasites) in tested specimens, and/or the inclusion of 

patients with non-infection (e.g. those caused by toxicity with clinical presentations mimicking 

infections) in the study. 

In summary, I report the application of mNGS in patients presenting with CA sepsis of unknown 

etiology. My results highlight challenges in identifying possible viral culprits in patients with 

CA sepsis, and that diverse viral agents might be responsible for such devastating conditions in 

tropical settings like Southeast Asia. Therefore, rigorous testing for a wide range of viral 

pathogens in samples from different body compartments collected early after symptom onset 

when viral loads are usually highest is likely to have the greatest yield. Under these 

circumstances, mNGS is a promising approach because of its capacity to simultaneously detect 

and genetically characterize viral pathogens in patient samples without the need of prior 

knowledge about genomic information of the targeted pathogens, thereby enhancing the ability 

to identify infectious etiologies of sepsis, and facilitating optimal targeted management.   



 110 

Chapter 4:  Detection and Characterization of Human Pegivirus 2 in 

Vietnam 

1. Introduction: 

Recently, a new pegivirus species, namely human pegivirus 2 (HPgV-2) or human hepegivirus 

1 (herein I use the term HPgV-2), of the genus Pegivirus and the family Flaviviridae was 

discovered by two independent research groups in the United States (266,267).  

HPgV-2 genome is positive single-stranded RNA with about 9,8kb in length. It consists of a 

single open reading frame encoding for a multifunctional polyprotein (266). Genetically, the 

level of nucleotide identity between individual HPgV-2 strains identified to date ranges from 

93% to 94.4%, while it shares ≤32% amino acid similarity with the other pegivirus species (266).  

Existing evidence suggests that HPgV-2 is a blood-borne virus and is more frequently detected 

in patients with HCV infections, particularly HCV and human HIV co-infection, although 

detection rates vary between studies and patient groups. In the U.S. study by Berg et al, HPgV-

2 was detected in 11/982 (1.1%) of patients with active HCV infections, while HPgV-2 RNA 

was absent in patients with HIV or HBV infections (n=494 and 488, respectively) as well as in 

volunteer blood donors, who were HIV, HBV and HCV negative, (n=476) (266). Most recently, 

HPgV-2 RNA was detected in 0.29% (7/2440) and 3.47% (7/202) of HCV mono-infected 

patients and HCV/HIV co-infected subjects in China, respectively (268). Among injection drug 

users, HPgV-2 RNA was detected in 10.9% (17/156) of individuals who were either HCV or 

anellovirus SEN virus D positive, in the U.S. (269), and in 5.7% (4/70) and 3% (8/270) of HCV 

and HIV co-infected subjects in Guangdong and Sichuan, respectively, in China (270). 

HPgV-2 viremia has been shown to persist for up to 6158 days (267,269) suggesting that HPgV-

2 can establish chronic infection. Although factors predisposing to chronic infection are unclear, 
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codependence between HPgV-2 other viruses, particularly HCV, may play a role analogous to 

that of HBV and hepatitis delta virus (271).  

Given the high burden of HCV and HIV infections worldwide, and the potential clinical 

significance of HPgV-2, in this chapter I further characterized the HPgV-2 sequences detected 

in a HIV and HCV co-infected patient by mNGS in Chapter 3. I also aimed to investigate the 

geographic distribution, genetic diversity, and prevalence of this virus to help prioritize the 

development and implementation of appropriate intervention strategies.  

2. Methods and materials: 

2.1. Patients and clinical samples for initial viral metagenomic analysis: 

Patient information and clinical samples were derived from a multicenter observational study 

designed to evaluate the causes of CA sepsis in children and adults in Southeast Asia, as 

described in Chapter 3 (26). All patients enrolled at sites in Vietnam who did not have an 

etiology identified via extensive clinical and reference laboratory work-up in the original study 

were selected for additional viral metagenomic analysis in this study, as described in Chapter 3.  

2.2. Clinical samples and viral metagenomic datasets for subsequent human pegivirus 2 

screening: 

After the initial detection of HPgV-2 in plasma of one patient of the CA sepsis infection cohort, 

I expanded the testing to other clinical studies and metagenomic datasets to further investigate 

its prevalence and genetic diversity. These consisted of patients with HCV (n=394), HBV 

(n=103), hepatitis A virus (HAV) (n=71), HIV (n=78) and healthy control subjects (n=80) 

(Table 4.1). These patients participated in a clinical trial evaluating the hepatic safety of 

raltegravir/efavirenz-based therapies in antiretroviral-naive HIV- infected subjects co-infected 

with HCV. 
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Table 4.1 Samples and viral metagenomic datasets used for screening of HPgV-2, and screening 

results 

Disease No. Screening approach 
Detected 

in 

Enrolment 

period 
Setting 

Hepatitis C 

virus and 

HIV 

coinfection* 

79 

HPgV-2 specific 

PCR and reference-

based mapping of 

obtained viral 

metagenomics data 

5 
2010 – 

2013 
Hospital for Tropical Diseases, Ho 

Chi Minh City, Vietnam 

 HIV mono-

infection 
78 

HPgV-2 specific 

PCR 
0 

2010 – 

2013 

Hepatitis A 

virus 
71 

HPgV-2 specific 

PCR 
0 

2012 – 

2016 

Hepatitis B 

virus 
103 

HPgV-2 specific 

PCR 
0 

2012 – 

2016 

Hospital for Tropical Diseases, Ho 

Chi Minh City, Dong Thap General 

Hospital, Dong Thap, Khanh Hoa 

Provincial Hospital, Nha Trang, Dac 

Lac Provincial Hospital, Dac Lac, 

Hue National Hospital, Hue; All in 

Vietnam 

Hepatitis C 

virus* 
394 

Reference-based 

mapping of obtained 

viral metagenomics 

data 

0 
2012 – 

2016 

Healthy 

volunteers 
80 

HPgV-2 specific 

PCR 
0 

2010 – 

2013 

Hospital for Tropical Diseases, Ho 

Chi Minh City, Vietnam 
Note: *Whole-genome sequences of hepatitis C virus were obtained using a viral metagenomics approach (221). The resulting 

metagenomics datasets were then subjected to a reference-based mapping approach to search for the presence of HPgV-2 sequences. 

 

2.3. HPgV-2 PCR: 

A previously described multiplex real time PCR (RT-PCR) targeting two different conserved 

regions of the HPgV-2 genome (5’ untranslated region (5’UTR) and non-structural 2-3 coding 

region (NS2/3)) were employed to screen for HPgV-2 in clinical samples (245). In details, the 

multiplexed RT-PCR was carried out using the SuperScript III One-Step qRT-PCR System with 

Platinum Taq DNA Polymerase (Invitrogen, Carlsbad, CA, US) and performed in a LightCycler 

480 II machine (Roche Diagnostics GmbH, Mannheim, Germany). The PCR reaction contained 

5µl of viral RNA, 12.5µl of 2x reaction mix, appropriate concentrations of primers and probes 

(245) and 0.5µl of enzyme mix. The thermal cycling condition consisted of one cycle of 60oC 

for 30 min, 95oC for 1min followed by 40 cycles of 95oC for 30s, 60oC for 1min (including 

fluorescence acquisition) and 72oC for 30s. Details of used reagents and thermal condition were 

listed in Table 4.2. 
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Table 4.2 List of reagents, primer sequences and thermal cycling condition used for multiplex HPg-V2 

RT PCR assay. 

Reagents Oligo sequences 5’-3’ Concentration 
Used volume 

(per reaction) 

Thermal cycling 

condition 

Reaction mix 
NA 

2X 12.5μl 

60oC for 30 min, 

95oC for 1 min, 

followed by 40cycles 

of 95oC for 30s and 

60oC for 1 min (read), 

and 72oC for 30s, and 

37oC for 40s  

 

Enzyme mix NA 10U/μl 0.5μl 

HpgV-2 5UTR 

forward primer 
CGCTGATCGTGCAAAGGGATG 10μM 0.4μl 

HpgV-2 5UTR 

reverse primer 
GCTCCACGGACGTCACACTGG 10μM 1.6μl 

HpgV-2 5UTR 

probe 

Cy5-

GCACCACTCCGTACAGCCTGA

T-BHQ2 
10μM 1.6μl 

HpgV-2-NS2 

forward primer 
GTGGGACACCTCAACCCTGAA

G 
10μM 0.3μl 

HpgV-2 NS3 

reverse primer 
CATTGACCGACCTGTCAGGGA

AGA 
10μM 0.3μl 

HpgV-2 NS2/3 

probe 

FAM-

CCTGGTTTCCAGCTGAGTGCT

CC-BHQ1 
10μM 0.5μl 

Note: NA: not applicable 

2.4. Whole genome sequencing of HPgV-2:  

To recover the whole-genome sequences of HPgV-2, HPgV-2 positive samples were re-

sequenced using the viral metagenomics assay described above. However, to increase the 

chance of obtaining more HPgV-2 sequences from each individual samples, the sequencing 

depth was increased by reducing the total number of samples multiplexed in one run (i.e. from 

96 to 6 samples).  

To close the remaining gaps (when relevant), several overlapping PCR primers designed based 

on the obtained HPgV-2 sequences were employed. For each PCR amplification, Super Script 

III one-step RT PCR with platinum Taq high fidelity DNA polymerase (Invitrogen) was used 

together with the corresponding PCR primer sets. The obtained PCR products were directly 

Sanger-sequenced using corresponding PCR primers. PCR primers and PCR conditions are 

listed in Table 4.3. 

 

 



 114 

Table 4.3 List of primers used to close the gaps of HPgV-2 genomes 

Name of primers Oligo sequences (5’-3’) Thermal cycling conditions 

HPgV-2-3491F2 CTTTACTGAGGTCGTGGATG 1 cycle of 30min at 55oC, 2min at 94oC and 

40 cycles of 15s at 94oC, 30s at 55oC and 1 

min at 68oC and 7 min at 68oC HPgV-2-4924R2 CAACACCCGCAGTCGATGAC 

HPgV-2-5874F4 GTCTGCTCTGTGCTGGTTGTC 1 cycle of 30min at 60oC, 2min at 94oC and 

40 cycles of 15s at 94oC, 30s at 60oC and 1 

min at 68oC and 7 min at 68oC HPgV-2-6811R4 TGCCATTTGTCGCCCCGCCG 

HPgV-2-3491F2 CTTTACTGAGGTCGTGGATG 1 cycle of 30min at 50oC, 2min at 94oC and 

40 cycles of 15s at 94oC, 30s at 50oC and 1 

min at 68oC and 7 min at 68oC HPgV-2-R-inAmp2 GAGTATGTTGGTGTCACAGC 

HPgV-2-F-inAmp2 GCTGTGACACCAACATACTC 1 cycle of 30min at 50oC, 2min at 94oC and 

40 cycles of 15s at 94oC, 30s at 50oC and 1 

min at 68oC and 7 min at 68oC HPgV-2-4924R2 CAACACCCGCAGTCGATGAC 

HPgV-2-7759F-ref GAGTCTGTGACGTCAATGGAG 1 cycle of 30min at 55oC, 2min at 94oC and 

40 cycles of 15s at 94oC, 30s at 55oC and 1 

min at 68oC and 7 min at 68oC HPgV-2-9284R-3UTR CATATCAGTCCTGATGGCGCG 

HPgV-2-F2-S62 GAACTAACGCAGCAGCTCTC 1 cycle of 30min at 55oC, 2min at 94oC and 

40 cycles of 15s at 94oC, 30s at 55oC and 1 

min at 68oC and 7 min at 68oC HPgV-2-R2-S62 CATAAAAGACCATGGCGCTC 

HPgV-2-F2-S65&278 CTGACCCAATACTCAGTGTG 1 cycle of 30min at 52oC, 2min at 94oC and 

40 cycles of 15s at 94oC, 30s at 52oC and 1 

min at 68oC and 7 min at 68oC HPgV-2-R3UTR-S278 GTAAACGCGCGATGTGTCTG 

HPgV-2-1368F1 CCACCAGCACCGATTTCCGC 1 cycle of 30min at 55oC, 2min at 94oC and 

40 cycles of 15s at 94oC, 30s at 60oC and 1 

min at 68oC and 7 min at 68oC HPgV-2-R1-1 CATATACATGGCGCACGCTC 

HPgV-2-F1-1-S62 GGCGAGTATTTGGTCTAGAG 1 cycle of 30min at 52oC, 2min at 94oC and 

40 cycles of 15s at 94oC, 30s at 55oC and 1 

min at 68oC and 7 min at 68oC HPgV-2-R1-S62 CATCCACGACCTCAGTAAAG 

HPgV-2-F2-2-S65 GTTGAGCTGCTGGAAGAAAC 1 cycle of 30min at 52oC, 2min at 94oC and 

40 cycles of 15s at 94oC, 30s at 55oC and 1 

min at 68oC and 7 min at 68oC HPgV-2-R2-2-S65 CTGTAGGATTGCATGCATGG 

HPgV-2-S278-F CTTGGTATTCGTGCAGTGAG 1 cycle of 30min at 45oC, 2min at 94oC and 

40 cycles of 15s at 94oC, 30s at 45oC and 1 

min at 68oC and 7 min at 68oC HPgV-2-S278-R CTGGAGTAGTTGTGTAGTAC 

HPgV-2-S62-F GGTATGTCCGAAATCTATGC 1 cycle of 30min at 48oC, 2min at 94oC and 

40 cycles of 15s at 94oC, 30s at 50oC and 1 

min at 68oC and 7 min at 68oC HPgV-2-S62-R GGTACAGTATTTGAGGTAGC 

HPgV-2-S65-F GTGATCACGGTCATGCATAC 1 cycle of 30min at 52oC, 2min at 94oC and 

40 cycles of 15s at 94oC, 30s at 55oC and 1 

min at 68oC and 7 min at 68oC HPgV-2-S65-R CATAGGTCATATACGCCAAG 

 

2.5. MiSeq sequence data processing:  

Paired-end reads generated by Illumina MiSeq platform, were then processed to remove adapter 

sequences using Illumina vendor software (Illumina). The resulting sequence data was analyzed 

by an in-house viral metagenomic analysis pipeline running on a 36-nodes Linux cluster as 

previously described (190). Subsequently any suspected viral hits were mapped to the 

corresponding viral genome sequences using Geneious 8.1.5 (Biomatters, San Francisco, CA, 

US).  
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2.6. Genetic characterization and Phylogenetic analysis: 

Multiple sequence alignment of HPgV-2 sequences available in GenBank and from the present 

study (Vietnam: n = 5, China: n=2, UK: n = 2 and US: n = 20) and other pegivirus species 

(n=83) was generated using the ClustalW alignment tool available in Geneious (Biomatters). 

Maximum likelihood phylogenetic trees based on amino acid sequences of nonstructural regions 

(NS3 and NS5B) and entire region of coding sequences (CDS) were reconstructed using IQ 

TREE software (v1.4.3)(246). The LG matrix with empirical amino acid frequencies, a gamma-

distribution (4 rates) and invariant sites (LG+F+I+G4) as suggested by IQ TREE was employed 

to re-construct the phylogenetic trees. Support for individual nodes was assessed using a 

bootstrap procedure of 10,000 replicates.  

Codon-based method (HyPhy) available in MEGA5 (272) was used for measure natural 

selection pressure on evolution of HPgV-2. 

Screening for minor variants was performed using the single nucleotide polymorphism (SNP) 

tool available in Geneious (Biomatters). A sequencing depth of 300 and minimum variant 

frequency of >2.5% were chosen as cut-off values.  

2.7. Sequence accession numbers: 

The HPgV-2 sequences generated in this study were submitted to NCBI GenBank under 

accession number MH194408-MH194413. 

2.8. Ethics  

The studies were approved by the corresponding institutional review board of the local hospitals 

in Viet Nam where patients were enrolled, and the Oxford Tropical Research Ethics Committee. 

Written informed consent was obtained from either the participant, or the participant’s parent or 

legal guardian. 

2.9. Contributions from others: 

Clinical samples and data collection were carried out by participating clinicians and research 
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staff of the respective collaborating hospitals.  

3. Results: 

3.1. Metagenomic detection of human pegivirus 2 sequences in a serum sample of an adult 

patient with CA sepsis infection:  

As described in Chapter 3, the analysis of metagenomic data revealed that in one serum sample, 

of 98,344 obtained reads, 5,342, 430 and 273 reads were of HCV, HIV and HPgV-2 sequences, 

respectively, which was then confirmed by corresponding HCV/HIV/HPgV-2 specific RT-

PCRs (Table 3.3). Additional HPgV-2 sequence screening and HPgV-2 RT-PCR testing did not 

detect HPgV-2 in any of the remaining serum, swab or stool samples of the undiagnosed patients 

included in metagenomic analysis. 

3.2. Prevalence and persistence of HPgV-2 in HCV infected subjects: 

In order to explore the prevalence of HPgV-2 in HCV infected patients in Vietnam, a reference-

based mapping strategy was applied to screen for HPgV-2 sequences in available viral 

metagenomic datasets, which were generated from 394 plasma samples of HCV mono-infected 

patients and 79 plasma samples from patients with HIV/HCV coinfection using the same viral 

metagenomic procedure employed in the present study (Table 4.1). Subsequently, HPgV-2 

genomic sequences were detected in five of 79 HIV/HCV co-infected individuals, but in none 

of 394 HCV mono-infected subjects from Vietnam (Table 4.1).  

To confirm the result of the metagenomic screening, HPgV-2 multiplex RT-PCR was then 

employed to test the extracted RNA samples from all 79 HCV/HIV co-infected subjects. HPgV-

2 RNA was detectable in all five patients whose viral metagenomic results contained HPgV-2 

sequences, whilst no additional HPgV-2 was detected in the remaining 74 samples.  

Multiplex RT-PCR screening of HPgV-2 RNA in plasma samples of matched controls (78 HIV 

infected patients and 80 healthy volunteers) of the 79 HCV/HIV co-infected patients revealed 



 117 

no evidence of HPgV-2. Additionally, HPgV-2 RNA was detected in none of plasma samples 

from patients with HAV (n=71) and HBV (n=103) infection (Table 4.1). 

In order to study the persistence of HPgV-2, the HPgV-2 multiplex RT-PCR was utilized to 

detect HPgV-2 RNA in follow-up plasma samples collected from six patients (one from the 

sepsis cohort and five from the HCV trial) whose first samples were HPgV-2 positive (Table 

4.4). These six patients were also positive for HIV, HCV and HPgV-2 PCR at enrollment.  

HPgV-2 RNA was detectable for up to 18 months in three out of five patients who were 

HCV/HIV co-infected. In one patient, HPgV-2 RNA, but not HCV RNA became undetectable 

at two follow-up time points (month 6 and 12). HPgV-2 RNA was not detected in the available 

follow-up serum collected 14 days after enrolment from the sepsis patient.  

Table 4.4 Detection of HPgV-2 in longitudinal samples 
 

Note: *HCV viral load undetectable, NA: not available. #All prior collected samples were PCR positive for HCV, HIV and HPgV-2. 

 

 

3.3. Demographics and clinical characteristics of HPgV-2 infected patients: 

Demographic details and clinical presentations of the six HPgV-2 infected patients are presented 

in Table 4.5. All infected patients were male. The patient with CA sepsis infection was recorded 

as surviving to 28 days of follow up. All 5 HCV/HIV co-infected patients had CD4 counts >200 

cells/µl at baseline and at 6, 12 and 18 months follow up (Table 4.5), but none received specific 

anti-HCV drugs, which was attributed to drug unavailability/unaffordability during the time of 

the study period. Only one patient (ID.6) had abnormal alpha-fetoprotein (AFP) levels and 

fibroscan results (Table 4.5) at baseline and during follow up. During follow up, hepatitis and 

Patient
# 

Serum samples collected at 

14 days after  

enrolment 

6 months after 

enrolment 

12 months after 

enrolment 

18 months after 

enrolment 

1 negative* NA NA NA 

2 NA positive positive positive 

3 

 

 

NA positive positive positive 

4 

 

 

NA positive positive positive 

5 

 

NA positive* positive* negative* 

6 NA positive negative negative 



 118 

splenic abnormalities were detected in 4/5 patients, which were likely attributable to HCV 

infection (Table 4.5).  
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Table 4.5 Demographic and clinical features of HPgV-2 infected patients 

Patient  Gender 
Age 

(years) 

Time 

point 

(months) 

HCV 

RNA 

(+) 

HPgV2 

RNA 

(+) 

Total 

Bilirubin 

(µmol/L) 

Direct 

Bilirubin 

(µmol/L) 

AST 

(UI/L) 

ALT  

(UI/L) 

CD4 count 

(cells/ µL) 

HIV RNA 

(x10^3 copies/µL) 

AFP 

(mg/ml) 

FibroScan 

result 

(kPa) 

Note 

1* Male >=18-<40 NA NA NA NA NA NA NA NA NA NA NA NA 

2 Male 47 

baseline yes yes 9.8 0.7 30 24 331 120 1.7 11.8  

1 NA NA 4.2 3 91 89 NA NA NA NA  

2 NA NA 5.5 3 81 79 NA NA NA NA  

3 NA NA 4.7 2.8 44 47 NA NA NA NA  

6 Yes yes 4.7 1.6 81 83 518 0.07 2.3 NA  

9 NA NA 5.8 2.1 47 67 NA NA NA NA  

12 yes yes 6.9 3.4 55 61 364 0.04 2.6 11.8 hepatitis 

15 NA NA 4.7 2.3 41 43 NA NA NA NA  

18 yes Yes 4.8 2.8 37 40 428 undetectable 2.14 6.1 hepatomegaly 

3 Male 32 

baseline yes Yes 4.7 3.4 39 10 288 0.198 0.999 6.5  

1 NA NA 13.7 5.9 63 19 NA NA NA NA  

2 NA NA 9.1 3.4 33 13 NA NA NA NA  

3 NA NA 9 3.8 34 12 NA NA NA NA  

6 yes yes 12.8 4.7 50 19 510 0.04 1.68 NA  

9 NA NA 6.7 4 48 21 NA NA NA NA  

12 yes yes 9.5 5.3 63 25 622 undetectable 1.88 6.2 
liver fibrosis, 

hepatomegaly 

15 NA NA 7.8 2.4 42 26 NA NA NA NA  

18 yes yes 7.6 3.8 42 23 622 undetectable 1.53 7.2 hepatitis 

4 Male 35 

baseline yes yes 7.8 4.9 67 55 290 61.1 2.96 6.4  

1 NA NA 6.7 2.4 54 51 NA NA NA NA  

2 NA NA 13.2 6.5 66 62 NA NA NA NA  

3 NA NA 9.7 3.6 44 52 NA NA NA NA  

6 yes yes 10.7 6.3 77 80 411 undetectable 3.1 NA  

9 NA NA 8.8 4.6 66 65 NA NA NA NA  

12 yes yes 8.8 3.9 76 72 337 undetectable 4 8.5 
homogeneous 
hepatomegaly 

15 NA NA 9.2 4.3 50 46 NA NA NA NA  

18 yes yes 13 6.3 108 129 455 undetectable 4.1 8.1 
Splenomegaly, liver 

fibrosis 

5 Male 34 

baseline no yes 4.3 2.8 33 43 291 70.2 3.67 6.1  

1 NA NA 2.6 2.2 28 27 NA NA NA NA  

2 NA NA NA NA NA NA NA NA NA NA  

3 NA NA 9.63 4.15 40.18 32.58 NA NA NA NA  

6 no yes 6.5 2.1 35 43 287 undetectable 3.83 NA  

9 NA NA 3.1 2.3 68 82 NA NA NA NA  

12 no No 5.4 2.6 33 40 484 undetectable 4.48 4.5  

15 NA NA 5.7 2.7 33 59 NA NA NA NA  

18 no No 6.6 2.6 73 85 546 undetectable 3.9 3  

6 Male 31 

baseline yes yes 4.5 2.4 52.2 36.5 295 96.8 12.7 22.8  

1 NA NA 7.2 1.5 58 42 NA NA NA NA  

2 NA NA 14.8 7.2 45 24 NA NA NA NA  

3 NA NA 11.5 3.8 44 33 NA NA NA NA  

6 yes No 17.1 12.9 64 62 579 undetectable 16.74 NA  

9 NA NA 10.2 8.2 114 103 NA NA NA NA  
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12 yes No 12.3 4.3 114 121 711 undetectable 46.3 26.3 
mild liver fibrosis, 

mild splenomegaly 

15 NA NA 13.6 7.3 95 91 NA NA NA NA  

18 yes No 10.6 4.9 82 89 816 undetectable 61.01 NA 
hepatomegaly, 

splenomegaly 
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3.4. Genetic characterization of Vietnamese HPgV-2 strains: 

Utilizing a combination of deep sequencing and overlapping PCR approaches, five nearly 

complete genomes (coverage of >92%) were obtained, whilst in one case a genome coverage of 

69.1% was achieved. The results of whole genome sequencing efforts are summarized in Table 

4.6. 

Table 4.6 Whole genome sequencing results 

Patient Genome coverage %  

(bp) 

Mean of Depth 

(number of reads per nucleotide) 

1 93.3% (8,897 of 9,538) 146 ± 296.6 

2 99.0% (9,446 of 9,538) 2060 ± 2453 

3 69.1% (6,590 of 9,538) 174 ± 313.3 

4 98.0% (9,346 of 9,538) 32531.7 ± 37335.6 

5 92.9% (8,857 of 9,538) 34 ± 75 

6 95.2% (9,076 of 9,538) 2022.2 ± 3188.3 

 

Pairwise comparison of 5 HPgV-2 polyprotein coding regions obtained in this study showed 

overall sequence identities at the nucleotide and amino acid level of ≥94.6% and ≥95.3%, 

respectively. Similar genetic distances were observed while comparing Vietnamese sequences 

with global sequences as well as between global sequences (Appendix 8), suggesting a close 

relatedness between Vietnamese HPgV-2 and global HPgV-2 strains. Phylogenetic analyses 

revealed a tight cluster between Vietnamese viruses and global strains sampled from China, the 

US and the UK (Figure 4.1).  
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Figure 4.1 Phylogenetic tree of amino acid sequences of global HPgV-2 strains and other pegiviruses. 

Trees were based on amino acid sequences of CDS (A), NS3 (B) and NS5B (C) proteins, respectively. 

Vietnamese HPgV-2 strains were denoted in red, and those from the U.S., UK, and China are in green, 

yellow and blue, respectively. Scale bars indicate number of amino acid substitutions per site. 

 

3.5. Intra-host variants and natural selection: 

The depth of deep sequencing results was sufficient for intra-host diversity investigation in 2/6 

samples under-investigation. In total, there were 26 and 37 positions carrying minor variations 

detected in each corresponding dataset, of which 38% (10/26) and 35% (13/37), respectively, 

were nonsynonymous (Table 4.7).  

The estimated ratios of nonsynonymous/synonymous of polyprotein coding and individual 

protein coding genes of HPgV-2 were well below 1 (Appendix 9), suggesting that the evolution 

of HPgV-2 was driven by purifying selection. 

 

 

 

C – NS5B 
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Table 4.7 List of nonsynonymous minor variations 

Patient Change Mutation Site Gene Minor variant frequency 

(%) 

2 

A -> G T>A 540 S 2.9 

A -> G S>G 159 E2 6.2 

T -> C S>G 1592 E2 2.8 

G -> A K>R 1786 E2 23.8 

T -> C L>P 2542 X 3.3 

A -> G S>G 2664 X 18.5 

C -> T L>F 5391 NS3 24.8 

A -> C I>L 5529 NS4A 2.5 

A -> G R>K 5752 NS4B 12.3 

C -> G P>A 6690 NS5A 20.7 

C -> T R>C 8682 NS5B 10.2 

G -> A R>H 8893 NS5B 6.4 

T -> G W>G 9294 NS5B 2.6 

4 

G -> A N>S 1039 E1 36 

G -> A T>A 1188 E2 34.5 

G -> A K>R 1786 E2 19.6 

A -> G T>A 2271 X 33.3 

C -> T F>L 2433 X 49.9 

C -> T I>T 3244 NS2 20.8 

T -> C P>S 5225 NS3 48 

A -> G R>K 6304 NS4B 13 

G -> A A>T 7968 NS5B 28.4 

G -> A H>R 8386 NS5B 12 

 

4. Discussion: 

I report the detection and genetic characterization of HPgV-2 in Vietnam, and describe the 

observed demographic and clinical characteristics of HPgV-2 infected patients.  

Together with previous reports from China, Iran, Cameroon and the U.S. (266–

268,270,273,274), my findings further emphasize the strong association between HPgV-2 and 

HCV, especially HCV/HIV co-infection. The absence of HPgV-2 in 394 HCV infected patients 

may have been attributed to the small sample size and the fact that the reported prevalence of 

HIV among HCV-infected patients was ≤6.5% (275,276). Of note, HPgV-2 was detected in only 

0.29% of HCV mono-infected patients in China. 

Previous reports have shown that HPgV-2 viremia can either be transient or persistent. Likewise, 

in the present study, HPgV-2 RNA became undetectable after 14 days in a HCV/HIV co-
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infected patient presenting with community-acquired infection of unknown origin, but remained 

detectable in other HCV/HIV patients through up to 18 months of follow-up.  

The pathogenic potential of HPgV-2 remains unknown. However, given its low detection rates 

in blood donors in the U.S. and China (266,268), and absence in healthy subjects (present study), 

but tight association with HCV/HIV infection, its role in the natural history of HCV/HIV 

disease/response to treatment warrants further research.  

In the era of sequence-based virus discovery, a key question is whether the detected genome 

represents live virus or a non-replication competent genome. Addressing this question would 

require recovery of virus in cell culture. However, the detection of minor variations across two 

HPgV-2 genomes in this study suggests that possibly viral replication had occurred in the 

infected patients. 

Phylogenetically, the close relatedness between Vietnamese HPgV-2 strains and global strains 

suggests HPgV-2 has a wide geographic distribution.  

My study has some limitations. First, I only retrospectively tested available archived samples 

without formal sample size estimation, which may have explained the absence of HPgV-2 in the 

remaining 394 HCV patients. Second, a serological assay was not employed to screen for HPgV-

2 specific antibodies in patients’ plasma. Third, only multiplex PCR with primers based on a 

limited number of available HPgV-2 sequences were utilized. Therefore, genetically diverse 

HPgV-2 strains may have been missed. Collectively, the prevalence of HPgV-2 infections in 

Vietnam may have been underestimated.  

Collectively, the results expand our knowledge about geographic distribution, demographics 

and genetic diversity of HPgV-2. Because HCV and HIV infections are major global public 

health issues, the extent to which HPgV-2 may interact with HCV/HIV in co-infected patients 

with possible clinical consequences, warrants further research. 

 



 126 

Chapter 5: Viral metagenomic analysis of cerebrospinal fluid from 

Vietnamese patients with acute central nervous system infections of 

unknown origin 

1. Introduction: 

Here I focused on using a mNGS approach to search for known and unknown viruses in CSF 

samples collected from Vietnamese patients with CNS infections of unknown causes who were 

enrolled in a hospital-based surveillance study conducted during 2012–2016. 

2. Materials and methods: 

2.1. The clinical study and selection of cerebrospinal fluid samples for mNGS analysis: 

The study used CSF samples collected from patients with suspected CNS infection enrolled in 

a hospital based surveillance program conducted in Vietnam from December 2012 to October 

2016 (277). The study was conducted as part of the VIZIONS (Vietnam Initiative on Zoonotic 

Infections) project (277), and patient recruitment was carried out at seven provincial hospitals 

across Vietnam. After collection, as per the study protocol, all CSF samples were tested for a 

range of pathogens by using the diagnostic work-up of the clinical study (Appendix 3). The 

remaining volume of the CSF samples were stored at   -80°C for further testing. 

Here, I focused on samples collected from patients of unknown origin from 4 provincial 

hospitals in central (Hue and Khanh Hoa), highland (Dak Lak), and southern (Dong Thap) 

Vietnam (Figure 5.1), representing 3 distinct geographic areas in Vietnam. To increase the 

chance of detecting a virus in the CSF samples, only patients with CSF leukocyte counts >5 

cells/mm3 and an illness duration <5 days were selected. 
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Figure 5.1 Flowchart showing an overview of diagnostic results of the original study of patients with 

suspected CNS infections admitted to one of the study settings in Vietnam from December 2012 to 

October 2016. The map indicates places (red dot) where samples were collected. 

 

2.2. mNGS and sequence data analysis: 

The optimised mNGS assay described in Chapter 2 was used to analyse the selected CSF 

samples. To identify potential viral hits, the obtained sequences were analysed using an in-house 

viral metagenomic pipeline running on a 36-node Linux cluster as described in Chapter 3.  

2.3. PCR confirmatory testing of mNGS results: 

PCR assays were carried out to confirm mNGS hits for each specific virus identified from the 

viral metagenomic pipeline. Depending on availability of CSF, the PCR confirmations were 

performed either on leftover NA or newly extracted NA. A viral mNGS result was considered 

positive only if it was subsequently confirmed by PCR analysis of the original NA samples. The 

nucleotide sequences of primers and probes used for PCR confirmatory testing in the current 

study were presented in Table 5.1 (278).    
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Table 5.1 List of primers and probes used for PCR confirmatory 

Viruses 
Oligo sequence (5'-3') 

Sources 
Forward Reverse Probe 

HBV 
GGACCCCTGCTCGTGT

TACA 

GAGAGAAGTCCACC

MCGAGTCTAGA 

FAM-

TGTTGACAARAATCCTCACAAT

ACCRCAGA-TAMRA 

Newly 

designed 

Rotavirus 
ACCATCTWCACRTRA 

CCCTC 

GGTCACATAACGCC

CCTATA 

FAM-
ATGAGCACAATAGTTAAAAGCT

AACACTGT CAA-BHQ1 

(231) 

Enterovirus 
CCCTGAATGCGGCTAA

T 

ATTGTCACCATAAG

CAGCC 

CY5-
ACCCAAAGTAGTCGGTTCCG -

BHQ3 

(232) 

HIV1 
GGTGCGAGAGCGTC 

ATGCTRTCATCATYT

CTTC 
 

(235) 
ATGGGTRAARGTARTA

GAAGAAAAGGG 

CTGCCTGRTGYCCY

CCCACTA 
 

Gemycircularvirus 

GTGGTAATGGTCGTCG

GTATTC 

CCTCATCATTCGTAG

TAAGCAATCTCA 
 (243) 

AGTCCTGAATGTTTCC

ACTCG 

CAAGCGTTCCCTCG

AAAATGAC 
 Newly 

designed 

Cyclovirus VN 
GAGCGCACATTGAAAG

AGCTAAA 

TCTCCTCCTTCAATG

ACAGAAACAAC 

FAM-

CGADAATAAGGMATACTGCTCT
AAAGSTGGCG-BHQ1 

(244) 

Molluscum 

contagiosum virus 
AACCTACGCTACCTGA

AGMTGGA 

CAGGCTCTTGATGG
TCGARATGGA 

 

 (279) 

 

2.4. Serotype identification and phylogenetic analysis: 

For EV serotype determination based on the obtained sequences generated by viral mNGS, a 

publically available genotyping tool was used (280). To determine the relationship between EV 

strains sequenced in the present study and global strains, I first performed pairwise alignment 

using ClustalW tool available in Geneious 8.1.5 (Biomatters), and then reconstructed a 

maximum likelihood phylogenetic tree using IQ tree (v1.4.3) (246). Similar phylogenetic 

approach was utilized for other viruses. 

2.5. Sequence accession number: 

The generated sequences of this study were submitted to GenBank (PRJNA561465). 

2.6. Ethics: 

The study was approved by the corresponding institutional review broad of local hospitals in 

Vietnam, where the patients were enrolled, and the Oxford Tropical Ethics Committee. Written 

informed consent was obtained from each study participant or a legal guardian. 
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2.7. Contributions from others: 

Clinical samples and data collection were carried out by participating clinicians and research 

staff of the respective collaborating hospitals. Although, I led the experiment design and conduct 

the most of the laboratory work of the laboratory work, I also received support in conducting 

some of the PCR confirmatory experiments from Ms Le Nguyen Truc Nhu and Ms Nguyen Thi 

Thu Hong from Emerging Infections group, OUCRU.  The in-house viral metagenomic pipeline 

was conducted at the lab of Prof Eric Delwart at Blood Systems Research Institute, San 

Francisco, California, United State, with help from Dr Xutao Deng. 

3. Results: 

3.1. CSF samples available for mNGS analysis: 

From the aforementioned clinical study, a total of 841 patients with suspected CNS infection 

were enrolled from Hue, Khanh Hoa, Dak Lak or Dong Thap provincial hospitals. Of these 

609/841 (72%) patients had no etiology identified. The etiological profiles of the patients in 

whom a pathogen was detected will be separately reported. Of the patients in whom a pathogen 

was not identified, 204 met the selection criteria and their CSF samples were included for viral 

mNGS analysis (Figure 5.1). 

3.2. Baseline characteristics of included patients: 

The baseline characteristics and outcome of the 204 study patients are presented in Table 5.2. 

Male patients were predominant. A substantial proportion of the patients were seriously ill; fatal 

outcome was recorded in 22 (11%), while incomplete recovery or deterioration (reflected by 

being transferred to other hospitals) were recorded in 17% (n=35) and 16.5% (n=34) of the 

patients, respectively.  
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Table 5.2 Baseline characteristics and clinical data of patients with acute central nervous system 

infections enrolled for mNGS analysis of CSF samples, Vietnam, December 2012–October 2016* 

Characteristics 

Patients with unknown 

cause enrolled for 

mNGS (n = 204) 

Patients with mNGS 

negative (n = 174) 

Patients with 

Enterovirus 

detected (n = 23) 

p 

value† 

Sex 

 Male 135 (66) 114 (65.5) 15 (65)  

 Female 69 (34) 60 (34.5) 8 (35)  

Age, y, median (range) 20.5 (0–92) 24 (0–92) 13 (2–27) 0.005 

Location 
   

 

 Hue 37 (18) 28 (16) 9 (39)  

 Dak lak 98 (48) 87 (50) 10 (43.5)  

 Khanh Hoa 28 (14) 22 (13) 4 (17.5)  

 Dong Thap 41 (20) 37 (21) 0  

3-d fever (at enrollment or preceding 3 d) 

 Fever 148 (72.5) 126 (72.4) 17 (74) 0.054 

      Temperature, C°, median (range) 39 (37.5–42.0) 39 (37.5–42.0) 38.5 (38.0–40.5)  

 Fever with unknown temperature 29 (14.2) 22 (12.6) 6 (26)  

 No fever 20 (9.8) 19 (11) 0  

 Unknown 7 (3.5) 7 (4) 0  

Outcome 
   

 

 Death or discharge to die 22 (11) 22 (12.6) 0  

 Discharge with complete recovery 108 (53) 86 (49.4) 18 (78.3)  

 Discharge with incomplete recovery 35 (17) 31 (17.8) 2 (8.7)  

 Transfer to another hospital 34 (16.5) 30 (17.2) 3 (13)  

 Other (patient request) 3 (1.5) 3 (1.7) 0  

 Unknown 2 (1) 2 (1.3) 0  

CSF white cells, cells/mm3, (median (min-max) 88.5 (5–40,000) 71.5 (5–40,000) 110 (8–1200) 0.343 

Note:*Values are no. (%) unless indicated, CSF, cerebrospinal fluid; mNGS, metagenomic next-generation sequencing. 

†Statistic comparisons were performed for groups of patients with mNGS-negative results and enterovirus detected, by Mann-Whiney 
test. 

 

3.3. mNGS results: a general description  

Two hundred and four CSF samples were subjected to three NGS runs. A total of 108 million 

reads (median number of reads per samples (range): 445,412 (430 – 908,890)) were obtained. 

Of these, viral reads accounted for 0.64% (n=692,731, median number of reads per sample 

(range): 2,001 (4-268,933)). Excluding common contaminants and commensal viruses such as 

TTV, which are not reported here, sequences related to a total of eight distinct viral species were 

identified in 107/204 (52.4%) patients. These are viruses that are either known to be infectious 

to humans (EVs, rotavirus, molluscum contagiosum virus, human papillomavirus, HIV and 

HBV), or without evidence of human infections beside prior detection in “sterile” human 

samples (cyclovirus-VN, gemycircularvirus) (Figure 5.2). 
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Figure 5.2 Number of cerebrospinal fluid samples with detected viruses by metagenomic next-

generation sequencing and then confirmed by virus-specific PCR or reverse-transcription PCR, 

Vietnam, December 2012–October 2016. Samples were collected from patients with suspected central 

nervous system infection. Note: #: Confirmatory testing was not performed due to unavailable of PCR 

assay 

 

3.4. mNGS result assessment by specific PCR analysis: 

After viral specific PCR confirmatory testing, the proportion of patients in whom a virus was 

found by mNGS was reduced from 53% (108/204) to 14.7% (30/204). Accordingly, the number 

of viral species was reduced from eight to five (Figure 5.2) with EVs being the most common 

virus detected, accounting for 11.3% (23/204) of the included patients, followed by HBV (n=3), 

HIV (n=2), gemycircularvirus and MCV (1 each) (Figure 5.2). Because of the focus of the 

present study and the availability of PCR assays, confirmatory testing for papillomavirus was 

not carried out. 

3.5. Characteristics of the 23 enterovirus infected patients 

All 23 EVs infected patients were admitted to hospitals from the central or highland areas (Table 

5.3), and none were from Dong Thap province. Male patients were slightly predominant, 

accounting for 56%.  Notably, the EVs infected patients were younger than those who were 

mNGS negative (Table 5.2). At discharge, incomplete recovery or transfer to other hospitals due 

to disease deterioration were recorded in 21.7% (Table 5.2).  
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Temporarily, EVs cases were not detected between January 2015 and December 2016. During 

2013 and 2014, there were two main peaks observed from March to July and September to 

December (Figure 5.3A), with cases from Dak Lak and Khanh Hoa contributing to the first peak 

(Figure 5.3B&C) and cases from Khanh Hoa and Hue contributing to the second (Figure 

5.3C&D).  

HBV, HIB, gemycircularvirus and MCV were detected in a total of six patients. Their general 

baseline characteristics are presented in Table 5.3. 
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Figure 5.3 Temporal distribution of enterovirus cases detected from CSF samples of patients with 

suspected CNS infection by mNGS and RT-PCR. Enterovirus RT-PCR results were obtained from the 

original study. 
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Table 5.3 Baseline characteristics, and CSF white cell count of patients with viruses detected by 

mNGS. 

Characteristics 

Hepatitis 

B virus 

(n=3) 

Human 

immunodeficiency 

virus (n=2) 

Molluscum 

contagiosum 

virus (n=1) 

Gemycircularvirus 

(n=1) 

Male, n(%) 3(100) 2(100) 1(100) 1(100) 

Age (median; min-max) 42(16-63) 57.5(49-66) 7 12 

Location     

    Hue, n(%) 0 0 0 0 

    Dak lak, n(%) 0 0 1(100) 0 

    Khanh Hoa, n(%) 2(75) 0 0 0 

    Dong Thap, n(%) 1(25) 2(100) 0 1(100) 

3-day fever (at enrollment or last three days) 

    Fever, n(%) 

         Temperature, C°, median (range) 

3(100) 

38(38-39) 

1(50) 

39 

1(100) 

38.5 
0 

    Fever with unknown temp, n(%) 0 0 0 1(100) 

    No fever, n(%) 0 1(50) 0 0 

    Unknown, n(%) 0 0 0 0 

Outcome     

Death or discharged to die, n(%) 0 0 0 0 

Discharge with complete recovery, n(%) 2(75) 0 1(100) 1(100) 

Discharged with incomplete recovery, 

n(%) 
1(25) 1(50) 0 0 

Transferred to another hospital, n(%) 0 1(50) 0 0 

Other (patient request), n(%) 0 0 0 0 

Unknown, n(%) 0 0 0 0 

CSF white cells, cells/mm3,              

(median (min-max) 

1530  

(7-2590) 
835(340-1330) 70 60 

  

3.6. Genetic characterization of enteroviruses and gemycircularvirus  

mNGS generated sufficient sequence information for EVs serotyping assessment in 11/23 cases. 

Subsequently, results of serotyping analysis based on the NGS sequences showed that E30 was 

the most common serotype detected (n=9, 39% of EVs), followed by EV-A71 and enterovirus 

B80 (1 each, 4.3%). Phylogenetically, the nine E30 strains sequenced in the present study 

belonged to two distinct genogroups, V and VIIb, and showed close relationship with E30 

strains circulating in Russia and elsewhere in Asian countries (including China) (Figure 5.4). 

In additional to EV sequences, a gemycircularvirus genome was obtained from a 12 year-old-

boy. Phylogenetic analysis revealed that this gemycircularvirus strain was closely related to a 

gemycircularvirus species previously found in CSF sample from a patient with CNS infections 

of unknown origin in Sri Lanka (243), with the level of amino acid identities between the two 

strains being 98.79% for Rep and 99.3% for Cap protein sequences. 
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Figure 5.4 Phylogenetic tree of complete vp1 sequences of echovirus 30 (E30) (876 nt) (n = 298) 

isolated from CSF samples of patients with suspected CNS infection. The inner color-strip indicates for 

different countries of E30 isolates included in the tree. The outer color-strip indicates 7 genogroups, 

including genogroup I, II, III, IVa, IVb, V, VI, VIIa and VIIb. The E30 sequences generated by mNGS 

were highlighted in red color. The outgroup is echovirus 21 Farina. 
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4. Discussion: 

I present a viral mNGS investigation characterizing the human virome in CSF of 204 

Vietnamese patients with suspected CNS infection of unknown origin. I successfully detected 

four human viral pathogens (EVs, HIV, HBV and MCV) and one virus species 

(gemycircularvirus) of unknown tropism and pathogenicity in a total of 30 of 204 (14.7%) 

patients. The majority of patients therefore remained without a known etiology. It therefore 

remains a challenge to identify a plausible viral pathogen in CSF of patients with CNS 

infections.  

EVs were the most common viruses found in 11.3% (23/204) of all analyzed patients (Figure 

5.2), the majority being children and young adults. This observation on the age distribution of 

EVs infected patients was in agreement with observational data from a previous report from 

Vietnam (95) while the median of age was slightly higher compared with data from other 

countries (281,282). Geographically, all the EVs infected patients were admitted to hospitals 

from central and highland Vietnam, and none was from southern Vietnam. The underlying 

mechanism determining this observed spatial pattern of EVs positive cases in this study 

remained unknown. It might have been that the sampling time scale was not long enough to 

capture the circulation of EVs in Dong Thap province. Indeed, EVs were previously reported as 

one of leading cause of CNS infection in across central and southern Vietnam (91,95,96). 

Collectively, RT-PCR testing for EVs should therefore be considered in children and young 

adults presenting with CNS infections. 

Of the detected EVs, E30 was the most common serotype. E30 is a well-known pathogen of 

pediatric aseptic meningitis worldwide (283). Phylogenetically, at global scale E30 belongs to 

two different lineages with distinct patterns of circulation and spread; one with a global 

distribution and the other one with geographic restriction within Asia (283). The co-circulation 

of two E30 lineages in Vietnam suggests that E30 was imported into Vietnam on at least two 



 137 

occasions. My analyses thus also contributed to the body of knowledge about the genetic 

diversity of E30 strains circulating in Vietnam.  

The detection of blood borne viruses such as HBV and HIV is unlikely to have a direct link with 

patients’ neurological symptoms, although HBV has previously been reported in CSF of patients 

with CNS infections of unknown origin (284). The detection of HIV in CSF might have been a 

consequence of traumatic tap occurring during the lumbar puncture as reflected by the presence 

of a high number of red blood cells in one of two HIV positive CSF (data not shown). However, 

neuro-invasion of HIV has also been reported (285). Likewise, the pathogenic potential of a 

gemycircularvirus genome requires further investigation, although the detection of the 

gemycircularvirus genome in CSF has been reported in several papers in CSF (243,284,286). 

The detection of MCV and papillomavirus in CSF may result from contamination of viral skin 

flora during lumbar puncture.  

Similar to results of Chapter 3 about discrepancy between mNGS and conventional diagnostic 

testing (278,284,287), I observed that the majority of mNGS positive results were not confirmed 

by subsequent viral (RT-) PCRs, especially the sensitive EVs RT-PCR with a limit of detection 

of around  9 copies per reaction  (232). Such results could be a result of bleed over (also called 

index hopping) of indices from reads of one sample into reads of another co-sequenced on the 

same Illumina run (288). Notably, the application of double indexes, which was not utilized in 

the present study, has been shown to significantly reduced although not eliminate the cross-

contamination phenomenon between samples in the same run.  

My study has some limitations. Firstly, as outlined above, I did not employ double unique index 

combination strategy per sample as part of the sequencing procedure. The well-known index 

hoping phenomenon possibly explains the high discrepancy between confirmatory PCR and 

mNGS results F(53,79,81), and emphasizes the usefulness of dual indexing and including no 

template controls. As such, I pragmatically chose to verify my mNGS by performing specific 
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PCR on original materials. Secondly, the DNase treatment step in my assay meant to reduce 

cellular DNA concentration in CSF, which may reduce the sensitivity of mNGS for the detection 

of DNA viruses such as HSV (172,289). Thirdly, some of the non-PCR confirmed viral 

sequences likely originated from contamination of reagents a lingering problem for mNGS 

(290,291). 

In summary, my results emphasize mNGS can detect a broad range of viral nucleic acids in 

CSF. In spite of extensive investigation, it remains a challenge to establish the etiology in many 

patients with CNS infections. EVs are important causes of viral CNS infections in Vietnam, and 

thus should be considered as a differential diagnosis among young patients presenting with CNS 

infections.   
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Chapter 6: The utility potential of metagenomics for the diagnosis of central 

nervous system infections 

1. Introduction: 

From the diagnostic perspective, a recent prospective study in the United States compared the 

diagnostic performance of routine diagnostic tests with metagenomic next-generation 

sequencing (mNGS) and showed that mNGS detected a bacteria or virus in the CSF of 13 of 58 

patients presenting with meningoencephalitis that were negative or not assessed for with routine 

diagnostic tests (287). Otherwise, studies to date were either case reports or retrospectively 

performed with small sample sizes (175,216), but few have been carried out in limited resource 

settings like Vietnam. Such studies would have significant implications for both disease 

surveillance and patient management. Herein, I report the results of a pilot assessing the utility 

potential of mNGS for the diagnosis of CNS infections.  

2. Materials and Methods: 

2.1. Setting, patient enrolment and data collection 

The study was conducted in a brain infection ward of the Hospital for Tropical Diseases (HTD) 

in Ho Chi Minh City, Vietnam between January 2015 and September 2016. One of the aims of 

the study was to improve the diagnosis in patients with meningoencephalitis using mNGS. The 

study enrolled consecutive adult patients (≥18 years) with an indication for lumbar puncture 

admitted to the study site during the study period. Patients were excluded if pyogenic bacterial 

meningitis (cloudy or pus-like CSF) was suspected, lumbar puncture was contra-indicated, or 

no written informed consent was obtained from the patient or their relatives.  

As per the study protocol, CSF samples were collected alongside demographic and clinical data 

(including discharge outcome), and the results of routine diagnostic testing. After collection, all 

clinical specimens were stored at -80oC for subsequent analyses, including assessment of mNGS 
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performance against that of routine diagnostic assays. Here I focused on patients with 

meningoencephalitis regardless of the results of routine diagnosis. Additionally, as negative 

controls, I used one CSF from a patient presenting with cerebral hemorrhage and one from a 

patients with laboratory confirmed anti-N-methyl-D-aspartate receptor (292). 

2.2. Routine diagnosis: 

As part of routine care at HTD, CSF specimens of patients presenting with brain infections were 

examined using standard methods when appropriate (Appendix 10). More specifically, all CSF 

were cultured and/or examined by microscopy for detection of bacterial/fungal/M. tuberculosis 

infection. HSV PCR was carried out on patients presenting with clinically suspected 

meningoencephalitis. VZV PCR, serological testing for IgM against DENV, JEV or Mump virus 

was performed if clinically indicated and testing for other pathogens (HSV) was negative (91).   

2.3. mNGS assay: 

A recent report showed that the DNase treatment step utilized as part of mNGS procedure to 

reduce the host DNA could hinder the detection of HSV in CSF samples (293). This is because 

CSF is likely to contained naked DNA of HSV rather mature viral particles. Therefore, to allow 

for the detection of both RNA and DNA viruses, each CSF sample was subjected to two different 

metagenomic approaches, namely RNA-virus and viral DNA-virus workflows (Figure 6.1). For 

RNA-virus workflow, the procedure of mNGS assay optimized in Chapter 2 with sample pre-

treatment approach #1 (simultaneous DNase and RNase treatment of the original sample without 

pre-centrifugation) was used. For viral DNA-virus workflow, viral DNA was directly isolated 

from 200µl of CSF samples without the nuclease treatment step using DNeasy blood and tissue 

kit (QIAgen GmbH) and was recovered in 50ul of elution buffer. Both random PCR products 

and isolated viral DNA were separately sequenced on an Illumina MiSeq platform. The 

sequencing procedure was described in Chapter 2. 

 



 141 

 

Figure 6.1 Flowchart illustrating an overview about the DNA and RNA virus workflows. 

Abbreviations: CSF, cerebrospinal fluid; DENV, dengue virus; ds, double-stranded; JEV, Japanese 

encephalitis virus; mNGS, metagenomic next-generation sequencing; PCR, polymerase chain reaction 
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2.4. mNGS data analysis: 

The mNGS data generated by Illumina MiSeq platform was analysed using an in-house viral 

metagenomic pipeline running on a 36-nodes Linux cluster as described in Chapter 3.  

2.5. PCR confirmation of viral hits detected by mNGS and expanded PCR testing: 

Because of the uncertainty in the diagnostic performance of mNGS, and the focus of the present 

study, specific PCRs were performed to confirm mNGS hits matching to the genomes of 

neurotropic viruses. Viruses of unknown neurotropic property and well-known contaminants of 

mNGS dataset were not pursued further by subsequent PCR analysis. The PCR experiments for 

neurotropic viruses were either carried out on leftover extracted RNA/DNA after the mNGS 

library preparation experiments or on newly extracted NA. An mNGS result was only 

considered positive if it was subsequently confirmed by a corresponding viral PCR analysis of 

original NA materials derived from corresponding individual samples. All PCR primers and 

probes used were derived from previous publications (231,232,294) (Appendix 11).  

2.6. GenBank accession numbers: 

Metagenomics data were deposited to NCBI (GenBank) under the SRA accession: 

PRJNA58865. 

2.7. Ethics: 

The clinical study received approvals from the Institutional Review Board of the HTD and the 

Oxford Tropical Research Ethics Committee of the University of Oxford. Written informed 

consent was obtained from each study participant or relative (if the patient was 

unconsciousness). 

2.8. Contributions from others: 

Clinical samples and data collection were carried out by participating clinicians and research 

staff of the respective collaborating hospitals. Although, I led the experiment design and conduct 

the most of the laboratory work of the laboratory work, I also received support in conducting 
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some of the PCR confirmatory experiments from Ms Le Nguyen Truc Nhu and Ms Nguyen Thi 

Thu Hong from Emerging Infections group, OUCRU. The in-house viral metagenomic pipeline 

was conducted at the lab of Prof Eric Delwart at Blood Systems Research Institute, San 

Francisco, California, United State, with help from Dr Xutao Deng. 

3. Results: 

3.1. Baseline characteristics of the patients included for mNGS 

During the study period, a total of 304 patients were enrolled in the clinical study, including 

tuberculous meningitis (n=187), meningoencephalitis (n=79), other diagnosis (n=37) and no 

data (n=1). The results of the tuberculous meningitis diagnostic arm have been published 

elsewhere (295). Of the 79 patients with a discharge diagnosis of meningoencephalitis, 66 (84%) 

had CSF samples available for mNGS analysis (Figure 6.1). These patients were the focus of 

the present study regardless of the results of routine diagnosis. 

The baseline characteristics of the 66 patients included in the study are presented in Table 6.1. 

HIV testing was carried out on 24 patients but none was positive. Male patients were 

predominant. On admission, 35% of the patients were comatose (Glasgow Coma Score <13). 

Routine diagnostic tests identified a virus in 15/66 (22.7%) the patients (Figure 6.2 and 

Appendix 12), with HSV being the commonest cause (n=7), followed by Mump virus (n=4), 

DENV (n=2), JEV (n=1) and VZV (n=1) (Figure 6.2). One patient died, and almost all (n=58) 

has some neurological deficit at discharge from hospital (Table 6.1).  
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Table 6.1 Baseline characteristics of the study patients and patients infected with herpes simplex virus, 

enterovirus or mumps virus 

Characteristics Total (n=66)* HSV(n=7)** EVs (n=7)# Mumps virus 

(n=5)$ 

Demographics     

Gender (male), n(%) 39 (59) 4 (57) 5/7 (71) 5 (100) 

Age in years 35 (15-84) 45 (25-53) 32 (22-57) 39 (32-61) 

Illness day on admission (days) 5 (1-30) 5 (2-14) 3.5 (2-6) 3 (2-5) 

Duration of hospital stay (days) 5 (1-76) 5 (3-67) 2 (1-4) 4 (3-35) 

HIV status, n (%)     

Positive  0 0 0 0 

Negative  24 (36) 1 (14) 4 (57) 1 (20) 

Unknown 42 (64) 6 (86) 3 (43) 4 (80) 

Clinical signs and symptoms, n(%)     

Fever 58 (88) 7/7 (100) 6 /7 (86) 5 (100) 

Headache 58 (88) 7/7 (100) 6 /7 (86) 5 (100) 

Irritability 15 (23) 1/7 (14) 1/7 (14) 0 

Lethargy 18 (28) 3/6 (50) 1/7 (14) 0 

Vomiting 34 (52) 4/6 (67) 5/7 (71) 3 (60) 

Seizures 23 (36) 2/6 (33) 0/7 2 (40) 

Conscious 46 (70) 6/7 (86) 1/7 (14) 2 (40) 

Skin rash 6 (9) 0/7 0/7 0 

Hemiplegia 5 (8) 2/7 (29) 0/7 0 

Paraplegia 1 (2) 0/7 1/7 (14) 0 

Tetraplegia 1 (2) 0/6 0/7 0 

Neck stiffness 45 (68) 6/7 (86) 5/7 (71) 3 (60) 

Glasgow coma score of ≤8 7 (11) 3/7 (43) 0/7 1 (20) 

Glasgow coma score of 9-12 16 (24) 2/7 (29) 1/7 (14) 1 (20) 

Glasgow coma score of 13-15 43 (65) 2/7 (29) 6 /7 (86) 3 (60) 

CSF cells and biochemistry     

White cells (cells/µL) 101  

(0-4183) 

708  

(38-1571) 

503  

(20-961) 

683  

(27-2146) 

Neutrophils (%) 13  

(0-96) 

9  

(2-61) 

24 

 (0-47) 

18 

 (3-23) 

Lymphocytes (%) 86.5  

(1-100) 

91  

(39-98) 

76  

(53-99.9) 

82 

 (77-97) 

Protein (g/L) 0.7  

(0.2-8.9) 

1.36  

(0.75-2.17) 

0.71  

(0.47-1.18) 

0.67  

(0.45-2.42) 

CSF/Blood glucose ratio 0.61  

(0.34-1.04) 

0.55  

(0.47-0.61) 

0.71  

(0.59-0.85) 

0.52  

(0.49-0.81) 

Lactate (mmol/L) 2.65  

(1.4-14.03) 

3.52  

(2.02-4.83) 

2.5  

(1.9-3.8) 

2.9  

(1.9-4.3) 

Antiviral treatment, n(%)     

Oral acyclovir 2 (3) NA NA NA 

Intravenous acyclovir 8 (13) 6/6 (100) NA NA 

Oral valacyclovir 44 (72) NA NA 1 (20) 

Modified Rankin Scale at discharge&, n (%)     

0 8 (13) 1/7 (14) 1/7 (14) 1 (20) 

1 12 (19) 0 1/7 (14) 3 (60) 

2 10 (15) 0 4/7 (58) 0 

3 25 (39) 3/7 (43) 1/7 (14) 1 (20) 

4 4 (6) 0 0 0 

5 4 (6) 3/7 (43) 0  0 

6 1 (2) 0 0 0 

Note: Continuous variables are presented as medina (range); *Denominators may vary slightly, **diagnosed by current standard tests of the 

routine diagnosis, #diagnosed by mNGS followed by PCR confirmatory testing; $diagnosed by current standard tests, expanded PCR testing 
and mNGS combined; &0: full recovery with no symptoms, 1: No significant disability, 2: Slight disability, 3: Moderate disability, 4: 

Moderately severe disability, 5: Severe disability, and 6: Dead. 
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Figure 6.2 Results of mNGS investigations using DNA/RNA workflows and routine diagnostics as 

well as expanded PCR testing. Abbreviations: DENV, dengue virus; EV, enterovirus; HSV, herpes 

simplex virus; JEV, Japanese encephalitis virus; MuV, mumps virus; PCR, polymerase chain reaction; 

VZV, varicella zoster virus. 

 

3.2. An overview of mNGS: 

The 68 included CSF samples (including two negative controls) were separately sequenced 

using both DNA- and RNA-virus workflows in a blinded fashion. Subsequently, a total of 

62,565,802 and 49,233,869 reads were obtained from the DNA and RNA libraries, respectively 

(Appendix 13). Sequences related to 29 viral species were detected, with 23 found in the RNA 

and seven found in the DNA library (Figure 6.2 and Figure 6.3). The detected viruses included 

viruses known to cause CNS infections, and those with unknown neurotropic property (TTV 

(n=14) and herpes virus 8 (n=4)). Additionally, previously reported common contaminants of 
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mNGS dataset were also found (290,296), almost exclusively found in the RNA-virus library 

(Figure 6.3). 

Figure 6.3 Bar chart showing the frequency of common contaminants and viruses of unknown 

neurotropic property (human herpes virus 8 and Torque teno virus) found in cerebrospinal fluid (CSF) 

samples by both DNA (M2) and RNA (M1) workflows and viruses in negative control (NC) CSF. 

Abbreviations: ds, double-stranded; ss, single-stranded. 

3.3. Detection of viruses in CSF samples positive by routine diagnosis  

Of the 15 CSF samples positive either by PCR or serological testing as part of routine care, 

mNGS was able to detect a viral pathogen in 5/7 HSV, 1/1 VZV, 1/4 Mump virus, 0/2 DENV 

and 0/1 JEV positive samples (Figure 6.2). None of the HSV and VZV sequences were found 

in the library of the RNA-virus workflow (Table 6.2).   
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Table 6.2 Results of viral PCR and metagenomic analysis 

CSF 

number 
Virus 

Real-time 

PCR           

Ct value 

Detected by 

PCR as part 

of routine 

care (Y/N) 

Total 

metagenomic 

reads 

Number of 

unique 

viral reads 

(%) of  

viral 

reads*  

mNGS 

library 

1 HSV 25.01 Y 326,396 49 0.015 DNA 

2 HSV 28.01 Y 588,504 184 0.031 DNA 

3 HSV 30.36 Y 996,348 6 0.001 DNA 

4 HSV 23.77 Y 1,145,710 243 0.021 DNA 

5 HSV 28.71 Y 346,166 11 0.003 DNA 

6 HSV unavailable Y 1,345,954 0 0.000 DNA 

7 HSV 31 Y 891,566 0 0.000 DNA 

8 VZV 22.7 Y 1,335,288 152 0.011 DNA 

9 Mumps 35.2 ND 975,714 6 0.001 RNA 

10 Enterovirus 33.36 ND 539,752 21 0.004 RNA 

11 Enterovirus 34.25 ND 635,310 38 0.006 RNA 

12 Enterovirus 34.79 ND 765,564 10152 1.326 RNA 

13 Enterovirus 34.78 ND 732,634 89 0.012 RNA 

14 Enterovirus 31.23 ND 988,668 2415 0.244 RNA 

15 Enterovirus 32.3 ND 594,964 100 0.017 RNA 

16 Enterovirus 35.65 ND 543,912 21 0.004 RNA 

17 Enterovirus Negative ND 579,486 2 0.000 RNA 

18 Enterovirus Negative ND 571,902 2 0.000 RNA 

19 Enterovirus Negative ND 720,042 4 0.001 RNA 

20 Enterovirus Negative ND 511,608 1 0.000 RNA 

21 Enterovirus Negative ND 818,654 2 0.000 RNA 

22 Enterovirus Negative ND 513,428 5 0.001 RNA 

23 Enterovirus Negative ND 1,197,290 13 0.001 RNA 

24 Enterovirus Negative ND 923,908 4 0.000 RNA 

25 Enterovirus Negative ND 993,918 1 0.000 RNA 

26 Enterovirus Negative ND 1,302,784 20 0.002 RNA 

27 Enterovirus Negative ND 1,628,722 7 0.000 RNA 

28 Enterovirus Negative ND 1,181,716 24 0.002 RNA 

29 Enterovirus Negative ND 926,462 22 0.002 RNA 

30 Enterovirus Negative ND 938,524 20 0.002 RNA 

31 Enterovirus Negative ND 1,028,194 12 0.001 RNA 

32 Enterovirus Negative ND 1239458 4 0.000 RNA 

33 Rotavirus  Negative ND 1176486 24 0.002 RNA 
Note: *denominators are the total reads of the corresponding samples, ND: not done, Y:yes, N:no 

3.4. Detection of sequences related to human pathogenic viruses in CSF negative by 

routine diagnosis and results of PCR assessment of mNGS results 

Of the 51 CSF samples that were negative by routine diagnosis, sequences related to neurotropic 

viruses were found in 24 (48%) by mNGS (Table 6.2). The detected viruses included EVs 

(n=23) and rotavirus (n=1). Additionally, of the two CSF samples from non-CNS affected 

patients, one had four sequences related to enterovirus detected by mNGS.  

After PCR confirmation testing of CSF samples in which a viral hit was detected by mNGS, the 

rotavirus case and the negative control CSF, in which EVs related sequences were detected 

became negative (Table 6.2). The number of EVs positive CSF was reduced from 23 to seven, 
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with more enteroviral sequences being recorded in PCR confirmed than in the un-confirmed 

group (Table 6.2). Of these, three had genome coverage of 61%, 78% and 90%, including one 

echovirus 6 and two E30. Notably, the majority (12/16, 75%) of EV PCR negative samples had 

EV reads identical to those obtained from samples with a high abundance of EV sequences 

(including samples #12 and #14), with which they shared an index (Appendix 14). The data this 

suggested the potential of barcode bleed through during the sequencing procedure.  

3.5. Results of expanded PCR testing and sensitivity assessment of mNGS using PCRs as 

reference assays: 

Because PCR testing for viruses (EVs and Mump virus) was not performed as part of routine 

diagnosis, to further assess the prevalence of these viruses in the study patients, PCR testing was 

expanded to CSF samples that were negative by mNGS analysis. Subsequently, only Mump 

virus was detected by PCR in three CSF samples, including two positive by serological testing 

as part of standard care (Ct values: 36 and 40), and one negative by mNGS (Ct value: 40). 

Serological testing for Mump virus in this patient was not done as part of routine care. Thus a 

combination of serology and molecular assays (PCR and mNGS) increased the diagnostic yield 

from 22.7% (15/66) to 34.8% (23/66) (Figure 6.2).  

mNGS identified a viral pathogen in 14/19 CSF samples that were positive by PCR analysis 

(including routine diagnosis and expanded testing). Additionally, mNGS detected EVs in 16/47 

CSF samples that were negative by PCR in subsequent analysis. Using PCRs as reference 

assays, the sensitivity and specificity of mNGS were 74% (14/19) and 66% (31/47), 

respectively. Of the PCR positive samples, there was no difference in the leukocyte counts 

between the mNGS negative and positive groups (median (range): 331 (27-2146) vs. 356 (22-

4183), p=0.82)). 
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4. Discussion: 

I report the results of an investigation assessing the utility of mNGS approach for the diagnosis 

of viral etiology in the CSF of 66 consecutively treated patients with meningoencephalitis. The 

patients were admitted to a tertiary referral hospital in Ho Chi Minh City, Vietnam, and the 

majority (51%) had moderate/severe disability at discharge. The results showed that in a single 

test, metagenomics could accurately detect NA of a wide range of neurotropic viruses in CSF 

of the 66 participants, whose diagnoses were only established by extensive PCR testing targeted 

at a broad range of pathogens. Notably, of these 66 patients, seven (11%) EVs infected patients 

were initially left undiagnosed at hospital discharge because physicians did not consider EVs 

diagnosis as part of routine care. EVs infection should therefore be considered as an important 

differential diagnosis in adults presenting with meningoencephalitis (97), and should be 

excluded (e.g. by PCR testing) prior to mNGS analysis.  

Although antivirals are currently not available for most encephalitis causing viruses, rapid and 

accurate detection of viral etiology in patient samples remains critical to inform clinical 

management, such as avoiding unnecessary antibiotic prescription, and public health policy 

makers. Thus, testing for a wide spectrum of pathogens is essential to maximize the diagnostic 

yield in patients presenting with meningoencephalitis. Under this circumstance, single pan-

pathogen assay such as mNGS is a useful approach, given the limited amount of CSF samples 

and resources available for microbial investigation, especially in low- and middle-income 

countries like Vietnam. However, the failure of mNGS to detect nucleic acids of JEV and DENV 

in serologically positive CSF samples emphasize that testing for pathogen specific antibodies 

remains an important diagnostic pathway in patients presenting with meningoencephalitis as 

viral nucleic acids of some viruses (e.g. flaviviruses) may not be present in the collected CSF. 

The sensitivity of my mNGS workflows is comparable with that of recent mNGS studies 

(214,287). Low viral load may be a factor explaining the failure of mNGS to detect HSV and 
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Mump virus in CSF samples with real time PCR Ct values of 31 (HSV), and 36, 40 and 40 

(Mump virus). Because viral reads only accounted for a small proportion of total mNGS reads, 

increasing the sequencing depth per samples would likely increase the sensitivity of mNGS. 

However, this increases the sequencing costs. The failure of the RNA workflow, which 

incorporated the DNase digestion step to detect HSV VZV in all the tested CSF samples, 

supported the finding from a recent report regarding the impact the nuclease treatment step prior 

to nucleic acid isolation for metagenomics (172).  

Currently, there have been no established robust criteria that can reliably define a true mNGS 

positive without the requirement of confirmatory testing. Criteria such as the presence of at least 

three reads mapped to three different genomic region of a virus genome or the absence of viral 

reads in negative controls have recently been proposed (175,287,297). Such approaches are 

hindered by the well-known cross-talk contamination phenomenon, occurring as part of mNGS 

procedure (297), which however can be dramatically reduced through the use of dual barcoding 

strategy recently developed (264). Because the dual barcoding strategy was not employed, 

cross-talk contamination may explain for the obtained specificity of 66%, which is lower than 

the reported data from a previous study (214). Alternatively, the low specificity may have been 

attributed to the degradation of stored viral RNA and/or the low abundance of viral RNA in the 

tested samples, leading to the failure of EV PCR to replicate some of the mNGS findings. 

Retrospectively, the specificity of mNGS would have increased to 83% if a threshold of six 

reads or above was considered as positive (Table 6.2), suggesting a correlation between the 

number of mNGS reads and PCR confirmatory results. Collectively, the specificity of mNGS 

based diagnostic approach could potentially be improved through the use of proper barcoding 

strategy and/or criteria such as those based on the number of unique viral reads obtained from a 

sample under investigation, which merit further research. 
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Similar to previous reports (290,296), numerous common contaminants of mNGS dataset (e.g. 

parvovirus, densovirus) were found in both DNA- and RNA virus libraries in our study. 

Although it is likely that those contaminants are derived from laboratory reagents (e.g. 

extraction kits) (290), their potential impacts on the performance of mNGS, especially in terms 

of sensitivity and specificity, remains unknown.  

The strengths of my study include that it was conducted on consecutive cases, minimizing 

selection bias. CSF samples were analyzed individually, and mNGS hits were re-confirmed by 

specific PCR, allowing for back-to-back comparison between mNGS and viral PCR. However, 

my study has some limitations. First, it was conducted on stored CSF samples. Second, I only 

focused on viruses, while meningoencephalitis can be caused by non-viral agents such as 

intracellular bacteria (rickettsiae) (298). Third, I did not test other clinical samples. Of note, JEV 

has recently been detected in urine of patients presenting with meningoencephalitis (299,300). 

Last but not least, the inclusion no template controls in addition to the two non-infectious CSF 

samples would have better captured the spectrum of contaminations of the mNGS procedure. 

To summarize, I report pioneering data on the performance of mNGS for the diagnosis of 

meningoencephalitis patients in Vietnam; a resource limited setting. The results shows that in a 

single assay, mNGS could detect a wide spectrum of neurotropic viruses in CSF samples of 

meningoencephalitis patients, and thus could potentially replace conventional nucleic acid based 

diagnostic assays as PCR. The study needed is to determine the clinical implication that real-

time metagenomic sequencing may contribute to the diagnosis and management of 

meningoencephalitis patients, especially in resource-limited settings where pathogen specific 

assays are limited in number.  
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Chapter 7: Summary and Future Direction 

Despite extensive diagnostic work-up, a significant proportion of patients with CA sepsis or 

CNS infection have no etiology identified by conventional diagnostic assays such as routine 

culture, serology and PCR (26–28,173,177,213–215). Additionally, Asia is recognised as a hot 

spot of emerging infectious diseases, especially those caused by novel viruses, as illustrated by 

the emergence of Nipah virus in 1997, SARS-CoV-1 in 2002-2003, H5N1 in 2004, and most 

recently SARS-CoV-2. Moreover, it is estimated that there are more than 320,000 mammalian 

viruses that have not been characterised (217). Therefore, improving our knowledge about the 

causes of sepsis and CNS infections and early recognition of emerging pathogens are critical to 

inform clinical management and outbreak response. Over last decade, mNGS has emerged as a 

sensitive assay for sequence-independent detection of infectious agents, especially (novel) viral 

pathogens in clinical samples. Yet, few mNGS associated studies have been conducted in Asia, 

where the burden of infectious disease is exceptional high. Therefore, my PhD research aimed 

to:  

1. Develop a sensitive viral metagenomic pipeline for sequence-independent detection 

of a broad range of viral pathogens in clinical samples 

2. Explore viral content in patients with sepsis of unknown cause across Southeast 

Asia 

3. Explore viral content in CSF from patients with acute CNS infections of unknown 

cause sampled from provincial hospitals throughout Vietnam  

4. (If relevant), demonstrate proof of causation of recently described viruses/novel 

virus(es) discovered by metagenomic analysis 

5. Explore the utility potential of metagenomics for the diagnosis of patients with 

central nervous system infections 
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Herein, I will provide an overview and discussion about my research findings. I also aim to 

discuss some future directions based on the results I obtained during my PhD research.  

1. Findings of the thesis: 

In Chapter 2, I set out to develop a sensitive metagenomic assay for detection of a broad range 

of viral pathogens in clinical samples. After evaluating four possible combinations of sample 

pretreatment steps, a metagenomic workflow employing a DNase/RNase treatment step of the 

specimen without sample pre-centrifugation was selected for subsequent metagenomic analysis 

described in Chapters 3 and 5. Based on data obtained from a reference viral mixture consisting 

of 20 different viral pathogens (190), my mNGS assay had a comparable sensitivity with that of 

pipelines developed by my collaborator in the US, Professor Eric Delwart, and a group in 

Switzerland  (190,227). My mNGS assay was also able to detect different viral pathogens 

including Zika virus, HAV, HBV, HSV DENV and mumps virus in serum or CSF samples. In 

addition to the detection of viral sequences, the assay mNGS could generate nearly/complete 

genome sequences of 5/25 and 4/11 viruses in the viral mixture and in the tested clinical 

samples, respectively. Collectively, within this chapter, I successfully developed a metagenomic 

pipeline for sensitive detection of a broad range of viral pathogens in clinical samples.  

In chapter 3, I applied the mNGS assay developed in Chapter 2 to search for viral agents in 

samples collected from patients presenting with CA sepsis of unknown origin enrolled in 

multiple hospitals across Vietnam (n=6) and Thailand (n=4) during 2013-2015. Notably, these 

patients were examined for a wide range of common causes of CA sepsis using a combination 

of conventional assays (routine culture, serology, rapid tests, ELISA and PCR) (26), but had no 

etiology identified. The mNGS detected 26 viral species in 137/466 (29%) and 63/88 (71.6%) 

samples collected from Vietnam and Thailand, respectively. After viral specific PCR 

confirmatory testing, the detection rate was reduced to 12.8% (66/466) for Vietnamese samples 

and 34% (30/88) for samples from Thailand. In total, I successfully identified 22 viral species 
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known to be infectious to humans in 90 (13.5%) of 665 patients presenting with CA sepsis of 

unknown cause from both countries. Notably, my analysis demonstrated that the levels of viral 

richness and diversity were different between Thailand and Vietnam, with more viral species 

found in Vietnamese patients. In terms of prevalence, EVs (3.6%, 14/386) were more often 

detected in samples collected from Vietnamese patients, while EBV (10/279, 3.6%) and DENV 

(3.2%, 9/279) made up the majority of viruses detected in samples collected from patients from 

Thailand.  

Of the viruses detected in patients with CA sepsis, I found sequences of a newly discovered 

flavivirus species namely HPgV-2 in a serum sample of a patient co-infected with HCV and 

HIV. Since this represents the first detection of HPgV-2 in Vietnam I conducted further 

experiment to genetically characterize HPgV-2 and to determine its prevalence, especially 

among patients with HIV/HCV co-infection. I presented the results of these investigations in 

Chapter 4. Notably, using real time RT-PCR, I found HPgV-2 RNA in 5/79 HCV/HIV co-

infected patients. HPgV-2 RNA however was not detected in other patients’ groups, including 

those with HAV, HBV or HIV mono-infection, and healthy donors. Therefore, my findings 

support previous work regarding the association between HPgV-2 and HCV/HIV co-infection 

(269,270,274). To explore the persistence of HPgV-2 in HCV/HIV co-infected people, I used 

real time PCR to test available longitudinal samples. Subsequently, HPgV-2 RNA was 

detectable for up to 18 months in 3/5 patients with HCV/HIV co-infection, but was not detected 

in an available follow-up serum sample collected 14 days after enrollment from a patient with 

CA infection. These data suggest that HPgV-2 viremia can be transient or persistent for up to 

18 months, supporting previous reports (268,269). Whole-genome based phylogenetic analysis 

revealed that all Vietnamese HPgV-2 isolates were closely related to HPgV-2 strains isolated 

from the United States and elsewhere, suggesting a global dispersal of HPgV-2. Thus, my 
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findings have expanded data about the geographic distribution, long-term persistence in patients 

with HCV/HIV coinfection and genetic diversity of HPgV-2.  

The search for viral pathogens in patients with severe infection of unknown origin continued in 

chapter 5. In this chapter, I used mNGS to define the viral causes in 204 patients presenting with 

CNS infections of unknown origin. The patients were enrolled from four provincial hospitals 

across central and southern Vietnam from December 2012 to October 2016. Eight distinct viral 

species were detected in 107/204 (52.4%) of CSF samples by mNGS. After viral specific PCR 

confirmatory testing, the detection rate was lowered to 30/204 (14.7%), with enteroviruses being 

the most common viruses detected (n=23, 11.3%), followed by hepatitis B virus (n=3, 1.5%), 

human immunodeficiency virus (n=2, 1%), molluscum contagiosum virus and 

gemycircularvirus (n=1 each, 0.5%).  Analysis of available enterovirus sequences generated by 

mNGS revealed the predominance of echovirus 30 (n=9) followed by enterovirus A71 and 

enterovirus B80 (1 each). Phylogenetically, the echovirus 30 strains belonged to genogroup V 

and VIIb.  

However, it remains a challenge to identify a viral culprit in patients presenting with 

community-acquired infections such as sepsis and CNS infections. Indeed, over 80% of the 

included patients remain undiagnosed after mNGS analysis. Possible contributing factors 

include the sensitivity of mNGS based diagnosis approach (301–303), the viability of the 

clinical samples after being stored, albeit at -800C, for some years (26,277), the presence of the 

virus in un-analyzed samples (e.g. brain biopsy), and non-viral causes (such as bacteria), which 

were not the focus of my PhD.  

It should however be noted that in several circumstances the mNGS findings described in 

chapter 3 and 5 cannot directly impute sepsis or CNS causation involving the viruses identified. 

For example, the detection of blood-borne viruses such as HBV, HIV and HCV in sera samples 

of CA sepsis patients might represent underlying diseases. Likewise, the detection of these 
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blood-borne viruses in CSF samples of CNS infections patients might have been a consequence 

of traumatic tap occurring during the lumbar puncture. Additionally, the detection of CMV, 

EBV and HHV-6 in respiratory and stool samples may simply reflect the carriage of these 

viruses in those bodily compartments. Finally, common contaminants such as those listed in 

Figure 6.3, of which some are likely introduced during the sample collection and/or derived 

from laboratory reagents, also challenge the interpretation of metagenomic results.  

Together with recent reports (175,177,210,212–214) findings from chapters 3 and 4 demonstrate  

that mNGS could offer a new diagnostic pathway for infectious diseases, especially those caused 

by diverse pathogens such as CNS infections and sepsis. Therefore, to further inform future 

research directions, in chapter 6 I explored the utility of mNGS for the diagnosis of CNS 

infections. To achieve this, I used acute CSF from 66 consecutively treated patients with 

meningoencephalitis admitted to my hospital, the Hospital for Tropical Diseases in Ho Chi Minh 

City, Vietnam. For the sensitivity and specificity validation purpose, I included all CSF from 

the selected patients regardless of routine diagnostic results. To allow for the sensitive detection 

of a broad range of viral pathogens (DNA and RNA viruses), I used two separate mNGS 

workflows; one for DNA viruses and one for RNA viruses. Routine diagnosis could identify a 

virus in 15 (22.7%) patients, including HSV (n=7) and VZV (n=1) by PCR, and mumps virus 

(n=4), DENV (n=2) and JEV (n=1) by serological diagnosis. mNGS detected HSV, VZV and 

mumps virus in 5/7, 1/1 and 1/4 of the CSF positive by routine assays, respectively, but DENV 

and JEV in none of the positive CSF. Additionally, mNGS detected enteroviruses in seven 

patients of unknown cause.  Subsequent expanded PCR testing revealed one additional CSF 

sample positive mumps virus, which was negative by mNGS assay. Therefore, a combination 

of routine diagnostic testing, mNGS assays and expanding PCR increased the diagnostic yield 

from 22.7% (15/66) to 34.8% (23/66). Using PCRs as reference assays, the sensitivity and 

specificity of mNGS were 74% (14/19) and 66% (31/47), respectively. Collectively, in this final 
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result chapter, I showed that in a single assay, mNGS could accurately detect a wide spectrum 

of neurotropic viruses in CSF of meningoencephalitis patients. The study showed the value that 

real-time sequencing may contribute to the diagnosis and management of meningoencephalitis 

patients, especially in resource-limited settings where pathogen-specific assays are limited in 

number.  

2. Future direction: 

As summarized above, my PhD research has provided significant insights into the epidemiology 

of CNS infections and CA sepsis in Vietnam and Thailand. It has also advanced our knowledge 

about the utility potential of mNGS as a single assay for pathogen discovery and infectious 

disease diagnosis, critical to inform future directions about emerging infections in the region 

and globally. Heading to the future, my aim is to address some key questions arising as part of 

my PhD research findings, which I outline below.   

2.1. Metagenomics for routine diagnosis and novel pathogen surveillance: 

In terms of the utility potential of mNGS for routine diagnosis, the critical question now is to 

define the extent to which mNGS may influence the management of patients with severe 

infectious diseases such as CA sepsis, CNS infections and pneumonia. Given the current 

turnaround time of 2-4 days of mNGS based diagnostic approach, albeit less with MinION based 

workflow, and the high cost, it is likely that mNGS would be most useful in the scenario where 

routine diagnosis could not define a causative agent. As such a prospective hospital-based study 

on patients with CA sepsis, CNS infection or pneumonia who are left undiagnosed after routine 

diagnostics would be of clinical significance and public health importance to pursue. In doing 

so, we might be able to detect novel causes of severe infections in hospitalized patients as they 

emerge. Notably, metagenomic analysis of culture materials and bronchoalveolar lavage fluid 

from a cluster of hospitalized patients presenting with CA pneumonia of unknown origin in 

Wuhan, China in late 2019 had led to the discovery of SARS-CoV-2 (47,304). Such prospective 
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metagenomic studies can now be facilitated by the availability of publically available 

bioinformatic pipelines (e.g. IDseq (206)), and the in-house mNGS pipeline I have set up during 

my PhD research.  

2.2. Human pegivirus 2: 

There are still many unanswered questions about the epidemiology, clinical significance 

potential, tissue tropism, pathogenesis and evolutionary biology of HPgV-2. Addressing these 

research questions requires extensive investigation and efforts. I will thus focus on expanding 

our knowledge about the prevalence and evolutionary biology of HPgV-2. I will base my 

analysis on patients enrolled in a Wellcome funded clinical trial namely VIETNarms (A 

strategic post-licensing trial of oral direct-acting antiviral hepatitis C treatment in VIETNam 

incorporating a novel design with multiple ARMS) (305). The trial sample size is 1000 

Vietnamese patients. Using longitudinal samples collected from the study participants, I will 

focus my analysis on: 

Exploring the prevalence and persistence of HPgV-2 in patients with HCV mono-infection 

and HCV/HIV coinfection: 

A combination of RT-PCR and serology will be used to screen for HPgV-2 RNA and antibodies 

in baseline and longitudinal samples to determine the prevalence of HPgV-2 in patients with 

HCV mono-infection or HCV/HIV co-infection. The antibody based screening approach could 

identify individuals with past exposure to HPgV-2 (268,270,274), whereas PCR could help 

identify those with ongoing viremia.  

Sofosbuvir is an effective inhibitor of RNA polymerases from a range of RNA viruses. 

Therefore, in the absence of an in vitro culture system for HPgV-2, by testing longitudinal 

samples, there might be an opportunity to assess the impact of direct acting antigens treatment 

on the duration of HPgV-2 detection in blood of the study participants.   

 



 159 

Genetically characterizing HPgV-2: 

I will use next-generation based whole-genome deep sequencing approaches available at 

OUCRU to recover HPgV-2 genomes from positive sera (including baseline and follow-up 

samples) collected from the study participants. Appropriate phylogenetic approaches (e.g. 

BEAST) will be utilized to help unravel the evolution and spread of HPgV-2 within Vietnam 

and beyond. Since deep sequencing enables the detection of thousands of viral haplotypes within 

any given sample, I will then use this data to re-construct transmission networks where possible, 

determine the relative rate of evolution of HPgV-2 within individuals and at the population level, 

and characterize the intra-host evolutionary dynamics of HPgV-2 infection. 

3. Summary: 

In summary, as part of my PhD research I have successfully set up and implemented an in-house 

mNGS workflow for the sensitive detection of a broad range of viruses in clinical samples at 

the clinical laboratory of Oxford University Clinical Research and the Hospital for Tropical 

Diseases in HCMC, Vietnam. Using this method, I have revealed significant insights into the 

epidemiology of CA sepsis and CNS infections in Thailand and Vietnam. Yet, it remains a 

challenge to identify a plausible viral pathogen in patients presenting with these devasting 

clinical conditions. The results have also contributed expanded data about the epidemiology and 

genetic diversity of HPgV-2, a recently discovered flavivirus. Additionally, my data 

demonstrated that mNGS can be as a pan-viral assay for infectious disease diagnosis and novel 

virus surveillance. Therefore, heading to the future it is critical to conduct further research to 

assess the extent to which real-time mNGS could influence the management of patients with 

severe infections such as pneumonia, sepsis and CNS infections. This would in turn allow for 

early detection of novel viral pathogens as they emerge, critical to inform outbreak response. 

As for HPgV-2, given the global burden of HCV and HIV infections, it is of equal importance 

to gain further insights into the prevalence and, evolutionary biology of this novel virus. 



 160 

References 

1.  Angus DC. The Lingering Consequences of Sepsis. Jama. 2010;304(16):1833.  

2.  World Health Organization. Global report on the epidemiology and burden of sepsis: 

current evidence, identifying gaps and future directions. Who. 2020. 56 p.  

3.  Bone RC, Balk RA, Cerra FB, Dellinger RP, Fein AM, Knaus WA, et al. Definitions for 

sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Chest. 

1992;101(6):1644–55.  

4.  Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, et al. 2001 

SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Intensive 

Care Med. 2003;29(4):530–8.  

5.  Dellinger RP, Levy MM, Rhodes A, Bs MB, Annane D, Gerlach H, et al. Surviving 

Sepsis Campaign : International Guidelines for Management of Severe Sepsis and Septic 

Shock : 2012. Crit Care Med. 2013;41(2):580–637.  

6.  Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. 

The third international consensus definitions for sepsis and septic shock. Jama. 

2016;315(8):801–10.  

7.  Dondorp AM, Dünser MW, Schultz MJ. Sepsis management in resource-limited settings. 

Sepsis Manag Resour Settings. 2019;1–216.  

8.  Reinhart K, Daniels R, Kissoon N, Machado FR, Schachter RD, Finfer S. Recognizing 

Sepsis as a Global Health Priority — A WHO Resolution. N Engl J Med. 

2017;377(5):414–7.  

9.  Rudd KE, Johnson SC, Agesa KM, Shackelford KA, Tsoi D, Kievlan DR, et al. Global, 

regional, and national sepsis incidence and mortality, 1990–2017: analysis for the Global 

Burden of Disease Study. Lancet. 2020;395(10219):200–11.  

10.  Vincent JL, Marshall JC, Ñamendys-Silva SA, François B, Martin-Loeches I, Lipman J, 

et al. Assessment of the worldwide burden of critical illness: The Intensive Care Over 

Nations (ICON) audit. Lancet Respir Med. 2014;2(5):380–6.  

11.  Danai P, Martin GS. Epidemiology of sepsis: Recent advances. Curr Infect Dis Rep. 

2005;7(5):329–34.  

12.  Fleischmann C, Scherag A, Adhikari NK, Hartog CS. Assessment of global incidence 

and mortality of hospital-treated sepsis.Current estimates and limitations. Am J Respir 

Crit Care Med. 2016;193(3):259–72.  

13.  Hall MJ, Williams SN, DeFrances CJ, Golosinskiy A. Inpatient care for septicemia or 

sepsis: a challenge for patients and hospitals. NCHS Data Brief. 2011;(62):1–8.  

14.  Lagu T, Rothberg MB, Shieh MS, Pekow PS, Steingrub JS, Lindenauer PK. 

Hospitalizations, costs, and outcomes of severe sepsis in the United States 2003 to 2007. 

Crit Care Med. 2012;40(3):754–61.  

15.  Fleischmann C, Thomas-Rueddel DO, Hartmann M, Hartog CS, Welte T, Heublein S, et 

al. Hospital Incidence and Mortality Rates of sepsis. Dtsch Arztebl Int. 

2016;113(10):159–66.  

16.  Bouza C, López-Cuadrado T, Saz-Parkinson Z, María J, -Blanco A. Epidemiology and 

recent trends of severe sepsis in Spain: a nationwide population-based analysis (2006-

2011). 2015.  

17.  Harrison DA, Welch CA, Eddleston JM. The epidemiology of severe sepsis in England, 

Wales and Northern Ireland, 1996 to 2004: secondary analysis of a high quality clinical 

database, the ICNARC Case Mix Programme Database. Crit Care Med. 2006;10.  

18.  Kaukonen KM, Bailey M, Suzuki S, Pilcher D, Bellomo R. Mortality related to severe 



 161 

sepsis and septic shock among critically ill patients in Australia and New Zealand, 2000-

2012. JAMA - J Am Med Assoc. 2014;311(13):1308–16.  

19.  Lewis JM, Abouyannis M, Katha G, Nyirenda M, Chatsika G, Feasey NA, et al. 

Population incidence and mortality of sepsis in an urban African setting 2013-2016. Clin 

Infect Dis. 2019;71:2013–6.  

20.  Hantrakun V, Somayaji R, Teparrukkul P, Boonsri C. Clinical epidemiology and 

outcomes of community acquired infection and sepsis among hospitalized patients in a 

resource limited setting in Northeast Thailand : A prospective observational study ( 

Ubon-sepsis ). PLoS One. 2018;1–14.  

21.  Khairul A, Purba R, Mariana N, Aliska G, Hadi S. The burden and costs of sepsis and 

reimbursement of its treatment in a developing country : An observational study on focal 

infections in Indonesia. Int J Infect Dis. 2020;96:211–8.  

22.  Martin GS. Sepsis, severe sepsis and septic shock: changes in incidence, pathogens and 

outcomes. Expert Rev Anti Infect Ther. 2013;10(6):701–6.  

23.  Arefian H, Heublein S, Scherag A, Brunkhorst FM, Younis MZ, Moerer O, et al. 

Hospital-related cost of sepsis: A systematic review. J Infect. 2017;74(2):107–17.  

24.  Torio CM, Andrews RM. National Inpatient Hospital Costs: the Most Expensive 

Conditions by Payer, 2011.Statistical Brief #160. Healthcare Cost and Utilization Project 

(HCUP) Statistical Briefs. Heal Cost Util Proj. 2013;31(1):1–12.  

25.  Mannino M, Martin GS. The role of infection and comorbidity: Factors that influence 

disparities in sepsis. Crit Care Med. 2014;34(10):2576–82.  

26.  Southest Asia Infectious Disease Clinical Research. Causes and outcomes of sepsis in 

southeast Asia: a multinational multicentre cross-sectional study. Lancet Glob Heal. 

2017;5(2):e157–67.  

27.  Prost N De, Razazi K, Brun-buisson C. Unrevealing culture-negative severe sepsis. Crit 

Care. 2013;17:1001.  

28.  Phua J, Ngerng WJ, See KC, Tay CK, Kiong T, Lim HF, et al. Characteristics and 

outcomes of culture-negative versus culture-positive severe sepsis. Crit Care. 

2013;17:R002.  

29.  Natanson C, Suflfredini AF, Danner RL, Cunnion RE, Ognibene FP. Septic Shock in 

Humans Advances in the Understanding of Pathogenesis , Cardiovascular. Ann Intern 

Med. 1990;113(3):227–42.  

30.  Glauser MP. Antibiotics in sepsis. Intensive Care Med. 2001;27:33–48.  

31.  Moss M. The Epidemiology of Sepsis in the United States from 1979 through 2000. 

2003;1546–54.  

32.  Opal SM, Garber GE, Larosa SP, Maki DG, Freebairn RC, Kinasewitz GT, et al. 

Systemic Host Responses in Severe Sepsis Analyzed by Causative Microorganism and 

Treatment Effects of Drotrecogin Alfa ( Activated ). Clin Infect Dis. 2003;37.  

33.  Zaidi AKM, Thaver D, Ali SA. Pathogens Associated With Sepsis in Newborns and 

Young Infants in Developing Countries. 2009;28(1):10–8.  

34.  Topeli A, Ünal S, Akalin HE. Risk factors influencing clinical outcome in 

Staphylococcus aureus bacteraemia in a Turkish University Hospital. Int J Antimicrob 

Agents. 2000;14(1):57–63.  

35.  Turnidge J. Impact of antibiotic resistance on the treatment of sepsis. Scand J Infect Dis. 

2003;35(9):677–82.  

36.  Delaloye J, Calandra T. Invasive candidiasis as a cause of sepsis in the critically ill 

patient. Virulence. 2014;5(1):161–9.  

37.  Xie G, Fang X, Fang Q, Wu X, Jin Y, Wang J, et al. Impact of invasive fungal infection 

on outcomes of severe sepsis : a multicenter matched cohort study in critically ill surgical 



 162 

patients. Crit Care. 2008;12:1–9.  

38.  Ranieri VM, Reinhart K, Gerlach H, Moreno R. Sepsis in European intensive care units: 

Results of the SOAP study*. Crit Care Med. 2006;34(2):344–53.  

39.  Haouache H, Goldgran-toledano D, Allaouchiche B, Azoulay E. Outcomes in severe 

sepsis and patients with septic shock: Pathogen species and infection sites are not 

associated with mortality*. Crit Care Med. 2011;39(8):1886–95.  

40.  Wilder-smith A, Ooi E. Update on Dengue : Epidemiology , Virus Evolution , Antiviral 

Drugs , and Vaccine Development. Curr Infect Dis Rep. 2010;12:157–64.  

41.  Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, et al. The global 

distribution and burden of dengue. Nature. 2013;496(7446):504–7.  

42.  Teparrukkul P, Hantrakun V, Day NPJ, West TE, Limmathurotsakul D. Management and 

outcomes of severe dengue patients presenting with sepsis in a tropical country. PLoS 

One. 2017;12(4):1–13.  

43.  Shane AL, Sánchez PJ, Stoll BJ. Seminar Neonatal sepsis. Lancet. 2017;6736(17):1–11.  

44.  Wolthers KC, Benschop KSM, Schinkel J, Molenkamp R, Bergevoet RM, Spijkerman 

IJB, et al. Human Parechoviruses as an Important Viral Cause of Sepsislike Illness and 

Meningitis in Young Children. Clin Infect Dis. 2008;47:358–63.  

45.  Cillóniz C, Dominedò C, Magdaleno D, Ferrer M. Pure Viral Sepsis Secondary to 

Community-Acquired Pneumonia in Adults : Risk and Prognostic Factors. J Infect Dis. 

2019;1–6.  

46.  Ortiz JR, Neuzil KM, Shay DK, Rue TC, Neradilek MB, Zhou H, et al. The Burden of 

Influenza-Associated Critical Illness Hospitalizations*. Crit Care Med. 

2014;42(11):2325–32.  

47.  Acuti C, Elena M, Cappadona R, Bravi F, Mantovani L, Manzoli L. SARS-CoV-2 

pandemic : An overview. Adv Biol Regul. 2020;77:1–11.  

48.  Eifan SA, Nour I, Hanif A, Zamzam AMM, Mohammed S. A pandemic risk assessment 

of middle east respiratory syndrome coronavirus ( MERS-CoV ) in Saudi Arabia. Saudi 

J Biol Sci. 2017;24(7):1631–8.  

49.  Cherry JD, Krogstad P. SARS : The First Pandemic of the 21 st Century. Pediatr Res. 

2004;56(1):1–5.  

50.  Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for 

mortality of adult inpatients with COVID-19 in Wuhan , China : a retrospective cohort 

study. Lancet. 2020;395:1054–62.  

51.  WHO. Neurological disorders public health challenges. Medicine (Baltimore). 2006;229.  

52.  Riddell J, Shuman EK. Epidemiology of Central Nervous System Infection. 

Neuroimaging Clin N Am. 2012;22(4):543–56.  

53.  Levin SN, Lyons JL. Infections of the Nervous System. Am J Med. 2018;131(1):25–32.  

54.  Kim KS. Acute bacterial meningitis in infants and children. Lancet Infect Dis. 

2010;10(1):32–42.  

55.  van de Beek D, de Gans J, Spanjaard L, Weisfelt M, Reitsma JB, Vermeulen M. Clinical 

Features and Prognostic Factors in Adults with Bacterial Meningitis. N Engl J Med. 

2004;351(18):1849–59.  

56.  Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, et al. Global and 

regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: A 

systematic analysis for the Global Burden of Disease Study 2010. Lancet. 

2012;380(9859):2095–128.  

57.  McGill F, Griffiths MJ, Solomon T. Viral meningitis: Current issues in diagnosis and 

treatment. Curr Opin Infect Dis. 2017;30(2):248–56.  

58.  Rice P. Viral meningitis and encephalitis. Am Acad Neurol. 2018;24(5):1284–97.  



 163 

59.  Wright WF, Pinto CN, Palisoc K, Baghli S. Viral (aseptic) meningitis: A review. J Neurol 

Sci. 2019;398:176–83.  

60.  Ihekwaba UK, Kudesia G, McKendrick MW. Clinical features of viral meningitis in 

adults: Significant differences in cerebrospinal fluid findings among herpes simplex 

virus, varicella zoster virus, and enterovirus infections. Clin Infect Dis. 2008;47(6):783–

9.  

61.  Omland LH, Vestergaard BF, Wandall JH. Herpes simplex virus type 2 infections of the 

central nervous system: A retrospective study of 49 patients. Scand J Infect Dis. 

2008;40(1):59–62.  

62.  Michos AG, Syriopoulou VP, Hadjichristodoulou C, Daikos GL, Lagona E, Douridas P, 

et al. Aseptic menimgitis in children: Analysis of 506 cases. PLoS One. 2007;2(8):e674.  

63.  Molyneux E, Riordan FAI, Walsh A. Acute bacterial meningitis in children presenting to 

the Royal Liverpool Children’s Hospital, Liverpool, UK and the Queen Elizabeth Central 

Hospital in Blantyre, Malawi: A world of difference. Ann Trop Paediatr. 2006;26:29–37.  

64.  Kumar R. Understanding and managing acute encephalitis. F1000Research. 2020;9:60.  

65.  Granerod J, Tam CC, Crowcroft NS, Davies NWS, Borchert M, Thomas SL. Challenge 

of the unknown: A systematic review of acute encephalitis in non-outbreak situations. 

Neurology. 2010;75(10):924–32.  

66.  Somand D, Meurer W. Central Nervous System Infections. Emerg Med Clin North Am. 

2009;27(1):89–100.  

67.  Davies NWS, Sharief MK, Howard RS. Infection-associated encephalopathies-their 

investigation, diagnosis, and treatment. J Neurol. 2006;253(7):833–45.  

68.  Venkatesan A, Tunkel AR, Bloch KC, Lauring AS, Sejvar J, Bitnun A, et al. Case 

definitions, diagnostic algorithms, and priorities in encephalitis: Consensus statement of 

the international encephalitis consortium. Clin Infect Dis. 2013;57(8):1114–28.  

69.  Lancaster E, Dalmau J. Neuronal autoantigens—pathogenesis, associated disorders and 

antibody testing. Nat Rev Neurol. 2012;8(7):380–90.  

70.  Granerod J, Ambrose HE, Davies NWS, Clewley JP, Walsh AL, Morgan D, et al. Causes 

of encephalitis and differences in their clinical presentations in England : a multicentre , 

population-based prospective study. Lancet Infect Dis. 2010;10(12):835–44.  

71.  Dalmau J, Tu E, Rossi JE, Voloschin A, Baehring JM, Shimazaki H, et al. Paraneoplastic 

Anti – N -methyl- D -aspartate Receptor Encephalitis Associated with Ovarian Teratoma. 

Ann Neurol. 2007;61:25–36.  

72.  Abrantes F, Toso FF, Povoas OG, Hoftberger R. Autoimmune encephalitis : a review of 

diagnosis and treatment. Arq Neuropsiquiatr. 2018;76(1):41–9.  

73.  Graus F, Titulaer M., Balu R, Benseler S, Bien C., Cellucci T, et al. A clinical approach 

to diagnosis of autoimmune encephalitis. Lancet Neurol. 2016;15(4):391–404.  

74.  Feigin VL, Krishnamurthi R V., Theadom AM, Abajobir AA, Mishra SR, Ahmed MB, 

et al. Global, regional, and national burden of neurological disorders during 1990–2015: 

a systematic analysis for the Global Burden of Disease Study 2015. Lancet Neurol. 

2017;16(11):877–97.  

75.  Zunt JR, Kassebaum NJ, Blake N, Glennie L, Wright C, Nichols E, et al. Global, regional, 

and national burden of meningitis, 1990–2016: a systematic analysis for the Global 

Burden of Disease Study 2016. Lancet Neurol. 2018;17(12):1061–82.  

76.  Robertson FC, Lepard JR, Mekary RA, Davis MC, Yunusa I, Gormley WB, et al. 

Epidemiology of central nervous system infectious diseases: A meta-analysis and 

systematic review with implications for neurosurgeons worldwide. J Neurosurg. 

2018;130(4):1107–26.  

77.  Ford H, Wright J. Bacterial meningitis in Swaziland: An 18 month prospective study of 



 164 

its impact. J Epidemiol Community Health. 1994;48(3):276–80.  

78.  Chan YC, Ong BKC, Kumarasinghe G. Meningitis in a Singaporean Teaching Hospital . 

A Seven-Year Overview ( 1993-2000 ). Singapore Med J. 2002;43(12):632–6.  

79.  Scarborough M, Thwaites GE. The diagnosis and management of acute bacterial 

meningitis in resource-poor settings. Lancet Neurol. 2008;7(7):637–48.  

80.  McIntyre PB, O’Brien KL, Greenwood B, Van De Beek D. Effect of vaccines on bacterial 

meningitis worldwide. Lancet. 2012;380(9854):1703–11.  

81.  Basri R, Zueter AR, Mohamed Z, Alam MK, Norsa’Adah B, Hasan SA, et al. Burden of 

bacterial meningitis: A retrospective review on laboratory parameters and factors 

associated with death in Meningitis, Kelantan Malaysia. Nagoya J Med Sci. 2015;77(1–

2):59–68.  

82.  Shaker R, Fayad D, Dbaibo G. Challenges and opportunities for meningococcal 

vaccination in the developing world. Hum Vaccines Immunother. 2018;14(5):1084–97.  

83.  Kakooza-Mwesige A, Tshala-Katumbay D, Juliano SL. Viral infections of the central 

nervous system in Africa. Brain Res Bull. 2019;145(May 2018):2–17.  

84.  Kupila L, Vuorinen T, Vainionpää R, Hukkanen V, Marttila RJ, Kotilainen P. Etiology 

of aseptic meningitis and encephalitis in an adult population. Neurology. 2006;66(1):75–

80.  

85.  Rantakallio P, Leskinen M, von Wendt L. Incidence and prognosis of central nervous 

system infections in a birth cohort of 12 000 children. Scand J Infect Dis. 

1986;18(4):287–94.  

86.  Khetsuriani N, Quiroz ES, Holman RC, Anderson LJ. Viral meningitis-associated 

hospitalizations in the United States, 1988-1999. Neuroepidemiology. 2003;22(6):345–

52.  

87.  Soares CN, Cabral-Castro MJ, Peralta JM, De Freitas MRG, Zalis M, Puccioni-Sohler 

M. Review of the etiologies of viral meningitis and encephalitis in a dengue endemic 

region. J Neurol Sci. 2011;303(1–2):75–9.  

88.  Meyer HM, Johnson RT, Crawford IP, Dascomb HE, Rogers NG. Central nervous system 

syndromes of “viral” etiology. A study of 713 cases. Am J Med. 1960;29(2):334–47.  

89.  Thompson C, Kneen R, Riordan A, Kelly D, Pollard AJ. Encephalitis in children. Arch 

Dis Child. 2012;97(2):150–61.  

90.  Greenlee JE. Encephalitis and postinfectious encephalitis. Contin Lifelong Learn Neurol. 

2012;18(6):1271–89.  

91.  Tan L Van, Thai LH, Phu NH, Nghia HDT, Chuong L Van, Sinh DX, et al. Viral 

Aetiology of Central Nervous System Infections in Adults Admitted to a Tertiary Referral 

Hospital in Southern Vietnam over 12 Years. PLoS Negl Trop Dis. 2014;8(8):e3127.  

92.  Solomon T, Michael BD, Smith PE, Sanderson F, Davies NWS, Hart IJ, et al. 

Management of suspected viral encephalitis in adults - Association of British 

Neurologists and British Infection Association National Guidelines. J Infect. 

2012;64(4):347–73.  

93.  Vora NM, Holman RC, Mehal JM, Steiner CA, Blanton J, Sejvar J. Burden of 

encephalitis-associated hospitalizations in the United States, 1998-2010. Neurology. 

2014;82(5):443–51.  

94.  Ho NT, Hoang VMT, Le NNT, Nguyen DT, Tran A, Kaki D, et al. A spatial and temporal 

analysis of paediatric central nervous system infections from 2005 to 2015 in Ho Chi 

Minh City, Vietnam. Epidemiol Infect. 2017;145(15):3307–17.  

95.  Ho Dang Trung N, Le Thi Phuong T, Wolbers M, Nguyen van Minh H, Nguyen Thanh 

V, Van MP, et al. Aetiologies of central nervous system infection in Viet Nam: A 

prospective provincial hospital-based descriptive surveillance study. PLoS One. 



 165 

2012;7(5):e37875.  

96.  Taylor WR, Nguyen K, Nguyen D, Nguyen H, Horby P, Nguyen HL, et al. The Spectrum 

of Central Nervous System Infections in an Adult Referral Hospital in Hanoi, Vietnam. 

PLoS One. 2012 Aug 30;7(8).  

97.  Glaser CA, Honarmand S, Anderson LJ, Schnurr DP, Forghani B, Cossen CK, et al. 

Beyond Viruses : Clinical Profiles and Etiologies Associated with Encephalitis. Clin 

Infect Dis. 2006;43(12):1565–77.  

98.  Olsen SJ, Campbell AP, Supawat K, Liamsuwan S, Chotpitayasunondh T, Laptikulthum 

S, et al. Infectious Causes of Encephalitis and Meningoencephalitis in Thailand, 2003–

2005. Emerg Infect Dis. 2015;21(2):280–9.  

99.  van Tan L, Qui PT, Ha DQ, Hue NB, Bao LQ, van Cam B, et al. Viral etiology of 

encephalitis in children in Southern Vietnam: Results of a one-year prospective 

descriptive study. PLoS Negl Trop Dis. 2010;4(10).  

100.  Taylor WR, Nguyen K, Nguyen D, Nguyen H, Horby P, Nguyen HL, et al. The Spectrum 

of Central Nervous System Infections in an Adult Referral Hospital in Hanoi, Vietnam. 

PLoS One. 2012;7(8):1–8.  

101.  van Tan L, Qui PT, Ha DQ, Hue NB, Bao LQ, van Cam B, et al. Viral etiology of 

encephalitis in children in Southern Vietnam: Results of a one-year prospective 

descriptive study. PLoS Negl Trop Dis. 2010;4(10):e854.  

102.  Bookstaver PB, Mohorn PL, Shah A, Tesh LD, Quidley AM, Kothari R, et al. 

Management of Viral Central Nervous System Infections: A Primer for Clinicians. J Cent 

Nerv Syst Dis. 2017;9:1–12.  

103.  Ahlbrecht AJ, Hillebrand LK, Ganzenmueller T, Heim A, Stangel M, Kurt-wolfram S. 

Cerebrospinal fluid features in adults with enteroviral nervous system infection. Int J 

Infect Dis. 2018;  

104.  Vollbach S, Müller A, Drexler JF, Simon A, Drosten C, Eis-hübinger AM. Prevalence , 

type and concentration of human enterovirus and parechovirus in cerebrospinal fluid 

samples of pediatric patients over a 10-year period : a retrospective study. Virol J. 

2015;1–6.  

105.  Holmes CW, Koo SSF, Osman H, Wilson S, Xerry J, Gallimore CI, et al. Predominance 

of enterovirus B and echovirus 30 as cause of viral meningitis in a UK population. J Clin 

Virol. 2016;81:90–3.  

106.  B’Krong NTTC, Minh NNQ, Qui PT, Chau TTH, Nghia HDT, Do LAH, et al. 

Enterovirus serotypes in patients with central nervous system and respiratory infections 

in Viet Nam 1997–2010. Virol J. 2018;15:69.  

107.  Puenpa J, Wanlapakorn N, Vongpunsawad S, Poovorawan Y. The History of Enterovirus 

A71 Outbreaks and Molecular Epidemiology in the Asia-Pacific Region. J Biomed Sci. 

2019;26:75.  

108.  Mcminn PC. Enterovirus 71 in the Asia-Pacific region : An emerging cause of acute 

neurological disease in young children. Neurol J Southeast Asia. 2003;8:57–63.  

109.  Messacar K, Asturias EJ, Hixon AM, Van Leer-Buter C, Niesters HGM, Tyler KL, et al. 

Enterovirus D68 and acute flaccid myelitis—evaluating the evidence for causality. 

Lancet Infect Dis. 2018;18(8):e239–47.  

110.  Logan SAE, MacMahon E. Viral meningitis. Bmj. 2008;336(7634):36–40.  

111.  Honda H, Warren DK. Central Nervous System Infections: Meningitis and Brain 

Abscess. Infect Dis Clin North Am. 2009;23(3):609–23.  

112.  Rotbart HA, Brennan PJ, Fife KH, Romero JR, Johanna A, Mckinlay MA, et al. 

Enterovirus Meningitis in Adults. Clin Infect Dis. 1998;27(4):896–8.  

113.  Meningitis E, Meningitis MS. Herpes Simplex Virus Infections of the Central Nervous 



 166 

System : Encephalitis and Meningitis , Including Mollaret ’ s. Herpes. 2004;11(Suppl 

2):57A–64A.  

114.  Kallio-laine K, Seppänen M, Lappalainen M, Valtonen V. Recurrent Lymphocytic 

Meningitis Positive for Herpes Simplex Virus Type 2. Emerg Infect Dis. 

2009;15(7):1119–22.  

115.  Ben Abid F, Abukhattab M, Ghazouani H, Khalil O, Gohar A, Al Soub H, et al. 

Epidemiology and clinical outcomes of viral central nervous system infections. Int J 

Infect Dis. 2018;73:85–90.  

116.  Hoffman GM, Ghanayem NS, Amlie-lefond CM, Schwabe MJ, Chusid MJ, Rupprecht 

CE, et al. Survival after Treatment of Rabies with Induction of Coma. N Engl J Med. 

2005;352(24):2508–14.  

117.  Hampson K, Coudeville L, Lembo T, Sambo M, Kieffer A, Attlan M, et al. Estimating 

the Global Burden of Endemic Canine Rabies. PLoS Negl Trop Dis. 2015;9(4):1–20.  

118.  Lumlertdacha B, Guerra M, Meltzer MI, Dhankhar P. Human Rabies Prevention — 

United States , 2008 Recommendations of the Advisory Committee on Immunization 

Practices. MMWR Recomm Rep. 2008;57(RR-3):1–28.  

119.  Pierson TC, Diamond MS. The continued threat of emerging flaviviruses. Nat Microbiol. 

2020;5:796–812.  

120.  WHO. Dengue and severe dengue. World Health Organization. 2020. p. 1–13.  

121.  Campbell GL, Hills SL, Fischer M, Jacobson JA, Hoke CH, Hombach JM, et al. 

Estimated global incidence of Japanese encephalitis: A systematic review. Bull World 

Health Organ. 2011;89(10):766–74.  

122.  Mostashari F, Bunning ML, Kitsutani PT, Singer DA, Nash D, Cooper MJ, et al. 

Epidemic West Nile encephalitis , New York , 1999 : results of a household-based 

seroepidemiological survey. Lancet. 2001;358:261–4.  

123.  Leary DRO, Marfin AA, Montgomery SP, Kipp AM, Lehman JA, Biggerstaff BJ, et al. 

The Epidemic of West Nile Virus in the United States, 2002. VECTOR-BORNE 

ZOONOTIC Dis. 2004;4(1):61–70.  

124.  CDC. West Nile Virus Activity — United States , 2009. 2010;59(25).  

125.  Doughty CT, Yawetz S, Lyons J. Emerging Causes of Arbovirus Encephalitis in North 

America : Powassan , Chikungunya , and Zika Viruses. Curr Neurol Neurosci Rep. 

2017;17:12.  

126.  Vodušek VF, Vizjak A, Ph D, Pižem J, Ph D. Zika Virus Associated with Microcephaly. 

N Engl J Med. 2016;374:951–8.  

127.  Victor A, Coelho C. Microcephaly Prevalence in Infants Born to Zika Virus-Infected 

Women : A Systematic Review and Meta-Analysis. Int J Mol Ciences. 2017;18:1714.  

128.  Clemmons NS, Gastanaduy PA, Fiebelkorn AP, Redd SB, Wallace GS. Measles — 

United States, January 4–April 2, 2015. MMWRMorbMortalWkly Rep. 

2015;64(14):373–376.  

129.  Zeng SZ, Zhang B ZY. Identification of 12 cases of acute measles encephalitis without 

rash. Clin Infect Dis. 2016;63(12):1630–3.  

130.  Campbell H, Andrews N, Brown KE, Miller E. Review of the effect of measles 

vaccination on the epidemiology of SSPE. Int J Epidemiol. 2007;36(6):1334–48.  

131.  Paulson GW. Subacute sclerosing panencephalitis. Pediatr Heal Med Ther. 2018;9:67–

71.  

132.  Ibrahim SH, Amjad N, Saleem AF, Chand P, Rafique A, Humayun KN. The upsurge of 

SSPE-A reflection of national measles immunization status in Pakistan. J Trop Pediatr. 

2014;60(6):449–53.  

133.  States MU, May J, Gastañaduy PA, Redd SB, Fiebelkorn AP, Rota JS, et al. Measles — 



 167 

United States, January 1–May 23, 2014. MMWR Morb Mortal Wkly Rep. 

2014;63(22):496–9.  

134.  Choisy M, Tung TS, Thi N, Diep N, Hien NT, Le MQ, et al. Sero-Prevalence Surveillance 

to Predict Vaccine- Preventable Disease Outbreaks ; A Lesson from the 2014 Measles 

Epidemic in Northern Vietnam. Open Forum Infect Dis. 2014;6(3):ofz030.  

135.  Tyor W, Harrison T. Mumps and rubella. 1st ed. Vol. 123, Neurovirology. Elsevier B.V.; 

2014. 591–600 p.  

136.  CDC. Mumps Outbreak — New York and New Jersey , June 2009 – January 2010. 

MMWR Morb Mortal Wkly Rep. 2010;59(5):125–9.  

137.  Chua KB. Introduction : Nipah Virus — Discovery and Origin. Curr Top Microbiol 

Immunol. 2012;359:1–9.  

138.  Murray K, Selleck P, Hooper P, Hyatt A, Gould A, Gleeson L, et al. A Morbillivirus That 

Caused Fatal Disease in Horses and Humans. Science (80- ). 1995;268:94–7.  

139.  Wildlife Health Australia. Hendra virus and Australian wildlife. WHA Fact Sheet: 

Hendra virus in flying-foxes in Australia. 2017.  

140.  Fenollar F, Raoult D. Molecular diagnosis of bloodstream infections caused by non-

cultivable bacteria. Iternational J Antimicrob Agents. 2007;30S:S7–15.  

141.  Sinha M, Jupe J, Mack H, Coleman TP, Lawrence SM, Fraley I. Emerging Technologies 

for Molecular Diagnosis of Sepsis. J Clin Microbiol. 2018;31(2):e00089-17.  

142.  Fan S, Miller NS, Lee J, Remick DG. Diagnosing Sepsis – The Role of Laboratory 

Medicine. Clin Chim Acta. 2016;460:203–10.  

143.  Bs RAG, Ascp MT, Spitzer ED, Rn JB, Bsn CB, Bsn RD, et al. Multidisciplinary team 

review of best practices for collection and handling of blood cultures to determine 

effective interventions for increasing the yield of true-positive bacteremias , reducing 

contamination , and eliminating false-positive central line. Am J Infect Control. 

2015;43(11):1222–37.  

144.  Ilstrup DM, Ii JAW. The Importance of Volume of Blood Cultured in the Detection of 

Bacteremia and Fungemia. Diagn Microbiol Infect Dis. 1983;1:107–10.  

145.  Martinez RM, Wolk DM. Bloodstream Infections. Microbiol Spectr. 2016;4(4):1–34.  

146.  Thomson RB, Bertram H. Laboratory diagnosis of central nervous system infections. 

Infect Dis Clin North Am. 2001;15(4):1047–71.  

147.  Steiner I, Budka H, Chaudhuri A, Koskiniemi M, Sainio K, Salonen O, et al. Viral 

meningoencephalitis : a review of diagnostic methods and guidelines for management. 

Eur J Neurol. 2010;17:999–1009.  

148.  He T, Kaplan S, Kamboj M, Tang Y. Laboratory Diagnosis of Central Nervous System 

Infection. Curr Infect Dis Rep. 2016;18:35.  

149.  Ginocchio CC, Zhang F, Malhotra A, Manji R, Sillekens P, Foolen H, et al. Development 

, Technical Performance , and Clinical Evaluation of a NucliSens Basic Kit Application 

for Detection of Enterovirus RNA in Cerebrospinal Fluid. J Clin Microbilogy. 

2005;43(6):2616–23.  

150.  Polage CR, Petti CA. Assessment of the Utility of Viral Culture of Cerebrospinal Fluid. 

Clin Infect Dis. 2006;43:1578–9.  

151.  Solomon T. Flavivirus Encephalitis. N Engl J Med. 2004;351:370–8.  

152.  Chabierski S, Barzon L, Papa A, Niedrig M, Bramson JL, Richner JM, et al. 

Distinguishing West Nile virus infection using a recombinant envelope protein with 

mutations in the conserved fusion-loop. BMC Infect Dis. 2014;14:246.  

153.  Peters RPH, Agtmael MA Van, Danner SA, Savelkoul PHM, Christina MJE. Review 

New developments in the diagnosis of bloodstream infections. Lancet Infect Dis. 

2004;4(12):751–60.  



 168 

154.  Gutierrez M, Emmanuel PJ. Expanding Molecular Diagnostics for Central Nervous 

System Infections. Adv Pediatr. 2018;  

155.  Shaker OG, Abdelhamid N. Detection of enteroviruses in pediatric patients with aseptic 

meningitis. Clin Neurol Neurosurg. 2015;129:67–71.  

156.  Rowley AH, Whitley RJ, Lakeman FD, Wolinsky SM. Rapid detection of herpes-

simplex-virus DNA in cerebrospinal fluid of patients with herpes simplex encephalitis. 

Lancet. 1990;335:440–1.  

157.  Mchugh MP, Gray SJ, Kaczmarski EB, Guiver M. Reduced turnaround time and 

improved diagnosis of invasive serogroup B Neisseria meningitidis and Streptococcus 

pneumoniae infections using a lyophilized quadruplex quantitative PCR. J Med 

Microbiol. 2015;64:1321–8.  

158.  Deng J, Pei J, Gou H, Ye Z, Liu C, Chen J. Rapid and simple detection of Japanese 

encephalitis virus by reverse transcription loop-mediated isothermal amplification 

combined with a lateral flow dipstick. J Virol Methods. 2015;213:98–105.  

159.  Lakeman FD, Whitley RJ. Diagnosis of Herpes Simplex Encephalitis : Application of 

Polymerase Chain Reaction to Cerebrospinal Fluid from Brain-Biopsied Patients and 

Correlation with Disease. J Infect Dis. 1995;171:857–63.  

160.  Glass N, Nelson HD, Huffman L. Screening for Genital Herpes Simplex : Brief Update 

for the U . S . Preventive Services Task Force Types of Genital HSV. Am Fam Physician. 

2005;72(8):1557–61.  

161.  Mardis ER. DNA sequencing technologies : 2006 – 2016. Nat Protoc. 2017;12(2):213–8.  

162.  Gupta AK, Gupta UD. Next Generation Sequencing and Its Applications. Animal 

Biotechnology: Models in Discovery and Translation. Elsevier; 2014. 345–367 p.  

163.  Kulski JK. Next-Generation Sequencing — An Overview of the History , Tools , and “ 

Omic ” Applications. In: INTECH. 2015. p. 3–60.  

164.  Illumina. Explore Illumina sequencing technology Massively parallel sequencing with 

optimized SBS chemistry. Illumina. p. 

https://sapac.illumina.com/science/technology/next.  

165.  Jerome H, Taylor C, Sreenu VB, Klymenko T, Da A, Filipe S, et al. Metagenomic next-

generation sequencing aids the diagnosis of viral infections in febrile returning travellers. 

J Infect. 2019;79:383–8.  

166.  Tian J, Pei Y, Yuan M, Zhang Y, Dai F, Liu Y, et al. A new coronavirus associated with 

human respiratory disease in China. Nature. 2020;579:265–269.  

167.  Brown JR, Morfopoulou S, Hubb J, Emmett WA, Ip W, Shah D, et al. Astrovirus 

VA1/HMO-C: An increasingly recognized neurotropic pathogen in 

immunocompromised patients. Clin Infect Dis. 2015;60(6):881–8.  

168.  Stremlau MH, Andersen KG, Folarin OA, Grove JN, Odia I, Ehiane PE, et al. Discovery 

of Novel Rhabdoviruses in the Blood of Healthy Individuals from West Africa. PLoS 

Negl Trop Dis. 2015 Mar;9(3):e0003631.  

169.  Phan TG, Mendoza J del V, Sadeghi M, Altan E, Deng X, Delwart E. Sera of Peruvians 

with fever of unknown origins include viral nucleic acids from non-vertebrate hosts. 

Virus Genes. 2018 Feb;54(1):33.  

170.  Loh J, Zhao G, Presti RM, Holtz LR, Finkbeiner SR, Droit L, et al. Detection of Novel 

Sequences Related to African Swine Fever Virus in Human Serum and Sewage. J Virol. 

2009 Dec 15;83(24):13019–25.  

171.  Takeuchi S, Kawada J, Horiba K, Okuno Y, Okumura T, Suzuki T, et al. Metagenomic 

analysis using next-generation sequencing of pathogens in bronchoalveolar lavage fluid 

from pediatric patients with respiratory failure. Sci Rep. 2019 Dec 9;9(1):12909.  

172.  Perlejewski K, Popiel M, Laskus T, Nakamura S, Motooka D, Stokowy T, et al. Next-



 169 

generation sequencing (NGS) in the identification of encephalitis-causing viruses: 

Unexpected detection of human herpesvirus 1 while searching for RNA pathogens. J 

Virol Methods. 2015 Dec 15;226:1–6.  

173.  Kufner V, Plate A, Schmutz S, Braun DL, Günthard HF, Capaul R, et al. Two Years of 

Viral Metagenomics in a Tertiary Diagnostics Unit: Evaluation of the First 105 Cases. 

Genes (Basel). 2019;10(9).  

174.  Linsuwanon P, Poovorawan Y, Li L, Deng X, Vongpunsawad S, Delwart E. The Fecal 

Virome of Children with Hand, Foot, and Mouth Disease that Tested PCR Negative for 

Pathogenic Enteroviruses. PLoS One. 2015;10(8):e0135573.  

175.  Brown JR, Bharucha T, Breuer J. Encephalitis diagnosis using metagenomics: 

application of next generation sequencing for undiagnosed cases. J Infect. 

2018;76(3):225–40.  

176.  Ajogbasile F V., Oguzie JU, Oluniyi PE, Eromon P, Uwanibe J, Mehta SB, et al. Real-

time Metagenomic Analysis of Undiagnosed Fever Cases Unveils a Yellow Fever 

Outbreak in Edo State, Nigeria. Sci Rep. 2020;10(1):3180.  

177.  Tschumi F, Schmutz S, Kufner V, Heider M, Pigny F, Schreiner B, et al. Meningitis and 

epididymitis caused by Toscana virus infection imported to Switzerland diagnosed by 

metagenomic sequencing: a case report. BMC Infect Dis. 2019 Dec 8;19(1):591.  

178.  Golan D, Medvedev P. Using state machines to model the Ion Torrent sequencing process 

and to improve read error rates. Bioinformatics. 2013;29:344–51.  

179.  Marascio N, Pavia G, Strazzulla A, Dierckx T, Cuypers L, Vrancken B, et al. Detection 

of Natural Resistance-Associated Substitutions by Ion Semiconductor Technology in 

HCV1b Positive , Direct-Acting Antiviral Agents-Naïve Patients. Int J Mol Sci. 

2016;17:1416.  

180.  Nougairede A, Bichaud L, Thiberville S, Ninove L, Zandotti C, Lamballerie X De, et al. 

Isolation of Toscana Virus from the Cerebrospinal Fluid. VECTOR-BORNE 

ZOONOTIC Dis. 2013;13(9):1316.  

181.  Csabai Z, Sharon D, Snyder M, Biology PD. Characterization of Novel Transcripts in 

Pseudorabies Virus. Viruses. 2015;7:2727–44.  

182.  Metzker ML. Sequencing technologies — the next generation. Nat Rev Genet. 

2009;11(1):31–46.  

183.  Mbala-kingebeni P, Mukadi D, Mukadi P, Kumakamba C. Rapid Confirmation of the 

Zaire Ebola Virus in the Outbreak of the Equateur Province in the Democratic Republic 

of Congo : Implications for Public Health Interventions. Clin Infect Dis. 2019;68(2):330–

3.  

184.  Quick J, Grubaugh ND, Pullan ST, Claro IM, Smith AD, Gangavarapu K, et al. Multiplex 

PCR method for MinION and Illumina sequencing of Zika and other virus genomes 

directly from clinical samples. Nat Protoc. 2017;12(6).  

185.  Sequence G, Isolate S-, Using O, Nanopore O. Genome Sequence of SARS-CoV-2 

Isolate Cali-01, from Colombia, Obtained Using Oxford Nanopore MinION Sequencing. 

Microbiol Resour Announc. 2020;9:e00573-20.  

186.  Leggett RM, Clark MD. A world of opportunities with nanopore sequencing. Jpurnal Exp 

Bot. 2017;68(20):5419–29.  

187.  Wooley JC, Ye Y. Metagenomics : Facts and Artifacts , and Computational Challenges 

ã. J Comput Sci Technol. 2010;25(1):71–81.  

188.  Delwart EL. Viral metagenomics. Rev Med Virol. 2007;17:115–31.  

189.  Kumar A, Murthy S, Kapoor A. Evolution of selective-sequencing approaches for virus 

discovery and virome analysis. Virus Res. 2017;239:172–9.  

190.  Li L, Deng X, Mee ET, Collot-Teixeira S, Anderson R, Schepelmann S, et al. Comparing 



 170 

viral metagenomics methods using a highly multiplexed human viral pathogens reagent. 

J Virol Methods. 2014 Dec 11;213C:139–46.  

191.  Calvet G, Aguiar RS, Melo ASO, Sampaio SA, de Filippis I, Fabri A, et al. Detection and 

sequencing of Zika virus from amniotic fluid of fetuses with microcephaly in Brazil: a 

case study. Lancet Infect Dis. 2016 Jun 1;16(6):653–60.  

192.  Halary S, Duraisamy R, Fancello L, Monteil-Bouchard S, Jardot P, Biagini P, et al. Novel 

single-stranded DNA circular viruses in pericardial fluid of patient with recurrent 

pericarditis. Vol. 22, Emerging Infectious Diseases. Centers for Disease Control and 

Prevention (CDC); 2016. p. 1839–41.  

193.  Allander T, Emerson SU, Engle RE, Purcell RH, Bukh J. A virus discovery method 

incorporating DNase treatment and its application to the identification of two bovine 

parvovirus species. Proc Natl Acad Sci U S A. 2001;98(20):11609–14.  

194.  Cann AJ, Fandrich SE, Heaphy S. Analysis of the Virus Population Present in Equine 

Faeces Indicates the Presence of Hundreds of Uncharacterized Virus Genomes w. Virus 

Genes. 2005;30(2):151–6.  

195.  Zhang T, Breitbart M, Lee WH, Run J, Wei CL, Wee S, et al. RNA Viral Community in 

Human Feces : Prevalence of Plant Pathogenic Viruses. Plos Biol. 2006;4(1):e3.  

196.  Matsui SM, Oshiro LS, Reyes GR. The isolation and characterization of a Norwalk virus-

specific cDNA. J Clin Invest. 1991;87(4):1456–61.  

197.  Matsui SM, Kim JP, Greenberg HB, Young LAVM, Smith LS, Lewis TL, et al. Cloning 

and Characterization of Human Astrovirus Immunoreactive Epitopes. J Virol. 

1993;67(3):1712–5.  

198.  Jones MS, Kapoor A, Lukashov V V, Hecht F, Delwart E, Jones MS, et al. New DNA 

Viruses Identified in Patients with Acute Viral Infection Syndrome New DNA Viruses 

Identified in Patients with Acute Viral Infection Syndrome. J Virol. 2005;79(13):8230–

6.  

199.  Tammi MT, Eriksson M, Allander T, Tammi MT, Eriksson M, Bjerkner A, et al. Cloning 

of a human parvovirus by molecular screening of respiratory tract samples. PNAS. 

2005;102(36):12891–6.  

200.  Phan TG, Li L, O’Ryan MG, Cortes H, Mamani N, Bonkoungou IJO, et al. A third 

gyrovirus species in human faeces. J Gen Virol. 2012 Jun;93(Pt 6):1356–61.  

201.  Xu B, Liu L, Huang X, Ma H, Zhang Y, Du Y, et al. Metagenomic Analysis of Fever, 

Thrombocytopenia and Leukopenia Syndrome (FTLS) in Henan Province, China: 

Discovery of a New Bunyavirus. Palacios G, editor. PLoS Pathog. 2011 Nov 

17;7(11):e1002369.  

202.  Breitbart M, Rohwer F. Method for discovering novel DNA viruses in blood using viral 

particle selection and shotgun sequencing. Biotechniques. 2005;39(5):729–36.  

203.  Tanaka Y, Primi D, Wang RYH, Umemura T, Yeo AET, Mizokami M, et al. Genomic 

and Molecular Evolutionary Analysis of a Newly Identified Infectious Agent ( SEN Virus 

) and Its Relationship to the TT Virus Family. J Infect Dis. 2001;183:359–67.  

204.  Flygare S, Simmon K, Miller C, Qiao Y, Kennedy B, Di Sera T, et al. Taxonomer: an 

interactive metagenomics analysis portal for universal pathogen detection and host 

mRNA expression profiling. Genome Biol. 2016;17(1):111.  

205.  Wood DE, Salzberg SL. Kraken : ultrafast metagenomic sequence classification using 

exact alignments. Genome Biol. 2014;15(R46).  

206.  Kalantar KL, Carvalho T, Bourcy CFA De, Dimitrov B, Dingle G, Egger R, et al. IDseq 

— An open source cloud-based pipeline and analysis service for metagenomic pathogen 

detection and monitoring. Gigascience. 2020;9:1–14.  

207.  Naccache SN, Federman S, Veeraraghavan N, Zaharia M, Lee D, Samayoa E, et al. A 



 171 

cloud-compatible bioinformatics pipeline for ultrarapid pathogen identification from 

next-generation sequencing of clinical samples. Genome Res. 2014;24:1180–92.  

208.  Nooij S, Schmitz D, Vennema H, Kroneman A. Overview of Virus Metagenomic 

Classification Methods and Their Biological Applications. Front Microbiol. 2018;9:749.  

209.  Grumaz S, Grumaz C, Vainshtein Y, Stevens P, Glanz K, Decker SO, et al. Enhanced 

Performance of Next-Generation Sequencing Diagnostics Compared With Standard of 

Care Microbiological Diagnostics in Patients Suffering From Septic Shock. Crit Care 

Med. 2019;47(5):e394–402.  

210.  Li S, Jiang W, Peng J, Du B, Weng L. Herpes simplex virus associated sepsis in an 

immunocompetent adult : the value of next-generation sequencing. Chin Med J (Engl). 

2020;133(14):1727–8.  

211.  Rozo M, Id KLS, Philipson C, Fitkariwala A, Nhim D, Som T, et al. An Observational 

Study of Sepsis in Takeo Province Cambodia : An in-depth examination of pathogens 

causing severe infections. PLoS Negl Trop Dis. 2020;14(8):e0008381.  

212.  Long Y, Zhang Y, Gong Y, Sun R, Su L, Lin X. Diagnosis of Sepsis with Cell-free DNA 

by Next-Generation Sequencing Technology in ICU Patients. Arch Med Res. 

2016;47(5):365–71.  

213.  Saha S, Ramesh A, Kalantar K, Malaker R, Hasanuzzaman M, Khan LM, et al. Unbiased 

Metagenomic Sequencing for Pediatric Meningitis in Bangladesh Reveals Neuroinvasive 

Chikungunya Virus Outbreak and Other Unrealized Pathogens. MBio. 2019 Dec 

17;10(6):e02877-19.  

214.  Miller S, Naccache SN, Samayoa E, Messacar K, Arevalo S, Federman S, et al. 

Laboratory validation of a clinical metagenomic sequencing assay for pathogen detection 

in cerebrospinal fluid. Genome Res. 2019 May 1;29(5).  

215.  Naccache SN, Peggs KS, Mattes FM, Phadke R, Garson JA, Grant P, et al. Diagnosis of 

neuroinvasive astrovirus infection in an immunocompromised adult with encephalitis by 

unbiased next-generation sequencing. Clin Infect Dis. 2015 Mar 15;60(6):919–23.  

216.  Zanella M, Lenggenhager L, Schrenzel J, Cordey S, Kaiser L. High-throughput 

sequencing for the aetiologic identification of viral encephalitis, meningoencephalitis, 

and meningitis. A narrative review and. Clin Microbiol Infect. 2019;25:422–30.  

217.  Anthony SJ, Epstein JH, Murray KA, Navarrete-macias I, Zambrana-torrelio CM, 

Solovyov A, et al. A Strategy To Estimate Unknown Viral Diversity in Mammals. MBio. 

2013;4(5):e00598-13.  

218.  Zhou P, Yang X Lou, Wang XJ, Hu B, Zhang L. Discovery of a novel coronavirus 

associated with the recent pneumonia outbreak in humans and its potential bat origin. 

bioRxiv. 2020;21(1):1–9.  

219.  Allen T, Murray KA, Zambrana-torrelio C, Morse SS, Rondinini C, Di Marco M, et al. 

Global hotspots and correlates of emerging zoonotic diseases. Nat Commun. 2017 Dec 

24;8(1):1124.  

220.  Endoh D, Mizutani T, Kirisawa R, Maki Y, Saito H, Kon Y, et al. Species-independent 

detection of RNA virus by representational difference analysis using non-ribosomal 

hexanucleotides for reverse transcription. Nucleic Acids Res. 2005;33(6):1–11.  

221.  Nguyen AT, Tran TT, Hoang VMT, Nghiem NM, Le NNTNNT, Le TTMT Van, et al. 

Development and evaluation of a non-ribosomal random PCR and next-generation 

sequencing based assay for detection and sequencing of hand, foot and mouth disease 

pathogens. Virol J. 2016;13(1):125.  

222.  Ngoc C Le, Tran T, Thanh T, Tran P, Lan T, Mai TN, et al. Differential prevalence and 

geographic distribution of hepatitis C virus genotypes in acute and chronic hepatitis C 

patients in. PLoS One. 2019;14(3):e0212734.  



 172 

223.  Tan L Van, Thai LH, Phu NH, Dang H, Nghia T, Chuong L Van. Viral Aetiology of 

Central Nervous System Infections in Adults Admitted to a Tertiary Referral Hospital in 

Southern Vietnam over 12 Years. PLoS Negl Trop Dis. 2014;8(8):e3127.  

224.  Froussard P. A random-PCR method (rPCR) to construct whole cDNA library from low 

amounts of RNA. Nucleic Acids Res. 1992;20(11):2900.  

225.  van Tan L, van Doorn HR, van der Hoek L, Hien VM, Jebbink MF, Ha DQ, et al. Random 

PCR and ultracentrifugation increases sensitivity and throughput of VIDISCA for 

screening of pathogens in clinical specimens. J Infect Dev Ctries. 2011;5(2):142–8.  

226.  Graf EH, Simmon KE, Tardif KD, Hymas W, Flygare S, Eilbeck K, et al. Unbiased 

Detection of Respiratory Viruses Using RNA-seq-Based Metagenomics: A Systematic 

Comparison to A Commercial PCR Panel. J Clin Microbiol. 

2016;54(January):JCM.03060-15.  

227.  Lewandowska DW, Zagordi O, Geissberger F-D, Kufner V, Schmutz S, Böni J, et al. 

Optimization and validation of sample preparation for metagenomic sequencing of 

viruses in clinical samples. Microbiome. 2017;5(1):94.  

228.  Goldstein B, Giroir B, Randolph A. International pediatric sepsis consensus conference: 

Definitions for sepsis and organ dysfunction in pediatrics*. Pediatr Crit Care Med. 

2005;6(1):2–8.  

229.  Aiemjoy K, Altan E, Aragie S, Fry DM, Phan TG, Deng X, et al. Viral species richness 

and composition in young children with loose or watery stool in Ethiopia. BMC Infect 

Dis. 2019;19(1):1–10.  

230.  Hummel KB, Lowe L, Bellini WJ, Rota PA. Development of quantitative gene-specific 

real-time RT-PCR assays for the detection of measles virus in clinical specimens. J Virol 

Methods. 2006;132(1–2):166–73.  

231.  Dung TTN, Phat VV, Nga TVTT, My PVT, Duy PT, Campbell JI, et al. The validation 

and utility of a quantitative one-step multiplex RT real-time PCR targeting Rotavirus A 

and Norovirus. J Virol Methods. 2013;187(1):138–43.  

232.  Thanh T, Anh N, Tham N, Van H, Sabanathan S, Qui P, et al. Validation and utilization 

of an internally controlled multiplex Real-time RT-PCR assay for simultaneous detection 

of enteroviruses and enterovirus A71 associated with hand foot and mouth disease. Virol 

J. 2015;12(1):85.  

233.  Frentiu FD, Zakir T, Walker T, Popovici J, Pyke AT, van den Hurk A, et al. Limited 

Dengue Virus Replication in Field-Collected Aedes aegypti Mosquitoes Infected with 

Wolbachia. PLoS Negl Trop Dis. 2014;8(2):1–10.  

234.  Hue KDT, Tuan TV, Thi HTN, Bich CTN, Anh HH Le, Wills BA, et al. Validation of an 

internally controlled one-step real-time multiplex RT-PCR assay for the detection and 

quantitation of dengue virus RNA in plasma. J Virol Methods. 2011;177(2):168–73.  

235.  Chook JB, Ong LY, Takebe Y, Chan KG, Choo M, Kamarulzaman A, et al. Molecular 

detection of HIV-1 subtype B, CRF01-AE, CRF33-01B, and newly emerging 

recombinant lineages in Malaysia. Am J Trop Med Hyg. 2015;92(3):507–12.  

236.  Jansen RR, Schinkel J, Koekkoek S, Pajkrt D, Beld M, Jong MD d. de, et al. Development 

and evaluation of a four-tube real time multiplex PCR assay covering fourteen respiratory 

viruses, and comparison to its corresponding single target counterparts. J Clin Virol. 

2011;51(3):179–85.  

237.  Harvala H, Robertson I, McWilliam Leitch EC, Benschop K, Wolthers KC, Templeton 

K, et al. Epidemiology and clinical associations of human parechovirus respiratory 

infections. J Clin Microbiol. 2008;46(10):3446–53.  

238.  Drexler JF, De Souza Luna LK, Stöcker A, Silva Almeida P, Medrado Ribeiro TC, 

Petersen N, et al. Circulation of 3 lineages of a novel saffold cardiovirus in humans. 



 173 

Emerg Infect Dis. 2008;14(9):1398–405.  

239.  Haramoto E, Kitajima M, Otagiri M. Development of a reverse transcription-quantitative 

PCR assay for detection of salivirus/klassevirus. Appl Environ Microbiol. 

2013;79(11):3529–32.  

240.  Kuypers J, Campbell AP, Guthrie KA, Wright NL, Englund JA, Corey L, et al. WU and 

KI polyomaviruses in respiratory samples from allogeneic hematopoietic cell transplant 

recipients. Emerg Infect Dis. 2012;18(10):1580–8.  

241.  Tanaka N, Kimura H, Hoshino Y, Kato K, Yoshikawa T, Asano Y, et al. Monitoring four 

herpesviruses in unrelated cord blood transplantation. Bone Marrow Transplant. 

2000;26(11):1193–7.  

242.  Boom R, Sol CJA, Schuurman T, Breda A Van, Weel JFL, Beld M, et al. Human 

Cytomegalovirus DNA in Plasma and Serum Specimens of Renal Transplant Recipients 

Is Highly Fragmented. J Clin Microbiol. 2002;40(11):4105–13.  

243.  Phan TG, Mori D, Deng X, Rajidrajith S, Ranawaka U, Fan Ng TF, et al. Small viral 

genomes in unexplained cases of human encephalitis, diarrhea, and in untreated sewage. 

Virology. 2015;482:98–104.  

244.  Tan L Van, Doorn HR Van, Trung D, Hong T, Phuong T, Vries M De. Identification of 

a New Cyclovirus in Cerebrospinal Fluid of Patients with Acute Central Nervus System 

Infections. MBio. 2013;4(3):1–10.  

245.  Frankel M, Forberg K, Coller KE, Berg MG, Hackett J, Cloherty G, et al. Development 

of a high-throughput multiplexed real time RT-PCR assay for detection of human 

pegivirus 1 and 2. J Virol Methods. 2017;241:34–40.  

246.  Nguyen LT, Schmidt HA, Von Haeseler A, Minh BQ. IQ-TREE: A fast and effective 

stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 

2015;32(1):268–74.  

247.  Obonyo NG, Schlapbach LJ, Fraser JF. Sepsis: Changing Definitions, Unchanging 

Treatment. Front Pediatr. 2019;6(January):1–5.  

248.  Naccache SN, Greninger AL, Lee D, Coffey LL, Phan T, Rein-Weston A, et al. The Perils 

of Pathogen Discovery: Origin of a Novel Parvovirus-Like Hybrid Genome Traced to 

Nucleic Acid Extraction Spin Columns. J Virol. 2013;87(22):11966–77.  

249.  Brito F, Cordey S, Delwart E, Deng X, Tirefort D, Lemoine-Chaduc C, et al. 

Metagenomics analysis of the virome of 300 concentrates from a Swiss platelet bank. 

Vox Sang. 2018;113(6):601–4.  

250.  Nguyen TA, Le NTN, Hoang MT Van, Nguyen TTH, Tran TT, Vu TTH, et al. Emerging 

Coxsackievirus A6 causing Hand, Foot and Mouth Disease, Vietnam. Emerg Infect Dis. 

2018;24(4):17–9.  

251.  Nguyen TTCB, Ngo NQM, Phan TQ, Tran THC, Ho DTN, Lien AH Do, et al. 

Enterovirus serotypes in patients with central nervous system and respiratory infections 

in Viet Nam 1997 – 2010. Virol J. 2018;15(69):1–8.  

252.  Honkanen H, Oikarinen S, Pakkanen O, Ruokoranta T, Pulkki MM, Laitinen OH, et al. 

Human enterovirus 71 strains in the background population and in hospital patients in 

Finland. J Clin Virol. 2013;56(4):348–53.  

253.  Kong KL, Lau JSY, Goh SM, Wilson HL, Catton M, Korman TM. Myocarditis caused 

by human parechovirus in adult. Emerg Infect Dis. 2017;23(9):1571–3.  

254.  Ooi MH, Wong SC, Lewthwaite P, Cardosa MJ, Solomon T. Clinical features, diagnosis, 

and management of enterovirus 71. Lancet Neurol. 2010;9(11):1097–105.  

255.  Nhan LNT, Hong NTT, Nhu LNT, Nguyet LA, Ny NTH, Thanh TT. Severe enterovirus 

A71 associated hand , foot and mouth disease , Vietnam , 2018 : preliminary report of an 

impending outbreak. Eurosurveillance. 2018;23(46):1–5.  



 174 

256.  Tan SZK, Tan MZY, Prabakaran M. Saffold virus, an emerging human cardiovirus. Rev 

Med Virol. 2017;27(1):1–11.  

257.  Nielsen ACY, Böttiger B, Banner J, Hoffmann T, Nielsen LP. Serious invasive Saffold 

virus infections in children, 2009. Emerg Infect Dis. 2012;18(1):7–12.  

258.  Reuter G, Pankovics P, Boros Á. Saliviruses—the first knowledge about a newly 

discovered human picornavirus. Rev Med Virol. 2017;27(1):1–10.  

259.  Nielsen TS, Nielsen AY, Banner J, Hansen J, Baandrup U, Nielsen LP. Saffold virus 

infection associated with human myocarditis. J Clin Virol. 2016;74:78–81.  

260.  Himeda T, Hosomi T, Asif N, Shimizu H, Okuwa T, Muraki Y, et al. The preparation of 

an infectious full-length cDNA clone of Saffold virus. Virol J. 2011;8(1):110.  

261.  Hertzler S, Liang Z, Treso B, Lipton HL. Adaptation of Saffold Virus 2 for High-Titer 

Growth in Mammalian Cells. J Virol. 2011;85(14):7411–8.  

262.  Tan SZK, Chua KB, Xu Y, Prabakaran M. The pathogenesis of saffold virus in AG129 

mice and the effects of its truncated L protein in the central nervous system. Viruses. 

2016;8(24).  

263.  Yang J, Yang F, Ren L, Xiong Z, Wu Z, Dong J, et al. Unbiased parallel detection of 

viral pathogens in clinical samples by use of a metagenomic approach. J Clin Microbiol. 

2011 Oct 1;49(10):3463–9.  

264.  Wilson MR, Fedewa G, Stenglein MD, Olejnik J, Rennick LJ, Nambulli S, et al. 

Multiplexed Metagenomic Deep Sequencing To Analyze the Composition of High-

Priority Pathogen Reagents. mSystems. 2016;1(4):e00058-16.  

265.  Mitra A, Skrzypczak M, Ginalski K, Rowicka M. Strategies for achieving high 

sequencing accuracy for low diversity samples and avoiding sample bleeding using 

Illumina platform. PLoS One. 2015;10(4):1–21.  

266.  Berg MG, Lee D, Coller K, Frankel M, Aronsohn A, Cheng K, et al. Discovery of a Novel 

Human Pegivirus in Blood Associated with Hepatitis C Virus  Co-Infection. PLoS 

Pathog. 2015 Dec;11(12):e1005325.  

267.  Kapoor A, Kumar A, Simmonds P, Bhuva N, Chauhan LS, Lee B, et al. Virome analysis 

of transfusion recipients reveals a novel human virus that shares genomic features with 

hepaciviruses and pegiviruses. MBio. 2015;6(5):1–12.  

268.  Wang H, Wan Z, Xu R, Guan Y, Zhu N, Li J, et al. A Novel Human Pegivirus, HPgV-2 

(HHpgV-1), Is Tightly Associated With Hepatitis C Virus (HCV) Infection and 

HCV/Human Immunodeficiency Virus Type 1 Coinfection. Clin Infect Dis. 

2018;66(1):29–35.  

269.  Kandathil AJ, Breitwieser FP, Sachithanandham J, Robinson M, Mehta SH, Timp W, et 

al. Presence of human hepegivirus-1 in a cohort of people who inject drugs. Ann Intern 

Med. 2017 Jul 4;167(1):1–7.  

270.  Wang H, Wan Z, Sun Q, Zhu N, Li T, Ren X, et al. Second Human Pegivirus in Hepatitis 

C virus-infected and Hepatitis C virus/HIV-1 co-infected persons who injected drugs, 

China. Emerg Infect Dis. 2018;24(5):0–3.  

271.  Fattovich G, Boscaro S, Noventa F, Pornaro E, Stenico D, Alberti  a, et al. Influence of 

hepatitis delta virus infection on progression to cirrhosis in chronic hepatitis type B. J 

Infect Dis. 1987;155(5):931–5.  

272.  Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: Molecular 

evolutionary genetics analysis using maximum likelihood, evolutionary distance, and 

maximum parsimony methods. Mol Biol Evol. 2011;28(10):2731–9.  

273.  Bijvand Y, Aghasadeghi MR, Sakhaee F, Pakzad P, Vaziri F, Saraji AA, et al. First 

detection of human hepegivirus-1 (HHpgV-1) in Iranian patients with hemophilia. Sci 

Rep. 2018;8(1):8–13.  



 175 

274.  Rodgers MA, Holzmayer V, Vallari A, Olivo A, Forberg K, Fuhrman J, et al. Hepatitis 

C virus surveillance and identification of human pegivirus 2 in a large Cameroonian 

cohort. J Viral Hepat. 2019;26(1):30–7.  

275.  Barclay ST, Cooke GS, Holtham E, Gauthier A, Schwarzbard J, Atanasov P, et al. A new 

paradigm evaluating cost per cure of HCV infection in the UK. Hepatol Med Policy. 2016 

Apr;1(1):2.  

276.  Ireland G, Delpech V, Kirwan P, Croxford S, Lattimore S, Sabin C, et al. Prevalence of 

diagnosed HIV infection among persons with hepatitis C virus infection: England, 2008-

2014. HIV Med. 2018;1–8.  

277.  Rabaa MA, Tue NT, Phuc TM, Carrique-Mas J, Saylors K, Cotten M, et al. The Vietnam 

Initiative on Zoonotic Infections (VIZIONS): A Strategic Approach to Studying 

Emerging Zoonotic Infectious Diseases. Ecohealth. 2015;12(4):726–35.  

278.  Anh NT, Hong NTT, Nhu LNT, Thanh TT, Lau C-Y, Limmathurotsakul D, et al. Viruses 

in Vietnamese Patients Presenting with Community-Acquired Sepsis of Unknown Cause. 

J Clin Microbiol. 2019 Sep 1;57(9):e00386-19.  

279.  Hošnjak L, Kocjan BJ, Kušar B, Seme K, Poljak M. Rapid detection and typing of 

Molluscum contagiosum virus by FRET-based real-time PCR. J Virol Methods. 

2013;187(2):431–4.  

280.  Kroneman A, Vennema H, Deforche K, Avoort H, Peñaranda S, Oberste MS, et al. An 

automated genotyping tool for enteroviruses and noroviruses. J Clin Virol. 2011 

Jun;51(2):121–5.  

281.  Sun Y, Miao Z, Yan J, Gong L, Chen Y, Chen Y, et al. Sero-molecular epidemiology of 

enterovirus-associated encephalitis in Zhejiang Province , China , from 2014 to 2017. Int 

J Infect Dis. 2019;79:58–64.  

282.  Richter J, Tryfonos C, Christodoulou C. Molecular epidemiology of enteroviruses in 

Cyprus 2008-2017. PLoS One. 2019;1–18.  

283.  Lema C, Torres C, Van der Sanden S, Cisterna D, Freire MC, Gómez RM. Global 

phylodynamics of Echovirus 30 revealed differential behavior among viral lineages. 

Virology. 2019;531(February):79–92.  

284.  Schibler M, Brito F, Zanella MC, Zdobnov EM, Laubscher F, L’Huillier AG, et al. Viral 

Sequences Detection by High-Throughput Sequencing in Cerebrospinal Fluid of 

Individuals with and without Central Nervous System Disease. Genes (Basel). 

2019;10(8):1–12.  

285.  Zayyad Z, Spudich S. Neuropathogenesis of HIV: From Initial Neuroinvasion to HIV-

Associated Neurocognitive Disorder (HAND). Curr HIV/AIDS Rep. 2015;12(1):16–24.  

286.  Zhou C, Zhang S, Gong Q, Hao A. A novel gemycircularvirus in an unexplained case of 

child encephalitis. Virol J. 2015;12(1):197.  

287.  Wilson MR, Sample HA, Zorn KC, Arevalo S, Yu G, Neuhaus J, et al. Clinical 

metagenomic sequencing for diagnosis of meningitis and encephalitis. N Engl J Med. 

2019;380(24):2327–40.  

288.  Sinha R, Stanley G, Gulati GS, Ezran C, Travaglini KJ, Wei E, et al. Index switching 

causes “spreading-of-signal” among multiplexed samples in Illumina HiSeq 4000 DNA 

sequencing. bioRxiv. 2017 Apr 9;125724.  

289.  Nguyen TTHTA, Nguyen TTHTA, Nguyen Thi Hoang M, Ho DTN, Le NNT, Tran  tan 

T, et al. Performance of metagenomic next-generation sequencing for the diagnosis of 

viral meningoencephalitis in a resource limited setting. Open Forum Infect Dis. 

2020;ofaa046.  

290.  Asplund M, Kjartansdóttir KR, Mollerup S, Vinner L, Fridholm H, Herrera JAR, et al. 

Contaminating viral sequences in high-throughput sequencing viromics: a linkage study 



 176 

of 700 sequencing libraries. Clin Microbiol Infect. 2019;25(10):1277–85.  

291.  Holmes EC. Reagent contamination in viromics : all that glitters is not gold. Clin 

Microbiol Infect. 2019;25(10):1167–8.  

292.  Nguyen Thi Hoang M, Nguyen Hoan P, Le Van T, McBride A, Ho Dang Trung N, Tran 

Tan T, et al. First reported cases of anti-NMDA receptor encephalitis in Vietnamese 

adolescents and adults. J Neurol Sci. 2017;373:250–3.  

293.  Edridge AWD, Deijs M, Van Zeggeren IE, Kinsella CM, Jebbink MF, Bakker M, et al. 

Viral metagenomics on cerebrospinal fluid. Genes (Basel). 2019;10(5).  

294.  Uchida K, Shinohara M, Shimada SI, Segawa Y, Doi R, Gotoh A, et al. Rapid and 

sensitive detection of mumps virus RNA directly from clinical samples by real-time PCR. 

J Med Virol. 2005;75(3):470–4.  

295.  Heemskerk AD, Donovan J, Thu DDA, Marais S, Chaidir L, Dung VTM, et al. Improving 

the microbiological diagnosis of tuberculous meningitis: A prospective, international, 

multicentre comparison of conventional and modified Ziehl–Neelsen stain, GeneXpert, 

and culture of cerebrospinal fluid. J Infect. 2018;77(6):509–15.  

296.  Zhi N, Hu G, Wan Z, Zheng X, Liu X, Wong S, et al. Erratum: Hybrid DNA virus in 

Chinese patients with seronegative hepatitis discovered by deep sequencing (Proceedings 

of the National Academy of Sciences of the United States of America (2013) 110 (10264-

10269)). Proc Natl Acad Sci U S A. 2014;111(11):4344–5.  

297.  Chiu CY, Miller SA. Clinical metagenomics. Nat Rev Genet. 2019 Jun 27;20(6):341–55.  

298.  Sekeyová Z, Danchenko M, Filipčík P, Fournier PE. Rickettsial infections of the central 

nervous system. PLoS Negl Trop Dis. 2019;13(8):1–18.  

299.  Huang GKL, Tio SY, Caly L, Nicholson S, Thevarajan I, Papadakis G, et al. Prolonged 

Detection of Japanese Encephalitis Virus in Urine and Whole Blood in a Returned Short-

term Traveler. Open Forum Infect Dis. 2017;4(4):4–6.  

300.  Mai NTH, Phu NH, Nhu LNT, Hong NTT, Hanh NHH, Nguyet LA, et al. Central 

Nervous System Infection Diagnosis by Next-Generation Sequencing: A Glimpse Into 

the Future? Open forum Infect Dis. 2017;4(2):ofx046.  

301.  Lim ES, Zhou Y, Zhao G, Bauer IK, Droit L, Ndao IM, et al. Early life dynamics of the 

human gut virome and bacterial microbiome in infants. Nat Med. 2015;21(10):1228–34.  

302.  Wylie KM, Mihindukulasuriya KA, Sodergren E, Weinstock GM, Storch GA. Sequence 

analysis of the human virome in febrile and afebrile children. PLoS One. 

2012;7(6):e27735.  

303.  Thorburn F, Bennett S, Modha S, Murdoch D, Gunson R, Murcia PR. The use of next 

generation sequencing in the diagnosis and typing of respiratory infections. J Clin Virol. 

2015;69:96–100.  

304.  Wu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG, et al. A new coronavirus associated 

with human respiratory disease in China. Nature. 2020;579(7798):265–9.  

305.  McCabe L, White IR, Chau NVV, Barnes E, Pett SL, Cooke GS, et al. The design and 

statistical aspects of VIETNARMS: A strategic post-licensing trial of multiple oral direct-

acting antiviral hepatitis C treatment strategies in Vietnam. Trials. 2020;21(1):1–12.  

306.  Thaipadunpanit J, Chierakul W, Wuthiekanun V, Limmathurotsakul D, Amornchai P, 

Boonslip S, et al. Diagnostic accuracy of real-time PCR assays targeting 16S rRNA and 

lipl32 genes for human leptospirosis in Thailand: A case-control study. PLoS One. 

2011;6(1):1–6.  

307.  Laras K, Cao  bao van, Bounlu K, Nguyen TKT, Olson JG, Thongchanh S, et al. The 

importance of tourism in South-East Asia. Am J Trop Med Hyg. 2002;67(3):278–86.  

308.  Blacksell SD, Jenjaroen K, Phetsouvanh R, Wuthiekanun V, Day NPJ, Newton PN, et al. 

Accuracy of AccessBio Immunoglobulin M and Total Antibody Rapid 



 177 

Immunochromatographic Assays for the Diagnosis of Acute Scrub Typhus Infection. 

Clin Vaccine Immunol. 2010 Feb 1;17(2):263–6.  

309.  Jiang J, Chan T-C, Temenak JJ, Dasch GA, Ching W-M, Richards AL. Development of 

a quantitative real-time polymerase chain reaction assay specific for Orientia 

tsutsugamushi. Am J Trop Med Hyg. 2004 Apr;70(4):351–6.  

310.  Henry KM, Jiang J, Rozmajzl PJ, Azad AF, Macaluso KR, Richards AL. Development 

of quantitative real-time PCR assays to detect Rickettsia typhi and Rickettsia felis, the 

causative agents of murine typhus and flea-borne spotted fever. Mol Cell Probes. 2007 

Feb;21(1):17–23.  

311.  Cherkaoui A, Emonet S, Ceroni D, Candolfi B, Hibbs J, Francois P, et al. Development 

and validation of a modified broad-range 16S rDNA PCR for diagnostic purposes in 

clinical microbiology. J Microbiol Methods. 2009 Nov;79(2):227–31.  

312.  Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for 

phylogenetic study. J Bacteriol. 1991 Jan;173(2):697–703.  

313.  Klempa B, Fichet-Calvet E, Lecompte E, Auste B, Aniskin V, Meisel H, et al. Hantavirus 

in African wood mouse, Guinea. Emerg Infect Dis. 2006 May;12(5):838–40.  

314.  Cardosa MJ, Wang SM, Sum MSH, Tio PH. Antibodies against prM protein distinguish 

between previous infection with dengue and Japanese encephalitis viruses. BMC 

Microbiol. 2002 May 5;2:9.  

315.  van Doornum GJJ, Guldemeester J, Osterhaus ADME, Niesters HGM. Diagnosing 

herpesvirus infections by real-time amplification and rapid culture. J Clin Microbiol. 

2003 Feb;41(2):576–80.  

316.  de Jong MD, Weel JF, Schuurman T, Wertheim-van Dillen PM, Boom R. Quantitation 

of varicella-zoster virus DNA in whole blood, plasma, and serum by PCR and 

electrochemiluminescence. J Clin Microbiol. 2000 Jul;38(7):2568–73.  

317.  Beld M, Minnaar R, Weel J, Sol C, Damen M, van der Avoort H, et al. Highly sensitive 

assay for detection of enterovirus in clinical specimens by reverse transcription-PCR with 

an armored RNA internal control. J Clin Microbiol. 2004 Jul 1;42(7):3059–64.  

318.  Corless CE, Guiver M, Borrow R, Edwards-Jones V, Fox AJ, Kaczmarski EB. 

Simultaneous detection of Neisseria meningitidis, Haemophilus influenzae, and 

Streptococcus pneumoniae in suspected cases of meningitis and septicemia using real-

time PCR. J Clin Microbiol. 2001 Apr 1;39(4):1553–8.  

319.  Nga TVT, Nghia HDT, Tu LTP, Diep TS, Mai NTH, Chau TTH, et al. Real-time PCR 

for detection of Streptococcus suis serotype 2 in cerebrospinal fluid of human patients 

with meningitis. Diagn Microbiol Infect Dis. 2011 Aug;70(4):461–7.  

320.  Heddema ER, Beld MGHM, de Wever B, Langerak AAJ, Pannekoek Y, Duim B. 

Development of an internally controlled real-time PCR assay for detection of 

Chlamydophila psittaci in the LightCycler 2.0 system. Clin Microbiol Infect. 2006 

Jun;12(6):571–5.  

321.  Pitcher D, Chalker VJ, Sheppard C, George RC, Harrison TG. Real-time detection of 

Mycoplasma pneumoniae in respiratory samples with an internal processing control. J 

Med Microbiol. 2006 Feb 1;55(Pt 2):149–55.  

322.  Reischl U, Lehn N, Sanden GN, Loeffelholz MJ. Real-time PCR assay targeting IS481 

of Bordetella pertussis and molecular basis for detecting Bordetella holmesii. J Clin 

Microbiol. 2001 May 1;39(5):1963–6.  

323.  Logan C, O’Leary JJ, O’Sullivan N. Real-time reverse transcription-PCR for detection 

of rotavirus and adenovirus as causative agents of acute viral gastroenteritis in children. 

J Clin Microbiol. 2006 Sep;44(9):3189–95.  

324.  Logan C, O’Leary JJ, O’Sullivan N. Real-time reverse transcription PCR detection of 



 178 

norovirus, sapovirus and astrovirus as causative agents of acute viral gastroenteritis. J 

Virol Methods. 2007;146(1–2):36–44.  

325.  Ursu K, Harrach B, Matiz K, Benko M. DNA sequencing and analysis of the right-hand 

part of the genome of the unique bovine adenovirus type 10. J Gen Virol. 

2004;85(3):593–601.  

326.  Woo PCY, Lau SKP, Lam CSF, Lai KKY, Huang Y, Lee P, et al. Comparative Analysis 

of Complete Genome Sequences of Three Avian Coronaviruses Reveals a Novel Group 

3c Coronavirus. J Virol. 2009;83(2):908–17.  

327.  Li L, Kapoor A, Slikas B, Bamidele OS, Wang C, Shaukat S, et al. Multiple Diverse 

Circoviruses Infect Farm Animals and Are Commonly Found in Human and Chimpanzee 

Feces. J Virol. 2010;84(4):1674–82.  

328.  Bailey L, Newman JF., Porterfield JS. The Multiplication of Nodamura Virus in Insect 

and Mammalian Cell Cultures. J Gen Virol. 1966;26:15–20.  

329.  Hansen TA, Mollerup S, Nguyen NP, White NE, Coghlan M, Alquezar-Planas DE, et al. 

High diversity of picornaviruses in rats from different continents revealed by deep 

sequencing. Emerg Microbes Infect. 2016;5(8):e90.  

330.  Woo PCY, Lau SKP, Teng JLL, Tsang AKL, Joseph M, Wong EYM, et al. Metagenomic 

analysis of viromes of dromedary camel fecal samples reveals large number and high 

diversity of circoviruses and picobirnaviruses. Virology. 2014;471–473:117–25.  

331.  Woo PCY, Lau SKP, Bai R, Teng JLL, Lee P, Martelli P, et al. Complete Genome 

Sequence of a Novel Picobirnavirus, Otarine Picobirnavirus, Discovered in California 

Sea Lions. J Virol. 2012;86(11):6377–8.  

332.  Wu Z, Yang L, Ren X, He G, Zhang J, Yang J, et al. Deciphering the bat virome catalog 

to better understand the ecological diversity of bat viruses and the bat origin of emerging 

infectious diseases. ISME J. 2016;10(3):609–20.  

333.  Xiao P, Li C, Zhang Y, Han J, Guo X, Xie L, et al. Metagenomic Sequencing From 

Mosquitoes in China Reveals a Variety of Insect and Human Viruses. Front Cell Infect 

Microbiol. 2018;8(October):1–11.  

334.  Phan TG, Mendoza J del V, Sadeghi M, Altan E, Deng X, Delwart E, et al. Sera of 

Peruvians with fever of unknown origins include viral nucleic acids from non-vertebrate 

hosts. Virus Genes. 2018 Feb;54(1):33–40.  

335.  Ngoi CN, Siqueira J, Li L, Deng X, Mugo P, Graham SM, et al. The plasma virome of 

febrile adult kenyans shows frequent parvovirus B19 infections and a novel arbovirus 

(Kadipiro virus). J Gen Virol. 2016;97(12):3359–67.  

336.  Aguiar ERGR, Olmo RP, Paro S, Ferreira FV, De Faria IJDS, Todjro YMH, et al. 

Sequence-independent characterization of viruses based on the pattern of viral small 

RNAs produced by the host. Nucleic Acids Res. 2015;43(13):6191–206.  

337.  Belaganahalli MN, Maan S, Maan NS, Nomikou K, Pritchard I, Lunt R, et al. Full genome 

sequencing and genetic characterization of eubenangee viruses identify pata virus as a 

distinct species within the genus orbivirus. PLoS One. 2012;7(3).  

338.  Horta AB, Ardisson-Araujo DMP, da Silva LA, de Melo FL, da Silva Morgado F, Franco 

Lemos MV, et al. Genomic analysis of a cypovirus isolated from the eucalyptus brown 

looper, Thyrinteina arnobia (Stoll, 1782) (Lepidoptera: Geometridae). Virus Res. 

2018;253(2018):62–7.  

339.  Medeiros DB de A, Diniz Júnior JAP, Cardoso JF, Silva SP, da Silva DEA, de Oliveira 

LF, et al. Nearly complete genome sequence of curionopolis virus, a culicoides-related 

rhabdovirus isolated in the brazilian Amazon region. Genome Announc. 

2014;2(6):e01158-14.  

340.  da Costa AC, Moron AF, Forney LJ, Linhares IM, Sabino E, Costa SF, et al. Identification 



 179 

of bacteriophages in the vagina of pregnant women: a descriptive study. BJOG An Int J 

Obstet Gynaecol. 2020;0–2.  

341.  Bruenn JA. A closely related group of RNA-dependent RNA polymerases from double-

stranded RNA viruses. Nucleic Acids Res. 1993;21(24):5667–9.  

342.  Taylor DJ, Ballinger MJ, Bowman SM, Bruenn JA. Virus-host co-evolution under a 

modified nuclear genetic code. PeerJ. 2013;1:e50.  

343.  Ai YP, Zhong J, Chen CY, Zhu HJ, Gao B Da. A novel single-stranded RNA virus 

isolated from the rice-pathogenic fungus Magnaporthe oryzae with similarity to members 

of the family Tombusviridae. Arch Virol. 2016;161(3):725–9.  

344.  Ng TFF, Marine R, Wang C, Simmonds P, Kapusinszky B, Bodhidatta L, et al. High 

Variety of Known and New RNA and DNA Viruses of Diverse Origins in Untreated 

Sewage. J Virol. 2012;86(22):12161–75.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 180 

Appendices 

Appendix 1: List of 96 non-ribosomal random primers and FR20RV primer sequences 
Primer Sequence of primer (5'-3') Primer Sequence of primer (5'-3') Primer Sequence of primer (5'-3') 

FR20RV GCCGGAGCTCTGCAGATATC  33 GCCGGAGCTCTGCAGATATCTAGTCG  66 GCCGGAGCTCTGCAGATATCTAACGC  

1 GCCGGAGCTCTGCAGATATCGATATC 34 GCCGGAGCTCTGCAGATATCGTAGAC  67 GCCGGAGCTCTGCAGATATCGGTCAT  

2 GCCGGAGCTCTGCAGATATCTAGTAT  35 GCCGGAGCTCTGCAGATATCCTATAG  68 GCCGGAGCTCTGCAGATATCCTCATA  

3 GCCGGAGCTCTGCAGATATCTATAGT  36 GCCGGAGCTCTGCAGATATCTAGCTA  69 GCCGGAGCTCTGCAGATATCAATTTG  

4 GCCGGAGCTCTGCAGATATCTATATA  37 GCCGGAGCTCTGCAGATATCACTACT  70 GCCGGAGCTCTGCAGATATCCTGGTA  

5 GCCGGAGCTCTGCAGATATCATACTA  38 GCCGGAGCTCTGCAGATATCTAACGA  71 GCCGGAGCTCTGCAGATATCTTCATG  

6 GCCGGAGCTCTGCAGATATCATATAT  39 GCCGGAGCTCTGCAGATATCCGACTA  72 GCCGGAGCTCTGCAGATATCGCGATA  

7 GCCGGAGCTCTGCAGATATCGTGCAC  40 GCCGGAGCTCTGCAGATATCTACTAG  73 GCCGGAGCTCTGCAGATATCACTAAG  

8 GCCGGAGCTCTGCAGATATCACTATA  41 GCCGGAGCTCTGCAGATATCAGTAGT  74 GCCGGAGCTCTGCAGATATCGCATAC  

9 GCCGGAGCTCTGCAGATATCCGTAAT  42 GCCGGAGCTCTGCAGATATCGTTAAC  75 GCCGGAGCTCTGCAGATATCCAATAT  

10 GCCGGAGCTCTGCAGATATCCTATAC  43 GCCGGAGCTCTGCAGATATCGTCTAC  76 GCCGGAGCTCTGCAGATATCACCGTA  

11 GCCGGAGCTCTGCAGATATCTATACG  44 GCCGGAGCTCTGCAGATATCTACAAG  77 GCCGGAGCTCTGCAGATATCGTGCTA  

12 GCCGGAGCTCTGCAGATATCTATGCG  45 GCCGGAGCTCTGCAGATATCTACCAG  78 GCCGGAGCTCTGCAGATATCACGCTA  

13 GCCGGAGCTCTGCAGATATCGATACT  46 GCCGGAGCTCTGCAGATATCTGGATT  79 GCCGGAGCTCTGCAGATATCATGTCG  

14 GCCGGAGCTCTGCAGATATCCGTATA  47 GCCGGAGCTCTGCAGATATCTCGTTA  80 GCCGGAGCTCTGCAGATATCAGCTTA  

15 GCCGGAGCTCTGCAGATATCGTATAG  48 GCCGGAGCTCTGCAGATATCATAGTA  81 GCCGGAGCTCTGCAGATATCCGACAT  

16 GCCGGAGCTCTGCAGATATCCGGTTA  49 GCCGGAGCTCTGCAGATATCATAGTC  82 GCCGGAGCTCTGCAGATATCGCTATA  

17 GCCGGAGCTCTGCAGATATCAATAGT  50 GCCGGAGCTCTGCAGATATCCTAGTA  83 GCCGGAGCTCTGCAGATATCGCTATG  

18 GCCGGAGCTCTGCAGATATCCGCATA  51 GCCGGAGCTCTGCAGATATCGTACTA  84 GCCGGAGCTCTGCAGATATCTGTAAG  

19 GCCGGAGCTCTGCAGATATCATTACG  52 GCCGGAGCTCTGCAGATATCTAAGTT  85 GCCGGAGCTCTGCAGATATCAACTTA  

20 GCCGGAGCTCTGCAGATATCTTAACA  53 GCCGGAGCTCTGCAGATATCATATCC  86 GCCGGAGCTCTGCAGATATCATAACG  

21 GCCGGAGCTCTGCAGATATCAGTATC  54 GCCGGAGCTCTGCAGATATCTCGATA  87 GCCGGAGCTCTGCAGATATCATGTTA  

22 GCCGGAGCTCTGCAGATATCTGTTAA  55 GCCGGAGCTCTGCAGATATCGTACCA  88 GCCGGAGCTCTGCAGATATCTGGTAT  

23 GCCGGAGCTCTGCAGATATCACTATT  56 GCCGGAGCTCTGCAGATATCGTATCA  89 GCCGGAGCTCTGCAGATATCTGCGTA  

24 GCCGGAGCTCTGCAGATATCTAACCG  57 GCCGGAGCTCTGCAGATATCATACTC  90 GCCGGAGCTCTGCAGATATCGGATAT  

25 GCCGGAGCTCTGCAGATATCCGATAT  58 GCCGGAGCTCTGCAGATATCACATTA  91 GCCGGAGCTCTGCAGATATCCATAGC  

26 GCCGGAGCTCTGCAGATATCGTATAC  59 GCCGGAGCTCTGCAGATATCATATTG  92 GCCGGAGCTCTGCAGATATCCATACT  

27 GCCGGAGCTCTGCAGATATCAATCCA  60 GCCGGAGCTCTGCAGATATCCGTCTA  93 GCCGGAGCTCTGCAGATATCCGGATA  

28 GCCGGAGCTCTGCAGATATCTAGCAC  61 GCCGGAGCTCTGCAGATATCCTTAGT  94 GCCGGAGCTCTGCAGATATCTTACTA  

29 GCCGGAGCTCTGCAGATATCATATCG  62 GCCGGAGCTCTGCAGATATCCTTACA  95 GCCGGAGCTCTGCAGATATCACTCGT  

30 GCCGGAGCTCTGCAGATATCAATATT  63 GCCGGAGCTCTGCAGATATCTTATGC  96 GCCGGAGCTCTGCAGATATCTAAGGT  

31 GCCGGAGCTCTGCAGATATCTATAGC  64 GCCGGAGCTCTGCAGATATCATACGC    

32 GCCGGAGCTCTGCAGATATCCTTGTA  65 GCCGGAGCTCTGCAGATATCCGCTTA    
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Appendix 2: Screen snapshots showing coverage of mapping viral reads recovered by mNGS with 

pretreatment approach #1. Only viruses with nearly/complete genome sequences were showed. The 

genome coverage/sequencing depth is indicated by the Y axis and orange lines highlight the 

sequencing depth of 2 or more. 
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Appendix 3: Diagnostic work-up carried out as per the study protocol of the original reports of CA 

sepsis and CNS infection studies. 

Notes: 
#Diagnostic tests performed in every case as part of standard of care at participating hospitals including complete blood count, blood culture, 

urine culture, gram/ZN smears, and sputum culture if patients have respiratory symptoms, stool examination and stool culture if patients have 

diarrheal symptoms and CSF examination and CSF culture if patients have neurological symptoms and CNS infection is suspected.  

**Diagnostic tests performed in every case per study protocol including dengue RDT (NS1 and IgM, Standard Diagnostics, South Korea), 

influenza RDT (QuickVue, Quidel Corporation, USA), only for paediatric patients age < 7 years old and leptospirosis RDT (Leptospira 

IgM/IgG, Standard Diagnostics), only for paediatric patients age ≥ 7 years old and all adult patients 

*Four multiplex real-time PCR assays detecting 15 virus subtypes of 10 viruses; Influenza (A & B), Adenovirus, Enterovirus, Respiratory 

syncytial virus (A & B), Metapneumovirus, Rhinovirus, Parainfluenza virus (1, 2, 3 & 4), Coronavirus, Bocavirus (subtype OC43 & NL63), 

and Parechovirus 
$5 real-time assays detecting 5 bacteria; Legionella pneumophila, Mycoplasma pneumoniae, Chlamydophila pneumoniae, Chlamydophila 

psittaci and Bordetella pertussis 

 

 

 

 

 

 

 

Pathogens#, ** 
Assay #1 and 

samples 

Assay #2 and 

samples 
References 

Leptospirosis Whole-blood PCR  
Microagglutination 

tests of paired sera 
(306,307) 

Scrub typhus  Whole-blood PCR  IFA of paired sera (308,309) 

Rickettsiosis and 

murine typhus  
Whole-blood PCR  (309,310) 

Murine typhus  IFA of paired sera  (308) 

Bacteraemia  Whole-blood PCR  (311,312) 

Hantavirus Serum PCR  (313) 

Japanese encephalitis 

virus 
CSF ELISA  (314) 

Dengue virus CSF ELISA  
(314)  

 

Mumps CSF ELISA  
Mumps virus (Parotitis) IgM ELISA Kit (IBL 

International, Germany) 

Measles CSF ELISA  
Measles virus IgM micro-capture ELISA (IBL 

International, Hamburg, Germany) 

Rubella CSF ELISA  

Rubella virus IgM micro-capture ELISA 

(Novatec Immundiagnostica Technologie & 

Waldpark, Germany) 

Dengue CSF PCR  (234) 

Herpes simplex virus 

1 and 2 
CSF PCR  (315) 

Varicella-zoster virus CSF PCR  (316) 

Enterovirus CSF PCR  (317) 

Parechovirus CSF PCR  (236) 

N. meningitidis CSF PCR  (318) 

S. pneumoniae CSF PCR  (318) 

H. influenza type b CSF PCR  (318) 

S. suis CSF PCR  (319) 

Respiratory viruses 
Pooled nasal-

throat swab PCR 
 (236) 

Respiratory bacteria 
Pooled nasal-

throat swab PCR 
 (320–322) 

Adenovirus  Stool PCR  (323) 

Astrovirus  Stool PCR  (324) 

Norovirus Stool PCR  (231) 

Rotavirus Stool PCR  (231) 
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Appendix 4: Bar chart showing the number of reads obtained from individual samples. Each vertical 

bar represents one sample. (A) Vietnam, (B) Thailand 
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Appendix 5: Boxplots showing the difference in the numbers of viral hits between PCR positive and 

negative groups 
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Appendix 6: The number of viral reads and genome coverage in individual samples from Vietnamese 

patients 

 
Virus Sample 

type 

Number of 

total reads 

Number of 

viral reads 

E-value Percentage of genome 

coverage (contig 

length/genomic size, bp) 

Cyclovirus VN Serum 442730 17 1.43937E-53 90.0% (1,671/1,856) 

Cytomegalovirus Swabs 493794 9 2.51E-38 >1% (624/235,403) 

Cytomegalovirus Swabs 211254 25 4.4231E-66 >1% (1,046/235,272) 

Cytomegalovirus Swabs 504418 200 1.4765E-109 1.3% (2,861/223,782) 

Cytomegalovirus Swabs 591732 12 2.90191E-52 >1% (900/235717) 

Cytomegalovirus Swabs 855702 4 5.94419E-25 >1% (309/235,272) 

Cytomegalovirus Swabs 1101990 1629 0 20.1% (44,960/223,782) 

Cytomegalovirus Swabs 1203206 53 3.20843E-51 1.9% (4,517/236,032) 

Cytomegalovirus Swabs 533616 86 8.87413E-53 2.2% (5,402/235,834) 

Cytomegalovirus Swabs 126026 204 4.7457E-111 7.1% (15,891/223,782) 

Dengue virus Serum 427286 3828 0 94.9% (10,174/10,723) 

Dengue virus Serum 560500 4721 0 95.0% (10,188/10,723) 

Enterovirus  Serum 565748 405 0 42.0% (3,077/7,328) 

Enterovirus  Serum 861012 6536 8.5729E-57 97.8% (6,795/6,946), 

26.4% (1,941/7,345)  

Enterovirus  Serum 348940 22 9.1753E-53 27.9% (1,841/6,606) 

Enterovirus  Swabs 711594 329 0 31.4% (2,318/7,345) 

Enterovirus  Swabs 493794 11 8.23215E-53 8% (579/7,345bp) 

Enterovirus  Swabs 876786 29 1.5706E-155 61.8% (4,390/7,104) 

Enterovirus  Serum 443284 170 5.827E-180 45.5% (3,379/7,434) 

Enterovirus  Swabs 904408 6 2.31739E-22 2% (146/7,206) 

Enterovirus  Swabs 825274 787 0  48.5% (3,204/6,612) 

Enterovirus  Serum 172824 131 1.5905E-169 19.1% (1,421/7,432) 

Enterovirus  Serum 200880 14 7.2996E-36 7.2% (537/7,427) 

Enterovirus  Serum 349020 166 0 13.2% (980/7,433) 

Enterovirus  Serum 205366 184 0 10.7% (703/6,591) 

Enterovirus  Swabs 102766 5 1.30753E-39 2% (127/7,368) 

Epstein-Barr virus Serum 755526 4 2.59398E-36 <1% (336/169,864) 

Epstein-Barr virus Swabs 604874 3 1.98845E-32 1.6% (2,789/169,864) 

Epstein-Barr virus Swabs 904408 2 4.13442E-11 1.6% (2,795/169,864) 

Epstein-Barr virus Swabs 732950 2 1.18234E-12 1.5% (2,607/169,864) 

Epstein-Barr virus Swabs 126026 6 3.45686E-24 1.7% (2,905/169,864) 

Gemycircularvirus SL1 Serum 381902 1668 3.06932E-60 100% (2,199) 

Gemycircularvirus SL1 Swabs 883776 23 1.4508E-112 77.2% (1,697/2,199) 

Gemycircularvirus SL1 Serum 442730 41 1.49764E-60 3.8% (85/2,199) 

Gemycircularvirus SL1 Serum 281200 11 1.649E-102 52.5% (1,156/2,199) 

Gemycircularvirus SL1 Swabs 219956 2 1.79015E-49 22.5% (494/2,199) 

Hepatitis B virus Serum 11076 183 5.56485E-51 94.7% (3,044/3,215) 

Hepatitis B virus Stool 441248 127 1.074E-142 78.7% (2,529/3,215) 

Hepatitis B virus Serum 560500 2 2.66806E-54 9.3% (299/3,215) 

Hepatitis B virus Serum 649082 2 1.08203E-30 5% (175/3,215) 

Hepatitis B virus Serum 298130 22918 7.56657E-56 100% (3,215) 

Hepatitis B virus Serum 352212 982 6.7019E-158 95.6% (3,074/3,215) 

Hepatitis B virus Serum 438146 18364 3.42494E-56 100% (3,215) 

Hepatitis B virus Serum 54750 1732 5.6804E-124 100% (3,215) 

Hepatitis B virus Serum 374364 477 6.3359E-179 90.6% (2,914/3,215) 
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Hepatitis B virus Serum 320784 75 0 84% (2,709/3,215) 

Hepatitis C virus Serum 293316 5342 1.40256E-56 98.6% (9,171/9,297) 

Hepatitis C virus Serum 231960 307 2.06237E-50 74.6% (6,984/9,358) 

Human coronavirus Swabs 1203206 4 1.86221E-28 1.1% (328/30,521) 

Human herpesvirus 6 Swabs 1050246 16 8.72727E-53 0.8% (1,309/161,296) 

Human immunodeficiency virus Serum 293316 355 8.4618E-102 55.1% (4,883/8,860) 

Human mastadenovirus Swabs 855702 6 5.02331E-30 1.6% (582/35,831) 

Human mastadenovirus Swabs 975450 287 0 36.2% (12,774/35,265) 

Human metapneumovirus Swabs 825274 522 0 74.5% (9,932/13,327) 

Human parainfluenza virus Swabs 701436 3 8.16848E-51 2.5% (393/15,502) 

Human parainfluenza virus  Swabs 111152 427 0 59.0% (9,047/15,335) 

Human parechovirus Serum 331722 58 0 15.8% (1,155/7,320) 

Human parechovirus Stool 608352 52 7.29444E-96 16.2% (1,186/7,320) 

Human pegivirus 2 Serum 293316 273 0 33.9% (3,237/9,538) 

Human respiratory syncytial virus Swabs 504418 28422 0 99.3% (15,165/15,276) 

Human respiratory syncytial virus Swabs 452112 9 3.04048E-35 3% (467/15,232) 

Human rhinovirus Serum 513280 483 0 59.4% (4,217/7,099) 

Human rhinovirus Swabs 811032 401 0 14.6% (974/6,692bp) 

Human rhinovirus Swabs 408734 8 3.66242E-55 5.4% (387/7,208bp) 

Human rhinovirus Swabs 489110 39 5.99188E-55 25.0% (1,761/7,047) 

Human rhinovirus Swabs 876786 67 0 61.8% (4,390/7,104) 

Influenza A virus Swabs 493794 23 3.39944E-53 5.2% (710/13,500) 

Influenza B virus Swabs 479434 594 6.7272E-145 58.4% (1,025/1,755) 

Measles virus Stool 441248 19530 0 96.6% (15,360/15,894) 

Measles virus Stool 435356 4 2.60588E-49 3.8% (602/15,894) 

Rotavirus A Serum 960504 2 5.84582E-25 <1% (155/18,550) 

Rotavirus A Serum 590870 2 1.59659E-12 <1% (100/18,550) 

Rotavirus A Serum 491942 366 0 83.0% (2,731/3,292) 

Saffold virus Swabs 1050246 29 4.5541E-138 9.2% (737/8,054) 

Salivirus A Stool 435356 4 1.95271E-37 7.3% (582/8,021) 

WU Polyomavirus Swabs 459132 164 1.1621E-129 45.3% (2,367/5,229) 
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Appendix 7: List of common contaminants and viruses not reported in human samples 

Viral family 

 
Species Genome 

Number 

of 

matching 

reads 

Best BLASTx  

E value 
Detected in (n) 

Other virus 

found 

Patient 

group 

Related species 

was previously 

reported in 

References 

Adenoviridae Bovine mastadenovirus C dsDNA 4 3.47E-12 Serum (1)  Adults Cattle (325) 

Coronaviridae 
Bulbμl coronavirus 

HKU11 
ssRNA 2 2.92E-06 Serum (1)  Adults Wild bird (326) 

Coronaviridae 
Penaeus monodon 

circovirus VN11 
ssRNA 2,5&15 9.46E-05 

Pooled swabs (1) 

Serum (2) 
 

Children 

and Adults 

Numerous 

including pigs  
(327) 

Nodaviridae Nodamura virus ssRNA 2 9.13E-11 Stool  (1) 
Shuangao 

insect virus 11 
Adults Insects   (328) 

Picornaviridae Boone cardiovirus ssRNA 17 5.45E-07 Serum (1)  Children Rats 
(329) 

 

Picobirnaviridae Dromedary picobirnavirus dsRNA 8 4.90E-87 Pooled swabs (1)  Adults Camels (330) 

Picobirnaviridae Otarine_picobirnavirus dsRNA 589&2 0 
Pooled sera (1) 

Pooled swabs (1) 
 Adult Sea lion (331) 

Parvoviridae Bat parvovirus ssDNA 3 1.22E-08 Serum (2)  Children Bat (332) 

Papillomaviridae Human papillomavirus 
circular 

dsDNA 
4 2.86217E-42 Serum (1)  Adult   

Parvoviridae Densovirus ssDNA ≤ 559 5.31243E-96 

Pooled swabs (12) 

Serum (38) 

CSF (1) 

 
Children 

and Adults 
Mosquitoes  (333) 

Partitiviridae Partitivirus dsRNA ≤ 152 2.0824e-103 
Pooled swabs (4) 

Serum (22) 
 

Children 

and Adults 
Fungi (334) 

Parvoviridae Parvovirus NIH-CQV ssDNA ≤ 104 2.43E-52 

Pooled swabs (4) 

Serum (87) 

Stool (1) 

CSF (3) 

 
Children 

and Adults 

Qiagen column 

contaminant 
(248) 

Reoviridae Kadipiro virus dsRNA 3 7.87E-32 Serum (5)  
Adults and 

Children 
Contaminant (249,335) 

Reoviridae Lutzomyia reovirus 1 dsRNA 24 5.54E-07 Serum (1)  Adults Sand flies (336) 

Reoviridae Eubenangee virus dsRNA 1 9.23E-05 Serum (1) 
Tilligerry 

virus 
Adults 

Marsupials, cattle, 

mosquitoes and 

Culicoides 

(337) 

Reoviridae Cypovirus dsRNA 1,4,7 4.03196E-40 Serum (3)  
Children 

and Adults 
Insect  (338) 

Rhabdoviridae Curionopolis virus ssRNA 6 4.45E-05 Serum (1)  Children Culicoides (339) 

Siphoviridae Streptococcus_virus_MS1 DNA 
12&22 

 

7.2616E-54 

 

Pooled swabs (1) 

Pooled stool (1) 
   (340) 

Totiviridae 
Saccharomyces cerevisiae 

virus L-BC (La) 
dsRNA 9 7.45478E-21 

Pooled swabs (1) 

Serum (3) 
 

Children 

and Adults 
Fungi (341) 

Totiviridae 

Saccharomyces_cerevisia

e_virus_L-A 

 

dsRNA 8 
1.51379E-23 

 
Pooled sera (1)  

Children 

and Adults 
Yeast  

https://viralmetagenomics.net/viral/170222_Anh_miseq24th/aln/73_blast_filter.txt_Bulbul_coronavirus_HKU11.html
https://viralmetagenomics.net/viral/170112_Tan_Vietnam21st/aln/74_blast_filter.txt_Nodamura_virus.html
https://viralmetagenomics.net/viral/170222_Anh_MiSeq23rd/aln/37_blast_filter.txt_Boone_cardiovirus.html
https://viralmetagenomics.net/viral/170112_Tan_Vietnam21st/aln/8_blast_filter.txt_Dromedary_picobirnavirus.html
https://viralmetagenomics.net/viral/170222_Anh_miseq24th/aln/90_blast_filter.txt_Eubenangee_virus.html
https://viralmetagenomics.net/viral/170112_Tan_Vietnam22nd/aln/79_blast_filter.txt_Curionopolis_virus.html
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Totiviridae 
Scheffersomyces 

segobiensis virus L 
dsRNA ≤ 857 3.50723E-118 

Pooled swabs (5) 

Serum (22) 

Stool (2) 

CSF (1) 

 
Children 

and Adults 
Fungi (342) 

Unclassified 
Magnaporthe oryzae RNA 

virus 
RNA 

9,14,15&

21 
1.06135E-39 Serum (4)  

Children 

and Adults 
Fungi (343) 

Unclassified 
Mosquito VEM virus 

SDRBAJ 
ssDNA 3 1.40E-07 Serum (1) CRESS virus Adults red snapper tissue 

Unpublishe

d paper 

Unclassified Nepavirus ssDNA 2 6.44E-06 Serum (1)  Children Untreated Sewage (344) 

https://viralmetagenomics.net/viral/170112_Tan_Vietnam22nd/aln/51_blast_filter.txt_Mosquito_VEM_virus_SDRBAJ.html


 189 

Appendix 8: Genetic distances of different genes of HPgV-2 at nucleic acid level (%). Note: VN: Vietnam, CHN: China, U.S.: United States, 

UK: United of Kingdom 
S U.S. U.S. VN VN VN U.S U.S U.S U.S U.S U.S U.S U.S U.S U.S U.S U.S U.S U.S U.S U.S U.S U.S UK UK U.S CHN CHN 

U.S.   94.93 96.77 97.7 98.04 96.77 96.77 97.7 97.7 94.47 94.47 94.47 96.31 97.7 97.7 97.7 97.93 97.24 97.7 97.7 97.7 97.7 96.54 96.31 96.31 96.54 100 94.93 

U.S. 94.93   95.39 96.31 96.08 94.47 94.47 96.31 96.31 94.01 94.01 94.01 96.77 96.31 95.39 95.39 96.54 96.77 96.31 96.31 96.31 96.31 96.54 95.85 94.93 97 94.93 100 

VN 96.77 95.39   98.16 98.04 97.24 97.24 98.16 98.16 95.85 95.85 95.85 97.7 99.08 96.31 96.31 98.39 98.62 99.08 99.08 99.08 99.08 97 96.77 97.7 97 96.77 95.39 

VN 97.7 96.31 98.16   98.04 97.24 97.24 98.16 98.16 95.85 95.85 95.85 97.7 99.08 97.7 97.7 98.39 97.7 99.08 99.08 99.08 99.08 96.54 96.77 97.7 97 97.7 96.31 

VN 98.04 96.08 98.04 98.04   96.08 96.08 99.02 99.02 93.14 93.14 93.14 96.08 99.02 98.04 98.04 99.51 100 99.02 99.02 99.02 99.02 99.51 98.04 96.08 96.57 98.04 96.08 

U.S. 96.77 94.47 97.24 97.24 96.08   100 97.24 97.24 94.93 94.93 94.93 96.77 98.16 95.39 95.39 97.47 96.77 98.16 98.16 98.16 98.16 96.08 95.85 96.77 96.08 96.77 94.47 

U.S. 96.77 94.47 97.24 97.24 96.08 100   97.24 97.24 94.93 94.93 94.93 96.77 98.16 95.39 95.39 97.47 96.77 98.16 98.16 98.16 98.16 96.08 95.85 96.77 96.08 96.77 94.47 

U.S. 97.7 96.31 98.16 98.16 99.02 97.24 97.24   100 95.85 95.85 95.85 97.7 99.08 97.24 97.24 99.31 98.62 99.08 99.08 99.08 99.08 97.47 97.7 97.7 97.93 97.7 96.31 

U.S. 97.7 96.31 98.16 98.16 99.02 97.24 97.24 100   95.85 95.85 95.85 97.7 99.08 97.24 97.24 99.31 98.62 99.08 99.08 99.08 99.08 97.47 97.7 97.7 97.93 97.7 96.31 

U.S. 94.47 94.01 95.85 95.85 93.14 94.93 94.93 95.85 95.85   100 100 96.31 96.77 94.47 94.47 96.54 95.39 96.77 96.77 96.77 96.77 94.7 95.39 97.24 97 94.47 94.01 

U.S. 94.47 94.01 95.85 95.85 93.14 94.93 94.93 95.85 95.85 100   100 96.31 96.77 94.47 94.47 96.54 95.39 96.77 96.77 96.77 96.77 94.7 95.39 97.24 97 94.47 94.01 

U.S. 94.47 94.01 95.85 95.85 93.14 94.93 94.93 95.85 95.85 100 100   96.31 96.77 94.47 94.47 96.54 95.39 96.77 96.77 96.77 96.77 94.7 95.39 97.24 97 94.47 94.01 

U.S. 96.31 96.77 97.7 97.7 96.08 96.77 96.77 97.7 97.7 96.31 96.31 96.31   98.62 95.85 95.85 97.93 97.24 98.62 98.62 98.62 98.62 96.08 96.31 97.24 98.39 96.31 96.77 

U.S. 97.7 96.31 99.08 99.08 99.02 98.16 98.16 99.08 99.08 96.77 96.77 96.77 98.62   97.24 97.24 99.31 98.62 100 100 100 100 97.47 97.7 98.62 97.93 97.7 96.31 

U.S. 97.7 95.39 96.31 97.7 98.04 95.39 95.39 97.24 97.24 94.47 94.47 94.47 95.85 97.24   100 97.47 96.77 97.24 97.24 97.24 97.24 96.08 96.31 96.31 96.08 97.7 95.39 

U.S. 97.7 95.39 96.31 97.7 98.04 95.39 95.39 97.24 97.24 94.47 94.47 94.47 95.85 97.24 100   97.47 96.77 97.24 97.24 97.24 97.24 96.08 96.31 96.31 96.08 97.7 95.39 

U.S. 97.93 96.54 98.39 98.39 99.51 97.47 97.47 99.31 99.31 96.54 96.54 96.54 97.93 99.31 97.47 97.47   98.85 99.31 99.31 99.31 99.31 97.93 97.93 97.93 98.39 97.93 96.54 

U.S. 97.24 96.77 98.62 97.7 100 96.77 96.77 98.62 98.62 95.39 95.39 95.39 97.24 98.62 96.77 96.77 98.85   98.62 98.62 98.62 98.62 98.39 97.24 97.24 97.47 97.24 96.77 

U.S. 97.7 96.31 99.08 99.08 99.02 98.16 98.16 99.08 99.08 96.77 96.77 96.77 98.62 100 97.24 97.24 99.31 98.62   100 100 100 97.47 97.7 98.62 97.93 97.7 96.31 

U.S. 97.7 96.31 99.08 99.08 99.02 98.16 98.16 99.08 99.08 96.77 96.77 96.77 98.62 100 97.24 97.24 99.31 98.62 100   100 100 97.47 97.7 98.62 97.93 97.7 96.31 

U.S. 97.7 96.31 99.08 99.08 99.02 98.16 98.16 99.08 99.08 96.77 96.77 96.77 98.62 100 97.24 97.24 99.31 98.62 100 100   100 97.47 97.7 98.62 97.93 97.7 96.31 

U.S. 97.7 96.31 99.08 99.08 99.02 98.16 98.16 99.08 99.08 96.77 96.77 96.77 98.62 100 97.24 97.24 99.31 98.62 100 100 100   97.47 97.7 98.62 97.93 97.7 96.31 

U.S. 96.54 96.54 97 96.54 99.51 96.08 96.08 97.47 97.47 94.7 94.7 94.7 96.08 97.47 96.08 96.08 97.93 98.39 97.47 97.47 97.47 97.47   97 96.08 96.54 96.54 96.54 

UK 96.31 95.85 96.77 96.77 98.04 95.85 95.85 97.7 97.7 95.39 95.39 95.39 96.31 97.7 96.31 96.31 97.93 97.24 97.7 97.7 97.7 97.7 97   96.31 96.54 96.31 95.85 

UK 96.31 94.93 97.7 97.7 96.08 96.77 96.77 97.7 97.7 97.24 97.24 97.24 97.24 98.62 96.31 96.31 97.93 97.24 98.62 98.62 98.62 98.62 96.08 96.31   97.47 96.31 94.93 

U.S. 96.54 97 97 97 96.57 96.08 96.08 97.93 97.93 97 97 97 98.39 97.93 96.08 96.08 98.39 97.47 97.93 97.93 97.93 97.93 96.54 96.54 97.47   96.54 97 

CHN 100 94.93 96.77 97.7 98.04 96.77 96.77 97.7 97.7 94.47 94.47 94.47 96.31 97.7 97.7 97.7 97.93 97.24 97.7 97.7 97.7 97.7 96.54 96.31 96.31 96.54   94.93 

CHN 94.93 100 95.39 96.31 96.08 94.47 94.47 96.31 96.31 94.01 94.01 94.01 96.77 96.31 95.39 95.39 96.54 96.77 96.31 96.31 96.31 96.31 96.54 95.85 94.93 97 94.93   
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E1 VN VN VN VN VN U.S U.S U.S U.S U.S U.S U.S U.S U.S U.S U.S U.S U.S U.S U.S U.S U.S U.S UK UK U.S CHN CHN 

VN   95.99 96.68 94.24 93.02 95.11 95.11 95.29 95.29 95.29 95.29 95.29 96.34 97.21 94.85 94.85 95.11 95.81 95.29 95.29 95.29 95.29 95.29 93.02 94.94 95.64 92.32 93.72 

VN 95.99   96.51 94.04 92.18 94.24 94.24 94.24 94.24 93.54 93.54 93.54 95.81 95.99 93.98 93.98 94.42 94.59 94.59 94.59 94.59 94.59 93.54 91.97 94.07 95.29 92.67 92.67 

VN 96.68 96.51   94.44 92.39 94.59 94.59 94.94 94.94 93.89 93.89 93.89 96.16 96.34 93.8 93.8 94.59 94.24 95.64 95.64 95.64 95.64 93.89 91.97 94.24 95.29 93.72 92.84 

VN 94.24 94.04 94.44   93.34 94.24 94.24 95.45 95.45 95.45 95.45 95.45 96.46 96.67 94.14 94.14 94.04 94.44 94.85 94.85 94.85 94.85 93.84 92.42 93.84 95.86 92.42 93.64 

VN 93.02 92.18 92.39 93.34   94.08 94.08 94.29 94.29 93.45 93.45 93.45 94.93 95.14 92.07 92.07 93.23 95.14 93.02 93.02 93.02 93.02 92.81 91.54 91.97 94.29 91.12 93.23 

U.S. 95.11 94.24 94.59 94.24 94.08   100 95.29 95.29 95.81 95.81 95.81 96.34 97.21 94.68 94.68 94.76 95.29 95.29 95.29 95.29 95.29 93.72 93.72 95.11 96.16 93.72 93.89 

U.S. 95.11 94.24 94.59 94.24 94.08 100   95.29 95.29 95.81 95.81 95.81 96.34 97.21 94.68 94.68 94.76 95.29 95.29 95.29 95.29 95.29 93.72 93.72 95.11 96.16 93.72 93.89 

U.S. 95.29 94.24 94.94 95.45 94.29 95.29 95.29   100 95.29 95.29 95.29 97.03 97.38 95.2 95.2 95.81 95.64 95.46 95.46 95.46 95.46 95.29 93.54 94.24 96.68 94.07 94.59 

U.S. 95.29 94.24 94.94 95.45 94.29 95.29 95.29 100   95.29 95.29 95.29 97.03 97.38 95.2 95.2 95.81 95.64 95.46 95.46 95.46 95.46 95.29 93.54 94.24 96.68 94.07 94.59 

U.S. 95.29 93.54 93.89 95.45 93.45 95.81 95.81 95.29 95.29   100 100 96.68 97.56 94.33 94.33 94.59 94.76 94.76 94.76 94.76 94.76 95.46 93.89 95.11 96.34 93.02 93.02 

U.S. 95.29 93.54 93.89 95.45 93.45 95.81 95.81 95.29 95.29 100   100 96.68 97.56 94.33 94.33 94.59 94.76 94.76 94.76 94.76 94.76 95.46 93.89 95.11 96.34 93.02 93.02 

U.S. 95.29 93.54 93.89 95.45 93.45 95.81 95.81 95.29 95.29 100 100   96.68 97.56 94.33 94.33 94.59 94.76 94.76 94.76 94.76 94.76 95.46 93.89 95.11 96.34 93.02 93.02 

U.S. 96.34 95.81 96.16 96.46 94.93 96.34 96.34 97.03 97.03 96.68 96.68 96.68   98.78 95.2 95.2 96.16 96.68 97.56 97.56 97.56 97.56 96.34 94.24 95.99 97.73 94.94 95.11 

U.S. 97.21 95.99 96.34 96.67 95.14 97.21 97.21 97.38 97.38 97.56 97.56 97.56 98.78   96.42 96.42 96.16 97.21 97.21 97.21 97.21 97.21 96.51 95.11 96.16 98.08 94.76 95.11 

U.S. 94.85 93.98 93.8 94.14 92.07 94.68 94.68 95.2 95.2 94.33 94.33 94.33 95.2 96.42   99.91 93.28 94.33 94.5 94.5 94.5 94.5 94.33 92.58 95.03 95.55 92.76 93.63 

U.S. 94.85 93.98 93.8 94.14 92.07 94.68 94.68 95.2 95.2 94.33 94.33 94.33 95.2 96.42 99.91   93.28 94.33 94.5 94.5 94.5 94.5 94.33 92.58 95.03 95.55 92.76 93.63 

U.S. 95.11 94.42 94.59 94.04 93.23 94.76 94.76 95.81 95.81 94.59 94.59 94.59 96.16 96.16 93.28 93.28   94.76 95.29 95.29 95.29 95.29 93.89 92.84 93.89 96.16 93.19 93.02 

U.S. 95.81 94.59 94.24 94.44 95.14 95.29 95.29 95.64 95.64 94.76 94.76 94.76 96.68 97.21 94.33 94.33 94.76   95.11 95.11 95.11 95.11 95.11 93.89 94.07 95.99 93.37 94.76 

U.S. 95.29 94.59 95.64 94.85 93.02 95.29 95.29 95.46 95.46 94.76 94.76 94.76 97.56 97.21 94.5 94.5 95.29 95.11   100 100 100 94.24 93.37 94.76 96.86 94.42 93.37 

U.S. 95.29 94.59 95.64 94.85 93.02 95.29 95.29 95.46 95.46 94.76 94.76 94.76 97.56 97.21 94.5 94.5 95.29 95.11 100   100 100 94.24 93.37 94.76 96.86 94.42 93.37 

U.S. 95.29 94.59 95.64 94.85 93.02 95.29 95.29 95.46 95.46 94.76 94.76 94.76 97.56 97.21 94.5 94.5 95.29 95.11 100 100   100 94.24 93.37 94.76 96.86 94.42 93.37 

U.S. 95.29 94.59 95.64 94.85 93.02 95.29 95.29 95.46 95.46 94.76 94.76 94.76 97.56 97.21 94.5 94.5 95.29 95.11 100 100 100   94.24 93.37 94.76 96.86 94.42 93.37 

U.S. 95.29 93.54 93.89 93.84 92.81 93.72 93.72 95.29 95.29 95.46 95.46 95.46 96.34 96.51 94.33 94.33 93.89 95.11 94.24 94.24 94.24 94.24   93.02 95.11 94.94 91.97 93.89 

UK 93.02 91.97 91.97 92.42 91.54 93.72 93.72 93.54 93.54 93.89 93.89 93.89 94.24 95.11 92.58 92.58 92.84 93.89 93.37 93.37 93.37 93.37 93.02   92.84 93.72 92.32 93.02 

UK 94.94 94.07 94.24 93.84 91.97 95.11 95.11 94.24 94.24 95.11 95.11 95.11 95.99 96.16 95.03 95.03 93.89 94.07 94.76 94.76 94.76 94.76 95.11 92.84   95.29 93.54 93.89 

U.S. 95.64 95.29 95.29 95.86 94.29 96.16 96.16 96.68 96.68 96.34 96.34 96.34 97.73 98.08 95.55 95.55 96.16 95.99 96.86 96.86 96.86 96.86 94.94 93.72 95.29   94.42 94.76 

CHN 92.32 92.67 93.72 92.42 91.12 93.72 93.72 94.07 94.07 93.02 93.02 93.02 94.94 94.76 92.76 92.76 93.19 93.37 94.42 94.42 94.42 94.42 91.97 92.32 93.54 94.42   91.97 

CHN 93.72 92.67 92.84 93.64 93.23 93.89 93.89 94.59 94.59 93.02 93.02 93.02 95.11 95.11 93.63 93.63 93.02 94.76 93.37 93.37 93.37 93.37 93.89 93.02 93.89 94.76 91.97   
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E2 VN VN VN VN VN U.S U.S U.S U.S U.S U.S U.S U.S U.S U.S U.S U.S U.S U.S U.S U.S U.S U.S UK UK U.S CHN CHN 

VN   95.75 95.9 93.77 94.2 93.4 93.4 93.77 93.77 92.55 92.55 92.55 95.38 94.36 93.07 93.07 92.08 93.58 94.53 94.53 94.53 94.53 91.79 92.36 93.09 92.92 91.98 94.72 

VN 95.75   97.31 94.53 95.14 93.58 93.58 94.72 94.72 93.21 93.21 93.21 95.75 94.46 93.25 93.25 92.26 94.06 94.43 94.43 94.43 94.43 92.55 92.92 93 93.02 93.02 95.57 

VN 95.9 97.31   94.67 95.19 94.58 94.58 94.48 94.48 93.35 93.35 93.35 96.18 95.35 94.15 94.15 92.78 94.86 95.42 95.42 95.42 95.42 93.21 93.35 93.7 93.82 92.78 95.33 

VN 93.77 94.53 94.67   94.67 93.21 93.21 94.34 94.34 92.64 92.64 92.64 95.75 94.17 93.73 93.73 91.89 94.06 93.77 93.77 93.77 93.77 92.74 93.02 92.81 93.3 92.83 94.43 

VN 94.2 95.14 95.19 94.67   93.96 93.96 94.95 94.95 93.63 93.63 93.63 96.18 94.88 95 95 92.59 94.48 94.76 94.76 94.76 94.76 93.63 93.44 93.89 93.92 93.16 95.14 

U.S. 93.4 93.58 94.58 93.21 93.96   99.15 93.77 93.77 93.11 93.11 93.11 95.28 98.04 93.92 93.92 91.89 93.49 97.83 97.83 97.83 97.83 93.11 92.83 92.38 93.35 92.26 93.73 

U.S. 93.4 93.58 94.58 93.21 93.96 99.15   93.77 93.77 93.11 93.11 93.11 95.28 98.04 93.92 93.92 91.89 93.49 97.83 97.83 97.83 97.83 93.11 92.83 92.38 93.35 92.26 93.73 

U.S. 93.77 94.72 94.48 94.34 94.95 93.77 93.77   100 93.21 93.21 93.21 96.13 94.55 94.81 94.81 92.45 94.34 93.96 93.96 93.96 93.96 93.58 93.58 93.28 94.15 93.49 95.28 

U.S. 93.77 94.72 94.48 94.34 94.95 93.77 93.77 100   93.21 93.21 93.21 96.13 94.55 94.81 94.81 92.45 94.34 93.96 93.96 93.96 93.96 93.58 93.58 93.28 94.15 93.49 95.28 

U.S. 92.55 93.21 93.35 92.64 93.63 93.11 93.11 93.21 93.21   100 100 94.34 94.65 92.78 92.78 92.08 92.45 93.58 93.58 93.58 93.58 92.64 92.08 92.24 92.92 92.83 92.45 

U.S. 92.55 93.21 93.35 92.64 93.63 93.11 93.11 93.21 93.21 100   100 94.34 94.65 92.78 92.78 92.08 92.45 93.58 93.58 93.58 93.58 92.64 92.08 92.24 92.92 92.83 92.45 

U.S. 92.55 93.21 93.35 92.64 93.63 93.11 93.11 93.21 93.21 100 100   94.34 94.65 92.78 92.78 92.08 92.45 93.58 93.58 93.58 93.58 92.64 92.08 92.24 92.92 92.83 92.45 

U.S. 95.38 95.75 96.18 95.75 96.18 95.28 95.28 96.13 96.13 94.34 94.34 94.34   96.34 95.24 95.24 93.3 95.57 95.85 95.85 95.85 95.85 94.43 95.19 94.5 95.38 94.15 96.04 

U.S. 94.36 94.46 95.35 94.17 94.88 98.04 98.04 94.55 94.55 94.65 94.65 94.65 96.34   95.35 95.35 92.48 94.27 98.61 98.61 98.61 98.61 93.61 93.8 93.3 94.17 93.51 94.46 

U.S. 93.07 93.25 94.15 93.73 95 93.92 93.92 94.81 94.81 92.78 92.78 92.78 95.24 95.35   99.76 92.59 93.92 94.2 94.2 94.2 94.2 93.63 92.69 92.95 93.82 93.4 93.73 

U.S. 93.07 93.25 94.15 93.73 95 93.92 93.92 94.81 94.81 92.78 92.78 92.78 95.24 95.35 99.76   92.59 93.92 94.2 94.2 94.2 94.2 93.63 92.69 92.95 93.82 93.4 93.73 

U.S. 92.08 92.26 92.78 91.89 92.59 91.89 91.89 92.45 92.45 92.08 92.08 92.08 93.3 92.48 92.59 92.59   92.26 92.17 92.17 92.17 92.17 92.17 91.42 91.39 91.7 91.6 92.17 

U.S. 93.58 94.06 94.86 94.06 94.48 93.49 93.49 94.34 94.34 92.45 92.45 92.45 95.57 94.27 93.92 93.92 92.26   94.15 94.15 94.15 94.15 93.4 92.92 93.75 94.34 92.26 95.09 

U.S. 94.53 94.43 95.42 93.77 94.76 97.83 97.83 93.96 93.96 93.58 93.58 93.58 95.85 98.61 94.2 94.2 92.17 94.15   100 100 100 93.11 93.11 93.66 93.4 92.83 94.53 

U.S. 94.53 94.43 95.42 93.77 94.76 97.83 97.83 93.96 93.96 93.58 93.58 93.58 95.85 98.61 94.2 94.2 92.17 94.15 100   100 100 93.11 93.11 93.66 93.4 92.83 94.53 

U.S. 94.53 94.43 95.42 93.77 94.76 97.83 97.83 93.96 93.96 93.58 93.58 93.58 95.85 98.61 94.2 94.2 92.17 94.15 100 100   100 93.11 93.11 93.66 93.4 92.83 94.53 

U.S. 94.53 94.43 95.42 93.77 94.76 97.83 97.83 93.96 93.96 93.58 93.58 93.58 95.85 98.61 94.2 94.2 92.17 94.15 100 100 100   93.11 93.11 93.66 93.4 92.83 94.53 

U.S. 91.79 92.55 93.21 92.74 93.63 93.11 93.11 93.58 93.58 92.64 92.64 92.64 94.43 93.61 93.63 93.63 92.17 93.4 93.11 93.11 93.11 93.11   92.26 92.15 93.96 91.98 92.64 

UK 92.36 92.92 93.35 93.02 93.44 92.83 92.83 93.58 93.58 92.08 92.08 92.08 95.19 93.8 92.69 92.69 91.42 92.92 93.11 93.11 93.11 93.11 92.26   92.43 92.92 92.64 93.11 

UK 93.09 93 93.7 92.81 93.89 92.38 92.38 93.28 93.28 92.24 92.24 92.24 94.5 93.3 92.95 92.95 91.39 93.75 93.66 93.66 93.66 93.66 92.15 92.43   92.81 92.43 94.03 

U.S. 92.92 93.02 93.82 93.3 93.92 93.35 93.35 94.15 94.15 92.92 92.92 92.92 95.38 94.17 93.82 93.82 91.7 94.34 93.4 93.4 93.4 93.4 93.96 92.92 92.81   92.64 93.58 

CHN 91.98 93.02 92.78 92.83 93.16 92.26 92.26 93.49 93.49 92.83 92.83 92.83 94.15 93.51 93.4 93.4 91.6 92.26 92.83 92.83 92.83 92.83 91.98 92.64 92.43 92.64   93.11 

CHN 94.72 95.57 95.33 94.43 95.14 93.73 93.73 95.28 95.28 92.45 92.45 92.45 96.04 94.46 93.73 93.73 92.17 95.09 94.53 94.53 94.53 94.53 92.64 93.11 94.03 93.58 93.11   
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X CHN CHN VN VN VN VN VN U.S U.S U.S U.S U.S U.S U.S U.S U.S U.S U.S U.S U.S U.S U.S U.S U.S U.S UK UK U.S 

CHN   89.9 89.34 89.76 90.11 91.8 90.11 91.16 91.16 91.73 91.73 92.15 92.15 92.15 92.85 92.53 89.13 89.13 90.46 90.32 91.44 91.44 91.44 91.44 91.16 92.15 91.02 91.37 

CHN 89.9   91.87 91.73 91.94 92.64 91.94 91.3 91.3 91.02 91.02 92.71 92.71 92.71 92.85 93.23 90.95 90.95 90.88 91.73 92.01 92.01 92.01 92.01 91.87 92.15 91.58 92.43 

VN 89.34 91.87   94.95 95.3 90.39 91.09 90.18 90.18 91.58 91.58 90.32 90.32 90.32 92.15 92.53 90.32 90.32 89.76 91.3 92.01 92.01 92.01 92.01 90.18 90.74 90.74 91.23 

VN 89.76 91.73 94.95   95.16 91.09 90.81 90.88 90.88 91.3 91.3 91.44 91.44 91.44 92.71 92.95 89.76 89.76 89.9 91.44 91.58 91.58 91.58 91.58 90.88 91.44 91.16 90.81 

VN 90.11 91.94 95.3 95.16   91.73 91.58 91.23 91.23 92.57 92.57 91.8 91.8 91.8 93.2 93.58 90.53 90.53 89.97 92.08 92.08 92.08 92.08 92.08 91.23 91.51 91.65 92.01 

VN 91.8 92.64 90.39 91.09 91.73   92.01 93.34 93.34 93.2 93.2 93.9 93.9 93.9 94.88 95.13 90.46 90.46 93.2 92.64 93.34 93.34 93.34 93.34 93.34 93.62 93.06 93.13 

VN 90.11 91.94 91.09 90.81 91.58 92.01   91.8 91.8 91.51 91.51 91.51 91.51 91.51 93.2 93.02 89.41 89.41 91.23 92.22 91.8 91.8 91.8 91.8 91.09 91.51 92.22 92.01 

U.S. 91.16 91.3 90.18 90.88 91.23 93.34 91.8   99.58 93.27 93.27 92.71 92.71 92.71 94.11 95.2 90.46 90.46 91.16 91.23 92.57 92.57 92.57 92.57 91.3 91.87 91.87 92.08 

U.S. 91.16 91.3 90.18 90.88 91.23 93.34 91.8 99.58   93.27 93.27 92.71 92.71 92.71 94.11 95.2 90.46 90.46 91.16 91.23 92.57 92.57 92.57 92.57 91.3 91.87 91.87 92.08 

U.S. 91.73 91.02 91.58 91.3 92.57 93.2 91.51 93.27 93.27   100 93.83 93.83 93.83 94.39 94.78 90.46 90.46 92.85 92.29 93.55 93.55 93.55 93.55 92.85 92.71 92.71 92.36 

U.S. 91.73 91.02 91.58 91.3 92.57 93.2 91.51 93.27 93.27 100   93.83 93.83 93.83 94.39 94.78 90.46 90.46 92.85 92.29 93.55 93.55 93.55 93.55 92.85 92.71 92.71 92.36 

U.S. 92.15 92.71 90.32 91.44 91.8 93.9 91.51 92.71 92.71 93.83 93.83   100 100 96.49 96.74 92.29 92.29 93.13 93.13 94.53 94.53 94.53 94.53 93.69 94.39 93.83 93.62 

U.S. 92.15 92.71 90.32 91.44 91.8 93.9 91.51 92.71 92.71 93.83 93.83 100   100 96.49 96.74 92.29 92.29 93.13 93.13 94.53 94.53 94.53 94.53 93.69 94.39 93.83 93.62 

U.S. 92.15 92.71 90.32 91.44 91.8 93.9 91.51 92.71 92.71 93.83 93.83 100 100   96.49 96.74 92.29 92.29 93.13 93.13 94.53 94.53 94.53 94.53 93.69 94.39 93.83 93.62 

U.S. 92.85 92.85 92.15 92.71 93.2 94.88 93.2 94.11 94.11 94.39 94.39 96.49 96.49 96.49   97.72 92.71 92.71 94.39 95.65 95.93 95.93 95.93 95.93 95.37 95.79 95.65 94.74 

U.S. 92.53 93.23 92.53 92.95 93.58 95.13 93.02 95.2 95.2 94.78 94.78 96.74 96.74 96.74 97.72   94.57 94.57 94.07 94.64 96.74 96.74 96.74 96.74 94.78 95.2 95.2 94.42 

U.S. 89.13 90.95 90.32 89.76 90.53 90.46 89.41 90.46 90.46 90.46 90.46 92.29 92.29 92.29 92.71 94.57   99.79 90.32 91.73 92.22 92.22 92.22 92.22 90.18 90.74 91.87 90.25 

U.S. 89.13 90.95 90.32 89.76 90.53 90.46 89.41 90.46 90.46 90.46 90.46 92.29 92.29 92.29 92.71 94.57 99.79   90.32 91.73 92.22 92.22 92.22 92.22 90.18 90.74 91.87 90.25 

U.S. 90.46 90.88 89.76 89.9 89.97 93.2 91.23 91.16 91.16 92.85 92.85 93.13 93.13 93.13 94.39 94.07 90.32 90.32   92.57 93.27 93.27 93.27 93.27 93.27 93.55 92.85 93.13 

U.S. 90.32 91.73 91.3 91.44 92.08 92.64 92.22 91.23 91.23 92.29 92.29 93.13 93.13 93.13 95.65 94.64 91.73 91.73 92.57   93.13 93.13 93.13 93.13 93.13 93.55 92.99 93.06 

U.S. 91.44 92.01 92.01 91.58 92.08 93.34 91.8 92.57 92.57 93.55 93.55 94.53 94.53 94.53 95.93 96.74 92.22 92.22 93.27 93.13   100 100 100 93.83 94.11 93.69 93.34 

U.S. 91.44 92.01 92.01 91.58 92.08 93.34 91.8 92.57 92.57 93.55 93.55 94.53 94.53 94.53 95.93 96.74 92.22 92.22 93.27 93.13 100   100 100 93.83 94.11 93.69 93.34 

U.S. 91.44 92.01 92.01 91.58 92.08 93.34 91.8 92.57 92.57 93.55 93.55 94.53 94.53 94.53 95.93 96.74 92.22 92.22 93.27 93.13 100 100   100 93.83 94.11 93.69 93.34 

U.S. 91.44 92.01 92.01 91.58 92.08 93.34 91.8 92.57 92.57 93.55 93.55 94.53 94.53 94.53 95.93 96.74 92.22 92.22 93.27 93.13 100 100 100   93.83 94.11 93.69 93.34 

U.S. 91.16 91.87 90.18 90.88 91.23 93.34 91.09 91.3 91.3 92.85 92.85 93.69 93.69 93.69 95.37 94.78 90.18 90.18 93.27 93.13 93.83 93.83 93.83 93.83   94.11 93.69 92.36 

UK 92.15 92.15 90.74 91.44 91.51 93.62 91.51 91.87 91.87 92.71 92.71 94.39 94.39 94.39 95.79 95.2 90.74 90.74 93.55 93.55 94.11 94.11 94.11 94.11 94.11   93.55 93.27 

UK 91.02 91.58 90.74 91.16 91.65 93.06 92.22 91.87 91.87 92.71 92.71 93.83 93.83 93.83 95.65 95.2 91.87 91.87 92.85 92.99 93.69 93.69 93.69 93.69 93.69 93.55   93.2 

U.S. 91.37 92.43 91.23 90.81 92.01 93.13 92.01 92.08 92.08 92.36 92.36 93.62 93.62 93.62 94.74 94.42 90.25 90.25 93.13 93.06 93.34 93.34 93.34 93.34 92.36 93.27 93.2   
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NS2 CHN CHN VN VN VN VN VN U.S U.S U.S U.S U.S U.S U.S U.S U.S U.S U.S U.S U.S U.S U.S U.S U.S U.S UK UK U.S 

CHN   92.64 92.92 93.47 92.78 93.54 91.67 92.71 92.71 94.17 94.17 93.19 93.19 93.19 93.89 94.17 93.61 93.61 93.06 94.17 92.64 92.64 92.64 92.64 93.19 93.33 93.89 92.64 

CHN 92.64   95.14 95.56 94.31 94.79 94.03 94.24 94.24 95.56 95.56 95.97 95.97 95.97 96.25 96.67 95.21 95.21 95.14 96.53 94.86 94.86 94.86 94.86 94.72 95.69 95.56 94.17 

VN 92.92 95.14   97.36 96.67 94.93 94.03 93.96 93.96 96.53 96.53 95.28 95.28 95.28 96.53 96.25 95.49 95.49 95.56 96.39 94.86 94.86 94.86 94.86 95.14 95.56 95.83 94.31 

VN 93.47 95.56 97.36   97.08 95.07 94.17 95.07 95.07 96.39 96.39 95.42 95.42 95.42 96.53 96.39 95.9 95.9 95.42 96.25 95 95 95 95 95.56 95.69 95.42 94.58 

VN 92.78 94.31 96.67 97.08   95.21 92.78 93.4 93.4 95.56 95.56 94.31 94.31 94.31 95.28 95.28 94.79 94.79 94.44 95.56 94.17 94.17 94.17 94.17 94.72 94.72 95 93.75 

VN 93.54 94.79 94.93 95.07 95.21   94.1 94.44 94.44 96.46 96.46 95.76 95.76 95.76 96.32 96.18 95 95 95.49 96.6 95.07 95.07 95.07 95.07 95.35 95.35 96.53 94.65 

VN 91.67 94.03 94.03 94.17 92.78 94.1   93.96 93.96 94.17 94.17 94.03 94.03 94.03 95.28 95.28 94.1 94.1 94.31 95.28 93.89 93.89 93.89 93.89 94.17 94.03 94.03 93.19 

U.S. 92.71 94.24 93.96 95.07 93.4 94.44 93.96   99.93 95.35 95.35 94.79 94.79 94.79 95.9 96.6 95.28 95.28 95.35 95.35 94.38 94.38 94.38 94.38 94.65 94.79 95.35 93.54 

U.S. 92.71 94.24 93.96 95.07 93.4 94.44 93.96 99.93   95.35 95.35 94.79 94.79 94.79 95.9 96.6 95.28 95.28 95.35 95.35 94.38 94.38 94.38 94.38 94.65 94.79 95.35 93.54 

U.S. 94.17 95.56 96.53 96.39 95.56 96.46 94.17 95.35 95.35   100 96.81 96.81 96.81 97.64 97.64 96.88 96.88 96.53 96.81 96.67 96.67 96.67 96.67 96.39 96.81 97.36 95.56 

U.S. 94.17 95.56 96.53 96.39 95.56 96.46 94.17 95.35 95.35 100   96.81 96.81 96.81 97.64 97.64 96.88 96.88 96.53 96.81 96.67 96.67 96.67 96.67 96.39 96.81 97.36 95.56 

U.S. 93.19 95.97 95.28 95.42 94.31 95.76 94.03 94.79 94.79 96.81 96.81   100 100 97.22 97.78 96.32 96.32 96.39 96.67 95.97 95.97 95.97 95.97 95.42 96.11 95.97 95.28 

U.S. 93.19 95.97 95.28 95.42 94.31 95.76 94.03 94.79 94.79 96.81 96.81 100   100 97.22 97.78 96.32 96.32 96.39 96.67 95.97 95.97 95.97 95.97 95.42 96.11 95.97 95.28 

U.S. 93.19 95.97 95.28 95.42 94.31 95.76 94.03 94.79 94.79 96.81 96.81 100 100   97.22 97.78 96.32 96.32 96.39 96.67 95.97 95.97 95.97 95.97 95.42 96.11 95.97 95.28 

U.S. 93.89 96.25 96.53 96.53 95.28 96.32 95.28 95.9 95.9 97.64 97.64 97.22 97.22 97.22   98.19 96.88 96.88 96.94 97.78 96.81 96.81 96.81 96.81 97.08 97.5 97.22 95.56 

U.S. 94.17 96.67 96.25 96.39 95.28 96.18 95.28 96.6 96.6 97.64 97.64 97.78 97.78 97.78 98.19   97.92 97.92 97.08 97.64 97.22 97.22 97.22 97.22 96.81 97.08 97.08 95.28 

U.S. 93.61 95.21 95.49 95.9 94.79 95 94.1 95.28 95.28 96.88 96.88 96.32 96.32 96.32 96.88 97.92   99.79 95.9 96.46 96.04 96.04 96.04 96.04 95.76 96.04 96.04 94.51 

U.S. 93.61 95.21 95.49 95.9 94.79 95 94.1 95.28 95.28 96.88 96.88 96.32 96.32 96.32 96.88 97.92 99.79   95.9 96.46 96.04 96.04 96.04 96.04 95.76 96.04 96.04 94.51 

U.S. 93.06 95.14 95.56 95.42 94.44 95.49 94.31 95.35 95.35 96.53 96.53 96.39 96.39 96.39 96.94 97.08 95.9 95.9   96.67 95.28 95.28 95.28 95.28 95.69 95.56 96.39 95.14 

U.S. 94.17 96.53 96.39 96.25 95.56 96.6 95.28 95.35 95.35 96.81 96.81 96.67 96.67 96.67 97.78 97.64 96.46 96.46 96.67   96.11 96.11 96.11 96.11 96.81 96.67 97.22 95.42 

U.S. 92.64 94.86 94.86 95 94.17 95.07 93.89 94.38 94.38 96.67 96.67 95.97 95.97 95.97 96.81 97.22 96.04 96.04 95.28 96.11   100 100 100 96.11 96.25 95.69 93.89 

U.S. 92.64 94.86 94.86 95 94.17 95.07 93.89 94.38 94.38 96.67 96.67 95.97 95.97 95.97 96.81 97.22 96.04 96.04 95.28 96.11 100   100 100 96.11 96.25 95.69 93.89 

U.S. 92.64 94.86 94.86 95 94.17 95.07 93.89 94.38 94.38 96.67 96.67 95.97 95.97 95.97 96.81 97.22 96.04 96.04 95.28 96.11 100 100   100 96.11 96.25 95.69 93.89 

U.S. 92.64 94.86 94.86 95 94.17 95.07 93.89 94.38 94.38 96.67 96.67 95.97 95.97 95.97 96.81 97.22 96.04 96.04 95.28 96.11 100 100 100   96.11 96.25 95.69 93.89 

U.S. 93.19 94.72 95.14 95.56 94.72 95.35 94.17 94.65 94.65 96.39 96.39 95.42 95.42 95.42 97.08 96.81 95.76 95.76 95.69 96.81 96.11 96.11 96.11 96.11   95.97 95.97 94.17 

UK 93.33 95.69 95.56 95.69 94.72 95.35 94.03 94.79 94.79 96.81 96.81 96.11 96.11 96.11 97.5 97.08 96.04 96.04 95.56 96.67 96.25 96.25 96.25 96.25 95.97   96.81 94.58 

UK 93.89 95.56 95.83 95.42 95 96.53 94.03 95.35 95.35 97.36 97.36 95.97 95.97 95.97 97.22 97.08 96.04 96.04 96.39 97.22 95.69 95.69 95.69 95.69 95.97 96.81   95.42 

U.S. 92.64 94.17 94.31 94.58 93.75 94.65 93.19 93.54 93.54 95.56 95.56 95.28 95.28 95.28 95.56 95.28 94.51 94.51 95.14 95.42 93.89 93.89 93.89 93.89 94.17 94.58 95.42   
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NS3 CHN CHN VN VN VN VN VN U.S U.S U.S U.S U.S U.S U.S U.S U.S U.S U.S U.S U.S U.S U.S U.S U.S U.S UK UK U.S 

CHN   92.39 93.35 93.14 93.64 93.35 93.32 93.32 93.32 93.72 93.72 92.87 92.87 92.87 94.36 94.4 92.85 92.85 93.35 94.15 93.03 93.03 93.03 93.03 93.67 93.62 93.52 93.72 

CHN 92.39   94.2 94.26 94.47 94.89 95.08 94.34 94.34 94.89 94.89 94.04 94.04 94.04 95.64 95.73 93.8 93.8 94.57 95.32 94.26 94.26 94.26 94.26 94.73 94.15 94.11 94.57 

VN 93.35 94.2   97.66 97.98 95.32 94.55 94.39 94.39 95.16 95.16 94.79 94.79 94.79 96.28 96.32 94.55 94.55 94.95 95.37 94.79 94.79 94.79 94.79 94.84 95.53 95.12 95.16 

VN 93.14 94.26 97.66   97.5 95.16 94.44 94.12 94.12 95.21 95.21 94.2 94.2 94.2 96.17 96.1 94.76 94.76 95.05 95.16 94.68 94.68 94.68 94.68 94.68 95.27 94.91 94.84 

VN 93.64 94.47 97.98 97.5   95.53 94.92 94.34 94.34 95.43 95.43 94.73 94.73 94.73 96.65 96.58 94.71 94.71 95.16 95.32 95.32 95.32 95.32 95.32 94.89 95.69 95.28 95.21 

VN 93.35 94.89 95.32 95.16 95.53   95.03 95.13 95.13 95.8 95.8 94.52 94.52 94.52 96.49 96.8 95.24 95.24 95.27 95.96 95.05 95.05 95.05 95.05 95.11 95.85 94.8 95.37 

VN 93.32 95.08 94.55 94.44 94.92 95.03   95.27 95.27 95.66 95.66 94.28 94.28 94.28 95.98 96.61 94.68 94.68 95.03 95.82 94.71 94.71 94.71 94.71 94.55 94.97 94.83 95.08 

U.S. 93.32 94.34 94.39 94.12 94.34 95.13 95.27   99.87 95.45 95.45 94.39 94.39 94.39 95.82 97.06 94.41 94.41 95.19 95.45 94.44 94.44 94.44 94.44 95.03 94.97 94.67 94.97 

U.S. 93.32 94.34 94.39 94.12 94.34 95.13 95.27 99.87   95.45 95.45 94.39 94.39 94.39 95.82 97.06 94.41 94.41 95.19 95.45 94.44 94.44 94.44 94.44 95.03 94.97 94.67 94.97 

U.S. 93.72 94.89 95.16 95.21 95.43 95.8 95.66 95.45 95.45   100 94.79 94.79 94.79 96.65 97.22 95.03 95.03 96.12 96.01 95.05 95.05 95.05 95.05 95.37 96.12 94.91 95.59 

U.S. 93.72 94.89 95.16 95.21 95.43 95.8 95.66 95.45 95.45 100   94.79 94.79 94.79 96.65 97.22 95.03 95.03 96.12 96.01 95.05 95.05 95.05 95.05 95.37 96.12 94.91 95.59 

U.S. 92.87 94.04 94.79 94.2 94.73 94.52 94.28 94.39 94.39 94.79 94.79   100 100 95.69 96.64 93.7 93.7 95.11 95.32 94.2 94.2 94.2 94.2 94.41 94.95 94.43 95.21 

U.S. 92.87 94.04 94.79 94.2 94.73 94.52 94.28 94.39 94.39 94.79 94.79 100   100 95.69 96.64 93.7 93.7 95.11 95.32 94.2 94.2 94.2 94.2 94.41 94.95 94.43 95.21 

U.S. 92.87 94.04 94.79 94.2 94.73 94.52 94.28 94.39 94.39 94.79 94.79 100 100   95.69 96.64 93.7 93.7 95.11 95.32 94.2 94.2 94.2 94.2 94.41 94.95 94.43 95.21 

U.S. 94.36 95.64 96.28 96.17 96.65 96.49 95.98 95.82 95.82 96.65 96.65 95.69 95.69 95.69   98.02 96.04 96.04 96.6 96.6 95.9 95.9 95.9 95.9 96.38 96.81 95.76 96.33 

U.S. 94.4 95.73 96.32 96.1 96.58 96.8 96.61 97.06 97.06 97.22 97.22 96.64 96.64 96.64 98.02   96.34 96.34 97.06 97.01 97.06 97.06 97.06 97.06 96.53 97.06 96.17 96.69 

U.S. 92.85 93.8 94.55 94.76 94.71 95.24 94.68 94.41 94.41 95.03 95.03 93.7 93.7 93.7 96.04 96.34   99.81 95.08 94.97 94.65 94.65 94.65 94.65 94.71 94.34 94.61 94.44 

U.S. 92.85 93.8 94.55 94.76 94.71 95.24 94.68 94.41 94.41 95.03 95.03 93.7 93.7 93.7 96.04 96.34 99.81   95.08 94.97 94.65 94.65 94.65 94.65 94.71 94.34 94.61 94.44 

U.S. 93.35 94.57 94.95 95.05 95.16 95.27 95.03 95.19 95.19 96.12 96.12 95.11 95.11 95.11 96.6 97.06 95.08 95.08   96.01 95.48 95.48 95.48 95.48 95.48 96.06 94.75 95.59 

U.S. 94.15 95.32 95.37 95.16 95.32 95.96 95.82 95.45 95.45 96.01 96.01 95.32 95.32 95.32 96.6 97.01 94.97 94.97 96.01   95.43 95.43 95.43 95.43 95.48 95.69 94.91 96.06 

U.S. 93.03 94.26 94.79 94.68 95.32 95.05 94.71 94.44 94.44 95.05 95.05 94.2 94.2 94.2 95.9 97.06 94.65 94.65 95.48 95.43   100 100 100 95.21 95.48 94.59 94.63 

U.S. 93.03 94.26 94.79 94.68 95.32 95.05 94.71 94.44 94.44 95.05 95.05 94.2 94.2 94.2 95.9 97.06 94.65 94.65 95.48 95.43 100   100 100 95.21 95.48 94.59 94.63 

U.S. 93.03 94.26 94.79 94.68 95.32 95.05 94.71 94.44 94.44 95.05 95.05 94.2 94.2 94.2 95.9 97.06 94.65 94.65 95.48 95.43 100 100   100 95.21 95.48 94.59 94.63 

U.S. 93.03 94.26 94.79 94.68 95.32 95.05 94.71 94.44 94.44 95.05 95.05 94.2 94.2 94.2 95.9 97.06 94.65 94.65 95.48 95.43 100 100 100   95.21 95.48 94.59 94.63 

U.S. 93.67 94.73 94.84 94.68 94.89 95.11 94.55 95.03 95.03 95.37 95.37 94.41 94.41 94.41 96.38 96.53 94.71 94.71 95.48 95.48 95.21 95.21 95.21 95.21   95.16 94.32 94.89 

UK 93.62 94.15 95.53 95.27 95.69 95.85 94.97 94.97 94.97 96.12 96.12 94.95 94.95 94.95 96.81 97.06 94.34 94.34 96.06 95.69 95.48 95.48 95.48 95.48 95.16   95.23 95.43 

UK 93.52 94.11 95.12 94.91 95.28 94.8 94.83 94.67 94.67 94.91 94.91 94.43 94.43 94.43 95.76 96.17 94.61 94.61 94.75 94.91 94.59 94.59 94.59 94.59 94.32 95.23   94.59 

U.S. 93.72 94.57 95.16 94.84 95.21 95.37 95.08 94.97 94.97 95.59 95.59 95.21 95.21 95.21 96.33 96.69 94.44 94.44 95.59 96.06 94.63 94.63 94.63 94.63 94.89 95.43 94.59   
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NS4A CHN CHN VN VN VN VN VN U.S U.S U.S U.S U.S U.S U.S U.S U.S U.S U.S U.S U.S U.S U.S U.S U.S U.S UK UK U.S 

CHN   94.31 95.12 95.93 94.31 95.93 93.5 93.5 93.5 95.12 95.12 94.31 94.31 94.31 95.93 96.75 92.68 92.68 95.93 95.93 95.12 95.12 95.12 95.12 95.93 94.31 88.62 94.31 

CHN 94.31   97.56 96.75 93.5 93.5 92.68 90.24 90.24 94.31 94.31 95.12 95.12 95.12 94.31 93.5 92.68 92.68 95.12 94.31 92.68 92.68 92.68 92.68 95.12 92.68 86.99 94.31 

VN 95.12 97.56   99.19 95.93 92.68 93.5 91.87 91.87 95.93 95.93 95.93 95.93 95.93 95.93 95.12 92.68 92.68 97.56 95.93 93.5 93.5 93.5 93.5 97.56 94.31 88.62 95.93 

VN 95.93 96.75 99.19   96.75 93.5 94.31 92.68 92.68 96.75 96.75 95.12 95.12 95.12 96.75 95.93 93.5 93.5 96.75 96.75 94.31 94.31 94.31 94.31 98.37 95.12 87.8 96.75 

VN 94.31 93.5 95.93 96.75   91.87 92.68 91.87 91.87 95.12 95.12 91.87 91.87 91.87 94.31 94.31 90.24 90.24 95.12 95.12 92.68 92.68 92.68 92.68 95.12 93.5 86.18 93.5 

VN 95.93 93.5 92.68 93.5 91.87   95.93 91.87 91.87 93.5 93.5 93.5 93.5 93.5 92.68 93.5 89.43 89.43 91.87 94.31 92.68 92.68 92.68 92.68 95.12 94.31 85.37 94.31 

VN 93.5 92.68 93.5 94.31 92.68 95.93   94.31 94.31 94.31 94.31 94.31 94.31 94.31 93.5 94.31 90.24 90.24 92.68 95.12 91.87 91.87 91.87 91.87 95.93 95.12 86.18 95.12 

U.S. 93.5 90.24 91.87 92.68 91.87 91.87 94.31   100 94.31 94.31 95.12 95.12 95.12 95.12 95.93 91.06 91.06 92.68 93.5 91.87 91.87 91.87 91.87 94.31 91.87 86.99 91.87 

U.S. 93.5 90.24 91.87 92.68 91.87 91.87 94.31 100   94.31 94.31 95.12 95.12 95.12 95.12 95.93 91.06 91.06 92.68 93.5 91.87 91.87 91.87 91.87 94.31 91.87 86.99 91.87 

U.S. 95.12 94.31 95.93 96.75 95.12 93.5 94.31 94.31 94.31   100 95.12 95.12 95.12 95.93 98.37 92.68 92.68 95.12 97.56 95.12 95.12 95.12 95.12 95.93 95.93 88.62 95.93 

U.S. 95.12 94.31 95.93 96.75 95.12 93.5 94.31 94.31 94.31 100   95.12 95.12 95.12 95.93 98.37 92.68 92.68 95.12 97.56 95.12 95.12 95.12 95.12 95.93 95.93 88.62 95.93 

U.S. 94.31 95.12 95.93 95.12 91.87 93.5 94.31 95.12 95.12 95.12 95.12   100 100 95.93 96.75 92.68 92.68 95.12 94.31 92.68 92.68 92.68 92.68 96.75 92.68 89.43 94.31 

U.S. 94.31 95.12 95.93 95.12 91.87 93.5 94.31 95.12 95.12 95.12 95.12 100   100 95.93 96.75 92.68 92.68 95.12 94.31 92.68 92.68 92.68 92.68 96.75 92.68 89.43 94.31 

U.S. 94.31 95.12 95.93 95.12 91.87 93.5 94.31 95.12 95.12 95.12 95.12 100 100   95.93 96.75 92.68 92.68 95.12 94.31 92.68 92.68 92.68 92.68 96.75 92.68 89.43 94.31 

U.S. 95.93 94.31 95.93 96.75 94.31 92.68 93.5 95.12 95.12 95.93 95.93 95.93 95.93 95.93   97.56 95.12 95.12 95.12 96.75 92.68 92.68 92.68 92.68 96.75 95.12 88.62 96.75 

U.S. 96.75 93.5 95.12 95.93 94.31 93.5 94.31 95.93 95.93 98.37 98.37 96.75 96.75 96.75 97.56   94.31 94.31 95.93 97.56 95.12 95.12 95.12 95.12 95.93 95.93 90.24 95.93 

U.S. 92.68 92.68 92.68 93.5 90.24 89.43 90.24 91.06 91.06 92.68 92.68 92.68 92.68 92.68 95.12 94.31   100 92.68 93.5 89.43 89.43 89.43 89.43 93.5 91.87 88.62 93.5 

U.S. 92.68 92.68 92.68 93.5 90.24 89.43 90.24 91.06 91.06 92.68 92.68 92.68 92.68 92.68 95.12 94.31 100   92.68 93.5 89.43 89.43 89.43 89.43 93.5 91.87 88.62 93.5 

U.S. 95.93 95.12 97.56 96.75 95.12 91.87 92.68 92.68 92.68 95.12 95.12 95.12 95.12 95.12 95.12 95.93 92.68 92.68   95.12 92.68 92.68 92.68 92.68 95.12 93.5 90.24 93.5 

U.S. 95.93 94.31 95.93 96.75 95.12 94.31 95.12 93.5 93.5 97.56 97.56 94.31 94.31 94.31 96.75 97.56 93.5 93.5 95.12   94.31 94.31 94.31 94.31 96.75 96.75 88.62 96.75 

U.S. 95.12 92.68 93.5 94.31 92.68 92.68 91.87 91.87 91.87 95.12 95.12 92.68 92.68 92.68 92.68 95.12 89.43 89.43 92.68 94.31   100 100 100 94.31 92.68 86.18 92.68 

U.S. 95.12 92.68 93.5 94.31 92.68 92.68 91.87 91.87 91.87 95.12 95.12 92.68 92.68 92.68 92.68 95.12 89.43 89.43 92.68 94.31 100   100 100 94.31 92.68 86.18 92.68 

U.S. 95.12 92.68 93.5 94.31 92.68 92.68 91.87 91.87 91.87 95.12 95.12 92.68 92.68 92.68 92.68 95.12 89.43 89.43 92.68 94.31 100 100   100 94.31 92.68 86.18 92.68 

U.S. 95.12 92.68 93.5 94.31 92.68 92.68 91.87 91.87 91.87 95.12 95.12 92.68 92.68 92.68 92.68 95.12 89.43 89.43 92.68 94.31 100 100 100   94.31 92.68 86.18 92.68 

U.S. 95.93 95.12 97.56 98.37 95.12 95.12 95.93 94.31 94.31 95.93 95.93 96.75 96.75 96.75 96.75 95.93 93.5 93.5 95.12 96.75 94.31 94.31 94.31 94.31   95.12 87.8 96.75 

UK 94.31 92.68 94.31 95.12 93.5 94.31 95.12 91.87 91.87 95.93 95.93 92.68 92.68 92.68 95.12 95.93 91.87 91.87 93.5 96.75 92.68 92.68 92.68 92.68 95.12   88.62 96.75 

UK 88.62 86.99 88.62 87.8 86.18 85.37 86.18 86.99 86.99 88.62 88.62 89.43 89.43 89.43 88.62 90.24 88.62 88.62 90.24 88.62 86.18 86.18 86.18 86.18 87.8 88.62   88.62 

U.S. 94.31 94.31 95.93 96.75 93.5 94.31 95.12 91.87 91.87 95.93 95.93 94.31 94.31 94.31 96.75 95.93 93.5 93.5 93.5 96.75 92.68 92.68 92.68 92.68 96.75 96.75 88.62   
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NS4B CHN CHN VN VN VN VN VN U.S U.S U.S U.S U.S U.S U.S U.S U.S U.S U.S U.S U.S U.S U.S U.S U.S U.S UK UK U.S 

CHN   92.46 91.82 92.39 92.01 92.71 91.62 92.97 92.97 92.46 92.46 92.84 92.84 92.84 93.86 93.86 92.01 92.01 93.22 93.22 92.33 92.33 92.33 92.33 93.73 93.22 92.07 93.73 

CHN 92.46   94.5 93.8 94.18 94.5 93.29 93.35 93.35 93.73 93.73 94.76 94.76 94.76 95.78 96.04 93.54 93.54 94.88 95.4 93.48 93.48 93.48 93.48 93.99 95.4 93.86 94.25 

VN 91.82 94.5   97.12 96.61 94.37 92.77 93.61 93.61 94.12 94.12 93.73 93.73 93.73 95.27 94.76 92.65 92.65 94.12 93.86 92.07 92.07 92.07 92.07 94.25 93.86 92.46 93.61 

VN 92.39 93.8 97.12   96.8 94.69 92.71 93.54 93.54 93.67 93.67 93.93 93.93 93.93 94.69 94.57 92.58 92.58 94.31 94.57 92.01 92.01 92.01 92.01 94.57 94.57 92.52 93.41 

VN 92.01 94.18 96.61 96.8   93.8 92.33 93.41 93.41 93.16 93.16 93.16 93.16 93.16 94.31 94.05 91.94 91.94 93.29 93.67 91.11 91.11 91.11 91.11 93.41 94.18 91.75 93.29 

VN 92.71 94.5 94.37 94.69 93.8   93.03 93.09 93.09 94.5 94.5 94.88 94.88 94.88 95.14 95.52 93.29 93.29 95.27 94.88 92.58 92.58 92.58 92.58 94.25 94.76 93.22 94.25 

VN 91.62 93.29 92.77 92.71 92.33 93.03   92.14 92.14 92.52 92.52 92.77 92.77 92.77 94.31 93.93 92.33 92.33 93.03 93.16 91.62 91.62 91.62 91.62 93.41 94.18 90.98 92.9 

U.S. 92.97 93.35 93.61 93.54 93.41 93.09 92.14   100 92.97 92.97 92.97 92.97 92.97 94.63 94.88 92.77 92.77 93.09 94.12 91.56 91.56 91.56 91.56 93.22 93.35 92.84 93.35 

U.S. 92.97 93.35 93.61 93.54 93.41 93.09 92.14 100   92.97 92.97 92.97 92.97 92.97 94.63 94.88 92.77 92.77 93.09 94.12 91.56 91.56 91.56 91.56 93.22 93.35 92.84 93.35 

U.S. 92.46 93.73 94.12 93.67 93.16 94.5 92.52 92.97 92.97   100 94.37 94.37 94.37 95.4 95.27 93.29 93.29 93.73 94.25 92.33 92.33 92.33 92.33 93.99 94.25 93.09 94.25 

U.S. 92.46 93.73 94.12 93.67 93.16 94.5 92.52 92.97 92.97 100   94.37 94.37 94.37 95.4 95.27 93.29 93.29 93.73 94.25 92.33 92.33 92.33 92.33 93.99 94.25 93.09 94.25 

U.S. 92.84 94.76 93.73 93.93 93.16 94.88 92.77 92.97 92.97 94.37 94.37   100 100 96.42 97.06 94.18 94.18 94.5 94.76 93.09 93.09 93.09 93.09 94.5 95.01 93.86 94.5 

U.S. 92.84 94.76 93.73 93.93 93.16 94.88 92.77 92.97 92.97 94.37 94.37 100   100 96.42 97.06 94.18 94.18 94.5 94.76 93.09 93.09 93.09 93.09 94.5 95.01 93.86 94.5 

U.S. 92.84 94.76 93.73 93.93 93.16 94.88 92.77 92.97 92.97 94.37 94.37 100 100   96.42 97.06 94.18 94.18 94.5 94.76 93.09 93.09 93.09 93.09 94.5 95.01 93.86 94.5 

U.S. 93.86 95.78 95.27 94.69 94.31 95.14 94.31 94.63 94.63 95.4 95.4 96.42 96.42 96.42   97.44 94.57 94.57 95.78 95.78 94.37 94.37 94.37 94.37 95.78 95.78 94.5 96.04 

U.S. 93.86 96.04 94.76 94.57 94.05 95.52 93.93 94.88 94.88 95.27 95.27 97.06 97.06 97.06 97.44   96.07 96.07 95.65 96.16 95.14 95.14 95.14 95.14 95.27 96.16 94.88 96.04 

U.S. 92.01 93.54 92.65 92.58 91.94 93.29 92.33 92.77 92.77 93.29 93.29 94.18 94.18 94.18 94.57 96.07   99.42 93.16 94.18 92.65 92.65 92.65 92.65 93.16 93.67 93.03 93.67 

U.S. 92.01 93.54 92.65 92.58 91.94 93.29 92.33 92.77 92.77 93.29 93.29 94.18 94.18 94.18 94.57 96.07 99.42   93.16 94.18 92.65 92.65 92.65 92.65 93.16 93.67 93.03 93.67 

U.S. 93.22 94.88 94.12 94.31 93.29 95.27 93.03 93.09 93.09 93.73 93.73 94.5 94.5 94.5 95.78 95.65 93.16 93.16   95.52 93.73 93.73 93.73 93.73 95.65 95.65 93.86 94.88 

U.S. 93.22 95.4 93.86 94.57 93.67 94.88 93.16 94.12 94.12 94.25 94.25 94.76 94.76 94.76 95.78 96.16 94.18 94.18 95.52   93.86 93.86 93.86 93.86 95.01 95.52 94.5 95.01 

U.S. 92.33 93.48 92.07 92.01 91.11 92.58 91.62 91.56 91.56 92.33 92.33 93.09 93.09 93.09 94.37 95.14 92.65 92.65 93.73 93.86   100 100 100 93.48 93.86 93.73 92.97 

U.S. 92.33 93.48 92.07 92.01 91.11 92.58 91.62 91.56 91.56 92.33 92.33 93.09 93.09 93.09 94.37 95.14 92.65 92.65 93.73 93.86 100   100 100 93.48 93.86 93.73 92.97 

U.S. 92.33 93.48 92.07 92.01 91.11 92.58 91.62 91.56 91.56 92.33 92.33 93.09 93.09 93.09 94.37 95.14 92.65 92.65 93.73 93.86 100 100   100 93.48 93.86 93.73 92.97 

U.S. 92.33 93.48 92.07 92.01 91.11 92.58 91.62 91.56 91.56 92.33 92.33 93.09 93.09 93.09 94.37 95.14 92.65 92.65 93.73 93.86 100 100 100   93.48 93.86 93.73 92.97 

U.S. 93.73 93.99 94.25 94.57 93.41 94.25 93.41 93.22 93.22 93.99 93.99 94.5 94.5 94.5 95.78 95.27 93.16 93.16 95.65 95.01 93.48 93.48 93.48 93.48   95.01 93.61 95.01 

UK 93.22 95.4 93.86 94.57 94.18 94.76 94.18 93.35 93.35 94.25 94.25 95.01 95.01 95.01 95.78 96.16 93.67 93.67 95.65 95.52 93.86 93.86 93.86 93.86 95.01   94.12 95.27 

UK 92.07 93.86 92.46 92.52 91.75 93.22 90.98 92.84 92.84 93.09 93.09 93.86 93.86 93.86 94.5 94.88 93.03 93.03 93.86 94.5 93.73 93.73 93.73 93.73 93.61 94.12   94.37 

U.S. 93.73 94.25 93.61 93.41 93.29 94.25 92.9 93.35 93.35 94.25 94.25 94.5 94.5 94.5 96.04 96.04 93.67 93.67 94.88 95.01 92.97 92.97 92.97 92.97 95.01 95.27 94.37   
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NS5A CHN CHN VN VN VN VN VN U.S U.S U.S U.S U.S U.S U.S U.S U.S U.S U.S U.S U.S U.S U.S U.S U.S U.S UK UK U.S 

CHN   92.63 90.58 91.9 91.72 91.35 92.19 91.39 91.39 92.03 92.03 92.04 92.04 92.04 94.53 93.96 92.34 92.34 92.19 91.61 90.95 90.95 90.95 90.95 92.08 90.66 89.58 90.8 

CHN 92.63   91.68 92.48 92.74 92.88 93.28 93.07 93.07 93.41 93.41 92.85 92.85 92.85 95.47 95.05 93.07 93.07 93.36 92.99 92.19 92.19 92.19 92.19 93.54 91.68 90.16 92.48 

VN 90.58 91.68   94.96 95 91.5 91.31 91.02 91.02 91.66 91.66 91.09 91.09 91.09 93.07 92.79 91.46 91.46 91.2 91.02 90 90 90 90 92.23 89.85 88.92 90.58 

VN 91.9 92.48 94.96   96.39 91.93 92.7 91.75 91.75 92.54 92.54 92.34 92.34 92.34 94.67 93.74 92.55 92.55 92.52 92.55 90.95 90.95 90.95 90.95 93.1 91.46 89.8 91.53 

VN 91.72 92.74 95 96.39   92.77 93.21 92.23 92.23 92.72 92.72 92.74 92.74 92.74 94.64 94.22 93.18 93.18 93.36 92.3 91.28 91.28 91.28 91.28 93.36 91.57 90.49 91.93 

VN 91.35 92.88 91.5 91.93 92.77   92.37 92.08 92.08 92.14 92.14 92.3 92.3 92.3 94.05 94.29 92.74 92.74 92.52 91.93 91.64 91.64 91.64 91.64 92.7 90.91 89.98 90.91 

VN 92.19 93.28 91.31 92.7 93.21 92.37   92.96 92.96 92.68 92.68 92.15 92.15 92.15 94.82 94.76 93.36 93.36 93.69 91.82 92.08 92.08 92.08 92.08 93.32 91.93 90.6 91.9 

U.S. 91.39 93.07 91.02 91.75 92.23 92.08 92.96   100 92.83 92.83 92.19 92.19 92.19 94.53 95.27 93.28 93.28 93.43 91.68 91.46 91.46 91.46 91.46 93.32 91.24 90.24 91.9 

U.S. 91.39 93.07 91.02 91.75 92.23 92.08 92.96 100   92.83 92.83 92.19 92.19 92.19 94.53 95.27 93.28 93.28 93.43 91.68 91.46 91.46 91.46 91.46 93.32 91.24 90.24 91.9 

U.S. 92.03 93.41 91.66 92.54 92.72 92.14 92.68 92.83 92.83   99.84 92.61 92.61 92.61 95.02 94.67 93.49 93.49 92.68 92.46 91.37 91.37 91.37 91.37 93.3 91.44 89.56 91.51 

U.S. 92.03 93.41 91.66 92.54 92.72 92.14 92.68 92.83 92.83 99.84   92.61 92.61 92.61 95.02 94.67 93.49 93.49 92.68 92.46 91.37 91.37 91.37 91.37 93.3 91.44 89.56 91.51 

U.S. 92.04 92.85 91.09 92.34 92.74 92.3 92.15 92.19 92.19 92.61 92.61   100 100 94.82 96.15 93.8 93.8 92.85 92.92 92.12 92.12 92.12 92.12 92.59 90.8 90.31 92.12 

U.S. 92.04 92.85 91.09 92.34 92.74 92.3 92.15 92.19 92.19 92.61 92.61 100   100 94.82 96.15 93.8 93.8 92.85 92.92 92.12 92.12 92.12 92.12 92.59 90.8 90.31 92.12 

U.S. 92.04 92.85 91.09 92.34 92.74 92.3 92.15 92.19 92.19 92.61 92.61 100 100   94.82 96.15 93.8 93.8 92.85 92.92 92.12 92.12 92.12 92.12 92.59 90.8 90.31 92.12 

U.S. 94.53 95.47 93.07 94.67 94.64 94.05 94.82 94.53 94.53 95.02 95.02 94.82 94.82 94.82   97.32 95.69 95.69 94.96 94.16 93.28 93.28 93.28 93.28 95.22 92.92 91.48 94.16 

U.S. 93.96 95.05 92.79 93.74 94.22 94.29 94.76 95.27 95.27 94.67 94.67 96.15 96.15 96.15 97.32   96.81 96.81 94.69 94.11 94.84 94.84 94.84 94.84 95.24 92.79 91.72 93.67 

U.S. 92.34 93.07 91.46 92.55 93.18 92.74 93.36 93.28 93.28 93.49 93.49 93.8 93.8 93.8 95.69 96.81   100 93.36 92.7 92.34 92.34 92.34 92.34 93.47 91.53 90.24 91.97 

U.S. 92.34 93.07 91.46 92.55 93.18 92.74 93.36 93.28 93.28 93.49 93.49 93.8 93.8 93.8 95.69 96.81 100   93.36 92.7 92.34 92.34 92.34 92.34 93.47 91.53 90.24 91.97 

U.S. 92.19 93.36 91.2 92.52 93.36 92.52 93.69 93.43 93.43 92.68 92.68 92.85 92.85 92.85 94.96 94.69 93.36 93.36   92.55 91.46 91.46 91.46 91.46 93.03 91.61 91.11 91.82 

U.S. 91.61 92.99 91.02 92.55 92.3 91.93 91.82 91.68 91.68 92.46 92.46 92.92 92.92 92.92 94.16 94.11 92.7 92.7 92.55   91.24 91.24 91.24 91.24 92.52 90.88 89.51 90.88 

U.S. 90.95 92.19 90 90.95 91.28 91.64 92.08 91.46 91.46 91.37 91.37 92.12 92.12 92.12 93.28 94.84 92.34 92.34 91.46 91.24   100 100 100 92.37 89.93 89.58 90.44 

U.S. 90.95 92.19 90 90.95 91.28 91.64 92.08 91.46 91.46 91.37 91.37 92.12 92.12 92.12 93.28 94.84 92.34 92.34 91.46 91.24 100   100 100 92.37 89.93 89.58 90.44 

U.S. 90.95 92.19 90 90.95 91.28 91.64 92.08 91.46 91.46 91.37 91.37 92.12 92.12 92.12 93.28 94.84 92.34 92.34 91.46 91.24 100 100   100 92.37 89.93 89.58 90.44 

U.S. 90.95 92.19 90 90.95 91.28 91.64 92.08 91.46 91.46 91.37 91.37 92.12 92.12 92.12 93.28 94.84 92.34 92.34 91.46 91.24 100 100 100   92.37 89.93 89.58 90.44 

U.S. 92.08 93.54 92.23 93.1 93.36 92.7 93.32 93.32 93.32 93.3 93.3 92.59 92.59 92.59 95.22 95.24 93.47 93.47 93.03 92.52 92.37 92.37 92.37 92.37   92.3 90.93 92.3 

UK 90.66 91.68 89.85 91.46 91.57 90.91 91.93 91.24 91.24 91.44 91.44 90.8 90.8 90.8 92.92 92.79 91.53 91.53 91.61 90.88 89.93 89.93 89.93 89.93 92.3   89.14 90.15 

UK 89.58 90.16 88.92 89.8 90.49 89.98 90.6 90.24 90.24 89.56 89.56 90.31 90.31 90.31 91.48 91.72 90.24 90.24 91.11 89.51 89.58 89.58 89.58 89.58 90.93 89.14   89.14 

U.S. 90.8 92.48 90.58 91.53 91.93 90.91 91.9 91.9 91.9 91.51 91.51 92.12 92.12 92.12 94.16 93.67 91.97 91.97 91.82 90.88 90.44 90.44 90.44 90.44 92.3 90.15 89.14   
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NS5B CHN CHN VN VN VN VN VN U.S U.S U.S U.S U.S U.S U.S U.S U.S U.S U.S U.S U.S U.S U.S U.S U.S U.S UK UK U.S 

CHN   92.51 91.86 92.21 92.04 92.51 92.68 92.51 92.51 93.03 93.03 92.45 92.51 92.45 93.44 94.01 92.51 92.51 92.77 92.21 93.09 93.09 93.09 93.09 92.45 92.45 93.11 93.03 

CHN 92.51   94.09 94.26 93.79 93.68 94.32 93.5 93.5 93.85 93.85 93.44 93.5 93.44 94.91 95.36 93.68 93.68 93.94 93.44 94.38 94.38 94.38 94.38 93.44 93.15 93.93 93.68 

VN 91.86 94.09   97.25 97.48 93.79 93.5 93.85 93.85 94.56 94.56 93.85 93.91 93.85 94.96 95.48 93.97 93.97 93.76 94.15 94.5 94.5 94.5 94.5 93.79 92.92 94.04 93.79 

VN 92.21 94.26 97.25   97.37 94.26 93.62 94.15 94.15 94.5 94.5 94.2 94.26 94.2 95.14 96 94.35 94.35 94.06 94.44 94.79 94.79 94.79 94.79 94.26 93.27 94.22 94.32 

VN 92.04 93.79 97.48 97.37   93.74 93.68 93.74 93.74 94.44 94.44 93.97 94.03 93.97 95.14 95.71 94.12 94.12 94.17 94.38 94.44 94.44 94.44 94.44 93.79 93.03 94.16 93.97 

VN 92.51 93.68 93.79 94.26 93.74   93.15 93.15 93.15 93.97 93.97 93.27 93.33 93.27 94.91 95.3 94.17 94.17 94 93.74 94.5 94.5 94.5 94.5 93.38 94.09 93.93 94.38 

VN 92.68 94.32 93.5 93.62 93.68 93.15   93.56 93.56 93.62 93.62 93.03 93.09 93.03 95.02 95.18 94.26 94.26 94.12 93.15 94.38 94.38 94.38 94.38 94.03 93.15 94.04 93.33 

U.S. 92.51 93.5 93.85 94.15 93.74 93.15 93.56   100 94.44 94.44 94.38 94.44 94.38 95.26 96.53 94.76 94.76 94.29 93.5 94.26 94.26 94.26 94.26 94.09 93.21 94.34 93.97 

U.S. 92.51 93.5 93.85 94.15 93.74 93.15 93.56 100   94.44 94.44 94.38 94.44 94.38 95.26 96.53 94.76 94.76 94.29 93.5 94.26 94.26 94.26 94.26 94.09 93.21 94.34 93.97 

U.S. 93.03 93.85 94.56 94.5 94.44 93.97 93.62 94.44 94.44   100 94.5 94.56 94.5 95.49 96.3 94.79 94.79 94.41 94.38 94.85 94.85 94.85 94.85 94.03 93.74 94.57 94.38 

U.S. 93.03 93.85 94.56 94.5 94.44 93.97 93.62 94.44 94.44 100   94.5 94.56 94.5 95.49 96.3 94.79 94.79 94.41 94.38 94.85 94.85 94.85 94.85 94.03 93.74 94.57 94.38 

U.S. 92.45 93.44 93.85 94.2 93.97 93.27 93.03 94.38 94.38 94.5 94.5   99.94 100 95.02 96.59 94.12 94.12 94.12 93.85 94.44 94.44 94.44 94.44 94.61 92.45 94.28 93.79 

U.S. 92.51 93.5 93.91 94.26 94.03 93.33 93.09 94.44 94.44 94.56 94.56 99.94   99.94 95.08 96.65 94.17 94.17 94.17 93.91 94.5 94.5 94.5 94.5 94.67 92.51 94.34 93.85 

U.S. 92.45 93.44 93.85 94.2 93.97 93.27 93.03 94.38 94.38 94.5 94.5 100 99.94   95.02 96.59 94.12 94.12 94.12 93.85 94.44 94.44 94.44 94.44 94.61 92.45 94.28 93.79 

U.S. 93.44 94.91 94.96 95.14 95.14 94.91 95.02 95.26 95.26 95.49 95.49 95.02 95.08 95.02   97.41 95.78 95.78 95.99 95.32 95.96 95.96 95.96 95.96 95.73 94.38 95.1 95.49 

U.S. 94.01 95.36 95.48 96 95.71 95.3 95.18 96.53 96.53 96.3 96.3 96.59 96.65 96.59 97.41   96.56 96.56 96.27 95.65 96.88 96.88 96.88 96.88 95.95 94.77 95.9 95.77 

U.S. 92.51 93.68 93.97 94.35 94.12 94.17 94.26 94.76 94.76 94.79 94.79 94.12 94.17 94.12 95.78 96.56   99.85 94.58 94.29 94.47 94.47 94.47 94.47 94.41 93.62 94.6 94.06 

U.S. 92.51 93.68 93.97 94.35 94.12 94.17 94.26 94.76 94.76 94.79 94.79 94.12 94.17 94.12 95.78 96.56 99.85   94.58 94.29 94.47 94.47 94.47 94.47 94.41 93.62 94.6 94.06 

U.S. 92.77 93.94 93.76 94.06 94.17 94 94.12 94.29 94.29 94.41 94.41 94.12 94.17 94.12 95.99 96.27 94.58 94.58   94.76 94.88 94.88 94.88 94.88 94.53 93.76 94.83 94.47 

U.S. 92.21 93.44 94.15 94.44 94.38 93.74 93.15 93.5 93.5 94.38 94.38 93.85 93.91 93.85 95.32 95.65 94.29 94.29 94.76   94.85 94.85 94.85 94.85 94.44 93.79 94.22 93.91 

U.S. 93.09 94.38 94.5 94.79 94.44 94.5 94.38 94.26 94.26 94.85 94.85 94.44 94.5 94.44 95.96 96.88 94.47 94.47 94.88 94.85   100 100 100 94.79 94.15 94.39 95.43 

U.S. 93.09 94.38 94.5 94.79 94.44 94.5 94.38 94.26 94.26 94.85 94.85 94.44 94.5 94.44 95.96 96.88 94.47 94.47 94.88 94.85 100   100 100 94.79 94.15 94.39 95.43 

U.S. 93.09 94.38 94.5 94.79 94.44 94.5 94.38 94.26 94.26 94.85 94.85 94.44 94.5 94.44 95.96 96.88 94.47 94.47 94.88 94.85 100 100   100 94.79 94.15 94.39 95.43 

U.S. 93.09 94.38 94.5 94.79 94.44 94.5 94.38 94.26 94.26 94.85 94.85 94.44 94.5 94.44 95.96 96.88 94.47 94.47 94.88 94.85 100 100 100   94.79 94.15 94.39 95.43 

U.S. 92.45 93.44 93.79 94.26 93.79 93.38 94.03 94.09 94.09 94.03 94.03 94.61 94.67 94.61 95.73 95.95 94.41 94.41 94.53 94.44 94.79 94.79 94.79 94.79   93.15 94.75 94.03 

UK 92.45 93.15 92.92 93.27 93.03 94.09 93.15 93.21 93.21 93.74 93.74 92.45 92.51 92.45 94.38 94.77 93.62 93.62 93.76 93.79 94.15 94.15 94.15 94.15 93.15   93.22 93.33 

UK 93.11 93.93 94.04 94.22 94.16 93.93 94.04 94.34 94.34 94.57 94.57 94.28 94.34 94.28 95.1 95.9 94.6 94.6 94.83 94.22 94.39 94.39 94.39 94.39 94.75 93.22   93.63 

U.S. 93.03 93.68 93.79 94.32 93.97 94.38 93.33 93.97 93.97 94.38 94.38 93.79 93.85 93.79 95.49 95.77 94.06 94.06 94.47 93.91 95.43 95.43 95.43 95.43 94.03 93.33 93.63   
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Appendix 9: dN/dS ratio. Note: NA: not available 

 
Gene S E1 E2 X NS2 NS3 NS4A NS4B NS5A NS5B Full CDS 

Mean dN/dS 

(Vietnam) 
NA 0.264 0.17 0.31 0.44 0.226 0.277 0.174 0.221 0.204 0.232 

Mean dN/dS 

(US) 
0.198 0.129 0.214 0.203 0.212 0.158 0.241 0.15 0.262 0.167 0.198 

 

 

Appendix 10: Routine diagnostic workup during the study period at the study site 

 
Suspected clinical entity First line diagnosis Additional testing* 

Tuberculous meningitis 
Ziehl Neelsen stain, GenXpert and 

culture# 
NA 

Bacterial meningitis Gram stain and culture   

Meningoencephalitis HSV PCR 

VZV PCR and serological testing 

for flaviviruses (including JEV and 

DENV), and mumps virus  

Cryptococcus Lateral Flow Assay NA 

Auto-immune encephalitis ND Anti-NMDAR encephalitis** 

Note: *Up on requested by treating physicians, # using Mycobacteria Growth Indicator tubes, **retrospective 

testing 

 

 

Appendix 11: Primers and probes used for PCR confirmatory testing 

 
Viruses Names of primer/probe                        Oligo sequences (5’-3’) References 

Enterovirus 

ENT-F CCCTGAATGCGGCTAAT (232) 

ENT-R ATTGTCACCATAAGCAGCC  

ENTr-probe Cy5-ACCCAAAGTAGTCGGTTCCG -BHQ3 

Mump 

virus 

F1073 TCTCACCCATAGCAGGGAGTTATAT (294) 

R1151 GTTAGACTTCGACAGTTTGCAACAA 

Probe FAM-AGGCGATTTGTA GCACTGGATG-TAMRA 

Rotavirus 

NVP3-FDeg ACCATCTWCACRTRACCCTC (231) 

NVP3-R1  GGTCACATAACGCCCCTATA 

NVP3-Probe 
FAM-

ATGAGCACAATAGTTAAAAGCTAACACTGTCAA-

BHQ1 
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Appendix 12: Results of routine diagnosis, expanded PCR testing and mNGS analysis 

ID 

ZN Smear 
India Ink 

stain 

Cryptococcal 

antigen test 

Gram 

Stain 

Bacterial 

culture 
Others 

HSV PCR 

(ct value) 

JEV 

Serology 

Dengue 

Serology 

Dengue 

PCR 

    Expanded 

PCR 

testing for 

Mumps 

(Ct value) 

mNGS 

Expanded 

PCR testing 

for EVs (ct 

value) 

S1 Negative Negative Negative Negative Negative ND Negative ND ND ND Negative  Negative Negative 

S2 Negative Negative ND Negative Negative ND Negative ND ND ND EVs Negative Negative 

S3 Negative Negative Negative Negative Negative ND Negative ND ND ND Negative  Negative Negative 

S4 Negative Negative Negative Negative Negative ND ND ND ND ND Negative  Negative Negative 

S5 Negative Negative Negative Negative Negative ND 

Positive 

(25.1) ND ND ND HSV/EVs  Negative Negative 

S6 Negative Negative Negative Negative Negative ND Negative Negative Negative ND Negative  Negative Negative 

S7 Negative Negative Negative Negative Negative ND Negative Negative ND ND Negative  Negative Negative 

S8 Negative ND Negative Negative Negative 

VZV PCR 

positive Negative ND ND ND VZV/EVs  Negative Negative 

S9 Negative Negative Negative Negative Negative ND Negative ND ND ND EVs 

Positive 

(33.36) Negative 

S10 Negative Negative Negative Negative Negative ND Negative ND ND ND EVs 

Positive 

(34.25) Negative 

S11 Negative Negative Negative Negative Negative ND ND ND ND ND EVs Negative Negative 

S12 Negative Negative ND Negative Negative ND Negative ND Negative ND EVs Negative Negative 

S13 Negative Negative Negative Negative Negative ND Negative ND ND ND EVs Negative Negative 

S14 Negative Negative Negative Negative Negative ND Negative ND ND ND Rotavirus  Negative Negative 

S15 Negative Negative Negative Negative Negative ND Negative ND ND ND EVs Negative Negative 

S16 Negative Negative ND Negative Negative ND Negative ND ND ND Negative  Negative Negative 

S17 Negative Negative ND Negative Negative ND Negative ND ND ND Negative  Negative Negative 

S18 Negative Negative Negative Negative Negative ND ND ND ND ND Negative  Negative Negative 

S19 Negative Negative Negative Negative Negative ND Negative ND Negative ND EVs Negative Negative 

S20 Negative Negative Negative Negative Negative ND ND ND ND ND Negative  Negative Negative 

S21 Negative Negative Negative Negative Negative ND Negative ND ND ND EVs Negative Negative 

S22 Negative ND Negative Negative Negative ND ND ND ND ND EVs 

Positive 

(34.79) Negative 

S23 Negative Negative Negative Negative Negative ND Negative ND Negative ND EVs Negative Negative 

S24 Negative Negative ND Negative Negative ND Negative Negative ND ND Negative  Negative Negative 

S25 Negative Negative Negative Negative Negative ND Negative ND ND ND Negative  Negative Negative 

S26 Negative Negative Negative Negative Negative ND Negative ND ND ND Negative  Negative Negative 

S27 Negative Negative ND Negative ND ND Negative Negative Negative ND EVs Negative Negative 

S28 Negative Negative Negative Negative Negative ND Negative ND ND ND Negative  Negative Negative 

S29 Negative Negative Negative Negative Negative ND Negative ND ND ND Negative  Negative Negative 

S30 Negative Negative Negative Negative Negative ND Negative ND ND ND EVs Negative Negative 

S31 Negative Negative Negative Negative Negative ND Negative ND Negative ND Negative  Negative Negative 

S32 ND Negative ND Negative ND ND ND ND ND ND Negative  Negative Negative 

S33 Negative Negative Negative Negative Negative ND Negative ND Negative ND Negative  Negative Negative 

S34 Negative Negative Negative Negative Negative ND Negative ND Negative ND Negative  Negative Negative 

S35 Negative Negative Negative Negative Negative ND ND ND ND ND Negative  Negative Negative 
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S36 Negative Negative Negative Negative Negative ND 

Positive 

(28.01) ND ND ND HSV  Negative Negative 

S37 Negative Negative Negative Negative Negative ND Negative ND ND ND Negative  Negative Negative 

S38 Negative ND Negative Negative Negative ND Negative ND ND ND EVs Negative Negative 

S39 Negative ND Negative Negative Negative ND Negative Negative Positive ND Negative  Negative Negative 

S40 Negative Negative Negative Negative Negative ND Negative ND ND ND Negative  Negative Negative 

S41 Negative Negative Negative Negative Negative 

Mumps 

virus 

IgG+IgM: 

Positive Negative ND Negative ND Negative  Negative Negative 

S42 Negative Negative Negative Negative Negative ND ND ND ND ND EVs 

Positive 

(34.78 Negative 

S43 Negative ND Negative Negative Negative ND Negative Negative Negative ND EVs 

Positive 

(31.23) Negative 

S44 ND Negative ND Negative ND ND ND ND ND ND Negative  Negative Negative 

S45 Negative Negative Negative Negative Negative ND Negative Negative ND ND Negative  Negative Negative 

S46 Negative Negative Negative Negative Negative 

Mumps 

virus 

IgG+IgM: 

Positive ND ND ND ND Mumps  Negative 

positive 

(35.36) 

S47 ND Negative ND Negative Negative ND ND ND Negative ND Negative  Negative Negative 

S48 ND Negative ND Negative Negative ND ND ND ND ND Negative  Negative Negative 

S49 Negative ND Negative Negative Negative 

dengue 

rapid test: 

negative Negative Negative ND ND EVs 

positive 

(32.3) Negative 

S50 Negative Negative Negative Negative Negative ND ND ND ND ND EVs 

Positive(32.6

5) Negative 

S51 Negative Negative Negative Negative Negative ND Negative Negative ND ND Negative  Negative Negative 

S52 Negative Negative Negative Negative Negative 

Mumps 

virus 

IgG+IgM: 

Positive ND ND ND ND Negative  Negative 

positive 

(35.85) 

S53 Negative Negative Negative Negative Negative ND Negative ND ND ND Negative  Negative Negative 

S54 Negative Negative Negative Negative Negative ND Negative ND Negative ND EVs Negative Negative 

S55 ND ND ND Negative Negative ND Negative ND Positive Negative Negative  Negative Negative 

S56 Negative Negative Negative Negative Negative ND Negative ND ND ND Negative  Negative Negative 

S57 Negative Negative Negative Negative Negative ND Negative ND Negative ND Negative  Negative Negative 

S58 Negative Negative Negative Negative Negative ND Negative ND ND ND Negative  Negative Negative 

S59 Negative Negative Negative Negative Negative ND ND ND ND ND Negative  Negative Negative 

S60 Negative Negative Negative Negative Negative ND Negative ND ND ND Negative  Negative Negative 

S61 Negative Negative Negative Negative Negative 

Mumps 

virus 

IgG+IgM: 

Positive Negative ND ND ND Negative  Negative 

positive 

(40) 

S62 Negative Negative Negative Negative Negative ND 

Positive 

(unavailble) ND ND ND HSV/EVs  Negative Negative 
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S63 ND Negative ND Negative ND ND 

positive 

(30.36) Negative ND ND HSV negative Negative 

S64 Negative Negative Negative Negative Negative ND 

Positive 

(23.77) ND ND ND HSV  Negative Negative 

S65 Negative Negative Negative Negative Negative ND 

Positive 

(30.62) ND ND ND HSV  Negative Negative 

S66 Negative ND Negative Negative Negative ND Negative ND ND ND Negative  Negative 

positive 

(40) 

S67 Negative Negative Negative Negative Negative ND Negative Positive ND ND EVs Negative Negative 

S68 Negative Negative Negative Negative Negative ND 

Positive 

28.71) ND ND ND HSV  Negative Negative 

Note: * S19 & S26: Negative controls; ND: not done 

 

 

 

 

 



 

 203 

Appendix 13: mNGS reads obtained from DNA/RNA-virus workflows 

 

 Total reads Median Range 

DNA-virus workflow 62,565,802 859,656 1,487,000 – 2,125,00 

RNA-virus workflow 49,233,869 717,707 7,368 – 5,874,00 

 

 

 

Appendix 14: EV reads of PCR negative samples identical to reads found in sample(s) with a high 

abundance of EV reads with which they (did not) share(d) an index 

 

CSF number 

Number of unique EV 

reads found in PCR 

negative samples 

Number of unique 

EV reads (%) (1) 

Number of unique 

EV reads (%) (2) 

17 2 1 (50) 0 

18 2 2 (100) 0 

19 4 0 0 

20 1 0 0 

21 2 2 (100) 0 

22 5 5 (100) 0 

23 13 4 (31) 0 

24 4 2 (50) 0 

25 1 0 0 

26 20 5 (25%) 0 

27 7 4 (57) 0 

28 24 12 (50) 0 

29 22 0 0 

30 20 2 (10) 0 

31 12 7 (58) 0 

32 4 2 (50) 0 

Note:(1) identical to reads found in sample(s) with a high abundance of EV reads with which it shared an index. (2) identical to reads 

found in sample(s) with a high abundance of EV reads with which it did not shared an index. 
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ABSTRACT Community-acquired (CA) sepsis is a major public health problem
worldwide, yet the etiology remains unknown for �50% of the patients. Here we
applied metagenomic next-generation sequencing (mNGS) to characterize the hu-
man virome in 492 clinical samples (384 sera, 92 pooled nasal and throat swabs, 10
stools, and 6 cerebrospinal fluid samples) from 386 patients (213 adults and 173
children) presenting with CA sepsis who were recruited from 6 hospitals across Viet-
nam between 2013 and 2015. Specific monoplex PCRs were used subsequently to
confirm the presence of viral sequences detected by mNGS. We found sequences re-
lated to 47 viral species belonging to 21 families in 358 of 386 (93%) patients, in-
cluding viruses known to cause human infections. After PCR confirmation, human vi-
ruses were found in 52 of 386 patients (13.4%); picornavirus (enteroviruses [n � 14],
rhinovirus [n � 5], and parechovirus [n � 2]), hepatitis B virus (n � 10), cytomegalovi-
rus (n � 9), Epstein-Barr virus (n � 5), and rotavirus A (n � 3) were the most common
viruses detected. Recently discovered viruses were also found (gemycircularvirus
[n � 5] and WU polyomavirus, Saffold virus, salivirus, cyclovirus-VN, and human pegi-
virus 2 [HPgV2] [n, 1 each]), adding to the growing literature about the geographic
distribution of these novel viruses. Notably, sequences related to numerous viruses
not previously reported in human tissues were also detected. To summarize, we
identified 21 viral species known to be infectious to humans in 52 of 386 (13.4%)
patients presenting with CA sepsis of unknown cause. The study, however, cannot
directly impute sepsis causation to the viruses identified. The results highlight the
fact that it remains a challenge to establish the causative agents in CA sepsis pa-
tients, especially in tropical settings such as Vietnam.

KEYWORDS Vietnam, community-acquired sepsis, viral metagenomics

According to the WHO, approximately 30 million cases of sepsis with 6 million
deaths occur globally each year (1). Approximately 70% of sepsis cases are attrib-

uted to community-acquired (CA) infections (1). The increasing frequency of antimi-
crobial resistance and the diversity of pathogens (including bacteria and viruses) that
may cause CA sepsis further complicate current diagnostic efforts, in turn posing
challenges to patient management (2). Indeed, despite extensive laboratory investiga-
tions, the causes of a substantial proportion of cases of CA sepsis remain unknown. In
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a recent etiological study of 1,578 patients with CA sepsis, conducted by the Southeast
Asia Infectious Disease Clinical Research Network, the etiology (viruses, bacteria, and
parasites) was established for only 48% (3). While this diagnostic yield is comparable to
that of previous reports, the unknown etiology for �50% of the patients may be
attributed to the low sensitivity of current diagnostic tests and/or the diversity of the
causative agents that may be responsible for this important clinical condition. Further-
more, Southeast Asia is one of the major hot spots for the emergence of novel
pathogens, as illustrated by the emergence of Nipah virus, severe acute respiratory
syndrome (SARS) coronavirus, avian influenza virus A (H5N1), avian influenza virus A
(H7N9), enterovirus A71 (EV-A71), and, more recently, Zika virus (4, 5).

Metagenomic next-generation sequencing (mNGS) has emerged as an unbiased,
sequence-independent method for the detection of pathogens, especially viruses, in
clinical samples (6–13). Using mNGS, we previously discovered a novel cyclovirus
(cyclovirus-Vietnam [cyclovirus-VN]) in 4% of Vietnamese patients presenting with
central nervous system (CNS) infections, although the pathogenicity and natural hosts
of this virus remain unresolved (8, 14).

Improving our knowledge about the causative agents of CA sepsis can inform
clinical management, while active surveillance for novel pathogens in this region is of
public health significance. In this study, we use mNGS to characterize the viral contents
of clinical samples collected from patients enrolled in an etiological study of sepsis of
unknown etiology across Southeast Asia between 2013 and 2015 (3).

MATERIALS AND METHODS
Clinical specimens and patient data. The clinical specimens and patient data used for mNGS

analysis were derived from an etiological study of CA sepsis conducted at multiple hospitals across
Indonesia (n � 3), Thailand (n � 4), and Vietnam (n � 6) between 2013 and 2015 (3). Hospitalized
patients with suspected or documented CA infections, fulfilling the diagnostic criteria for sepsis of the
2012 Surviving Sepsis Campaign (adults) (15) or the definitions of the Pediatric Sepsis Consensus
Conference (16), were enrolled within 24 h of admission (3). A total of 1,582 patients were enrolled (750
each from Vietnam and Thailand; 82 from Indonesia) (Fig. 1). Per the study protocol, serum samples were
collected from all patients; additional samples, including pooled nasal and throat swabs, cerebrospinal
fluid (CSF), and stools, were collected when clinically indicated. After collection, all clinical samples were
stored at – 80°C. Additionally, information about the demographics, clinical entities, and outcomes of the
patients was retrieved from a publicly available data set of the original study that was deposited at
https://figshare.com/articles/Data_set_-_Causes_and_outcomes_of_sepsis_in_southeast_Asia_a_
multinational_multicentre_cross-sectional_study_NCT02157259_/3486866/1.

Of 749 patients from Vietnam, 402 (54%) had no etiology identified via extensive clinical and
reference laboratory workups in the original study (Fig. 1; see also Table S1 in the supplemental material);
of these, 386 (96%) had clinical materials available for additional etiological investigation and were thus
included for viral metagenomic analysis in this study (Fig. 1) (3). In total, 492 samples (6 CSF samples, 92
pooled nasal and throat swabs, 384 serum samples, and 10 stool samples) from these 386 patients with
sepsis of unknown etiology were included in the analysis. Due to the availability of the materials, most
samples were analyzed individually (n � 458) or in pools of multiple samples (n � 8) (Fig. 2).

Sample pretreatments and NA isolation. Prior to nucleic acid (NA) isolation, 100 �l of clinical
sample was treated with 2 U/�l of Turbo DNase (Ambion, Life Technology, Carlsbad, CA, USA) and
0.4 U/�l RNase I (Ambion) at 37°C for 30 min. Viral NA was then isolated from nuclease-treated materials
using a QIAamp viral RNA kit (Qiagen GmbH, Hilden, Germany) and was recovered in 50 �l of elution
buffer.

dsDNA synthesis and sequencing. Double-stranded DNA (dsDNA) was synthesized from isolated
viral NA using a set of 96 nonribosomal random primers (17), amplified by PCR, and sequenced on an
Illumina MiSeq platform (Illumina, San Diego, CA, USA) as described previously (18, 19). In brief, 10 �l of
extracted viral NA was converted to dsDNA using FR26RV-Endoh primers (19), SuperScript III enzyme
(Invitrogen, Carlsbad, CA, USA), RNaseOUT (Invitrogen), exo-Klenow fragment (Ambion, Life Technology,
Carlsbad, CA, USA), and RNase H (Ambion). Subsequently, the synthesized dsDNA was randomly
amplified using the FR20RV primer (5=-GCCGGAGCTCTGCAGATATC-3=). The random PCR product ob-
tained was then purified with the use of Agencourt AMPure XP beads (Beckman Coulter) and was
quantified with a Qubit dsDNA HS (high-sensitivity) kit (Invitrogen). Finally, 1 ng of purified product was
subjected to library preparation using a Nextera XT sample preparation kit (Illumina) and was sequenced
using a MiSeq reagent kit, v3 (600 cycles) (Illumina), on a MiSeq platform (Illumina).

mNGS data analysis. The mNGS data were analyzed using an in-house viral metagenomic pipeline
running on a 36-node Linux cluster to identify the presence of viral sequences in the tested specimens
as described previously (20). In brief, after duplicate reads and reads belonging to human or bacterial
genomes were filtered out, the remaining reads were assembled de novo. The resulting contigs and
singlet reads were then aligned against a customized viral proteome database using a BLAST (Basic Local
Alignment Search Tool)-based approach. Next, the candidate viral reads were aligned against a nonre-
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dundant nonvirus protein database to remove any false-positive reads (i.e., reads with expected [E]
values higher than those against viral protein databases). Any virus-like sequence with an E value
of �10�5 was considered a significant hit. Finally, a reference-based mapping approach was employed
to assess the levels of identity and genome coverages of the corresponding viruses.

PCR confirmation of viral reads. Because of the focus of the present study, specific PCRs were used
to confirm the mNGS hits for viral species that are known to be infectious to humans and for recently
discovered viruses that have been reported in human tissues previously but remain of uncertain tropism.
Depending on the availability of the clinical materials, virus-specific PCRs were carried out either on
leftover NA after mNGS experiments or on newly extracted NA. An mNGS result was considered positive
only if it was subsequently confirmed by a corresponding viral PCR analysis of original NA materials
derived from the corresponding individual samples. All PCR primers and probes used were either derived
from previous publications or newly designed based on the sequences generated by mNGS (see Table
S2 in the supplemental material).

Phylogenetic analysis. Sequence alignment and phylogenetic tree reconstructions of the sequences
obtained were carried out using ClustalW alignment and maximum likelihood methods available within
Geneious 8.1.5 (Biomatters) and IQ-TREE (21), respectively.

Ethical statement. The study was reviewed and approved by the Institutional Review Boards of
collaborating hospitals in Vietnam and the Oxford Tropical Research Ethics Committee (OxTREC),
University of Oxford, Oxford, United Kingdom.

Accession number(s). The metagenomics data obtained in this study have been deposited in
GenBank, and the accession numbers can be found via BioProject accession number PRJNA526981.

RESULTS
Demographics, clinical features, and outcomes for patients with sepsis of

unknown origin. The baseline characteristics and 28-day mortality data of all patients
(including the 386 patients included in the mNGS analysis) from Vietnamese sites
enrolled in the original study are presented in Table 1. Retrospectively, 129 (34.4%)
adult patients (including 54 of the 213 with undiagnosed cases [25%]) had SOFA
(Sequential Organ Failure Assessment) scores of �2, fulfilling the diagnostic criteria
presently used for sepsis in adults as defined by Sepsis-3 (22). For pediatric sepsis, no
harmonized criteria similar to those for sepsis in adults have been established (23).

FIG 1 Flow chart showing an overview of the diagnostic output of the original study. *, see the original
study (3) and Table S1 in the supplemental material for more details; #, the causative agents detected are
detailed in the report of the original study (3); $, more details about the analysis of those 386 patients
can be found in Fig. 2.
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There was considerable homogeneity between the group of patients included and
the group not included in the mNGS analysis (Table 1). Among the 386 patients with
sepsis of unknown cause whose data were included in the mNGS analysis, the most
frequent clinical entity was acute respiratory infection (n � 158 [41%]), followed by
systemic infection (n � 152 [39.5%]), diarrhea (n � 36 [9.3%]), and central nervous
system (CNS) infection (n � 40 [10.5%]) (Table 1) (3). Ten of these patients (8 adults and
2 children) were recorded as deceased by day 28, accounting for 2.6% of total patients.

Overview of virus-like sequences detected by mNGS. In total, 466 samples were
sequenced in five MiSeq runs, generating a total of �26 million reads (median reads per
sample, 432,682; range, 540 to 1,916,732) (see Fig. S1 in the supplemental material).
Despite the inclusion of a nuclease digestion step prior to NA isolation, viral reads
accounted for only a small proportion of total reads, ranging from 168,028 (2.5%) to
287,307 (8.4%) reads/run. Evidence of sequences related to 47 viral species belonging
to 21 families was detected in 358/386 (93%) patients. The viruses detected included
those known to cause human infections, those with unknown pathogenicity, and
viruses that have been reported previously to be contaminants found in mNGS data
sets or that have not been reported in human samples, as detailed below. Additionally,
codetection of �2 viruses in the same samples/patients was recorded for 13 patients
(see Table S3). None of the 10 fatal cases had a viral etiology identified by mNGS.

(i) Detection of viruses known to cause human infections. NA sequences of 21
viral species known to be infectious to humans were detected in 137 of 466 (29%)
clinical samples from 125 of 386 (32%) individuals by viral metagenomics. The detection
rate was reduced to 13.4% (52/386) of the 386 patients included in the mNGS analysis

FIG 2 Flow chart showing how samples were analyzed. *, includes 4 pools of 5 samples, 3 pools of 4
samples, and 1 pool of 2 samples.
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after specific PCR confirmation. There was a significant difference in the number of viral
reads generated by mNGS between the groups of samples that were subsequently
found to be PCR positive or negative (see Fig. S2 in the supplemental material), while
the total numbers of reads obtained were similar for the two groups (median [range],
493,794 [11,076 to 1,203,206] versus 461,486 [16,470 to 1,770,372]) (P � 0.58). The
number of reads per sample in the group of samples in which viruses were found by
mNGS and subsequently confirmed by PCR was significantly higher than that in the
group in which no virus was found (median [range], 493,794 [11,076 to 1,203,206]
versus 365,974 [540 to 1,916,732]) (P � 0.004), suggesting that the diagnostic yield of
mNGS is dependent on the sequencing depth (i.e., the number of reads generated per
sample).

Of the viruses detected, enterovirus (EV) was the most common (14/386 [3.6%]),
followed by hepatitis B virus (HBV) (9/386 [2.3%]), cytomegalovirus (CMV) (9/386
[2.3%]), human rhinovirus (HRV) (5/386 [1.3%]), Epstein-Barr virus (EBV) (5/386 [1.3%]),
and rotavirus (3/386 [0.7%]) (Fig. 3). Detailed information about the numbers of viral
reads and genome coverage is summarized in Table S7 in the supplemental material.

(ii) Detection of sequences related to viruses with unknown pathogenicity.
Sequences related to four recently discovered viruses (gemycircularviruses, WU polyo-
mavirus, human pegivirus 2 [HPgV-2], and cyclovirus-VN) whose pathogenicity or
tropism remains unknown, but whose genetic materials have been reported in human
samples previously, were identified by mNGS in 3.4% of the samples from the 386

TABLE 1 Demographic and clinical data for CA sepsis patients

Characteristic

No. (%) of patients:

Included in mNGS analysisa Not included in mNGS analysis

Total (n � 386) Adults (n � 213)
Children

Total (n � 363) Adults (n � 162)
Children

(n � 173) (n � 201)

Male gender 224 (58) 122 (57.3) 102 (59) 204 (56) 84 (41) 120 (59)

Age
�12 mo NA NA 45 (26) NA NA 75 (37.3)
�1 to �5 yr NA NA 100 (57.8) NA NA 106 (52.7)
�5 to �18 yr NA NA 28 (16.2) NA NA 20 (10)
�18 to �40 yr NA 94 (44.1) NA NA 68 (42) NA
�40 to �60 yr NA 67 (31.5) NA NA 60 (37) NA
�60 yr NA 52 (24.4) NA NA 34 (21) NA

Geographic location
North Vietnam 123 (32) 68 (32) 55 (32) 127 (35) 57 (35) 70 (34)
Central Vietnam 141 (37) 79 (37) 62 (36) 108 (30) 46 (28) 62 (31)
South Vietnam 122 (32) 66 (31) 56 (32) 128 (35) 59 (37) 69 (34)

SOFA scoreb

�1 NA 159 (75) NA NA 87 (53.7) NA
�2 NA 54 (25) NA NA 75 (46.3) NA

Clinical presentationc

Respiratory infection 158 (41) 97 (45) 61 (36) 212 (58) 70 (43) 142 (71)
Diarrhea 36 (9) 25 (12) 11 (6) 15 (4) 10 (6) 5 (2)
CNS infection 40 (10.5) 8 (4) 32 (18) 42 (12) 14 (9) 28 (14)
Systemic infection 152 (39.5) 83 (39) 69 (40) 94 (26) 68 (42) 26 (13)

28-day mortality
Yes 10 (2.6) 8 (3.7) 2 (1) 16 (4) 9 (5) 7 (3)
No 373 (96.6) 203 (95.3) 170 (98) 337 (93) 149 (92) 188 (94)
Unknown 3 (�1) 2 (1) 1 (�1) 10 (3) 4 (3) 6 (3)

aNA, not applicable.
bAvailable for adult patients only.
cDefined on the basis of major clinical symptoms. Acute respiratory infection was defined as the manifestation of at least one respiratory symptom for no longer than
14 days. Acute diarrhea was defined as diarrhea for no longer than 14 days. Acute CNS infection was defined as the manifestation of CNS symptoms for no longer
than 14 days or the presence of signs of CNS infection on admission. Systemic infection was defined as the absence of acute respiratory infection, acute diarrhea, and
acute CNS infection.
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patients included in the mNGS analysis. After specific PCR testing, the confirmed
proportion of positive patients was reduced to 2.1% (5/386 [1.3%] had gemycircular-
virus, and 1/386 [0.26%] each had WU polyomavirus, HPgV2, or cyclovirus-VN) (Fig. 3).
Additionally, anellovirus-like sequences were found in the majority of the samples
tested (362/466 [77%]), while sequences related to human pegivirus 1 and human
papillomaviruses were found in 4/466 (�1%) and 1/466 (�1%) samples, respectively.

FIG 3 Bar chart showing the numbers of viruses known to be infectious to humans or previously reported in human
tissues that were detected by mNGS, followed by PCR confirmation testing.
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Because these viruses are common nonpathogenic infectious agents, they were not
subjected to subsequent PCR confirmation testing.

(iii) Detection of sequences related to contaminants and/or viruses not previ-
ously reported in human samples. Sequences related to common contaminants of
mNGS data sets (including a parvovirus-like hybrid virus [24] and Kadipiro virus [25])
were detected in 96 and 5 samples, respectively (see Table S4 in the supplemental
material). Additionally, sequences related to numerous viruses that have not been
reported in human tissues previously were also found (Table S4). Here we focus our
analysis on viruses that have been reported in human tissues.

Viral detection by mNGS followed by PCR confirmation testing in different
sample types. The detection rates for human viruses or viruses reported in human

tissues were 8% (32/384) for sera, 41% (38/92) for nasal-throat swabs, and 50% (5/10)
for stool samples, while all 6 CSF samples available from 40 patients presenting with
CNS infection were negative. More viruses were found in pooled nasal-throat swabs
than in samples of other types (Fig. 4).

FIG 4 Numbers of viruses detected by mNGS, and then confirmed by virus-specific PCR, in clinical samples of
different types.
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In the sera tested, 12 different viral species were detected, including the well-
established human pathogens HBV (n � 9), EV (n � 8), rotavirus A (n � 3), dengue virus
(DENV) (n � 2), hepatitis C virus (HCV) (n � 2), human parechovirus (n � 1), HRV (n � 1),
and human immunodeficiency virus (HIV) (n � 1) (Fig. 4).

Viral detection in different patient groups and clinical entities by mNGS
followed by PCR confirmation testing. The frequencies of different viral species
detected in different clinical entities and patient groups are shown in Fig. 5 and Fig. S3
in the supplemental material.

Regardless of the clinical sample type, the highest proportion of distinct viral
infections was recorded in patients presenting with CNS infections (15/40 [37.5%]),
followed by patients with respiratory infections (37/158 [23%]) and patients with
systemic infections (19/152 [12.5%]). Of the 54 adults with a SOFA score of �2, 6 had
a virus identified (from 2 samples with measles virus or HBV and 1 each with dengue
virus, rotavirus A, gemycircularvirus, salivirus A, or EBV) (see Table S5 in the supple-
mental material).

Among the patients presenting with CNS infections, picornaviruses were the most
common viruses detected (see Table S6 in the supplemental material); these included
enterovirus, accounting for 7 of 15 (47%) viruses detected (6 in sera and 1 in a pooled
nasal-throat swab), and HRV, detected in a serum sample. Rotavirus, a well-known
cause of diarrhea, was detected in the blood of three diarrhea patients (two children
and one adult).

In terms of age groups, EV and other respiratory viruses (e.g., respiratory syncytial
virus [RSV] and HRV) were detected more frequently in children than in adults (Fig. 5).
In contrast, blood-borne viruses (HIV, HCV, and HBV) were found more often in adults
than in children (Fig. 5). Parechovirus, an established cause of pediatric infections, was
detected in one adult presenting with a systemic infection.

Genetic characterization of EV and HBV. Excluding anellovirus-related sequences,
mNGS generated sufficient sequence data for informative genetic characterization and
phylogenetic inference of EV and HBV in 14 samples, including seven complete viral
capsid protein 1 (VP1) sequences of enterovirus and seven complete HBV genomes.
Phylogenetically, all seven EVs were classified into six different serotypes of enterovi-
ruses A and B (echovirus 3, echovirus 6, echovirus 9, echovirus 16, coxsackievirus A2,
and coxsackievirus A6), while the HBV strains belonged to genotypes B and C (see Fig.
S4 and S5 in the supplemental material), supporting reports about circulating entero-
virus serotypes and HBV genotypes in Vietnam (26–28).

For other viruses, due to the small numbers of genomic sequences recovered (two
for DENV, two for gemycircularvirus, and one each for RSV, influenza B virus, HCV,
measles virus, WU polyomavirus, and cyclovirus-VN), similar phylogenetic inference was
deemed uninformative.

DISCUSSION

We present the results of mNGS for exploration of the human virome in 386 patients
presenting with CA sepsis of unknown cause who were enrolled in a multicenter
observational study across Vietnam from 2013 to 2015. We identified 21 viral species
known to be infectious to humans in 52 (13.4%) of 386 patients presenting with CA
sepsis of unknown cause. The study, however, cannot directly impute sepsis causation
involving the viruses identified. More specifically, on several occasions, viral detection
in nonsterile materials, such as respiratory samples (including EBV and CMV) and stool
samples, may simply reflect the carriage of such viruses in those bodily compartments
rather than a clinical association. Similarly, viral detection (e.g., enterovirus) in the blood
of patients with asymptomatic infections has been reported previously (29). Addition-
ally, the detection of blood-borne viruses, such as HBV, HIV, and HCV, in serum samples
might represent underlying diseases and not the causative pathogens leading to the
hospital admission, although the detection of HIV RNA in a serum sample of a patient
presenting with systemic infection may suggest an acute HIV infection. However,
together with the clinical and epidemiologic data, the results present a provocative
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argument for a wide range of viral pathogens that might be associated with CA sepsis
in Vietnam.

Epidemiologically, our results support previous findings regarding the frequent
detection of common viruses in corresponding clinical entities and age groups. For

FIG 5 Numbers of viruses detected by mNGS, and then confirmed by virus-specific PCR, in different patient groups and clinical entities.
Symbols are color-coded by sample type. (A) All patients included in the mNGS analysis; (B) adults; (C) children.
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example, we found rotavirus only in patients with acute diarrhea and RSV and viruses
of the Picornaviridae family (HRV and EV) mostly in children. Additionally, we detected
parechovirus in the blood of an adult presenting with acute systemic infection.
Parechoviruses are a well-known cause of disease in children, ranging from acute
gastrointestinal/respiratory infections to meningitis, but have increasingly been re-
ported to cause infections in adults (30).

Nonpolio enteroviruses, such as EV-A71 and EV-D68, have become serious global
threats. In fact, EV-A71 has overwhelmed countries of the Asia-Pacific region (including
Vietnam) with large outbreaks of severe hand-foot-and-mouth disease since 1997 (31,
32). Recently, EV-D68 has emerged and caused large outbreaks of respiratory infections
in the United States; this virus is epidemiologically linked with acute flaccid myelitis
(33). The data presented here, together with the results of the original report (3),
expand our knowledge about the clinical burden posed by nonpolio enteroviruses (HRV
and particularly diverse EV serotypes) and parechoviruses in Vietnam.

mNGS detected several recently discovered viruses (Saffold virus, salivirus A, WU
polyomavirus, gemycircularvirus, and HPgV-2), representing their first detection in
Vietnam and adding to the growing literature about the geographic distribution of
these newly identified viruses. Salivirus A has been linked to gastrointestinal infection,
and Saffold virus has been reported in gastrointestinal and respiratory infection pa-
tients (34–37). Saffold virus has also been reported to be associated with myocarditis
and aseptic meningitis (38, 39). Additionally, using a mouse model, studies have shown
the neurotropic potential of Saffold virus (39–41). The pathogenicity of WU polyoma-
virus, gemycircularvirus, and HPgV-2 remains unresolved. Likewise, it is imperative to
conduct follow-up studies to determine whether the detected sequences that are
related to viruses not previously reported in human tissues are derived from other
sources and whether the respective viruses are infectious to humans.

FIG 5 (Continued)
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The results of the present investigation also emphasize the utility of serum samples
for assessing the etiology of sepsis. Indeed, viruses of the families Picornaviridae
(enterovirus, rhinovirus, and parechovirus), Flaviviridae (DENV), and Caliciviridae (rota-
virus) were detected by mNGS in the sera included in this study. Notably, as per the
design of the original etiological study, sera were not tested for these viruses by PCR
(3). Likewise, while it remains unknown why the original study failed to detect common
causes of respiratory/enteric infections (influenza A virus, influenza B virus, EV, etc.) in
pooled nasal swabs by multiplex PCR assays (3), a slightly lower sensitivity of the
multiplex PCR assays used than that of the respective monoplex PCR assays has been
reported elsewhere (42).

Virus detection by mNGS is based on the detection of matching viral reads regard-
less of their number or the resulting genome coverage. While few metagenomic studies
published to date have reported the use of specific PCR to verify metagenomic results
subsequently, the failure of virus-specific PCR to confirm the original mNGS detections
for many patients in the present study may be a consequence of cross talk (bleed-
through) contamination occurring as part of the sequencing procedure, a well-
documented phenomenon (10, 43, 44). An alternative explanation is the low sensitivity,
likely attributed to nucleotide mismatches, of some of the PCR primers used to confirm
infection.

The absence of human viral pathogens in 87% of 386 patients may be attributed to
the low sensitivity of our mNGS approach, especially in cases where the number of
reads obtained was supposedly insufficient (Fig. S1 in the supplemental material), as
suggested by the difference in the number of reads obtained between the groups of
samples with and without a virus identified. Clearly, future research should address the
question of what level of sequencing depth mNGS-based approaches need to achieve
in order to reach the required sensitivity while maintaining cost-effectiveness. It is
equally important to identify the factors (e.g., sample types and library preparation/
sequencing methods) that may affect sequencing depth (i.e., the number of reads
obtained) and assay sensitivity. Additional possibilities include the presence of the
sepsis pathogen in nonanalyzed tissues, the presence of nonviral pathogens (e.g.,
bacteria and parasites) in tested specimens, and/or the inclusion of patients with no
infection (e.g., those with conditions caused by toxicity whose clinical presentations
mimic infections) in the study.

In summary, we report the application of mNGS for patients presenting with CA
sepsis of unknown etiology. Our results highlight challenges in identifying possible viral
culprits in patients with CA sepsis and show that diverse viral agents might be
responsible for such devastating conditions in tropical settings such as Vietnam.
Therefore, rigorous testing for a wide range of viral pathogens in samples from different
body compartments collected early after symptom onset, when viral loads are usually
highest, is likely to have the greatest yield. Under these circumstances, mNGS is a
promising approach because of its capacity to simultaneously detect and genetically
characterize viral pathogens in patient samples without the need for prior knowledge
of genomic information about the targeted pathogens, thus enhancing the ability to
identify infectious etiologies of sepsis and facilitating optimal targeted management.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/JCM

.00386-19.
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We report human pegivirus 2 (HPgV-2) infection in Vietnam. 
We detected HPgV-2 in some patients with hepatitis C virus/
HIV co-infection but not in patients with HIV or hepatitis A, B, 
or C virus infection, nor in healthy controls. HPgV-2 strains 
in Vietnam are phylogenetically related to global strains.

Human pegivirus 2 (HPgV-2), also known as human 
hepegivirus 1, is a recently discovered bloodborne 

flavivirus (1,2). Existing evidence suggests that HPgV-
2 is more frequently detected in patients with hepati-
tis C virus (HCV) infection, particularly HCV and HIV  
co-infection, although detection rates vary between stud-
ies and patient groups. In the United States, HPgV-2 was 
detected in 1.2% (12/983) of patients with active HCV 
infections (1), whereas in China, the reported detection 
rates of HPgV-2 RNA were 0.29% (7/2440) among HCV 
monoinfected patients and from 3% (8/270) to 5.7% (4/70) 
among HCV/HIV co-infected patients (3,4). HPgV-2 RNA 
was detected in 10.9% (17/156) of injection drug users in 
the United States, and there was a strong association be-
tween HPgV-2 and other infections such as HCV and SEN  
virus D (5).

Given the high burden of HCV and HIV infections 
worldwide and the potential clinical significance of HPgV-
2, we investigated the geographic distribution and genetic 
diversity of this virus to help prioritize the development and 
implementation of appropriate intervention strategies. The 
studies were approved by the corresponding institutional 
review boards of the local hospitals in Vietnam where 
patients were enrolled and the Oxford Tropical Research 
Ethics Committee. We obtained written informed consent 
from each participant or from the participant’s parent or 
legal guardian.

The Study
Patient information and clinical samples were derived from 
a multilocation observational study designed to evaluate the 
causes of community-acquired infection in Southeast Asia 
(6). We included all 493 samples (384 plasma, 92 pooled 
nasal and throat swabs, 10 stool, and 7 cerebrospinal fluid 
[CSF]) from 386 patients in Vietnam with community-ac-
quired infection of unknown origin after extensive diagnos-
tic workup for viral metagenomic analysis (7).

Analysis of metagenomic data revealed that, in 1 plas-
ma sample, of 98,344 obtained reads, 5,342 reads were of 
HCV sequences, 430 of HIV sequences, and 273 of HPgV-
2 sequences; we confirmed all reads by corresponding vi-
rus-specific reverse transcription PCR (RT-PCR). HPgV-2 
sequence screening and HPgV-2 RT-PCR testing did not 
detect HPgV-2 in any of the remaining samples of the pa-
tients included in metagenomic analysis.

To explore the prevalence of HPgV-2 in HCV-infected 
patients in Vietnam, we used a reference-based mapping 
strategy to screen for HPgV-2 sequences in additional vi-
ral metagenomic datasets (Table 1). We detected HPgV-2 
sequences in 5/79 HIV/HCV co-infected patients who par-
ticipated in a trial evaluating the hepatic safety of raltegra-
vir/efavirenz-based therapies in antiretroviral-naive HIV-
infected subjects co-infected with HCV. We did not detect 
HPgV-2 sequences in 394 HCV-infected patients with 
clinically diagnosed hepatitis who participated in molecu-
lar epidemiologic studies of hepatitis viruses (Table 1). 

We subsequently confirmed the result of this refer-
ence-mapping approach by HPgV-2 multiplex RT-PCR (8) 
testing of the extracted RNA from original samples. We 
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conducted multiplex RT-PCR screening for HPgV-2 RNA 
in plasma samples of matched controls (78 HIV-infected 
patients and 80 healthy volunteers) of the 79 HCV/HIV co-
infected patients; we found no evidence of HPgV-2 (Table 
1). In addition, we did not detect HPgV-2 RNA in any plas-
ma samples from patients with HAV (n = 71) and HBV (n 
= 103) infection (Table 1).

HPgV-2 RNA was detectable for <18 months in 3/5 
patients with HCV/HIV co-infection (Table 2). We did 
not detect HPgV-2 RNA in the available follow-up serum 
sample collected 14 days after enrollment from the patient 
with community-acquired infection (Table 2).

All 5 HCV/HIV co-infected patients had CD4 counts 
>200 cells/µL at baseline and at 6-, 12-, and 18-month 
follow-up (Table 2), but none received specific anti-HCV 
drugs, which was attributed to drug unavailability or un-
affordability during the study period. During follow-up, 
hepatitis and splenic abnormalities were detected in 4/5 pa-
tients, which were likely attributable to HCV infection (Ta-
ble 2). The patient with community-acquired infection was 
recorded as surviving to 28 days of follow-up (Table 2).

Using deep sequencing and a combination of over-
lapping PCRs and Sanger sequencing of PCR amplicons 
(primer sequences available upon request), we obtained 
5 nearly complete genomes (coverage of >92%) and an-
other partial genome (coverage of ≈69.1%). Pairwise com-
parison of HPgV-2 coding regions obtained in this study 
and previously reported HPgV-2 sequences showed over-
all sequence identities at the nucleotide level of >94.6% 
and at the amino acid level of >95.3% (data not shown).  

Phylogenetic analyses revealed a tight cluster between vi-
ruses from Vietnam and global strains (Figure). We sub-
mitted the HPgV-2 sequences we generated to GenBank 
(accession nos. MH194408–13).

Of the 5 HPgV-2 genome sequences we recovered, we 
generated 2 by deep sequencing. The results were above the 
proposed sequencing-depth threshold of >5 for sequences 
generated by next-generation sequencing (9) and sufficient 
for intrahost diversity investigation. One sequence we gen-
erated had mean coverage of 2,049 (range 12–9,912), with 
a total of 26 (10 [38%] nonsynonymous) positions carrying 
minor variations detected in the corresponding dataset (data 
not shown). For the other sequence, mean coverage was 
32,531 (range 13–138,383), with a total of 37 (13 [35%] 
nonsynonymous) positions carrying minor variations in its 
dataset (data not shown).

Conclusions
We report the detection and genetic characterization of 
HPgV-2 in Vietnam and describe the observed demograph-
ic and clinical characteristics of patients with HPgV-2 in-
fection. Together with reports from China, Iran, and the 
United States (1–4,8,10), our findings further emphasize 
the strong association between HPgV-2 and HCV, espe-
cially HCV/HIV co-infection. The absence of HPgV-2 in 
394 HCV-infected patients may have been attributed to the 
small sample size and the fact that the reported prevalence 
of HIV among HCV-infected patients was <6.5% (11,12). 
Of note, HPgV-2 was detected in only 0.29% of HCV-
monoinfected patients in China.

 
Table 1. Samples and viral metagenomic datasets used in screening for HPgV-2 and screening results, Vietnam* 

Infection 
No. 

persons Screening approach 
No. positive 
for HPgV-2 

Enrollment 
period Setting 

Hepatitis C virus 
and HIV co-
infection 

79 HPgV-2–specific PCR 
and reference-based 
mapping of obtained 

viral metagenomics data 

5 2010–2013 Hospital for Tropical Diseases,  
Ho Chi Minh City 

 

HIV monoinfection 78 HPgV-2–specific PCR 0 2010–2013 Hospital for Tropical Diseases,  
Ho Chi Minh City 

 
None (healthy 
volunteers) 

80 HPgV-2–specific PCR 0 2010–2013 Hospital for Tropical Diseases,  
Ho Chi Minh City 

 
Hepatitis A virus 71 HPgV-2–specific PCR 0 2012–2014 Hospital for Tropical Diseases,  

Ho Chi Minh City 
Hepatitis B virus 103 HPgV-2–specific PCR 0 2012–2016 Hospital for Tropical Diseases,  

Ho Chi Minh City; Dong Thap General 
Hospital, Dong Thap; Khanh Hoa Provincial 

Hospital, Nha Trang; Dac Lac Provincial 
Hospital, Dac Lac; Hue National Hospital, Hue 

Hepatitis C virus† 394 Reference-based 
mapping of obtained 

viral metagenomics data 

0 2012–2016 Hospital for Tropical Diseases,  
Ho Chi Minh City; Dong Thap General 

Hospital, Dong Thap; Khanh Hoa Provincial 
Hospital, Nha Trang; Dac Lac Provincial 

Hospital, Dac Lac; Hue National Hospital, Hue 
*HPgV-2, human pegivirus. 
†Whole-genome sequences of hepatitis C virus were obtained using a viral metagenomics approach (7). The resulting metagenomics datasets were then 
subjected to a reference-based mapping approach to search for the presence of HPgV-2 sequences. 
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Previous reports showed that HPgV-2 viremia can 
be transient or persistent. Likewise, in our study, HPgV-2 
RNA became undetectable after 14 days in a HCV/HIV co-
infected patient with community-acquired infection of un-
known origin, but remained detectable in other HCV/HIV 
co-infected patients through up to 18 months of follow-up.

The pathogenic potential of HPgV-2 remains un-
known. Its role in HCV/HIV co-infection and response to 
treatment warrants further research, given its low detection 
rates in blood donors in the United States and China (1,3) 
and its absence in healthy persons (this study) but close as-
sociation with HCV/HIV co-infection.

In the era of sequence-based virus discovery, a key 
question is whether the detected genome represents live 
virus or a non–replication competent genome. Addressing 
this question would require recovery of virus in cell culture. 
However, our detection of minor variations across 2 HPgV-2 
genomes suggests that viral replication had occurred in the 
infected patients. Phylogenetically, the close relatedness be-
tween HPgV-2 strains from Vietnam and global strains sug-
gests HPgV-2 has a wide geographic distribution.

Our study has some limitations. First, we only retrospec-
tively tested available archived samples without formal sam-
ple size estimation, which may have explained the absence 
of HPgV-2 in the remaining 394 HCV patients. Second, 
we did not employ a serologic assay to screen for HPgV-2  

antibodies in patients’ plasma. Third, we used only multiplex 
PCR with primers based on a limited number of available 
HPgV-2 sequences. Therefore, we may have missed geneti-
cally diverse HPgV-2 strains, and we may have underesti-
mated the prevalence of HPgV-2 infections in Vietnam.

Our findings contribute expanded data about geo-
graphic distribution, demographics, and genetic diversity 
of HPgV-2. Because HCV and HIV infections are global 
public health issues, the extent to which HPgV-2 interacts 
with HCV and HIV in co-infected patients and the possible 
clinical consequences warrant further research.
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Research Network: Pratiwi Sudarmono (Cipto Mangunkusumo 
Hospital, Jakarta, Indonesia); Abu Tholib Aman (Sardjito  
Hospital, Yogyakarta, Indonesia); Mansyur Arif (Wahidin  
Soedirohusodo Hospital, Makassar, Indonesia); Armaji  
Kamaludi Syarif, Herman Kosasih, and Muhammad  
Karyana (National Institute of Health Research and  
Development, Jakarta); Tawee Chotpitayasunondh and Warunee 
Punpanich Vandepitte (Queen Sirikit National Institute of Child 
Health, Bangkok, Thailand); Adiratha Boonyasiri, Keswadee 
Lapphra, Kulkanya Chokephaibulkit, Pinyo Rattanaumpawan, 
and Visanu Thamlikitkul (Siriraj Hospital, Bangkok, Thailand); 
Direk Limmathurotsakul, Janjira Thaipadungpanit, Stuart  
Blacksell, and Nicholas Day (Mahidol-Oxford Tropical  

 
Table 2. Demographic and clinical features of 6 men with human pegivirus infection, Vietnam* 

Pt 
no.  

Pt 
age, 

y 

Time 
point, 
mo 

HCV 
RNA+ 

HPgV-2 
RNA+ 

Total 
bilirubin, 
µmol/L 

Direct 
bilirubin, 
µmol/L 

AST, 
UI/L 

ALT, 
UI/L 

CD4 
count, 

cells/µL 

HIV RNA, 
× 103 

copies/µL 
AFP, 

mg/mL 
FibroScan 
result, kPa Symptoms 

1 29 NA NA NA NA NA NA NA NA NA NA NA NA 
2 47 0 Y Y 9.8 0.7 30 24 331 120 1.7 11.8 

 

 
 

6 Y Y 4.7 1.6 81 83 518 0.07 2.3 NA 
 

 
 

12 Y Y 6.9 3.4 55 61 364 0.04 2.6 11.8 Hepatitis 
 

 
18 Y Y 4.8 2.8 37 40 428 UND 2.14 6.1 Hepatomegaly 

3 32 0 Y Y 4.7 3.4 39 10 288 0.198 0.999 6.5 
 

 
 

6 Y Y 12.8 4.7 50 19 510 0.04 1.68 NA 
 

 
 

12 Y Y 9.5 5.3 63 25 622 UND 1.88 6.2 Liver fibrosis, 
hepatomegaly 

 
 

18 Y Y 7.6 3.8 42 23 622 UND 1.53 7.2 Hepatitis 
4 35 0 Y Y 7.8 4.9 67 55 290 61.1 2.96 6.4 

 

 
 

6 Y Y 10.7 6.3 77 80 411 UND 3.1 NA 
 

 
 

12 Y Y 8.8 3.9 76 72 337 UND 4 8.5 Homogeneous 
hepatomegaly 

 
 

18 Y Y 13 6.3 108 129 455 UND 4.1 8.1 Splenomegaly, 
liver fibrosis 

5 34 0 Y Y 4.3 2.8 33 43 291 70.2 3.67 6.1 
 

 
 

6 N Y 6.5 2.1 35 43 287 UND 3.83 NA 
 

 
 

12 N N 5.4 2.6 33 40 484 UND 4.48 4.5 
 

 
 

18 N N 6.6 2.6 73 85 546 UND 3.9 3 
 

6 31 0 Y Y 4.5 2.4 52.2 36.5 295 96.8 12.7 22.8 
 

 
 

6 Y Y 17.1 12.9 64 62 579 UND 16.74 NA 
 

 
 

12 Y N 12.3 4.3 114 121 711 UND 46.3 26.3 Mild liver 
fibrosis, mild 

splenomegaly 

 

 
18 Y N 10.6 4.9 82 89 816 UND 61.01 NA Hepatomegaly, 

splenomegaly 
*Age is patient’s age at diagnosis; time point is the month at which follow-up visit was conducted; 0 was the baseline examination. ALT, alanine 
aminotransferase; AS, aspartate aminotransferase; NA, not available; Pt, patient; UND, undetectable.  
†Patient 1 belongs to the community-acquired infection cohort. 
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Figure. Maximum-likelihood phylogenetic tree of amino acid sequences of coding sequences of human pegivirus 2 strains from 
Vietnam compared with global strains and other pegiviruses. We used the general matrix with empirical amino acid frequencies, a 
gamma distribution of 4 rates, and invariant sites, as suggested by IQ TREE (http://www.iqtree.org), to reconstruct the phylogenetic 
trees. We assessed support for individual nodes using a bootstrap procedure of 10,000 replicates. Scale bar indicates amino acid 
substitutions per site.
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Worldwide, the annual incidence of acute enceph-
alitis in nonoutbreak settings during 1983–2000 

ranged from 0.07 to 12.6 cases/100,000 population (1). 
According to the World Health Organization, menin-
gitis caused 379,000 deaths and encephalitis caused 
150,000 deaths globally in 2015 (2). As a consequence, 

central nervous system (CNS) infection is a leading 
cause of years lived with disability in low-income 
countries (3).

More than 100 known pathogens can cause CNS 
infections (1). However, the distribution of CNS in-
fection pathogens is geographically dependent and 
has been shaped by the emergence of novel viruses. 
In Asia, Nipah virus and enterovirus A71 have been 
recognized as emerging neurotropic pathogens over 
the past few decades. In 1999, West Nile virus arrived 
in the United States and since then has established en-
demic circulation (4).

Despite recent advances in molecular diagnostics, 
especially sensitive virus-specific PCR, encephalitis 
cases of unknown origin remain a substantial prob-
lem. Worldwide, ≈50% of patients with CNS infec-
tions have no etiology identified (1,5,6).

Over the past decade, metagenomic next-gener-
ation sequencing (mNGS) has emerged as a sensitive 
hypothesis-free approach for detection of pathogens 
(especially viruses) in clinical samples (7). Howev-
er, in resource-limited settings like Southeast Asia 
and Vietnam, a limited number of mNGS studies 

Central nervous system (CNS) infection is a serious neu-
rologic condition, although the etiology remains unknown 
in >50% of patients. We used metagenomic next-genera-
tion sequencing to detect viruses in 204 cerebrospinal fluid 
(CSF) samples from patients with acute CNS infection who 
were enrolled from Vietnam hospitals during 2012–2016. 
We detected 8 viral species in 107/204 (52.4%) of CSF 
samples. After virus-specific PCR confirmation, the detec-
tion rate was lowered to 30/204 (14.7%). Enteroviruses 
were the most common viruses detected (n = 23), followed 
by hepatitis B virus (3), HIV (2), molluscum contagiosum 
virus (1), and gemycircularvirus (1). Analysis of enterovirus 
sequences revealed the predominance of echovirus 30 
(9). Phylogenetically, the echovirus 30 strains belonged to 
genogroup V and VIIb. Our results expanded knowledge 
about the clinical burden of enterovirus in Vietnam and 
underscore the challenges of identifying a plausible viral 
pathogen in CSF of patients with CNS infections.

1Members are listed at the end of this article.
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examining known and unknown viruses in cerebro-
spinal fluid (CSF) samples from patients with CNS 
infections have been conducted, even though in this 
tropical region of the world, novel viruses are likely 
to emerge (P. Zhou et al., unpub. data, https://doi.
org/10.1101/2020.01.22.914952), and diverse CNS 
infection pathogens have been documented. Collec-
tively, improving our knowledge about viral causes 
of CNS infections is essential for clinical manage-
ment and development of intervention strategies. In 
this study, by using a mNGS approach, we set out to 
search for known and unknown viruses in CSF sam-
ples collected from patients in Vietnam with CNS in-
fections of unknown causes who were enrolled in a 
hospital-based surveillance study conducted during 
2012–2016.

Materials and Methods

Clinical Study and Selection of CSF Samples  
for mNGS Analysis
The study used CSF samples collected from patients 
with suspected CNS infection enrolled in a hospital-
based surveillance program conducted in Vietnam 
during December 2012–October 2016 (5). The study 
was conducted as part of the Vietnam Initiative on 
Zoonotic Infections (VIZIONS) project (5), and patient 
recruitment was carried out at 7 provincial hospitals 
across Vietnam. After collection, as per the study pro-
tocol, all CSF samples were tested for a range of patho-
gens by using the diagnostic work-up of the clinical 
study (Appendix Table 1, https://wwwnc.cdc.gov/
EID/article/27/1/20-2723-App1.pdf). The remaining 
volume of the CSF samples were stored at −80°C for 
further testing.

We focused our metagenomic analysis on pa-
tients of unknown origin from 4 provincial hospi-
tals in central (Hue and KhanhHoa), highland (Da-
kLak), and southern (DongThap) Vietnam (Figure 
1), representing 3 distinct geographic areas in Viet-
nam. To increase the chance of detecting a virus in 
the CSF samples, we only selected patients with 
CSF leukocyte counts >5 cells/mm3 and an illness 
duration <5 days.

mNGS Assay
mNGS assay was carried out as previously described 
(8). Before viral nucleic acid (NA) isolation, 100 μL of 
each CSF sample was treated with Turbo DNase (Am-
bion, Life Technology, ThermoFisher, https://www.
thermofisher.com) and RNase I enzyme (Ambion). 
Then viral NA was isolated using a QIAamp viral RNA 
kit (QIAGEN GmbH, https://www.qiagen.com), and 
recovered in 50 μL of elution buffer provided with the 
extraction kit. Double-stranded DNA was synthesized 
from the isolated viral NA by using a set of 96 nonri-
bosomal primers (FR26RV–Endoh primers) and then 
was randomly amplified by using the FR20RV primer 
(5′-GCCGGAGCTCTGCAGATATC-3′). Finally, the 
amplified product was subjected to a library prepara-
tion step by using Nextera XT sample preparation kit 
(Illumina, https://www.illumina.com), following the 
manufacturer’s instructions, and sequenced by using a 
MiSeq reagent kit, version 3 (600 cycles) (Illumina) in a 
MiSeq platform (Illumina).

mNGS Data Analysis
Potential viral reads were identified by using an in-
house viral metagenomic pipeline running on a 36-
node Linux cluster as described previously (9). In 
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Figure 1. Flowchart overview 
of diagnostic results for study of 
patients with suspected central 
nervous system infections 
admitted to 4 of 7 provincial 
hospitals, Vietnam, December 
2012–October 2016. Inset map 
indicates places where samples 
were collected (red dots).
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brief, after duplicate reads and reads belonging to 
human or bacterial genomes were filtered out, the 
remaining reads were assembled de novo. The re-
sulting contigs and singlet reads were then aligned 
against a customized viral proteome database by 
using an approach based on BLAST (https://blast.
ncbi.nlm.nih.gov/Blast.cgi). Next, the candidate 
viral reads were aligned against a nonredundant 
nonvirus protein database to remove any false-
positive reads (i.e., reads with expected values 
higher than those against viral protein databases). 
Any virus-like sequence with an expected value 
<0.00001 was considered a significant hit. Finally, a 
reference-based mapping approach (Genious 8.1.5; 
Biomatters, https://www.geneious.com) was used 
to assess the levels of identity and genome cover-
age of the corresponding viruses.

PCR Confirmatory Testing of mNGS Results
PCR assays were conducted to confirm mNGS hits for 
each specific virus identified from the viral metage-
nomic pipeline. Depending on availability of CSF, the 
PCR confirmations were performed either on leftover 
NA or newly extracted NA. A viral mNGS result was 
considered positive only if it was subsequently con-
firmed by PCR analysis of the original NA samples. 
The nucleotide sequences of primers and probes used 
for PCR confirmatory testing are shown in Appendix 
Table 2 (8).

Serotype Identification and Phylogenetic Analysis
For enterovirus serotype determination based on 
the obtained sequences generated by viral mNGS, 
we used a publicly available genotyping tool (10). 
To determine the relationship between enterovirus 
strains we sequenced and global strains, we first 
performed pairwise alignment by using the Clust-
alW tool in Geneious 8.1.5, and then reconstructed a 
maximum-likelihood phylogenetic tree by using IQ 
Tree 1.4.3 (11). A similar phylogenetic approach was 
used for other viruses. The generated sequences of 
this study were submitted to GenBank (accession no. 
PRJNA561465).

Ethics
The study was approved by the corresponding insti-
tutional review broad of local hospitals in Vietnam, 
where the patients were enrolled, and the Oxford 
Tropical Ethics Committee. Informed consent was ob-
tained from each study participant or a legal guardian.

Results

CSF Samples Available for mNGS Analysis
From the clinical study described previously, a to-
tal of 841 patients were enrolled from Hue, Khanh 
Hoa, Dak Lak, or Dong Thap provincial hospitals. 
Of these, 609/841 (72%) patients had no etiology 
identified. The etiologic profiles of the patients in 
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Table. Baseline characteristics and clinical data of patients with acute central nervous system infections enrolled for mNGS analysis of 
CSF samples, Vietnam, December 2012–October 2016* 

Characteristic 

Patients with unknown 
cause enrolled for 
mNGS, n = 204 

Patients with mNGS 
negative, n = 174 

Patients with 
enterovirus 

detected, n = 23 p value† 
Sex 
 M 135 (66) 114 (65.5) 15 (65)  
 F 69 (34) 60 (34.5) 8 (35)  
Age, y, median (range) 20.5 (0–92) 24 (0–92) 13 (2–27) 0.005 
Location 

   
 

 Hue 37 (18) 28 (16) 9 (39)  
 Dak lak 98 (48) 87 (50) 10 (43.5)  
 Khanh Hoa 28 (14) 22 (13) 4 (17.5)  
 Dong Thap 41 (20) 37 (21) 0  
3-d fever (at enrollment or preceding 3 d) 
 Fever 148 (72.5) 126 (72.4) 17 (74) 0.054 
 Temperature, C°, median (range) 39 (37.5–42.0) 39 (37.5–42.0) 38.5 (38.0–40.5)  
 Fever with unknown temperature 29 (14.2) 22 (12.6) 6 (26)  
 No fever 20 (9.8) 19 (11) 0  
 Unknown 7 (3.5) 7 (4) 0  
Outcome 

   
 

 Death or discharge to die 22 (11) 22 (12.6) 0  
 Discharge with complete recovery 108 (53) 86 (49.4) 18 (78.3)  
 Discharge with incomplete recovery 35 (17) 31 (17.8) 2 (8.7)  
 Transfer to another hospital 34 (16.5) 30 (17.2) 3 (13)  
 Other (patient request) 3 (1.5) 3 (1.7) 0  
 Unknown 2 (1) 2 (1.3) 0  
CSF white cells, cells/mm3 median (min–max) 88.5 (5–40,000) 71.5 (5–40,000) 110 (8–1200) 0.343 
*Values are no. (%) except as indicated, CSF, cerebrospinal fluid; mNGS, metagenomic next-generation sequencing. 
†Statistical comparisons were performed for groups of patients with mNGS-negative results and enterovirus detected, by Mann-Whiney test. 
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whom a pathogen was detected will be reported 
separately. Of the patients in whom a pathogen was 
not identified, 204 met our selection criteria, and 
their CSF samples were included for viral mNGS 
analysis (Figure 1).

Baseline Characteristics of the Included Patients
The baseline characteristics and outcome of the 204 
study patients are described in Table 1. Male pa-
tients were predominant. A substantial proportion 
of the patients were seriously ill; fatal outcome was 
recorded in 22 (11%), whereas incomplete recovery 
was recorded in 17% (n = 35) and deterioration (re-
flected by being transferred to other hospitals) in 
16.5% (n = 34).

General Description of mNGS Results
A total of 204 CSF samples were subjected to 3 NGS 
runs, and 108 million reads were obtained (median 
number of reads per sample 445,412 [range 430–
908,890]). Of these, viral reads accounted for 0.64% 
(n = 692,731; median number of reads per sample 
2,001 [range 4–268,933]). Excluding common con-
taminants and commensal viruses such as torque 
teno virus, which are not reported in this article, se-
quences related to a total of 8 distinct viral species 
were identified in 107/204 (52.4%) patients. These 

viruses are either known to be infectious to humans 
(e.g., enteroviruses, rotavirus, molluscum contagio-
sum virus [MCV], human papillomavirus, HIV, and 
hepatitis B virus [HBV]) or are without evidence of 
human infections besides previous detection in ster-
ile human samples (e.g., cyclovirus-VN and gemy-
circularvirus) (Figure 2).

mNGS Result Assessment by Specific PCR Analysis
After virus-specific PCR confirmatory testing, the 
proportion of patients in whom a virus was found 
by mNGS was reduced from 53% (108/204) to 14.7% 
(30/204). Accordingly, the number of virus species 
was reduced from 8 to 5 (Figure 2); enteroviruses 
were the most common virus detected, account-
ing for 11.3% (23/204) of the included patients, 
followed by HBV (n = 3), HIV (n = 2), gemycircu-
larvirus, and MCV (1 each) (Figure 2). Because of 
the focus of our study and the unavailability of the 
PCR assays, confirmatory testing for human papil-
lomavirus was not performed.

Characteristics of the 23 Enterovirus-Infected Patients
All 23 enterovirus-infected patients were admitted 
to hospitals from the central or highland areas (Ta-
ble), and none were from Dong Thap Province. Male 
patients were slightly predominant, accounting for 
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Figure 2. Number of cerebrospinal fluid samples with detected viruses by metagenomic next-generation sequencing and then confirmed 
by virus-specific PCR or reverse-transcription PCR, Vietnam, December 2012–October 2016. Samples were collected from patients 
with suspected central nervous system infection. For human papillomavirus, confirmatory testing was not performed because of the 
unavailability of a PCR assay.
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56%. Notably, the enterovirus-infected patients were 
younger than those who were mNGS-negative (Ta-
ble). At discharge, incomplete recovery or transfer to 
other hospitals because of disease deterioration were 
recorded in 21.7% (Table).

Enterovirus cases were not detected during Janu-
ary 2015–December 2016. During 2013 and 2014, two 
main peaks were observed during March–July and 
September–December (Figure 3, panel A); cases from 
Dak Lak and Khanh Hoa contributed to the first peak 
(Figure 3, panels B and C), and cases from Khanh Hoa 

and Hue contributed to the second (Figure 3, panels 
C and D). The general baseline characteristics of pa-
tients with HBV, HIV, gemycircularvirus, and MCV 
are shown in Appendix Table 3.

Genetic Characterization of Enteroviruses  
and Gemycircularvirus
mNGS generated sufficient sequence information for 
an enterovirus serotyping assessment in 11/23 cases. 
Subsequently, results of serotyping analysis based on 
the NGS sequences showed that echovirus 30 (E30) 
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Figure 3. Temporal distribution of enterovirus cases detected from cerebrospinal fluid samples of patients with suspected central nervous 
system infection by metagenomic next-generation sequencing and RT-PCR, Vietnam, December 2012–October 2016. Enterovirus RT-
PCR results were obtained from the original study. RT-PCR, reverse transcription PCR. A) Combined data from 3 provinces; B) data from 
Hue province; C) data from Khanh Hoa province; D) data from Dak Lak province.
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Figure 4. Phylogenetic tree of 298 complete viral protein 1 sequences of echovirus 30 (876 nt) isolated from cerebrospinal fluid samples 
of patients with suspected central nervous system infection, Vietnam, December 2012–October 2016. The inner color strip indicates 7 
genogroups. The outer color strip indicates different countries of echovirus 30 isolates included in the tree. The outgroup is echovirus 21 
Farina. The E30 sequences generated by metagenomic next-generation sequencing ae highlighted in red.
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was the most common serotype detected (n = 9, 39% 
of enteroviruses), followed by enterovirus A71 and 
enterovirus B80 (1 each, 4.3%). Phylogenetically, the 
9 E30 strains sequenced in our study belonged to 2 
distinct genogroups, V and VIIb, and showed close 
relationship with E30 strains circulating in Russia and 
elsewhere in Asia, including China (Figure 4).

In additional to enterovirus sequences, a gemycircu-
larvirus genome was obtained from a 12-year-old boy. 
Phylogenetic analysis revealed that this gemycircular-
virus strain was closely related to a gemycircularvirus 
species previously found in CSF sample from a patient 
with a CNS infection of unknown origin in Sri Lanka 
(12); the level of amino acid identities between the 2 
strains were 98.79% for replication-coding sequences 
and 99.3% for capsid protein–coding sequences.

Discussion
We describe a viral mNGS investigation character-
izing the human virome in CSF of 204 patients in 
Vietnam with suspected CNS infection of unknown 
origin. We successfully detected 4 human viral patho-
gens (enteroviruses, HIV, HBV, and MCV) and 1 vi-
rus species (gemycircularvirus) of unknown tropism 
and pathogenicity in a total of 30 (14.7%) patients. 
Most patients therefore remained without a known 
etiology, underscoring the ongoing challenge in iden-
tifying a plausible viral pathogen in CSF of patients 
with CNS infections.

Enteroviruses were the most common viruses, 
found in 11.3% (23/204) of all analyzed patients  
(Figure 2), most of whom were children and young 
adults. This age distribution of enterovirus-infected 
patients is consistent with observational data from a 
previous report from Vietnam (6), although the me-
dian age was slightly higher compared with data 
from other countries (13,14). Geographically, all the 
enterovirus-infected patients were admitted to hospi-
tals from central and highland Vietnam, and none was 
from southern Vietnam. The underlying mechanism 
determining this observed spatial pattern of enterovi-
rus-positive cases in this study remains unknown. Our 
sampling timescale perhaps was not long enough to 
capture the circulation of enteroviruses in Dong Thap 
Province. Enteroviruses were previously reported as 
a leading cause of CNS infection across central and 
southern Vietnam (6,15,16). Collectively, our findings 
suggest that reverse transcription PCR (RT-PCR) test-
ing for enteroviruses should be considered in children 
and young adults with CNS infections.

Of the detected enteroviruses, E30 was the most 
common serotype. E30 is a well-known pathogen 
of pediatric aseptic meningitis worldwide (17).  

Phylogenetically, at global scale, E30 belongs to 2 
different lineages with distinct patterns of circula-
tion and spread, 1 with a global distribution and the 
other with geographic restriction within Asia (17). 
The cocirculation of 2 E30 lineages in Vietnam sug-
gests that E30 was imported into Vietnam on at least 
2 occasions. Our analyses thus also contribute to the 
body of knowledge about the genetic diversity of 
E30 strains circulating in Vietnam.

The detection of bloodborne viruses such as HBV 
and HIV is unlikely to have a direct link with patients’ 
neurologic symptoms, although HBV has previously 
been reported in CSF of patients with CNS infections 
of unknown origin (18). The detection of HIV in CSF 
might have been a consequence of traumatic tap oc-
curring during the lumbar puncture, as reflected by 
the high number of red blood cells in 1 of 2 HIV-pos-
itive CSF samples (data not shown). However, neu-
roinvasion of HIV has also been reported (19). Like-
wise, the pathogenic potential of a gemycircularvirus 
genome requires further investigation, although the 
detection of the gemycircularvirus genome in CSF 
has been reported in several papers (12,18,20). The 
detection of MCV and papillomavirus in CSF might 
result from contamination of viral skin flora during 
lumbar puncture.

Similar to previous reports about discrepancy 
between mNGS and conventional diagnostic testing 
(8,18,21), our observations found that most mNGS-
positive results were not confirmed by subsequent 
viral RT-PCR assays, especially the sensitive entero-
virus-specific RT-PCR with a limit of detection of ≈9 
copies/reaction (22). Such results could be attribut-
able to bleedover (also called index hopping) of indi-
ces from reads of 1 sample into reads of another sam-
ple co-sequenced on the same Illumina run (R. Sinha 
et al., unpub. data, https://doi.org/10.1101/125724). 
Applying double indexes, which was not used in our 
study, has been shown to substantially reduce, but 
not eliminate, the cross-contamination phenomenon 
between samples in the same run.

Our study has some limitations. First, as outlined 
previously, we did not employ a double unique in-
dex combination strategy per sample as part of the 
sequencing procedure. The well-known index hop-
ping phenomenon possibly explains the high dis-
crepancy between confirmatory PCR and mNGS re-
sults (21,23,24) and emphasizes the usefulness of dual  
indexing and including no template controls. As 
such, we pragmatically chose to verify our mNGS 
by performing specific PCR on original materials. 
Second, the DNase treatment step in our assay 
meant to reduce cellular DNA concentration in CSF 
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might reduce the sensitivity of mNGS for the de-
tection of DNA viruses such as herpes simplex vi-
rus (25,26). Third, some of the non–PCR-confirmed 
viral sequences likely originated from contamina-
tion of reagents, which is a lingering problem for  
mNGS (27,28).

In summary, our results emphasize that mNGS 
could detect a broad range of viral nucleic acids in 
CSF. In spite of extensive investigation, establishing 
the etiology in many patients with CNS infections 
remains a challenge. However, our findings indicate 
that enteroviruses are important causes of viral CNS 
infections in Vietnam and thus should be considered in 
the differential diagnosis among young patients with  
CNS infections.
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Background. Meningoencephalitis is a devastating disease worldwide. Current diagnosis fails to establish the cause in ≥50% of 
patients. Metagenomic next-generation sequencing (mNGS) has emerged as pan-pathogen assays for infectious diseases diagnosis, 
but few studies have been conducted in resource-limited settings.

Methods. We assessed the performance of mNGS in the cerebrospinal fluid (CSF) of 66 consecutively treated adults with me-
ningoencephalitis in a tertiary referral hospital for infectious diseases in Vietnam, a resource-limited setting. All mNGS results were 
confirmed by viral-specific polymerase chain reaction (PCR). As a complementary analysis, 6 viral PCR-positive samples were ana-
lyzed using MinION-based metagenomics.

Results. Routine diagnosis could identify a virus in 15 (22.7%) patients, including herpes simplex virus (HSV; n = 7) and var-
icella zoster virus (VZV; n = 1) by PCR, and mumps virus (n = 4), dengue virus (DENV; n = 2), and Japanese encephalitis virus 
(JEV; n = 1) by serological diagnosis. mNGS detected HSV, VZV, and mumps virus in 5/7, 1/1, and 1/4 of the CSF positive by rou-
tine assays, respectively, but it detected DENV and JEV in none of the positive CSF. Additionally, mNGS detected enteroviruses in 
7 patients of unknown cause. Metagenomic MinION-Nanopore sequencing could detect a virus in 5/6 PCR-positive CSF samples, 
including HSV in 1 CSF sample that was negative by mNGS, suggesting that the sensitivity of MinION is comparable with that of 
mNGS/PCR.

Conclusions. In a single assay, metagenomics could accurately detect a wide spectrum of neurotropic viruses in the CSF of 
meningoencephalitis patients. Further studies are needed to determine the value that real-time sequencing may contribute to the 
diagnosis and management of meningoencephalitis patients, especially in resource-limited settings where pathogen-specific assays 
are limited in number.

Keywords.  metagenomics; next-generation sequencing; nanopore; MinION; meningoencephalitis.

Meningoencephalitis is a devastating clinical condition world-
wide, but especially in tropical and resource-limited settings 
[1]. Although viruses are regarded as the most common causes 
of meningoencephalitis, the viruses responsible vary between 
geographic locations and are influenced by the emergence of 
pathogens such as Nipah virus, enterovirus A71, and Zika virus 
[2–4]. However, detecting many of these viruses is challenging, 
especially when most conventional diagnostic tests are path-
ogen specific (eg, polymerase chain reaction [PCR] for herpes 

simplex virus) and limited in number, especially in resource-
limited settings. Even in well-equipped laboratories, a causative 
virus has only been established in <60% of patients [5–8].

Over the last decade, advanced sequencing technologies have 
emerged as a single pan-pathogen assay for the sensitive detec-
tion of known and unknown microorganisms, especially viruses, 
in cerebrospinal fluid (CSF) [6, 9, 10]. As part of our pathogen 
discovery, using a viral metagenomics-based approach, we 
previously identified a novel cyclovirus (CyCV-VN) in 4% of 
Vietnamese patients presenting with meningoencephaitis of 
unknown cause [11], although the pathogenic relevance of this 
novel circovirus species remains uncertain. From a diagnostic 
perspective, a recent prospective study in the United States 
compared the diagnostic performance of routine diagnostic 
tests with metagenomic next-generation sequencing (mNGS) 
and showed that mNGS detected a bacteria or virus in the CSF 
of 13 of 58 patients presenting with meningoencephalitis who 
were negative for or not assessed with routine diagnostic tests 
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[6]. Otherwise, studies to date have been either case reports or 
retrospectively performed with small sample sizes [12], but few 
have been carried out in resource-limited settings like Vietnam. 
Such studies would have significant implications for both dis-
ease surveillance and patient management. Herein, we report 
the results of a study assessing the potential of metagenomics 
to detect a broad range of viruses in the CSF of consecutively 
treated adults with meningoencephalitis presenting to a tertiary 
referral hospital in southern Vietnam.

METHODS

Setting, Patient Enrollment, and Data Collection

The present study was conducted in a brain infection ward of 
the Hospital for Tropical Diseases (HTD) in Ho Chi Minh City, 
Vietnam, between January 2015 and September 2016. HTD is 
a tertiary referral hospital for patients, especially adults, with 
infectious diseases, including encephalitis, from the southern 
provinces of Vietnam with a population of >40 million.

One of the aims of the study was to improve diagnosis in 
patients with meningoencephalitis using metagenomic next-
generation sequencing. We enrolled consecutive adult patients 
(≥18 years) with an indication for lumbar puncture admitted to 
the study site during the study period. Patients were excluded 
if pyogenic bacterial meningitis (cloudy or pus-like CSF) was 
suspected, lumbar puncture was contra-indicated, or no written 
informed consent was obtained was obtained from the patient 
or their relatives.

As per the study protocol, CSF samples were collected, 
alongside demographic and clinical data (including discharge 
outcome) and the results of routine diagnostic testing. After 
collection, all clinical specimens were stored at –80°C for sub-
sequent analyses, including assessment of mNGS performance 
against that of routine diagnostic assays. Here we focused our 
analysis on patients with meningoencephalitis regardless of the 
results of routine diagnosis. Additionally, as negative controls, 
1 CSF from a patient presenting with cerebral hemorrhage and 
1 from a patient with laboratory-confirmed anti-N-methyl-D-
aspartate receptor [13] were also included.

Routine Diagnosis

As part of routine care at HTD, CSF specimens of patients pre-
senting with brain infections were cultured and/or examined 
by microscopy for detection of bacterial/fungal/Mycobacterium 
tuberculosis infection with the use of standard methods when 
appropriate (Supplementary Table 1). Herpes simplex virus 
(HSV) PCR was carried out in patients presenting with clin-
ically suspected meningoencephalitis. Varicella zoster virus 
(VZV) PCR, serological testing for IgM against dengue virus 
(DENV), Japanese encephalitis virus (JEV), or MuV was per-
formed if clinically indicated and testing for other pathogens 
(HSV) was negative [8].

Illumina MiSeq/MinION–Based Viral Metagenomics
Sample Pretreatments and Nucleic Acid Isolation
To allow for the detection of both RNA and DNA viruses, each 
CSF sample was subjected to 2 different metagenomic ap-
proaches, namely RNA virus and viral DNA virus workflows 
(Figure 1). For the former, 200 µL of CSF was first pretreated 
with 2 U/µL of turbo DNase (Ambion, Life Technology, 
Carlsbad, CA, USA) and 0.4 U/µL RNase 1 (Ambion) at 37°C 
for 30 minutes by DNase and RNase, followed by nucleic acid 
(NA) isolation using the QIAamp viral RNA kit (QIAgen 
GmbH, Hilden, Germany). For the latter, viral DNA was di-
rectly isolated from 200 µL of CSF samples without the nuclease 
treatment step using the DNeasy blood and tissue kit (QIAgen 
GmbH). Finally, viral RNA/DNA of both workflows was re-
covered in 50 µL of elution buffer.

Double-Stranded DNA Synthesis and Random Amplification of 
Extracted Viral RNA
Double-stranded DNA was synthesized from isolated viral 
RNA using a set of 96 nonribosomal random primer, followed 
by PCR amplification to enrich for viral RNA before sequencing 
as previously described [14–16]. In brief, 10  µL of extracted 
viral RNA was converted into double-stranded DNA (dsDNA) 
using FR26RV-Endoh primers [16], Super Script III enzyme 
(Invitrogen, Carlsbad, CA, USA), RNase OUT (Invitrogen), exo-
Klenow fragment (Ambion), and Ribonuclease H (Ambion). 
Subsequently, the synthesized dsDNA was randomly amplified 
using FR20RV primer (5’-GCCGGAGCTCTGCAGATATC-3’). 
The obtained random PCR product was then purified with use 
of Agencourt AMPure XP beads (Beckman coulter) and quan-
tified using the Qubit dsDNA HS kit (Invitrogen).

Next-Generation Sequencing
One ng of the purified random PCR product of the RNA virus 
workflow and isolated viral DNA of the DNA virus workflow 
was subjected to the library preparation step using the Nextera 
XT sample preparation kit (Illumina, San Diego, CA, USA), 
following the manufacturer’s instructions. Samples were multi-
plexed using the combinatorial indexing strategy (ie, only 1 
index might be shared between samples). The resulting libraries 
of both workflows were separately sequenced using MiSeq re-
agent kits, version 3 (600 cycles; Illumina), in a MiSeq plat-
form (Illumina), following the manufacturer’s instructions. 
All the experiments were performed in molecular diagnostic 
facilities that consist of 3 physically separated laboratories for 
reagent preparation, extraction, and library preparation and 
sequencing. These were used a unidirectional workflow.

MinION Library Preparation and Sequencing
A subset of 6 CSF samples in which a virus was detected by PCR 
and/or mNGS was selected for a complementary analysis using 
MinION sequencer (Oxford Nanopore Technologies). MinION 
libraries were prepared using either extracted DNA or random 

http://academic.oup.com/ofid/article-lookup/doi/10.1093/ofid/ofaa046#supplementary-data
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amplified products synthesized as described above using the 
1D Native Barcoding Genomic DNA kit (ONT, Oxford, UK), 
following the manufacturer’s protocol. The 6 CSF samples and 
a nontemplate control (each was assigned to unique barcodes) 
were sequenced in 1 single run using R9.4 flow cells (ONT). 
Base-calling of MinION reads was performed using MinKNOW 
(ONT), followed by demultiplexing of the obtained reads using 
Porechop (https://github.com/rrwick/Porechop).

Sequence Analysis of the Obtained Metagenomic Reads
The mNGS data generated by the Illumina MiSeq platform were 
analyzed using an in-house viral metagenomic pipeline running 
on a 36-node Linux cluster available through Vitalant Research 
Institute, San Francisco, to identify the presence of viral sequences 
in the tested specimens, as previously described [17, 18]. In brief, 

after filtering out duplicate reads and reads belonging to human 
and bacterial genomes, and with adaptors and low-quality reads 
trimmed, the remaining reads were de novo assembled. The re-
sulting contigs and singlet reads were then aligned against a 
customized viral proteome database extracted from the NCBI’s 
RefSeq and NR databases using a Basic Local Alignment Search 
Tool (BLAST)–based approach. Next, the candidate viral reads 
were aligned against a nonredundant nonvirus protein database to 
remove any false-positive reads (ie, reads with expected [E] values 
higher than those in viral protein databases) using DIAMOND 
[19]. Any viral-like sequence with an E value of ≤10–5 was con-
sidered a significant hit and was then manually checked by 
BLASTX to further exclude false-positive hits. Finally, a reference-
based mapping approach was employed to assess the level of iden-
tity and genome coverage of the corresponding viruses.

304 patients

Tuberculous meningitis
(n = 187)

Meningoencephalitis
(n = 79)

Other diagnosis (n = 37) and no
data (n = l)

66 patients with CSF samples available for metagenomic analysis
•     CSF with pathogen detected by routine diagnosis: (n = 51)
•     PCR-positive CSF: HSV (n = 7) and VZV (n = l)
•     Serologically positive CSF: JEV (n = 1), DENV (n = 2), and mumps virus (n = 4)
•     Negative controls: Cerebral hemorrhage (n = l) and anti-NMDAR (n = l)

RNA library DNA library

DNase + RNase treatment

Viral RNA extraction

dsDNA + rPCR

Viral DNA extraction

Illumina MiSeq sequencing

Sequencing analysis by bioinformatics pipeline

PCR confirmation testing of  mNGS results

Figure 1. Flowchart illustrating an overview about the DNA and RNA virus workflows. Abbreviations: CSF, cerebrospinal fluid; DENV, dengue virus; ds, double-stranded; 
JEV, Japanese encephalitis virus; mNGS, metagenomic next-generation sequencing; PCR, polymerase chain reaction.

https://github.com/rrwick/Porechop
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Analysis of MinION reads was carried out using Taxonomer 
[20], a publicly available metagenomics pipeline, which incorp-
orates an interactive results visualization function.

PCR Confirmation of Viral Hits Detected by Metagenomics and Expanded 
PCR Testing

Because of the uncertainty in the diagnostic performance of 
mNGS and the focus of the present study, we performed specific 
PCRs to confirm mNGS hits matched with the genomes of neu-
rotropic viruses. The PCR experiments were either carried out 
on leftover extracted RNA/DNA after the mNGS library prepa-
ration experiments or on newly extracted nucleic acids (NA). An 
mNGS result was only considered positive if it was subsequently 
confirmed by a corresponding viral PCR analysis of the original 
NA materials derived from corresponding individual samples. All 
PCR primers and probes used were derived from previous publi-
cations [21–23], including a real-time reverse transcription PCR 
(RT-PCR) for generic detection of enteroviruses.

Because of the focus of the present study, viruses of unknown 
neurotropic property and well-known contaminants of the 
mNGS data set were not pursued further by subsequent PCR 
analysis.

Unless specified above, all the laboratory experiments and bi-
oinformatics analyses were carried out at the Oxford University 
Clinical Research Unit in Ho Chi Minh City, Vietnam.

GenBank Accession Numbers

Metagenomics data were deposited at NCBI (GenBank) under 
SRA accession number PRJNA58865.

Ethics

This clinical study received approvals from the Institutional 
Review Board of the HTD and the Oxford Tropical Research 
Ethics Committee of the University of Oxford. Written in-
formed consent was obtained from each study participant or 
relative (if the patient was unconscious).

RESULTS

Baseline Characteristics of the Patients Included for mNGS

During the study period, a total of 304 patients were enrolled 
in the clinical study, including patients with tuberculous men-
ingitis (n = 187), meningoencephalitis (n = 79), another   
berculous meningitis diagnostic arm have been published 
elsewhere [24]. Of the 79 patients with a discharge diagnosis 
of meningoencephalitis, 66 (84%) had CSF samples available 
for metagenomic analysis (Figure  1). These patients were the 
focus of the present study regardless of the results of routine 
diagnosis.

The baseline characteristics of the 66 patients included in 
the study are presented in Table 1. HIV testing was carried out 
in 24 patients; none were positive. Males were predominant. 
On admission, 35% of the patients were comatose (Glasgow 

Coma Score < 13). Routine diagnostic tests identified a virus 
in 15/66 (22.7%) patients (Figure  2; Supplementary Table 2), 
with HSV being the most common cause (n = 7), followed by 
MuV (n = 4), DENV (n = 2), JEV (n = 1), and VZV (n = 1) 
(Figure 2). One patient died, and almost all (n = 58) had some 
neurological deficit at discharge from the hospital (Table 1).

An Overview of mNGS

The 68 included CSF samples (including 2 negative controls) 
were separately sequenced using both DNA and RNA virus work-
flows in a blinded fashion. Subsequently, a total of 62 565 802 
and 49 233 869 reads were obtained from the DNA and RNA li-
braries, respectively (Supplementary Table 3). Sequences related 
to 29 viral species were detected, with 23 found in the RNA and 7 
found in the DNA library (Figures 2 and 3). The detected viruses 
included viruses known to cause CNS infections and those with 
unknown neurotropic properties (Torque teno virus [n = 14] 
and herpes virus 8 [n = 4]). Additionally, previously reported 
common contaminants of the mNGS data set were also found 
[25, 26], almost exclusively in the RNA virus library (Figure 3).

Detection of Viruses in CSF Samples That Were Positive by Routine 
Diagnosis

Of the 15 CSF samples positive either by PCR or serological 
testing as part of routine care, mNGS was able to detect a viral 
pathogen in 5/7 HSV-, 1/1 VZV-, 1/4 MuV-, 0/2 DENV-, and 
0/1 JEV-positive samples (Figure 2). None of the HSV and VZV 
sequences were found in the library of the RNA virus workflow 
(Table 2).

Detection of sequences related to human pathogenic viruses in CSF that 
were negative by routine diagnosis, and results of PCR assessment of 
mNGS results

Of the 51 CSF samples that were negative by routine diagnosis, 
sequences related to neurotropic viruses were found in 24 (48%) 
samples by mNGS (Table 2). The detected viruses included en-
teroviruses (EVs; n = 23) and rotavirus (n = 1). Additionally, 
of the 2 CSF samples from non-CNS-affected patients, 1 had 4 
sequences related to enterovirus detected by mNGS.

After PCR confirmation testing of CSF samples in which 
a viral hit was detected by mNGS, the rotavirus case and the 
negative control CSF, in which EV-related sequences were de-
tected, became negative (Table 2). The number of EV-positive 
CSF samples was reduced from 23 to 7, with more enteroviral 
sequences being recorded in the PCR-confirmed group than 
in the unconfirmed group (Table 2). Of these, 3 had genome 
coverage of 61%, 78%, and 90%, including 1 echovirus 6 and 2 
echovirus 30. Notably, the majority (12/16, 75%) of EV PCR-
negative samples had EV reads identical to those obtained 
from samples with a high abundance of EV sequences (in-
cluding samples #12 and #14), with which they shared an 
index (Supplementary Table 4), suggesting the potential of 
barcode bleedthrough during the sequencing procedure.

http://academic.oup.com/ofid/article-lookup/doi/10.1093/ofid/ofaa046#supplementary-data
http://academic.oup.com/ofid/article-lookup/doi/10.1093/ofid/ofaa046#supplementary-data
http://academic.oup.com/ofid/article-lookup/doi/10.1093/ofid/ofaa046#supplementary-data
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Results of Expanded PCR Testing and Sensitivity Assessment of mNGS 
Using PCRs as Reference Assays

Because PCR testing for viruses (EVs and MuV) was not per-
formed as part of routine diagnosis, to further assess the prev-
alence of these viruses in the study patients, we expanded PCR 
testing to CSF samples that were negative by mNGS analysis. 

Subsequently, only MuV was detected by PCR in 4 CSF samples, 
including 1 positive by both serological and mNGS methods (real-
time PCR cycle threshold [Ct] values: 35), 2 positive by serolog-
ical testing as part of standard care (Ct values: 36 and 40), and 1 
negative by mNGS (Ct value: 40). Serological testing for MuV in 

Table 1. Baseline Characteristics of the Study Patients and Patients Infected With HSV/EVs/Mumps Virus

Total (n = 66)a HSV (n = 7)b EVs (n = 7)c Mumps Virus (n = 5)d

Demographics     

 Gender (male), No. (%) 39 (59) 4 (57) 5/7 (71) 5 (100)

 Age, y 35 (15–84) 45 (25–53) 32 (22–57) 39 (32–61)

Illness day on admission, d 5 (1–30) 5 (2–14) 3.5 (2–6) 3 (2–5)

Duration of hospital stay, d 5 (1–76) 5 (3–67) 2 (1–4) 4 (3–35)

HIV status, No. (%)     

 Positive 0 0 0 0

 Negative 24 (36) 1 (14) 4 (57) 1 (20)

 Unknown 42 (64) 6 (86) 3 (43) 4 (80)

Clinical signs and symptoms, No. (%)     

 Fever 58 (88) 7/7 (100) 6 /7 (86) 5 (100)

 Headache 58 (88) 7/7 (100) 6 /7 (86) 5 (100)

 Irritability 15 (23) 1/7 (14) 1/7 (14) 0

 Lethargy 18 (28) 3/6 (50) 1/7 (14) 0

 Vomiting 34 (52) 4/6 (67) 5/7 (71) 3 (60)

 Seizures 23 (36) 2/6 (33) 0/7 2 (40)

 Conscious 46 (70) 6/7 (86) 1/7 (14) 2 (40)

 Skin rash 6 (9) 0/7 0/7 0

 Hemiplegia 5 (8) 2/7 (29) 0/7 0

 Paraplegia 1 (2) 0/7 1/7 (14) 0

 Tetraplegia 1 (2) 0/6 0/7 0

 Neck stiffness 45 (68) 6/7 (86) 5/7 (71) 3 (60)

 Glasgow coma score of ≤8 7 (11) 3/7 (43) 0/7 1 (20)

 Glasgow coma score of 9–12 16 (24) 2/7 (29) 1/7 (14) 1 (20)

 Glasgow coma score of 13–15 43 (65) 2/7 (29) 6 /7 (86) 3 (60)

CSF cells and biochemistry     

 White cells, cells/µL 101 (0–4183) 708 (38–1571) 503 (20–961) 683 (27–2146)

 Neutrophils, No. (%) 13 (0–96) 9 (2–61) 24 (0–47) 18 (3–23)

 Lymphocytes, No. (%) 86.5 (1–100) 91 (39–98) 76 (53–99.9) 82 (77–97)

 Protein, g/L 0.7 (0.2–8.9) 1.36 (0.75–2.17) 0.71 (0.47–1.18) 0.67 (0.45–2.42)

 CSF/blood glucose ratio 0.61 (0.34–1.04) 0.55 (0.47–0.61) 0.71 (0.59–0.85) 0.52 (0.49–0.81)

 Lactate, mmol/L 2.65 (1.4–14.03) 3.52 (2.02–4.83) 2.5 (1.9–3.8) 2.9 (1.9–4.3)

Antiviral treatment, No. (%)     

 Oral acyclovir 2 (3) NA NA NA

 Intravenous acyclovir 8 (13) 6/6 (100) NA NA

 Oral valacyclovir 44 (72) NA NA 1 (20)

Modified Rankin Scale at discharge,e No. (%)     

 0 8 (13) 1/7 (14) 1/7 (14) 1 (20)

 1 12 (19) 0 1/7 (14) 3 (60)

 2 10 (15) 0 4/7 (58) 0

 3 25 (39) 3/7 (43) 1/7 (14) 1 (20)

 4 4 (6) 0 0 0

 5 4 (6) 3/7 (43) 0 0

 6 1 (2) 0 0 0

Continuous variables are presented as median (range).
aDenominators may vary slightly. 
bDiagnosed by current standard tests for routine diagnosis. 
cDiagnosed by mNGS, followed by PCR confirmatory testing. 
dDiagnosed by current standard tests, expanded PCR testing, and mNGS combined. 
e0: Full recovery with no symptoms; 1: No significant disability; 2: Slight disability; 3: Moderate disability; 4: Moderately severe disability; 5: Severe disability; and 6: Dead.
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Routine diagnostics

RNA library RNA+ DNA library, expanded PCR, and
routine diagnostics combined

DNA library

10.6% (7)
7.6% (5)

10.6% (7)

10.6% (7)

65.2% (43)

10.6% (7)

7.6% (5)
87.9% (58)

77.3% (51)
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Figure 2. Results of metagenomic investigations using DNA/RNA workflows and routine diagnostics as well as expanded polymerase chain reaction testing. 
Abbreviations: DENV, dengue virus; EV, enterovirus; HSV, herpes simplex virus; JEV, Japanese encephalitis virus; MuV, mumps virus; PCR, polymerase chain reaction; 
VZV, varicella zoster virus.
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Figure 3. Bar chart showing the frequency of common contaminants and viruses of unknown neurotropic property (human herpes virus 8 and Torque teno virus) found in 
cerebrospinal fluid (CSF) samples by both DNA and RNA workflow and viruses in negative control CSF. Abbreviations: ds, double-stranded; ss, single-stranded.
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this patient was not done as part of routine care (Supplementary 
Table 5). Thus a combination of serology and molecular assays 
(PCR and mNGS) increased the diagnostic yield from 22.7% 
(15/66) to 34.8% (23/66) (Figure 2).

mNGS identified a viral pathogen in 14/19 CSF samples that 
were positive by PCR analysis (including routine diagnosis and 
expanded testing). Additionally, mNGS detected reads related to 
EVs in 16/47 CSF samples that were negative by subsequent PCR 
analysis. Using PCRs as reference assays, the sensitivity and spec-
ificity of mNGS were 74% (14/19) and 66% (31/47), respectively. 
Of the PCR-positive samples, there was no difference in the leu-
kocyte counts between the mNGS-negative and -positive groups 
(median [range], 331 [27–2146] vs 356 [22–4183]; P = .82).

Rapid Detection of Encephalitis in CSF by MinION Nanopore Sequencing

A MinION Nanopore–based metagenomic approach detected 
HSV (n = 2), VZV (n = 1), and EV (n = 2) in 5/6 CSF samples 

that were PCR positive for these viruses (Figure 4A). Of these 
5 MinION-positive samples, 1 HSV sample was negative, and 
the other 4 were positive by MiSeq-based mNGS workflows 
(Figure 4A). Notably, after 2 hours of the sequencing run, reads 
assigned to corresponding viral species found in CSF by PCR 
were obtained in 4/5 MinION-positive samples. MinION, how-
ever, failed to detect MuV in a CSF sample that was positive by 
both PCR (Ct value = 36) and MiSeq workflow (Figure 4).

DISCUSSION

We report the results of an investigation assessing the utility of 
next/third-generation sequencing–based metagenomics as a 
hypothesis-free approach for detection of viral etiology in the 
CSF of 66 consecutively treated patients with meningoencepha-
litis. The patients were admitted to a tertiary referral hospital in 
Ho Chi Minh City, Vietnam, and the majority (51%) had mod-
erate/severe disability at discharge. The results showed that in a 

Table 2. Results of Viral PCR and Metagenomic Analysis

CSF No. Virus
Real-time 
PCR Ct Value

Detected by PCR as Part 
of Routine Care (Y/N)

Total Metagenomic 
Reads

No. of Unique 
Viral Reads

(%) of Viral 
Readsa 

mNGS 
Library

1 HSV 25.01 Y 326 396 49 0.015 DNA

2 HSV 28.01 Y 588 504 184 0.031 DNA

3 HSV 30.36 Y 996 348 6 0.001 DNA

4 HSV 23.77 Y 1 145 710 243 0.021 DNA

5 HSV 28.71 Y 346 166 11 0.003 DNA

6 HSV Unavailable Y 1 345 954 0 0.000 NA

7 HSV 31 Y 891 566 0 0.000 NA

8 VZV 22.7 Y 1 335 288 152 0.011 DNA

9 Mumps 35.2 Y 975 714 6 0.001 RNA

10 Enterovirus 33.36 ND 539 752 21 0.004 RNA

11 Enterovirus 34.25 ND 635 310 38 0.006 RNA

12 Enterovirus 34.79 ND 765 564 10152 1.326 RNA

13 Enterovirus 34.78 ND 732 634 89 0.012 RNA

14 Enterovirus 31.23 ND 988 668 2415 0.244 RNA

15 Enterovirus 32.3 ND 594 964 100 0.017 RNA

16 Enterovirus 35.65 ND 543 912 21 0.004 RNA

17 Enterovirus Negative ND 579 486 2 0.000 RNA

18 Enterovirus Negative ND 571 902 2 0.000 RNA

19 Enterovirus Negative ND 720 042 4 0.001 RNA

20 Enterovirus Negative ND 511 608 1 0.000 RNA

21 Enterovirus Negative ND 818 654 2 0.000 RNA

22 Enterovirus Negative ND 513 428 5 0.001 RNA

23 Enterovirus Negative ND 1 197 290 13 0.001 RNA

24 Enterovirus Negative ND 923 908 4 0.000 RNA

25 Enterovirus Negative ND 993 918 1 0.000 RNA

26 Enterovirus Negative ND 1 302 784 20 0.002 RNA

27 Enterovirus Negative ND 1 628 722 7 0.000 RNA

28 Enterovirus Negative ND 1 181 716 24 0.002 RNA

29 Enterovirus Negative ND 926 462 22 0.002 RNA

30 Enterovirus Negative ND 938 524 20 0.002 RNA

31 Enterovirus Negative ND 1 028 194 12 0.001 RNA

32 Enterovirus Negative ND 1 239 458 4 0.000 RNA

33 Rotavirus Negative ND 1 176 486 24 0.002 RNA

aDenominators are the total reads of the corresponding samples. 

Abbreviations: CSF, cerebrospinal fluid; mNGS, metagenomic next-generation sequencing; ND, not done; PCR, polymerase chain reaction.

http://academic.oup.com/ofid/article-lookup/doi/10.1093/ofid/ofaa046#supplementary-data
http://academic.oup.com/ofid/article-lookup/doi/10.1093/ofid/ofaa046#supplementary-data
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single test metagenomics could accurately detect nucleic acids 
of a wide range of neurotropic viruses in the CSF of 66 partici-
pants, whose diagnoses were only established by extensive PCR 
testing targeted at a broad range of pathogens. Notably, of these 
66 patients, 7 (11%) EV-infected patients were initially left un-
diagnosed at hospital discharge because physicians did not con-
sider EV diagnosis as part of routine care. EV infection should 
therefore be considered as an important differential diagnosis 
in adults presenting with meningoencephalitis [27] and should 
be excluded (eg, by PCR testing) before mNGS analysis.

Although antivirals are currently not available for most 
encephalitis-causing viruses, rapid and accurate detection of 
viral etiology in patient samples remain essential to inform 
clinical management, such as avoiding unnecessary antibiotic 
prescription, and public health policy-makers. Thus, testing 
for a wide spectrum of pathogens is essential to maximize the 

diagnostic yield in patients presenting with meningoencepha-
litis. Under these circumstances, a single pan-pathogen assay 
such as mNGS is a useful approach, given the limited amount 
of CSF samples and resources available for microbial investi-
gation, especially in low- and middle-income countries like 
Vietnam. However, the failure of mNGS to detect nucleic acids 
of JEV and DENV in serologically positive CSF samples em-
phasizes that testing for pathogen-specific antibodies remains 
an important diagnostic pathway in patients presenting with 
meningoencephalitis, as viral nucleic acids of some viruses (eg, 
flaviviruses) may not be present in the collected CSF.

The sensitivity of our mNGS workflows is comparable with 
that of recent mNGS studies [6, 9]. Low viral load may be a 
factor in the failure of mNGS to detect HSV and MuV in CSF 
samples with real-time PCR Ct values of 31 for HSV and 36, 40, 
and 40 for MuV. Because viral reads only accounted for a small 
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Figure 4. Results of MinION Nanopore–based metagenomics. A, Venn diagram showing the agreement between metagenomic approaches and polymerase chain reac-
tion (PCR). B, Cumulative number of MinION reads assigned to corresponding viral species found in cerebrospinal fluid (CSF) by PCR at different time points. CSF1 and CSF2: 
herpes simplex virus (HSV) positive; CSF3: varicella zoster virus positive; CSF4 and CSF5: enterovirus positive; CSF6: mumps virus positive. All the 12 reads obtained from 
CSF1 were assigned to HSV1, and the single reads obtained from CSF2 were assigned to HSV2. Abbreviations: EV, enterovirus; HSV, herpes simplex virus; PCR, polymerase 
chain reaction; VZV, varicella zoster virus.
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proportion of total mNGS reads, increasing the sequencing 
depth per sample would likely increase the sensitivity of mNGS. 
However, this increases the sequencing costs.

Currently, there are no established robust criteria that can re-
liably define a true mNGS positive without the requirement of 
confirmatory testing. Criteria such as the presence of at least 3 
reads mapped to 3 different genomic regions of a virus genome 
or the absence of viral reads in negative controls have recently 
been proposed [6, 10, 12]. Such approaches are hindered by the 
well-known cross-talk contamination phenomenon, occurring 
as part of the mNGS procedure [10], which, however, can be 
dramatically reduced through the use of the dual barcoding 
strategy, which was recently developed [28]. Because we did 
not employ the dual barcoding strategy, cross-talk contamina-
tion may explain the obtained specificity of 66%, which is lower 
than the reported data from a previous study [9]. Alternatively, 
the low specificity could be attributed to the degradation of 
stored viral RNA and/or the low abundance of viral RNA in 
the tested samples, leading to the failure of EV PCR to replicate 
some of the mNGS findings. Retrospectively, the specificity of 
mNGS would have increased to 83% if a threshold of ≥6 reads 
was considered positive (Table 2), suggesting a correlation be-
tween the number of mNGS reads and PCR confirmatory re-
sults. Collectively, the specificity of the mNGS-based diagnostic 
approach could potentially be improved through the use of a 
proper barcoding strategy and/or criteria such as those based 
on the number of unique viral reads obtained from a sample 
under investigation, which merits further research.

Recently, the single-molecule real-time sequencing devel-
oped by Oxford Nanopore Technologies has emerged as a 
promising tool for clinical settings because of its short turna-
round time. As such, it could potentially overcome the current 
limitation of the long turnaround time posed by other NGS 
platforms. However, scarce information exists for the appli-
cation of Oxford Nanopore Technologies as a hypothesis-free 
approach to detect viral agents in clinical samples [10, 29, 30]. 
The results of our complementary analysis demonstrate that 
MinION-based metagenomics could accurately detect viral 
pathogens in CSF samples within 2 hours after the sequencing 
run, whereas the current Illumina MiSeq–based metagenomic 
approach takes around 48–56 hours to complete. Collectively, 
the data suggest that the sensitivity of MinION is comparable 
with that of mNGS/PCR, and thus point to the utility potential 
of MinION sequencing for rapid diagnosis of meningoenceph-
alitis, which merits further research.

Similar to previous reports [25, 26], numerous common con-
taminants of the mNGS data set (eg, parvovirus, densovirus) 
were found in both the DNA and RNA virus libraries in our 
study. Although it is likely that those contaminants were de-
rived from laboratory reagents (eg, extraction kits) [25], their 
potential impacts on the performance of mNGS, especially in 
terms of sensitivity and specificity, remain unknown.

The strengths of our study include that it was conducted on 
consecutive cases, minimizing selection bias. CSF samples were 
analyzed individually, and mNGS hits were reconfirmed by 
specific PCR, allowing for back-to-back comparison between 
mNGS and viral PCR. However, our study has some limitations. 
First, it was conducted on stored CSF samples. Second, we only 
focused on viruses, while meningoencephalitis can be caused by 
nonviral agents such as intracellular bacteria (rickettsiae) [31]. 
Third, we did not test other clinical samples. Of note, JEV has 
recently been detected in the urine of patients presenting with 
meningoencephalitis [32, 33]. Last but not least, the inclusion 
of nontemplate controls in addition to the 2 noninfectious CSF 
samples would have better captured the spectrum of contamin-
ations of the mNGS procedure.

To summarize, we report pioneering data on the performance 
of metagenomic next/third-generation sequencing on the CSF 
of meningoencephalitis patients in Vietnam, a resource-limited 
setting. The results shows that in a single assay, metagenomics 
was able to detect a wide spectrum of neurotropic viruses in 
CSF samples of meningoencephalitis patients, and thus it could 
potentially replace conventional nucleic acid–based diagnostic 
assays such as PCR. Further studies are needed to determine the 
clinical implications of real-time sequencing in the diagnosis 
and management of meningoencephalitis patients, especially 
in resource-limited settings, where pathogen-specific assays are 
limited in number.
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