
Detecting Social Cliques for Automated
Privacy Control in Online Social Networks

Hakan Yıldız
University of California, Santa Barbara, USA

hakan@cs.ucsb.edu

Christopher Kruegel
University of California, Santa Barbara, USA

chris@cs.ucsb.edu

Abstract—As a result of the increasing popularity of online
social networking sites, millions of people spend a considerable
portion of their social life on the Internet. The information
exchanged in this context has obvious privacy risks. Interestingly,
concerns of social network users about these risks are related
not only to adversarial activities but also to users they are
directly connected to (friends). In particular, many users want
to occasionally hide portions of their information from certain
groups of their friends.

To satisfy their users’ needs, social networking sites have
introduced privacy mechanisms (such as Facebook’s friend lists)
that enable users to expose a particular piece of their information
only to a subset of their friends. Unfortunately, friend lists need
to be specified manually. As a result, users frequently do not use
these mechanisms, either due to a lack of concern about privacy,
but more often due to the large amount of time required for the
necessary setup and management.

In this paper, we propose a privacy control approach that
addresses this problem by automatically detecting social cliques
among the friends of a user. In our context, a social clique is
a group of people whose members share a significant level of
social connections, possibly due to common interests (hobbies)
or a common location. To find cliques, we present an algorithm
that, given a small number of friends (seed), uses the structure of
the social graph to generate an approximate clique that contains
this seed. The cliques found by the algorithm can be transformed
directly into friend lists, making sure that a piece of sensitive
data is exposed only to the members of a particular clique. Our
evaluation on the Facebook platform shows that our method
delivers good results, and the cliques that our algorithm identifies
typically cover a large fraction of the actual social cliques.

I. INTRODUCTION

Over the past few years, online social networking sites
have experienced a massive growth, and they have become
environments where hundreds of millions of people interact
with each other. The information exchanged on these sites
is not only of enormous amounts but also of many different
kinds. Most popular sites enable their users to exchange
information in the forms of profiles, messages, wall posts,
photographs, videos, and group activities.

The large amount of diverse information poses a consid-
erable privacy threat to users. The lack of protection of the
private user information may result in adversarial activities
such as stalking, identity theft, and blackmail [1], [2]. To
mitigate these privacy risks, most sites implement some sort
of privacy policy that exposes user information only to the
user’s friends. Moreover, some sites, such as Facebook, allow

their users to configure the visibility of their data even further,
making it accessible to friends of friends or everyone.

In many situations, however, the privacy options that treat
all friends of a user equally do not suffice (this is not
surprising, considering that the average Facebook user has 130
friends [3]). In fact, it is quite common that a user might want
to share a particular piece of information only with certain
people and hide it from others. To deal with this demand,
Facebook introduced friend lists. Friend lists allow one to
manage the privacy (visibility) of certain objects, enabling
users to expose a piece of their data to a subset of their
friends only. (Recently, Facebook also launched a similar but
a less specific mechanism called groups.) Note that while our
discussion focuses mostly on Facebook, similar problems and
privacy solutions such as friend lists exist also in other online
social networks. Thus, in the following text, we refer to the
set of friends who are allowed to see a piece of information
more generally as exposure set.

Given mechanisms such as friend lists and groups, users
have significant control over their privacy since they can
specify any subset of their friends that they want to share
a particular piece of information with (the exposure set).
However, the effectiveness of these mechanisms in eliminating
the privacy risks is subject to debate. Users, on average, have
a large number of friends, often hundreds, and sometimes
even thousands. This makes it time-consuming and tedious
to manually create friend lists (or groups) and associate them
with private data. As a result, many Facebook users do not
effectively use these mechanisms. Even Facebook’s founder
Mark Zuckerberg, when asked about friend lists, pointed out
that while they would be the “the ideal solution for sharing
different things with different people,” they have unfortunately
failed because “nobody wants to make lists” [4].

Recently, Facebook introduced a new mechanism that gen-
erates pre-defined friend lists that classify the friends of a user
based on the profile data they provide (e.g., location, school,
family information). The aim of this scheme is to save the user
from the hassle of creating lists. This mechanism, however, has
still some disadvantages. First, when the user shares a piece
of information, she still has to assign a friend list manually.
Second, the list generation is dependent on the data provided
by the user. In the case where the user does not prefer to
disclose this data, this scheme fails.

One solution to the aforementioned problems is to automate

both the generation and the assignment of the exposure sets
(friend lists) during the sharing of information. In particular,
we imagine a privacy policy in which the exposure set for a
piece of data is generated and associated with it automatically,
as soon as the data is put on the social network. The exposure
set is generated in such a way that it includes only the users
who are likely to be related to the data being shared, in
contrast to being confined to a pre-defined list. If implemented
properly, such an automated scheme guarantees that every
piece of data is seen only by the people related to it. Moreover,
it functions as a privacy defense against friend impersonators,
as they will need to establish considerable social relationship
before being granted access.

At this point, it should be noted that it is practically
impossible to exactly generate the ideal exposure set that is
desired by the user without getting any directives from her.
However, if an accurate approximation for this ideal set is
generated, it still provides an effective privacy protection in the
sense that most of the people excluded by the ideal set are also
excluded by its approximation. Furthermore, the generated
exposure set can be displayed to the user to receive feedback.
If the user is not happy with the result, she can update it
accordingly. Notice that correcting a (good) approximation is
much less time consuming than creating an exposure set from
scratch.

Now, the following question arises. Given a piece of data
shared on a social network, how can we determine an accurate
exposure set for it? One way to answer this question is to use
the idea of social cliques. A social clique is a group of people
having significant social interaction with each other due to
a particular cause (e.g., families, classmates, colleagues). A
piece of data is often of concern only to a particular social
clique. One can attempt to identify this clique by examining
the data itself. Most data shared on social networking sites
contains some (meta) information that identifies the users who
are directly related to or who contribute to this data. Thus, each
piece of data is associated with a (possibly empty) group of
users. We call this group the participating group of the data.
Intuitively, in most cases, the social clique concerned with a
piece of data is the one that contains its participating group.
As an example, consider a family photograph being shared
on a social network. There are a number of family members
who appear in it, and these members form the participating
group of the photograph. This photograph is most likely of
concern only to the members of the family, where the family
is a social clique that contains the participating group (those
members that appear in the picture).

In this paper, we present a novel approach for detecting
social cliques among the friends of a user in a social network.
Specifically, given a user and a subset S of her friends, we
determine a (typically larger) subset S′ of the user’s friends
so that S′ forms a social clique that contains S. We describe
an algorithm to solve this problem, whose behavior can be
changed according to the parameters provided by the user. We
then evaluate our approach through experiments performed on
the Facebook platform. Note that our techniques can used to

automatically set up friend lists for shared data via a plug-in
for a social network.

Once social cliques (or communities) have been identified
and translated into friend lists, the user has to decide which
information she wants to share with each community. This
problem is outside the scope of this work. Interestingly, a
previous paper [5] has proposed “privacy wizards” that can
help to automatically configure privacy settings for different
friend lists. Our work, which proposes a novel community
detection system, can be used as an input to the privacy wizard
system, which currently leverages a clique detection algorithm
based on the idea of edge betweenness [6].

II. RELATED WORK

In this section, we briefly review past research related to
privacy and community detection in social networks.

A. Privacy in Online Social Networks

The increasing popularity of online social networks has
prompted the interest of security researchers to explore the
possible adversarial activities that target these networks. Sub-
stantial research has been done on privacy in social networks,
revealing that the information stored in these networks can be
exploited through different types of attacks, including identity
theft and spam (e.g., [2], [7]). A fair portion of research covers
techniques that aim to hide user information from third parties
and central servers, using cryptography (e.g., NOYB [8]) and
network decentralization (e.g., [9]). These mitigation tech-
niques, however, are not effective against social engineering
type of attacks in which users are tricked into trusting en-
tities controlled by adversaries. Scientists introduced some
techniques against this type of attack (e.g., SybilGuard [10]),
which work by analyzing the social network structure to assess
the trust of an entity. However, recent research [11] shows
that the existence of effective defenses against online social
engineering attacks is still debatable.

B. Community Detection in Social Networks

Community detection is the identification of densely-
connected groups of nodes in networks. It is applicable to
many different kinds of networks, such as social, biological,
and computer networks. Even before the community detec-
tion methods started to be explored, there were efforts to
establish formal definitions for communities in social net-
works. Concepts such as K-clique [12], K-club [13], and K-
plex [14] were introduced as a result of these efforts. The
first community detection attempt was by Small and Griffith,
who grouped the documents in the Science Citation Index
based on a co-citation graph [15]. Since then, there has been
considerable research on community detection [16]. Some
studies focused on a specialized community detection problem
known as local community detection (e.g., [17], [18], [19]).
In this problem, one aims to detect the community that a
particular node belongs by accessing only local graph infor-
mation. The evaluation of community detection algorithms has
used mainly two classes of metrics. One class of metrics is

based on maximizing or minimizing formulas that describe the
structural properties of the graphs (e.g., modularity [6]). The
other class of metrics is based on ground truth communities
that are inferred from the dataset and compared to the results.
For example, for a community detection problem on academic
co-authorship graphs, publication venues (such as conferences
and journals) may serve as ground truth communities (an idea
used in [20]).

C. Our Contributions

Our work contributes to both social network privacy re-
search and community detection research. The majority of re-
search on social network privacy is concerned with protecting
sensitive user information against adversaries. Our work takes
a different angle; it focuses on keeping particular data items
private from the friends of a user. From this point of view, we
show that it is possible to perform accurate privacy protection
with minimal user effort.

The algorithm that we propose for finding cliques among
friends roughly falls into the class of local community de-
tection techniques. We present new clique relaxation schemes
for this algorithm as an alternative to similar schemes such
as K-clique, K-club, and K-plex. Our approach yields better
results than previous techniques. Finally, to the best of our
knowledge, we are the first to use real-world photo tags on an
actual social network (Facebook) to evaluate the performance
of community detection algorithms.

III. APPROACH

Consider a piece of data shared in a social network. We call
the user who hosts (publishes) the data in her account the host
user. The goal of our system is to protect the privacy of the
host user. To this end, we want to find the subset of the host
user’s friends who should have access to this data.

The host user’s friends are collectively called candidates,
since they are candidates for the exposure set for the piece of
data. The users who are members of the participating group
related to the data (e.g., people in a picture, or users who
posted to a discussion thread) are called the participants. We
assume that all participants are friends of (connected to) the
host user. This implies that all participants are also candidates
(since they are friends with the host user). If this is not the
case, one can easily handle this problem by introducing virtual
friendship links between the host user and the participants.
Note that these assumptions do not limit the generality of our
algorithm. They merely make the subsequent notations and
descriptions simpler.

Our goal is to approximately determine which candidates
form a social clique with the participants. Users that are part
of this clique1 should then be granted access to the data (even
though they have not yet contributed to it).

The approach we propose is based on the structure of
the social graph where the nodes represent the individuals
(users), and the edges represent the friendship relationships

1Throughout the paper, the term “clique” refers to a social clique and is
not used in the graph theoretical sense.

procedure DetectClique(G, s, P, f)
C ← P
while true

t← null
for each v ∈ (nG(s)− C)

if f(G,C, v) = true
if t = null or h(G,C, v) > h(G,C, t)

t← v
if t = null

break
else

C ← C ∪ {t}
return C

Fig. 1. The pseudocode for the clique detection algorithm.

(connections) between them. Note that the relationships due
to user activities (e.g., being tagged in the same photo) are
ignored. We choose to use only the friendship information
because it is easier to analyze and all social networks provide
this minimal information.

Our clique-finding algorithm works on the local social
graph. The local social graph is a subgraph of the entire social
graph of the network, and it includes (a) the host user, (b) the
friends of the host user (i.e., the candidates), and (c) the friends
of all candidates. That is, all users (nodes) that are at most two
degrees away from the host user are included. An advantage of
using the local social graph is that the graph size is very small
compared to the entire social network, thus, the computation
can be carried out efficiently.

A. Algorithm

We now describe an algorithm that is applied to the local
social graph to generate a clique from a set of participants. The
main idea is to iteratively grow the clique, starting from the
set of participants. This type of agglomerative algorithms are
often used in local community detection (e.g., [17], [18], [19]).
The pseudocode of the algorithm is provided in Figure 1. The
inputs are the social graph G, the host user s (as a node in
G), the set of participants P , and a predicate function f called
the clique expansion function. We use the notation nG(v) to
denote the set of the friends of v. Thus, nG(s) denotes the
candidates.

The algorithm starts by creating an initial clique C that
consists of only the participants. Then, in each iteration of
the main loop, this clique is expanded by inserting one of
the candidates into it. The inserted candidate is the one
who maximizes the heuristic function h, selected among all
candidates that satisfy the clique expansion function f . The
growth of the clique stops when no candidate outside the
clique can be found that satisfies f (We discuss f in the
next section). The final clique is returned as the output of
the procedure.

In each iteration, only one candidate is added to the interme-
diate clique, even though there may be many candidates who

A

H

B

Fig. 2. A real social graph of three Facebook users (grey) and their common
friends (black). Only the edges of the grey nodes are shown. A and H seem
to be closer friends.

satisfy f . Thus, one needs an extra measure that determines
which candidate is best used to expand the clique. The
heuristic function h serves this purpose. The candidate with
the highest heuristic value is considered to have the highest
level of social relationship to the clique and is, therefore, used
to expand the clique. The heuristic function is defined as

h(G,C, v) =

|VG| × |C ∩ nG(v)|
+∑

c∈C
|nG(c) ∩ nG(v)|/|C|

where VG is the set of users in graph G. h is based on
two measures. The primary measure is the number of friends
of v that are in C. This is captured by the first term. The
factor |VG| in the term ensures that this term is the dominant
measure. The number of friends of v in C is occassionally
insufficient to differentiate between the candidates. Especially
for small clique sizes, there can be many candidates with equal
number of friends in C. To resolve such situations, we utilize
a secondary measure, represented by the second term, that
evaluates to the average number of common friends between
the users in the clique C and v. Notice that we use the number
of common friends between two individuals to “estimate” or
“guess” the strength of their relationship. It turns out that real
social graphs have many instances where one can differentiate
the level of relationships by looking at the number of common
friends (see Figure 2 for a simple example).

Note that, in general, a high number of common friends does
not necessarily indicate a close friendship, and there may be
cases where our heuristic measure is misleading. However, we
believe such cases are in minority and emphasize the fact that
the common friends measure uses only very local information,
and is, therefore, very appropriate for our local clique detection
algorithm.

B. Clique Expansion Schemes

The clique expansion function f is an important parameter
of the algorithm that affects how a clique grows and that
determines when it stops growing. In this section, we present
three clique expansion schemes.

1) CLQ Expansion Scheme.: We first introduce an expan-
sion scheme that will serve as the baseline for the evaluation
of the two other schemes. In the CLQ scheme, we require that
every person in a social clique is a friend of each other. To

fulfill this requirement, we formally define f as

f(G,C, v) =

{
true if nG(v) ∩ C = C

false otherwise

When the CLQ scheme is used, the output of the algorithm
is a complete subgraph.

2) BANDK Expansion Scheme.: Complete subgraphs are
often considered to be too strict to represent social cliques,
as cliques display looser connections in reality. Considerable
previous work has focused on finding different definitions for
cliques. The efforts yielded to clique definitions such as K-
clique [12], K-club [13], and K-plex [14]. Most of these
definitions, however, are inappropriate to find cliques among
the friends of a user and, instead, are designed to operate on the
entire graph. To address the limitation of existing approaches,
we introduce a new clique relaxation scheme called K-band.
A K-band is a social group such that every person in the
group has at least K common friends with each of the other
persons in the group. The reader will notice that the number
of common friends is again used as a measure of the social
relationship between two persons.

The BANDK scheme requires that the intermediate clique
is always a K-band during the execution of the algorithm.
Accordingly, we define f formally as:

f(G,C, v) =

{
true if ∀c ∈ C.|nG(c) ∩ nG(v)| ≥ K

false otherwise

Notice that the case K = 1 does not make sense for our
algorithm because every candidate has at least one common
friend with every member of the intermediate clique, namely
the host user. So, meaningful values for K are integers greater
than 1.

3) INK Expansion Scheme.: The main idea of the INK

scheme is to adapt the expansion function to the current
tightness of an intermediate clique. In particular, if the initial
clique formed by the participant set is loose, we want to grow
it into a loose and large final clique. On the other hand, for a
tight initial clique, the aim is to grow into a tight and small
final clique. This behavior helps to detect and adapt to social
cliques of variable tightness.

As part of INK scheme, we first define a function rG, which
serves as a measure of the tightness of the relationship between
an individual v and a clique C. rG is defined as:

rG(v, C) =
|nG(v) ∩ C|
|C|

Basically, rG is the fraction of v’s friends among all
individuals in C. We reasonably assume that the higher this
ratio is, the more links v has to C, making it socially closer
to C.

We now define a function tG that measures the tightness
within a clique. For this, we simply average the rG values
of each individual in the clique with respect to the remaining
members of this clique. This yields to the following definition

for tG:

tG(C) =


∑
c∈C

rG(c, C − {c})
|C|

if |C| > 1

0 otherwise

where C is the clique. The second line of the definition handles
the case in which C consists of a single user. In this case, we
define tG(C) as 0.

In the INK scheme, a candidate is allowed to expand an
intermediate clique if her tightness to it is larger than K
times the tightness within the clique. This is captured by the
following definition of f :

f(G,C, v) =

{
true if rG(v) > K × tG(C)

false otherwise

C. Practical Usage

The clique detection algorithm that we have discussed,
when used with an appropriate clique expansion scheme,
provides a way to perform automated privacy control for social
networking sites. Whenever a user uploads a piece of data
that has a participating group, our algorithm can be run to
automatically determine an exposure set for it. Moreover, the
site may provide different levels of privacy protection, which
can be implemented by adjusting the parameters for the clique
expansion schemes.

IV. EVALUATION

In this section, we present the results of our evaluation of the
quality of the cliques that our system produces. To test our ap-
proach in a real social network and to evaluate its performance,
we developed a Facebook application named “AutoClique.”. 30
Facebook users volunteered to install AutoClique. We accessed
the friend lists of these users and their friends (via crawling),
and also gathered data to conduct our experiments.

1) Experimental Methodology: For experiments, we made
use of the pictures that users have uploaded. More precisely,
we extracted the tags associated with each picture that was
uploaded by our 30 users. This allowed us to identify the set
of (tagged) people that appear on each picture.

Now, the basic assumption for our experiments is that all
people in a picture belong to the same social clique. We believe
that this assumption holds for majority of photos in Facebook.
It is important to observe that this assumption is not used at
all by the algorithm to detect cliques; it is merely used for the
evaluation of the results of the system. Moreover, as discussed
later, the cases in which the assumption does not hold only
make our final results appear worse than they would be if
ground truth was actually available.

Leveraging on the assumption that we can use the tags on
pictures as ground truth, we perform a single test on a photo in
the following manner: The photo has a set of users associated
with it through photo tags. We call this set T . Under the
assumption that T represents a real social clique, or a part
of it, we randomly select a subset P of T as participants.
We then execute our algorithm to generate a social clique C

from P . Finally, we compare C to T to see how many of the
remaining people in T (those not selected for P) are covered
by C.

It is important to observe that, in most cases, the set T
of people in a photo do not constitute a complete clique.
Instead, the sizes of typical cliques of friends are in the order
of tens of people (consider a circle of friends in the local sport
club, relatives, friends in school, ...). Thus, when our algorithm
produces a clique C from the subset P of people on a photo,
we expect that this clique C covers more people than shown
on the photo. The key point that we attempt to evaluate is
whether the remaining people on the photo (T − P) are part
of our inferred clique C. When this is the case, we consider
the output of the algorithm as a success.

Of course, we would hope that our algorithm finds a social
clique that covers all users in T . To quantify the results of a
single test, we use the two metrics recall and coverage. Recall
is defined as:

|T ∩ C| − |P |
|T | − |P |

It captures the fraction of people on the photo (T) that is
covered by our clique C. Notice that the participant set P is
excluded from this ratio since it is guaranteed to be in C. The
second metric is coverage, which is defined as |C|/n where
n is the number of friends the host user has. It stands for the
ratio of the host user’s friends covered by C.

A good clique detection algorithm has a high recall but a
low coverage. We motivate this with the following reasoning:
A high recall (optimally, 1) indicates that most (all) of the
users in the real clique are included in the clique that our
algorithm detected. This is essential to make sure that the
majority of the users concerned with a piece of data, such
as a photo, are included in its exposure set.

Of course, one can easily achieve 100% recall by simply
generating a clique that contains all of the host user’s friends.
However, such a clique includes many individuals who are
not concerned with the data, and thus, our system would
not succeed in protecting privacy. Generally, a piece of data
only concerns a small portion of the host user’s friends.
Consequently, to exclude irrelevant users, the detected clique
should cover only a small portion of the host user’s friends.
This is indicated by a low coverage of the user’s entire set
of friends. That is, a low coverage indicates that cliques are
reasonably tight and meaningful.

At this point, it is worth revisiting the assumption that
individuals tagged in the same photograph really form a social
clique (or a part of it). Clearly, this assumption is not always
true. It is possible that a photograph contains people who
have weak social relationships or no social relationships at all.
However, we believe that such instances are not too frequent.
Moreover, such cases make the performance of our algorithm
appear worse. The reason is that our algorithm might produce
an accurate clique that correctly excludes a “random” person
that happens to be in the picture. However, the recall score is
lowered, because the basic assumption for the test is that all
people on the photo should be in the same clique.

TABLE I
THE NUMBER OF PHOTOS CONTAINING SPECIFIC NUMBER OF TAGS.

Number of Tags 2 3 4 5 6 7 8 9+
Number of Photos 634 337 157 105 63 43 24 55

2) Test Data: AutoClique crawled the local social graphs of
the 30 users who installed the application. During this process,
we attempted to collect the sets of friends for 8, 596 users
(host users and their friends). The average number of friends
per user was 338. The user with the highest number of friends
had 5, 002 connections. We then gathered information about
the photos (and the photo tags) of our users. More precisely,
we gathered 1, 416 photos from 22 of the 30 users (the rest had
no photos), together with the tags in each photo. Table I shows
the distribution of the photos with respect to their number of
tags. Note that we ignored the photos with only a single tag
as we need at least two tags for evaluation. Of course, users
were clearly informed about the data that we collected, and
they gave their consent when installing our application.

3) Experimental Results: In our tests, we examined seven
schemes: CLQ, BAND2, BAND3, BAND4, IN0.3, IN0.5,
IN0.7. Additionally, to compare our algorithm’s accuracy,
we examined the following two local community detection
algorithms:
• CLA: Clauset’s greedy algorithm with the stopping con-

dition of decreasing local modularity [17]. According to
Chen et al. [19], this algorithm outperforms most local
community detection algorithms.

• CZG: Chen, Zaı̈ane, and Goebel’s algorithm with the
discovery and examination phases [19].

To restrict the detected cliques to the friends of the host
user (and for efficiency reasons), we applied the CLA and the
CZG algorithms to the subgraphs induced by the friends of
each host user.

The test run for a single scheme on the data set of 1, 416
photos was done in the following manner: For every photo X
and for each positive integer Y less than or equal to 8 (but
also less than the number of tags in X), we ran ten tests.
A single test was performed as described previously under
“Methodology,” and we used a different, random participant
group of size Y for each of the ten tests per photo. This
resulted in a total number of 33, 860 tests for each scheme.

Table II shows the (averaged) results for these test runs. The
CLQ scheme has the lowest average recall, as expected, since
the resulting cliques are too tight (observe the average clique
size). The other schemes achieve better average recall values
that change according to their parameter. For example, we see
that BAND2 has a recall of 0.90 and a coverage of 0.28 on av-
erage. Overall, it can be observed that our approach is capable
of detecting social cliques with approximately 90% recall and
30% coverage, using both BANDK and INK schemes with
appropriate parameters. Notice the high recall and the low
coverage values that indicate that our algorithm is appropriate
for effective (though not perfect) privacy protection among
friends. Additionally, it is easily observed that our schemes

TABLE II
AVERAGE RECALL, COVERAGE AND DETECTED CLIQUE SIZE FOR

SEVERAL SCHEMES ALONG WITH THEIR STANDARD DEVIATIONS. THE
RESULTS FOR EACH SCHEME ARE OBTAINED THROUGH 33,860 TESTS
WITH VARIABLE PARTICIPANT GROUP SIZES (1 TO 8) OVER A SET OF

1,416 PHOTOS. THE AVERAGE NUMBER OF TAGS IN THE PHOTO IS 5.4 PER
TEST. THE AVERAGE SIZE OF THE PARTICIPANT GROUP IS 2.4 PER TEST.

Scheme Avg. Recall Avg. Coverage Avg. Clique Size
CLQ 0.49 ± 0.41 0.05 ± 0.04 11 ± 4

BAND2 0.90 ± 0.27 0.28 ± 0.19 65 ± 38
BAND3 0.88 ± 0.30 0.25 ± 0.19 54 ± 33
BAND4 0.85 ± 0.33 0.23 ± 0.18 48 ± 31
IN0.3 0.92 ± 0.24 0.36 ± 0.20 97 ± 71
IN0.5 0.86 ± 0.31 0.23 ± 0.16 53 ± 35
IN0.7 0.74 ± 0.37 0.14 ± 0.11 30 ± 17
CLA 0.75 ± 0.40 0.28 ± 0.20 71 ± 59
CZG 0.57 ± 0.43 0.17 ± 0.16 36 ± 30

TABLE III
AVERAGE RECALL FOR FOUR SCHEMES AND DIFFERENT NUMBER OF
PARTICIPANTS. THIS TABLE IS BASED ON A DATASET OF 55 PHOTOS

WHICH HAVE AT LEAST 9 TAGS.

Number of participants CLQ BAND2 IN0.3 CLA CZG
1 0.29 0.74 0.79 0.53 0.39
2 0.31 0.76 0.81 0.74 0.56
3 0.31 0.74 0.81 0.79 0.60
4 0.28 0.74 0.81 0.79 0.61
5 0.28 0.75 0.81 0.81 0.62
6 0.25 0.74 0.83 0.82 0.61
7 0.26 0.74 0.84 0.81 0.61
8 0.24 0.74 0.84 0.82 0.63

0 5 10 15 20 25 30 35 40 45
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of tags

A
ve

ra
ge

re
ca

ll

CLQ
BAND2

IN0.3

CLA

Fig. 3. Average recall vs. number of tags in the photo.

significantly beat CLA and CZG.
In Table III, we see how the number of participants (size

of set P) affects the recall for various schemes. Observe that
the change in the number of participants does not introduce
a significant change in average recall for BANDK and INK

schemes. This suggests that our algorithm’s accuracy is not
affected by the size of the participant set. In contrast, the
accuracy of CLA and CZG algorithms initially increase with
increasing number of participants but then level out.

Figure 3 plots the average recall of the algorithm versus the
number of tags on the photo. Except for photos with many

TABLE IV
AVERAGE RECALL FOR FIVE SCHEMES AND THREE DIFFERENT DATA

TYPES (WITH STANDARD DEVIATIONS).

Data type CLQ BAND2 IN0.3

Albums 0.43 ± 0.38 0.88 ± 0.28 0.91 ± 0.24
Wall Threads 0.31 ± 0.43 0.78 ± 0.39 0.83 ± 0.36

Networks 0.13 ± 0.28 0.49 ± 0.41 0.64 ± 0.37

Data type CLA CZG
Albums 0.78 ± 0.37 0.62 ± 0.40

Wall Threads 0.75 ± 0.42 0.57 ± 0.47
Networks 0.55 ± 0.41 0.40 ± 0.38

(more than 25) tags, there is not a direct correlation between
these two values. This suggests that our algorithm’s accuracy
is not affected by the social clique size.

Finally, we mention some evaluation results for other types
of data. More precisely, in addition to photos, we also consid-
ered for ground truth photo albums, wall threads, and networks
that a user had access to. The evaluation was done in a fashion
similar to the evaluation for the photos, with the exception that
the definition of T was adjusted to match the type of data.
For albums, we defined T as all users tagged in an album.
For wall threads, we defined T as the users who contributed
to a wall thread. For networks, we defined T as the users in
a network. Table IV shows the average recall values obtained
for this evaluation.

4) Discussion: Our results indicated that the clique detec-
tion algorithm is successful in expanding a small set (seed)
of people into a social clique that contains those people that
are related to this seed. Moreover, these cliques are reasonably
tight and do not simply grow to cover a large portion of a user’s
friends. We attempted to quantify the quality of our approach
by leveraging the assumption that two people who appear in a
common picture are also tightly related (and, hence, members
of the same clique). While this assumption might not always be
true, we note that our algorithm also works well when the basis
for the evaluation is changed to wall threads or photo albums.
Additionally, our novel expansion schemes clearly outperform
existing local community detection techniques in all evaluation
scenarios.

We propose that BAND2 and IN0.3 schemes are accurate
enough for exposure set (friend list) generation for most social
networking sites. Note that it is possible to adjust the behavior
of these schemes by tuning their parameters in order to further
satisfy a site’s particular needs.

V. CONCLUSIONS

In this paper, we address the problem that users do not
consider all their friends equal and, hence, want to hide certain
pieces of information from certain groups. Unfortunately,
manually managing such groups through the features provided
by social networks (such as friend lists) is cumbersome and
not used frequently. To solve this problem, we introduce a
novel algorithm and expansion schemes that allow one to
identify a social clique for a data item, starting from a small
seed of friends that are directly related to this item. Our

results demonstrate that the proposed algorithm is generally
successful in expanding the seed into a clique that contains
those people that are related to the seed. Moreover, the
detected cliques are reasonably tight and do not simply grow
to cover a substantial portion of a user’s friends. Anecdotal
evidence from user feedback and our own tests indicate
that the system delivers very satisfying results. Finally, our
novel expansion schemes clearly outperform existing local
community detection techniques in all evaluation scenarios.

REFERENCES

[1] “Miss N.J. releases blackmail photos,” http://today.msnbc.msn.com/id
/19725822.

[2] R. Gross and A. Acquisti, “Information revelation and privacy in online
social networks,” in Proc. of the 2005 ACM workshop on Privacy in the
Electronic Society. ACM, 2005, pp. 71–80.

[3] “Facebook Statistics,” http://www.facebook.com/press/info.php?statistics.
[4] M. Siegler, “Zuckerberg: “Guess what? Nobody wants to make lists.”,”

http://techcrunch.com/2010/08/26/facebook-friend-lists.
[5] L. Fang and K. LeFevre, “Privacy wizards for social networking sites,”

in World Wide Web Confernce (WWW), 2010.
[6] M. Newman and M. Girvan, “Finding and evaluating community struc-

ture in networks,” Physical review E, vol. 69, no. 2, p. 026113, 2004.
[7] G. Brown, T. Howe, M. Ihbe, A. Prakash, and K. Borders, “Social net-

works and context-aware spam,” in Proc. of the 2008 ACM Conference
on Computer Supported Cooperative Work. ACM, 2008, pp. 403–412.

[8] S. Guha, K. Tang, and P. Francis, “Noyb: Privacy in online social
networks,” in Proc. of the first workshop on Online social networks.
ACM, 2008, pp. 49–54.

[9] L. Cutillo, R. Molva, and T. Strufe, “Privacy preserving social network-
ing through decentralization,” in Wireless On-Demand Network Systems
and Services, 2009. WONS 2009. Sixth International Conference on.
IEEE, 2009, pp. 145–152.

[10] H. Yu, M. Kaminsky, P. Gibbons, and A. Flaxman, “Sybilguard: Defend-
ing against sybil attacks via social networks,” IEEE/ACM Transactions
on Networking (ToN), vol. 16, no. 3, pp. 576–589, 2008.

[11] L. Bilge, T. Strufe, D. Balzarotti, and E. Kirda, “All your contacts are
belong to us: automated identity theft attacks on social networks,” in
Proc. of the 18th International Conference on World wide web. ACM,
2009, pp. 551–560.

[12] R. Luce, “Connectivity and generalized cliques in sociometric group
structure,” Psychometrika, vol. 15, no. 2, pp. 169–190, 1950.

[13] R. Mokken, “Cliques, clubs and clans,” Quality and Quantity, vol. 13,
no. 2, pp. 161–173, 1979.

[14] S. Seidman and B. Foster, “A graph-theoretic generalization of the clique
concept*,” Journal of Mathematical Sociology, vol. 6, no. 1, pp. 139–
154, 1978.

[15] H. Small and B. Griffith, “The structure of scientific literatures I:
Identifying and graphing specialties,” Science studies, vol. 4, no. 1, pp.
17–40, 1974.

[16] M. Porter, J. Onnela, and P. Mucha, “Communities in networks,” Notices
of the AMS, vol. 56, no. 9, pp. 1082–1097, 2009.

[17] A. Clauset, “Finding local community structure in networks,” Physical
Review E, vol. 72, no. 2, p. 026132, 2005.

[18] F. Luo, J. Wang, and E. Promislow, “Exploring local community
structures in large networks,” Web Intelligence and Agent Systems, vol. 6,
no. 4, pp. 387–400, 2008.

[19] J. Chen, O. Zaı̈ane, and R. Goebel, “Local community identification
in social networks,” 2009 Advances in Social Network Analysis and
Mining, pp. 237–242, 2009.

[20] J. Leskovec, K. Lang, A. Dasgupta, and M. Mahoney, “Statistical prop-
erties of community structure in large social and information networks,”
in Proceeding of the 17th International Conference on World Wide Web.
ACM, 2008, pp. 695–704.

