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Abstract

A sufficient condition is derived for a finite-time L2 singularity of the 3d incom-
pressible Euler equations, making appropriate assumptions on eigenvalues of the
Hessian of pressure. Under this condition lim t↑T∗ sup ‖Dω

Dt
‖L2(Ω) =∞, where Ω ⊂ R

3

moves with the fluid. In particular, |ω|, |S ij |, and |Pij | all become unbounded at one
point (x1, T1), T1 being the first blow-up time in L2.

1. Introduction

Consider the incompressible Euler equations in R
3 × [0,∞)

∂u

∂t
+ u · ∇u = −∇p, ∇ · u = 0, (1)

where u(x, t) = (u1, u2, u3) denotes the unknown velocity field, p the pressure scalar.
Denote the material derivative in (1) byD/Dt = ∂/∂t+u ·∇, and the vorticity vector
by ω = ∇∧ u, which is governed by

Dω

Dt
= S ω, ∇ · ω = 0, where Sij �

1
2

(
∂ui

∂xj

+
∂uj

∂xi

)
. (2)

Defining the Hessian of pressure p by

Pij �
∂2p

∂xi∂xj

, (3)

the second order derivative of ω is given by (see [8] and [10])

D2ω

Dt2
= −P ω. (4)

Combining (2) and (4), it is shown in [5] that

D(ω ∧ Sω)
Dt

= −ω ∧ Pω.

This means that if ω aligns with an eigenvector of S (call this a S−ω alignment), then
it must do so simultaneously with an eigenvector of P (call this a P − ω alignment).
See (15) for the converse. It is clear from (4) that only negative eigenvalues of P
cause ω to increase in time. Intuitively, one expects that singular solutions of (1), if
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they exist, are related to alignments of P − ω or S − ω. In this sense, the geometry
matters.
The theorem of [1] states that the L∞ norm of ω controls the smoothness of

solutions of the Euler equations (1). On the other hand, the direction of vorticity
plays an important role with its evolution connected to the Hessian of pressure P [2,
p. 40]. It is further proved in [3] that if the direction of ω remains regular and the
velocity is bounded, then a singularity cannot form.
There has been evidence that alignments exist in a wide classes of fluid flows.

It is found in [11] that in the Euler singular region, the vorticity is aligned with
the eigenvector of the most positive eigenvalue of the strain S. With vortex pairs
initially aligned with S, a blow-up model is constructed [9]. Using a set of equations
for the angle variables in terms of S and P, Gibbon et al. [5] have recently analysed
the data in [7], indicative of intense stretching and compression of vorticity at the
singular region where the alignments occur (see [5, fig. 2 and 3]). See also [6] for the
alignments associated with Navier–Stokes turbulence.
The aim of the present paper is to study geometrical configurations of P. We shall

derive a sufficient condition in Theorem 2·1 for a finite-time L2 Euler singularity,
assuming the direction of ω is parallel to an eigenvector of P only. Furthermore,
assuming the direction of ω is parallel to both P and S in a simple way, Theorem 2·2
is obtained. Deducing from this theorem, we analyse the singular patterns in time
and space by Corollary 2·3 and 2·4. Apparently, these patterns seem to be observed in
[7] and [11] for the turbulent enstrophy dissipation. Finally, we discuss effectiveness
of the Hessian of pressure on producing potential L2 singularities.

Remark A. To prove the theorems, we imposed some conditions on the eigenvalues
of S and P. Although little is known about a relation between their eigenvalues, the
conditions imposed may be justified by available numerical data. Note that the
conditions already imply possible pointwise Euler singularities. However, the central
point of the paper is to demonstrate that a L2 blowup demands stronger conditions.
Our condition for a pointwise singularity is not sufficient (see Remark D). Moreover,
global constraints need to be satisfied, for instance only fluid elements satisfying
inequality (14) become unbounded in L2(Ω). To the author’s knowledge, sufficient
conditions for L2 Euler blowup have not been precisely derived before.

2. A sufficient condition

Let Ω ⊂ R
3 be a smooth material volume carried by the fluid. Let ω(x, t) be a

sufficiently smooth solution of (1) for which we set

� � ‖ω(t)‖2L2(Ω), �(t)� 0 ∀ t � 0 and ϕ1(t)�
1
2�

. (5)

Remark B. One could also set

ϕn (t)�
1

2 [ � ]
1
n

, n ∈ N.

This would slightly improve an estimate for the constant c0 in Theorem 2·2 below
(smaller c0 for n > 1). However for clarity, we take n = 1 as in (5).
Define a smooth function

v(t)�− ϕ′
1 (6)
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so that

v(t) =
1

�2

∫
Ω

ω · Dω

Dt
dx and (7)

v′(t) =
1

�3

{( ∫
Ω

[∣∣∣∣Dω

Dt

∣∣∣∣
2

+ ω · D2ω

Dt2

]
dx

)
� − 4

(∫
Ω

ω · Dω

Dt
dx

)2}
. (8)

Concerning the above equations, an easy estimate is

Lemma 2·0. Let v, v′ be as in (7) and (8). Then for t ∈ [0,∞)

v(t) �3/2(t) �
∥∥∥∥Dω

Dt

∥∥∥∥
L2(Ω)

and (9)

v′(t)�2(t) �
∫
Ω

ω · D2ω

Dt2
dx − c1

∫
Ω

∣∣∣∣Dω

Dt

∣∣∣∣
2

dx, c1 = 3. (10)

Proof. By Cauchy–Schwarz’s inequality, we get for the integral in (7):∫
Ω

ω · Dω

Dt
dx � ‖ω‖L2(Ω)

∥∥∥∥Dω

Dt

∥∥∥∥
L2(Ω)

.

But � = ‖ω‖2L2(Ω), giving (9). Using this relation again for the last term in (8) yields
(10).

Remark C. Inequality (10) involves both (2) and (4), therefore it will be used to
investigate various links between S and P for solutions of (1).
No rigorous estimate is known about the two terms on the right-hand side of

(10), and certain assumptions will be made on geometrical arrangements of S and
P. First, we consider a case when there is only P − ω alignment. This arrangement
is shown by numerical data [10], which suggests the configuration to be a generic
property of Euler flows. A sufficient condition can now be given.

Theorem 2·1. Let Pω = −λ ω in (4) ∀ x ∈ Ω and t � 0, where λ > 0. Assume that
at some t0 > 0, λ > 3µ2m on Ω × [t0,∞), where µm = max{|µ1|, |µ2|, |µ3|}, µi being
eigenvalues of the matrix S. Then there exists a finite time T0 > t0 (depending only on
�0 and v0) and T∗ ∈ (t0, T0), such that

lim
t↑T∗

sup

∥∥∥∥Dω

Dt

∥∥∥∥
L2(Ω)

=∞.

Proof. By Lemma 2·0, clearly

v′�2 �
∫
Ω

λ(x, t)|ω|2 dx − 3
∫
Ω
|Sω|2 dx.

Setting µm = max{|µi |} gives

v′�2 �
∫
Ω

[
λ(x, t)− 3µ2m (x, t)

]
|ω|2 dx.

It then follows from the assumption and (9)

v′(t) � c�(t)v2(t), t ∈ [t0,∞), c ∈ (0, 1].
This implies ϕ′

1 < 0 in (6) after t0, in turn �(t) � �0 = �(t0). Hence

v′ � c�0v
2, v0 = v(t0) > 0.
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One finds that for t0 � t < T0, setting A = 1/(c�0),

v(t) � A

T0 − t
, T0 = t0 + 1/(c �0 v0).

We see that t0 < T0 < K. According to (9), in which note �(t) � �0,∥∥∥∥Dω(t)
Dt

∥∥∥∥
L2(Ω)

� B

T0 − t
, B = �

1/2
0 /c.

This establishes the assertion.

The basic idea of Theorem 2·1 is that if λ is larger than µm for a certain length
of time, then a L2 singularity forms. The critical time T0 is determined by initial
�0 (the enstrophy at t0) and v0 (the rate change of enstrophy): higher is the initial
enstrophy, shorter is the critical time.
To be precise as to how large λ needs to be, next we examine a special case of

Theorem 2·1: both P −ω and S −ω configurations hold. Such flow geometry is often
observed in numerical simulations, for example [5], [10]. Making a assumption on
the eigenvalues of S and P, we have

Theorem 2·2. Let Pω = −λω in (4) and Sω = µω in (2) ∀x ∈ Ω and t � 0, where
λ, µ > 0. Assume that at some t0 > 0, λ = c0µ

2 on Ω× [t0,∞) with some constant c0 > 3.
Then there exists a finite time T0 > t0 and T∗ ∈ (t0, T0), such that

lim
t↑T∗

sup

∥∥∥∥Dω

Dt

∥∥∥∥
L2(Ω)

=∞.

Proof. The proof is similar to that of Theorem 2·1. Here for T0, we have

T0 = t0 + 1/(c�0v0), c = c0 − 3 > 0. (11)

Remark D. When both P − ω and S − ω alignments hold, there may exist many
functional relations between their eigenvalues, λ = f (µ). The hypothesis in the theo-
rem, λ = c0µ

2 with c0 ∈ (3, 3 + ε), is a requirement for the L2 blowup (but note
not every fluid element satisfying the relation can blowup, see (14) below). This
requirement already implies pointwise singular solutions. For such singularities, a
similar relation is λ = cp µ2 with cp ∈ (1, 1+ε) (see the proof of Corollary 2·3). Notice
that cp < c0 for ε ∈ (0, 1).
This case is the simplest to analyse structures of the L2 blowup. To do so we

will further assume that µ is the only positive eigenvalue of S, as suggested by an
analysis [11, p. 309]. Thus the very first blow-up time in L2 is identified by:

Corollary 2·3 (Temporal interval). Suppose in Theorem 2·2 that µ is the only pos-
itive eigenvalue of S. Then there exists a smallest time T1 ∈ (t0, T0) such that

lim
t↑T1

sup |ω|L∞ =∞, lim
t↑T1

sup |Sij |L∞ =∞ and lim
t↑T1

sup |Pij |L∞ =∞.

In fact, [T1, T0) = {t|T1 � t < T0} is the interval of blow-up.

Proof. Let Ω0 = Ω(t0) and µ0(x) = µ(x, t0) for x ∈ Ω0. Consider a fluid element
located at α ∈ Ω0. Differentiating Dω/Dt = µω and using (4), one obtains by
following the element: µ′(t) = λ − µ2. Inserting λ = c0µ

2 gives µ′ = (c0 − 1)µ2. This
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equation admits a solution which ceases to be regular at a finite-time

µ(t;α) =
(c0 − 1)−1

T∗ − t
, T∗ = t0 + 1/[(c0 − 1)µ0(α)]. (12)

Note inf µ0(Ω0) � µ0(α) � sup µ0(Ω0) ∀ α ∈ Ω0. Define

T1 � inf
α∈Ω0

T∗(α) = t0 + 1/
[
(c0 − 1)µ01

]
, µ01 = sup µ0(Ω0). (13)

We claim T1 < T0 as defined in (11). Computing c w0 v0 in T0 by use of the
Second Mean-Value Theorem for Integrals in (7), we get c w0 v0 = (c0 − 3)µ0(β)
for some β ∈ Ω0. The fact (c0 − 1)µ01 > (c0 − 3)µ0(β) ∀ β ∈ Ω0 suffices for the claim.
Consequently, T1 is the first time in the blow-up interval [T1, T0), in which corres-
ponding µ0(α) necessarily satisfy

µ0(α)� µ0(β∗) (c0 − 3)/(c0 − 1), β∗ ∈ Ω0. (14)

We now ask what functions are singular at T1? Since both matrices S and P are
symmetric, we have only to consider their eigenvalues. Let µa and µb be the two
other eigenvalues of S whose eigenvectors are not aligned with the vorticity vector.
By the incompressibility condition, µ > max{|µa |, |µb |} as it is the only positive
eigenvalue. Thus it is obvious from (12) and (13) that |Sij |L∞ is unbounded at T1.
This means, by the theorems of [1] and [12], that |ω|L∞ also fails to be smooth at the
same time. Finally we turn to the Hessian of pressure. Let λζ and λη be the two other
eigenvalues of P while −λ is the negative eigenvalue associated with the eigenvector
aligned to ω. Note that λζ or λη cannot blow up at any time earlier than T1, because
if this happened, it can be shown by (2) and (4) that |ω|L∞ would have blown up at
a time earlier than T1, contradicting (13). Now given δ > 0∀t ∈ (T1 − δ, T1), either
(a) sup x∈Ω λ � max{|λζ |, |λη |}, or (b) sup x∈Ω λ < max{|λζ |, |λη |}. We know that
lim t↑T1 sup |Sij |L∞ = ∞, which is equivalent to lim t↑T1 sup x∈Ω λ = ∞ by the align-
ment relation λ = c0µ

2. Thus inequality (a) is left as the only choice. Evidently
lim t↑T1 sup |Pij |L∞ =∞. The proof is complete.

It is natural to wonder what would be the singular set in space. In this direction
we can show.

Corollary 2·4 (Spatial set). Let x1 ∈ Ω be the space point where |Sij |L∞ = ∞ as
t → T1. Then |ω|L∞ and |Pij |L∞ also blow up at (x1, T1).

Proof. Without loss of generality, let us assume that at time t0, there is only one
fluid element having µ01 = sup µ0(Ω0). Suppose |ω|L∞ blows up at (y, T1), y � x1,
however this is impossible. At the time T1, y is a position reached by a fluid element
with initial point µ0(y)� µ01, which is not singular at that time. We then conclude
y = x1. To find the singular location of |Pij |L∞ we recall from Corollary 2·3 that
sup x∈Ω λ � max{|λζ |, |λη |} for t ∈ (T1 − δ, T1). If sup x∈Ω λ > max{|λζ |, |λη |}, then
it is unbounded at (x1, T1) by the alignment relation. If sup x∈Ω λ = max{|λζ |, |λη |},
this means both sup x∈Ω λ and max{|λζ |, |λη |} blow up at T1. Having stated sup x∈Ω λ
is singular at (x1, T1), let us suppose max{|λζ |, |λη |} is singular at (z, T1), z � x1. A
similar argument to the one above for |ω|L∞ shows we must have z = x1.

We make a few observations about the above results. (i) Geometrical arrangements
can limit the set of singularities. In the case of the double alignments, we have shown
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that |ω|, |Sij | and |Pij | all blowup at one point (x1, T1). (ii) The L2 singularity condi-
tion is stronger, namely the integral relation (10) has to be satisfied as a constraint.
In this instance, although in (12) any fluid element could locally blow up at T∗,
only those satisfying the inequality (14) can actually make up the L2 singularity.
(iii) Taking the divergence of (1) results in |ω|2/2 − S2 = Pii = λζ + λη − λ. From
Corollary 2·4, we see that in any neighborhood of (x1, T1), the above equation has an
indefinite sign of∞−∞.

3. Necessity for L2 blow-up

On the right-hand side of (10), if the first integral is persistently greater than the
second, then a singularity could result. In our above theorems, we only used the
geometric conditions on the integrands, which is more restrictive than the integral
requirement. However in general cases when there is not any coherent configuration,
it seems hard to proceed. In what follows, we shall discuss solutions of (1) having
some coherence in the Hessian of pressure.
To simplify the discussion, let S and P be diagonalised on Ω× [0,∞) with respect

to the principal axes. Since (10) is invariant under the coordinate transformations,
we can write referring to these axes

v′�2 � −
∫
Ω

[
λζ ω

2
ζ + ληω

2
η + λξω

2
ξ

]
dx − 3

∫
Ω

[
µ2aω

2
a + µ2bω

2
b + µ2cω

2
c

]
dx,

where ζ, η, and ξ denote the principal axes of P, a, b and c the principal axes of S,
respectively. It appears that a P − ω alignment with a negative eigenvalue would be
an effective way for attaining the requirement, for the following reason.
As shown in the Introduction, when a P − ω alignment occurs, we have

−ω ∧ Pω ≡ 0 =⇒ ω ∧ Sω = constant. (15)

Let us write out three components of the invariant (ω ∧ Sω):

ωcωb(µc − µb) = c1; ωaωc (µa − µc ) = c2; ωbωa (µb − µa ) = c3. (16)

A key point here is that from the instant t0 at which P − ω occurs for some fluid
elements, the constants in (16) are fixed in time following the same elements. The
configuration of a vortex tube would give an interesting example of (16). Suppose at
t0, the fluid elements have µa > 0, and µb, µc < 0 with µb = µc . This leads to initially,
c1 = 0, c2 > 0 and c3 < 0. We obtain in (16) ωa = c2/ωc (µa + |µc |). In this formula:
(i) c2 > 0 is fixed; (ii) it is not clear how (µa + |µc |) changes in time (Theorem 2·2 is
not applicable); (iii) ωc decreases according to (2), since µc remains negative to keep
c1 = 0, due to the incompressibility. So there is a tendency for ωa to increase in time,
keeping the vortex-tube state alive, and such a state will be strengthened if there
are some symmetries existing in the flow at t0. This (extreme) example illustrates
that a P − ω alignment “freezes” the initial straining states by (15), and if the
initial configuration favours vortex stretching, then these vortex lines would have
to be stretched indefinitely. This suggests that the Hessian of pressure alone could
possibly produce a L2 singularity.
The Euler equation is rich in its geometrical structures (see [4]). One further spec-

ulates whether the geometry of P − ω or S − ω is a necessary condition for solutions
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of (1) to develop finite-time singularities. Note a S − ω alignment automatically im-
plies a P − ω alignment, but the converse is not true. Reflecting that the alignment
enforces growth of ω ([8, p. 192]), and in view of analytical and numerical works on
the subject, we may loosely make a:

Conjecture. Let Ω ⊂ R
3. Suppose (1) has a L2(Ω) singularity at T∗ < +∞. Then ω, S,

and P blow up at the same space point x∗ ∈ Ω ⇐⇒ there exists a S − ω alignment.
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