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ABSTRACT

BEM SOLUTIONS OF MAGNETOHYDRODYNAMIC FLOW EQUATIONS
UNDER THE TIME AND AXIAL-DEPENDENT MAGNETIC FIELD

Ebren Kaya, Elif

Ph.D., Department of Mathematics

Supervisor: Prof. Dr. Münevver Tezer-Sezgin

September 2021, 167 pages

In the thesis, four different MHD duct flow problems are solved by using the Dual

Reciprocity Boundary Element Method (DRBEM) with the suitable boundary con-

ditions according to the physics of the problem. The two-dimensional, steady or

unsteady, fully-developed MHD flow of a viscous, incompressible and electrically

conducting fluid is considered in a long pipe of rectangular cross-section (duct) under

the effect of an externally applied magnetic field which is either uniform or time-

dependent or axially changing. The inductionless MHD flow with temperature de-

pendent viscosity and heat transfer is the first considered problem. In this problem,

the induced magnetic field is neglected due to the small magnetic Reynolds number

assumption. Secondly, the MHD duct flow under a time-varied external magnetic

field is studied. Then, we turn our concern to MHD flow problems under an axial-

dependent magnetic field varying in the streamwise direction (pipe-axis direction) in

the third and the fourth problems. Specifically, the inductionless MHD flow with

electric potential is considered under the effect of the axially-changing magnetic field

as the third problem. Adding the induced magnetic field to the velocity and electric

potential equations as a triple is the last MHD flow problem considered in the thesis.
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The parametrix BEM implementation is also presented for the solution of the variable

coefficient convection-diffusion type equations. The influence of the magnetic fields

on the MHD flows is investigated and simulated in terms of the velocity, temperature,

induced magnetic field and electric potential contours for several values of physical

parameters.

Keywords: Magnetohydrodynamics, Dual Reciprocity Boundary Element Method,

Parametrix BEM, Time-varied Magnetic Field, Axial-depedent Magnetic Field
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ÖZ

MAGNETOHİDRODİNAMİK KANAL AKIŞLARININ KARŞILIKLI SINIR
ELEMANLARI METODU İLE ÇÖZÜMÜ

Ebren Kaya, Elif

Doktora, Matematik Bölümü

Tez Yöneticisi: Prof. Dr. Münevver Tezer-Sezgin

Eylül 2021 , 167 sayfa

Bu tezde, dört farklı Magnetohidrodinamik (MHD) kanal akış problemi, problemin

fiziğine göre uygun sınır koşulları ile birlikte karşılıklı sınır elemanları metodu (DR-

BEM) kullanılarak çözülmüştür. Viskoz, sıkıştırılamaz ve elektrik ileten sıvının dik-

dörtgen kesitli bir kanal içerisindeki iki boyutlu, zamana bağlı veya zamandan ba-

ğımsız tam gelişmiş akışı dışarıdan uygulanan bir manyetik alan etkisinde incelen-

miştir. Akışı etkileyen manyetik alan ya tek düzedir ya zamana bağlıdır ya da eksenel

olarak değişmektedir. Ele alınan ilk problem, sıcaklığa bağlı viskoziteye ve ısı trans-

ferine sahip indüksiyonsuz MHD akışıdır. Bu problemde, indüklenen manyetik alan

küçük manyetik Reynolds sayısı varsayımından dolayı ihmal edilmiştir. İkinci prob-

lem olarak, dışarıdan uygulanan ve zamana bağlı manyetik alan etkisindeki MHD

akış çalışılmıştır. Daha sonra ise, üçüncü ve dördüncü problem olarak akım yönün-

deki eksen boyunca değişen bir manyetik alan etkisindeki MHD akış problemleri

çözülmüştür. Üçüncü problemdeki MHD akışı elektrik potansiyeline sahip fakat in-

düksiyonsuz bir akıştır. Dördüncü problemde ise üçüncü problemdeki MHD akışa

indüklenen manyetik alan eklenerek problem denklemleri hız, elektrik potansiyel ve
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indüklenen manyetik alan olarak üçlü çözülmüştür. Değişken katsayılı konveksiyon-

difüzyon tipi denklemlerin çözümü için parametre sınır elemanı metodu (parametrix

BEM) da kullanılmıştır. Uygulanan manyetik alanların MHD akışlarına etkisi, çeşitli

fiziksel problem parametre değerleri için hız, sıcaklık, indüklenen manyetik alan ve

elektrik potansiyeli açısından incelenmiş ve simülasyonları yapılmıştır.

Anahtar Kelimeler: Magnetohidrodinamik, Karşılıklı Sınır Elemanları Metodu, Para-

metre Sınır Elemanı Metodu, Zamana Bağlı Manyetik Alan, Eksene Bağlı Manyetik

Alan
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CHAPTER 1

INTRODUCTION

Fluid mechanics is a branch of mechanics that examines fluids in two subsystems as

fluid statics and fluid dynamics. Fluid statics studies the fluid at rest however, fluid

dynamics studies the behavior of fluid in motion and the effect of forces on fluid mo-

tion which comprise both gases and liquids. Since fluid dynamics includes the study

of the motion of fluid, one of the first concept is to specify that movement. The term

used to describe the physical properties of the movement of liquid is flow. The flow of

a fluid may be steady or unsteady, laminar or turbulent, compressible or incompress-

ible, viscous or inviscid, uniform or non-uniform in pipe or open-channel. A flow can

be one, two or three dimensional. Fluid dynamics has several subdisciplines includ-

ing aerodynamics which studies air and other gases in motion and hydrodynamics

studying of liquids in motion.

Fluids are integral part of our daily life. So, its application spans an extremely wide

range both in human everyday activities and in the design of modern engineering sys-

tems. Primarily, fluid dynamics has a vital role in human bodies. The heart constantly

pumps blood to all other part of the body through the arteries and veins. Air flows in

alternating directions in the lungs. Artificial hearts, dialysis and breathing machines

are designed using fluid dynamics. Similar to the piping and ducting systems of heat-

ing and air-conditioning, the piping systems for water, natural gas, and sewage are

also constructed by using the basis of fluid dynamics in the houses we live in. There

are numerous natural phenomena governed by the principles of the fluid dynamics

such as the water flow through rivers, rising the ground water to the top of the trees,

rain cycle, ocean waves, hurricanes and plate tectonics. In the design of airplanes,

rockets, submarines, wind turbines and in transportation systems the analysis of fluid
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motion plays an important role. From the variety of examples, it can be understood

that almost every area the fluid dynamics has an application. Without fluid flows,

neither life would be possible on Earth, nor technological processes that determine

the high standard of our living nowadays. Therefore, flows are vital [1].

Fluid motion is governed by the Navier-Stokes equations, a set of coupled and non-

linear partial differential equations that obey the three laws of conservation:

1) Conservation of Mass (Continuity Equation)

2) Conservation of Momentum (Newton’s Second Law)

3) Conservation of Energy (First Law of Thermodynamics of Energy Equation)

Basically, these principles state that mass, momentum and energy are conserved and

they are the fundamental aspects of fluid dynamics.

A fluid dynamics problem involves various properties of fluid such as the velocity,

temperature, pressure and density of the fluid, as functions of space and time. The

analytical solution of a fluid dynamics problem is generally impossible and scientists

require to do laboratory experiments. However, the design and construction of these

experiments are usually difficult and costly.

Magnetohydrodynamics (MHD) is a branch of fluid mechanics analyzing the flow of

an electrically conducting fluid in the presence of a magnetic field. The magnetic

field induces currents in an electrically conducting flow generating the Lorentz force.

Thus, MHD is an integrated area of fluid mechanics and electrodynamics. An exter-

nally applied magnetic field has influence upon the conducting fluid such as plasma

and liquid metal and so it changes motion of the fluid. This influence is mathemati-

cally expressed by adding the electromagnetic force in the equations of motion. The

governing MHD equations are the continuity equation, the Navier-Stokes equations

of hydrodynamics and Maxwell’s equations of electromagnetism through Ohm’s law

[2]. The non-linear and Lorentz force terms in the MHD equations make the prob-

lems difficult to study. The interaction of an electrically conducting fluid and a mag-

netic field has very important industrial, biological and engineering applications such

as MHD generators and pumps, fusion reactors, flowmeters, blood plasmas and etc.

Therefore, the numerical methods become crucial in the study the MHD equations
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with the absence of an analytical solution. MHD generators of rectangular cross-

section are widespread applications of MHD flow. They are made of tubes having

insulating walls which are cut with two electrodes placed parallel to each other and

perpendicular to insulating walls. This configuration resembles the MHD flow in a

rectangular duct [14]. In a duct, electrically conducting fluid is driven by a constant

pressure gradient. In the thesis, both steady and unsteady flows of a viscous, incom-

pressible, electrically conducting fluid are considered in a long channel of rectangular

cross-section under the influence of an externally applied magnetic field.

Computational Fluid Dynamics (CFD) enables scientists to examine the physical

characteristic of fluid flow by solving the mathematical equations using numerical

techniques without requiring laboratory experiments. CFD is particularly dedicated

to the fluids that are in motion. Nowadays, CFD has an important place as a new third

discipline together with the theoretical and experimental methods due to the growth

of computer power. This growth in CFD provides a qualitative prediction and ana-

lyzation for the fluid flow. Moreover, even larger and more complex problems of CFD

can be tackled with highly performed computer. There are many numerical methods

used to simulate the behavior of the flow in CFD. Among these are the finite element

method (FEM), the finite difference method (FDM), the finite volume method (FVM)

and the boundary element method (BEM). The methods except the BEM, depend on

domain discretization. These methods discretize the whole problem domain with el-

ement or cells having some difficulties for the curved geometries and the boundary

conditions.

Indeed, FDM uses the Taylor series expansions of the derivatives in a considered

problem to obtain the discrete system of equations. However, the application of FDM

for a problem in complex geometries is very hard since it requires a structured grid

for the method. FVM presents a discretization of the governing equations in inte-

gral form by discretizing the considered problem domain into a number of control

volumes and it balances fluxes through control volumes [3]. However, fluxes compu-

tations at irregular mesh, especially near the boundary of the problem domain cause

huge amount of effort. FEM discretizes the problem domain into smaller parts called

as finite elements. Partial differential equation is multiplied with the shape func-

tions and integrated over each element or the variational form of the PDE is obtained
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which is to be minimized [4]. But, the computational costs of the FEM is high since

the whole domain discretization requires process of very large amount of data quan-

tities. On the other hand, BEM requires only the boundary discretization that makes

it an effective alternative to domain discretization techniques such as FEM, FDM and

FVM. With the help of a fundamental solution, the BEM transforms the partial differ-

ential equations to the boundary integral equations and only the discretized obtained

boundary values provide a solution at once at the interior for the considered problem

[5]. Therefore, its computational cost is relatively small compared to the domain type

discretization methods. Generally, a fundamental solution of the whole governing

equation is not available when the partial differential equation involves time deriva-

tive, convection and some nonlinear terms. In such a case, a fundamental solution that

corresponds to not all but some terms of the governing equations is used. Therefore,

the basic integral equations can include domain integrals due to the terms not used in

the fundamental solution. For instance, in parametrix BEM, these domain integrals

are computed numerically [6], however in dual reciprocity BEM (DRBEM) they are

approximated with the coordinate matrix [7]. The DRBEM coordinate matrix is con-

structed by series of radial basis functions for once and it handles the nonlinear terms

in the equation easily. Furthermore, the coordinate matrix of the DRBEM procedure

enables one to approximate the spatial derivatives of the unknowns in the equation

and even on the boundary.

In this chapter, fundamental equations of the fluid dynamics and electrodynamics are

introduced in Section 1.1 and the governing inductionless MHD duct flow equations

are derived in terms of momentum, Maxwell’s and energy equations in Section 1.2

where the viscosity is assumed to be temperature dependent. The velocity and the

induced magnetic field equations under time varied magnetic field are obtained for

rectangular channels in Section 1.3. The equations for the velocity and the electric

potential are obtained for the case of axial-dependent magnetic field in Section 1.4

and lastly, the velocity, the induced magnetic field and the electric potential equations

again for the case of axially changing magnetic field are given in Section 1.5. Then,

in Section 1.6, literature survey related to the thesis subject takes place. Finally, the

originality of the thesis is discussed and the plan of the thesis is presented in Sections

1.7 and 1.8, respectively.
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1.1 Navier-Stokes equations

The fundamentals of fluid motion are formed by the Navier-Stokes equations. Most

of the engineering problems such as modelling the turbulent hydrodynamic problems,

motion of the star, weather movement, flow around an airfoil are characterized by the

Navier-Stokes equations. The application of the conservation of mass and the New-

ton’s second law (the conservation of momentum) to a moving medium generates the

Navier-Stokes equations. These equations are non-linear partial differential equations

in terms of flow velocity and pressure of the fluid which are difficult to solve. Analyt-

ical solutions are available only for some simplified physical assumptions in special

type regions.

The two-dimensional, unsteady, laminar flow of an incompressible, viscous fluid

without body forces are given as [8]

∇ · u = 0 (1.1)

ρ(
∂u

∂t
+ (u · ∇)u) = −∇p+ µ∇2u+ ρf (1.2)

where u = (u, v, 0) is the velocity field of the fluid, p is the pressure of the fluid and

ρf = (ρfx, ρfy) denotes the body forces acting on the flow. The flow is driven by the

pressure gradient ∇p, ρ and µ are the flow density and the dynamic viscosity of the

fluid, respectively.

The non-dimensional variables to obtain dimensionless Navier-Stokes equations for

an incompressible fluid with a constant viscosity are

x′ =
x

L0

, y′ =
y

L0

, t′ =
tvc
L0

, u′ =
u

vc
, p′ =

p

v2
cρ

(1.3)

with a characteristic length L0 and the characteristic velocity vc for the region fluid

occupied, [9].

Substituting these quantities into equations (1.1) and (1.2) gives the non-dimensional

Navier-Stokes equations (dropping the prime ’′’ notations) as

∇ · u = 0 (1.4)

∂u

∂t
+ (u · ∇)u = −∇p+ ν∇2u+ f (1.5)
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where ν is the kinematic viscosity and related with the Reynolds number Re as

ν =
1

Re

=
µ

ρvcL0

.

The dimensionless quantity Reynolds number Re characterizes the flow of the fluid.

When Re < 2100 the viscous forces are dominant and generally the flow regime is

laminar which means the fluid has a smooth behavior. Otherwise, the flow is turbu-

lent. In this thesis, only the laminar flow will be considered.

Mathematical formulation for the velocity and pressure of a fluid flow determine the

behavior of the flow under different physical conditions. This gives great importance

in the designing of many technological equipments in which fluid flows. Navier-

Stokes equations have aroused a great deal interest since they are the fundamental

tools of the fluid flow. Therefore, the numerical solution of the Navier-Stokes equa-

tions have been studied widely in literature. Chorin [10] has used the FDM to solve

the velocity and pressure of the fluid for the time-dependent equations. Pereira et

al. [11] have used fourth-order-accurate scheme for the solution of the Navier-Stokes

equations in the velocity-pressure form. They have performed their solution with

an implicit Newton-Krylow matrix-free method for stationary problems. For the un-

steady flow, they have used a standart fourth-order Runge-Kutta method. Elman [12]

has described new strategies for the solution of the system arising from the discretiza-

tion of the incompressible Navier-Stokes equations. Then, for the solution of the Eu-

ler and Navier–Stokes equations, discontinuous Galerkin technique has been used in

[13].

When an external magnetic field B acts on the fluid medium, the balance of linear

momentum is written as

ρ(
∂u

∂t
+ (u · ∇)u) = −∇p+ µ∇2u+ (J ×B) (1.6)

where J ×B is the Lorentz force coupling the mechanical and electrodynamic states

of the system. The interaction of the moving fluid with the magnetic field induces an

electric field u ×B driving the electric current J . The current density in a moving

electrically conducting fluid is given by Ohm’s law J = σ(E + u×B) where E is

the electrical field. Electrical field is irrotational (∇ × E = 0) for a closed medium

and it can be expressed by a scalar potential Φ as ∇Φ = −E. Applying the curl-

operator on Ohm’s law for moving fluids and then substitute the electric field and
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the current density by using Faraday’s law ∇ × E = −∂B
∂t

and Ampere’s law for

slowly varying electromagnetic processes ∇ ×B = µ0J , [2] and the fact that B is

solenoidal∇ ·B = 0, we get the magnetic induction equation

∂B

∂t
+ (u · ∇)B =

1

µ0σ
∇2B + (B · ∇)u (1.7)

where µ0 and σ are the magnetic permeability and the electrical conductivity of the

fluid. Thus, the coupled systems of Navier-Stokes equation (1.6) including Lorentz

force and the magnetic induction equation (1.7) form the basis for the magnetohydro-

dynamic flow.

In the thesis, all the considered MHD flows are viscous, incompressible and electri-

cally conducting in a long pipe of rectangular cross-section. Inductionless MHD flow

and heat transfer is considered in Section 1.2 in terms of the momentum and energy

equations. The flow is assumed to be steady and under the influence of a uniform

magnetic field. The induced magnetic field is neglected due to the small Reynolds

number, however the Hall effect, viscous and Joule dissipations are taken into con-

sideration. The MHD flow under a time-varied external magnetic field is studied in

Section 1.3 in terms of the velocity and induced magnetic field equations. In this

MHD flow problem, the flow is unsteady in a long pipe and it is fully-developed.

In Section 1.4, inductionless MHD flow is considered under the influence of axial-

dependent magnetic field. Some magnets are placed on the pipe-axis and they deter-

mine the strength of the applied magnetic field and constitute electromagnetic force

in the steady flow. The induced magnetic field is neglected due to the small magnetic

Reynolds number, however the electric potential from the divergence of Ohm’s law is

taken into consideration. Finally, the induced magnetic field equation accompanying

to the velocity and electric potential equations for the case of axially changing applied

magnetic field are studied in Section 1.5.

1.2 Inductionless MHD flow and heat transfer with temperature dependent vis-

cosity

The fundamentals of the fluid motion depend on the Navier-Stokes equations. When

the fluid flow applications are considered such as chemical, reactor, nuclear reactor,
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cooling of electronic systems or heat exchangers for an electrically conducting fluid

then, the magnetic effects together with the heat transfer must be taken into consid-

eration. The temperature equation is more convenient form of the energy equation in

fluid dynamics.

In this section, a steady flow of a viscous, incompressible, electrically conducting

fluid is considered in a long channel of rectangular cross-section together with its

heat transfer. The physical configuration of the flow is shown in Figure 1.1. A uni-

form magnetic field with intensity B0 is applied to the duct plane perpendicular to the

axis of the channel, i.e. z-axis. A constant pressure gradient −dp
dz

is applied in the

z−direction and the induced magnetic field is neglected due to the small magnetic

Reynolds number assumption. That means, induced magnetic field generated by mo-

tion of an electrically conducting fluid is negligible compared to externally applied

magnetic field B0. The viscosity of the fluid is assumed to varying with the temper-

ature. The magnetic effects on the flow together with the heat transfer must be taken

into consideration in some flow applications such as chemical reactor, nuclear reactor,

cooling of electronic systems and heat exchangers.

x

y

z

a

b

B0

flow

Ω

Figure 1.1: Physical configuration of the problem

Both the flow and the temperature are assumed to be steady and fully-developed

along the channel. Further, the viscosity of the fluid is exponentially varying with
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the temperature. The Joule and viscous dissipations are not neglected as well as the

Hall effect which arises from the strong effect of magnetic force and necessarily,

it must be taken into account. Consequently, the flow is only in the channel axis

direction with the velocity u = (0, 0, w) varying in the duct as w = w(x, y) for

(x, y) ∈ Ω = [0, a]× [0, b].

The governing equations of the problem are obtained by adding the electromagnetic

Lorentz force f = J ×B [14] to the momentum equations. Thus, the Navier-Stokes

equations in (1.2) with a variable viscosity is

ρ(
∂u

∂t
+ (u · ∇)u) = −∇p+∇ · (µ∇u) + J ×B (1.8)

whereB = (Bx, By, 0) with intensity B0 = (B2
x +B2

y)
1/2 denotes the magnetic field

perpendicular to the channel axis lying on the duct plane, and J the electric current

density of the fluid. A variable viscosity is included to boost the heat transfer, and the

viscosity µ is chosen depending on the temperature exponentially as given in [15]

µ = µce
−b0(T−Tw) (1.9)

where µc is the viscosity coefficient at T = Tw, and b0 is a constant. Choosing such a

dynamic viscosity in (1.9) weakens the convection dominance of the flow due to the

high temperature. Adding the Hall current impact develops the physical properties

of the system since the Hall current affects the magnetic force term by altering the

magnitude and the direction of the current density.

Ohm’s law with the Hall effect is [15]

J = σ(u×B − β(J ×B)) (1.10)

where σ is the electrical conductivity and β is the Hall factor of the fluid. Solving

(1.10) for J gives [15]

J ×B =
σB2

0

1 +m2
w(x, y)k (1.11)

where m = σβB0 is the Hall parameter and hence J ×B has only z component to

be added to the equation (1.8). As a result, the terms on the left hand side of equation

(1.8) vanish since the flow motion is steady in the z-direction and (u · ∇) = 0.

Therefore, the Navier-Stokes equations become [15]

∂

∂x
(µ
∂w

∂x
) +

∂

∂y
(µ
∂w

∂y
)− ∂p

∂z
− σB2

0

1 +m2
w(x, y) = 0 (1.12)
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with the no-slip velocity assumption

w = 0 on ∂Ω. (1.13)

On the other hand, conservation of energy principle is taken into consideration for a

general form based on the temperature as [16]

ρcp(
∂T

∂t
+ u · ∇T ) = k∇2T + q′′′ (1.14)

where cp, k are the specific heat capacity, the thermal conductivity of the fluid, re-

spectively and q′′′ is the heat source. A steady problem and a velocity vector having

only z−component define an energy equation with viscous and Joule dissipation as

[15]

ρcpw
∂T

∂z
= k∇2T + µ[(

∂w

∂x
)2 + (

∂w

∂y
)2] +

σB2
0

1 +m2
w2 (1.15)

where the last two terms respectively stand to represent the viscous and Joule dissi-

pations. Further, consideration of a hydrodynamically and thermally fully-developed

flow the term
∂T

∂z
in energy equation can be represented for H1 thermal boundary

condition as
∂T

∂z
=
dTm
dz

as in [17] and this term takes a place in the non-dimensional

variable of the temperature. This condition is preferred in many applications such as

heat exchanger and resistance heating. The temperature equation for our problem is

considered with the boundary condition as T = Tw on the duct.

The non-dimensional variables are used to nondimensionalize the equation (1.15)

x′ =
x

a
, y′ =

y

a
, w′ =

µcw

−dp
dz
a2
, T =

k(T − Tw)

ρcpwma2 dTm
dz

, µ′ =
µ

µc
(1.16)

where a denotes the characteristic length of the rectangular cavity. Then, dimension-

less momentum and energy equations on the domain Ω = [0, 1]× [0, b/a] become

∂

∂x
(µ
∂w

∂x
) +

∂

∂y
(µ
∂w

∂y
) = −1 +

M2

1 +m2
w (1.17)

∇2T +Brµ
[(∂w
∂x

)2
+
(∂w
∂y

)2]
+
M2Br

1 +m2
w2 =

w

wm
(1.18)

where

wm =
1

L

∫
Ω

wdΩ, µ = e−BT (1.19)
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and L = b/a is the aspect ratio, m, B, Br and M are the dimensionless Hall param-

eter, viscosity parameter, Brinkmann number and the Hartmann number, respectively

and their definitions are

m = σβB0, B =
b0ρcpwma

2 dTm
dz

k
, Br =

−dp
dz

kρcp
dTm
dz
wm

and M2 =
σB2

0a
2

µc
. (1.20)

These equations in terms of the velocity and the temperature are solved using the

parametrix BEM and DRBEM approaches to examine the behavior of the induction-

less MHD flow and heat transfer with temperature dependent viscosity under a verti-

cally applied uniform magnetic field in Chapter 3, Section 3.1. The numerical results

are presented in Section 4.1 of Chapter 4. Then, we turn our concern to the unsteady

MHD flow equations which are derived in the following section.

1.3 MHD duct flow with time-varied external magnetic field

The unsteady MHD flow is governed by the Navier-Stokes equations including Lorentz

force [18] which are coupled with Maxwell’s equations of electromagnetism through

Ohm’s law. Maxwell’s equations are

∇ ·E =
q

ε0
Gauss’s Law

∇ ·B = 0 Solenoidal nature of B

∇×E = −∂B
∂t

Faraday’s Law

∇×B = µ0J + µ0ε0
∂E

∂t
Ampere’s Law

(1.21)

where ε0, µ0 and q denote the permittivity of vacuum, the magnetic permeability of

vacuum, and total electric charge density in the fluid, respectively. E = (Ex, Ey, Ez)

is the electric field,B = (Bx, By, Bz) is the magnetic field.

Ohm’s law expresses the current density in a moving conductor under an external

magnetic field [2, 18]

J = σ(E + u×B) (1.22)

where σ is the electrical conductivity of the fluid.
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Taking both the curl of the Ohm’s law and Ampere’s law, respectively brings

∇× J = σ(∇×E) + σ(∇× (u×B)) (1.23)

and

∇× (∇×B) = ∇× (µ0J + µ0ε0
∂E

∂t
). (1.24)

Equation (1.24) equals

∇× (∇×B) = µ0(∇× J) + µ0ε0(∇× ∂E

∂t
). (1.25)

For a vector fieldA, the curl of the curl is defined as

∇× (∇×A) = ∇(∇ ·A)−∇2A. (1.26)

Both the equality in (1.26) and Solenoidal nature of B (∇ · B = 0) turn equation

(1.25) into

−∇2B = µ0(∇× J) + µ0ε0(∇× ∂E

∂t
). (1.27)

which equals

∇× J = − 1

µ0

∇2B − ε0(∇× ∂E

∂t
). (1.28)

Equating (1.23) and (1.28) to each other yields

σ(∇×E) + σ(∇× (u×B)) = − 1

µ0

∇2B − ε0(∇× ∂E

∂t
). (1.29)

Then, applying Faraday’s law to the first term of the above equation gives

σ(−∂B
∂t

) + σ(∇× (u×B)) = − 1

µ0

∇2B − ε0(∇× ∂E

∂t
) (1.30)

which is rearranged as

1

µ0

∇2B = σ(
∂B

∂t
)− σ(∇× (u×B))− ε0(∇× ∂E

∂t
). (1.31)

When the time-varying magnetic field applies in x-direction Bx becomes B0(t) =

B0f(t) where B0 is the intensity of the applied magnetic field at t = 0 and f(t) is the

function carrying time variation. The component of the velocity, induced magnetic

field and the electric potential vectors are such thatB = (B0(t), 0, Bz), u = (0, 0, Vz)
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and E = (0, 0, Ez) in two-dimensional case for a fully-developed flow (
∂

∂z
= 0).

That is, the only unknowns are Vz(x, y) and Bz(x, y) in the pipe-axis direction (z-

direction). Therefore, the last term of equation (1.31) equals

∇× ∂E

∂t
=

∣∣∣∣∣∣∣∣
i j k

∂
∂x

∂
∂y

∂
∂z

0 0 ∂Ez

∂t

∣∣∣∣∣∣∣∣ = i
∂

∂y
(
∂Ez
∂t

)− j ∂
∂x

(
∂Ez
∂t

) + k · 0. (1.32)

The curl of (u×B) in equation (1.31) is

∇× (u×B) =

∣∣∣∣∣∣∣∣
i j k

∂
∂x

∂
∂y

∂
∂z

0 B0(t)Vz 0

∣∣∣∣∣∣∣∣ = i
∂

∂z
(−B0(t)Vz)− j · 0 + k(B0(t)

∂Vz
∂x

)

(1.33)

since

u×B =

∣∣∣∣∣∣∣∣
i j k

0 0 Vz

B0(t) 0 Bz

∣∣∣∣∣∣∣∣ = i · 0− j(−B0(t)Vz) + k · 0. (1.34)

Therefore, the k−th component of equation (1.31)

1

µ0

∇2Bz = σ
∂Bz

∂t
− σ(B0(t)

∂Vz
∂x

)− 0 (1.35)

and equally in dimensional form

1

µ0σ
∇2Bz +B0(t)

∂Vz
∂x

=
∂Bz

∂t
. (1.36)

To obtain the velocity equation, firstly the total force per unit volume acting on the

conducting fluid is considered as

f = qE + J ×B (1.37)

from which the term qE is disregarded since the speed of electrons in a conducting

fluid is not greater than the speed of light [19]. Thus, the Lorentz force becomes

f = J ×B. (1.38)
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Insertion of Ampere’s law from equation (1.21) into the Lorentz force (1.38) gives

f = (
1

µ0

(∇×B)− ε0
∂E

∂t
)×B

=
1

µ0

(∇×B)×B − ε0
∂E

∂t
×B.

(1.39)

The curl of the curl ofB, the first term in equation (1.39) is

(∇×B)×B =

∣∣∣∣∣∣∣∣
i j k

∂Bz

∂y
−∂Bz

∂x
0

B0(t) 0 Bz

∣∣∣∣∣∣∣∣ = i(−Bz
∂Bz

∂x
)− j(Bz

∂Bz

∂y
) + k(B0(t)

∂Bz

∂x
)

(1.40)

since

∇×B =

∣∣∣∣∣∣∣∣
i j k

∂
∂x

∂
∂y

∂
∂z

B0(t) 0 Bz

∣∣∣∣∣∣∣∣ = i
∂Bz

∂y
− j ∂Bz

∂x
+ k · 0. (1.41)

Then, the second term on the Lorentz force in (1.39) is

∂E

∂t
×B =

∣∣∣∣∣∣∣∣
i j k

0 0 ∂Ez

∂t

B0(t) 0 Bz

∣∣∣∣∣∣∣∣ = i · 0 + j(B0(t)
∂Ez
∂t

) + k · 0. (1.42)

Thus, the k-th component of the Lorentz force includes the term
1

µ0

B0(t)
∂Bz

∂x
only.

Now, the momentum equation (Navier-Stokes equation) for the unsteady flow is

ρ(
∂u

∂t
+ (u · ∇)u) = −∇p+ ρν∇2u+ J ×B. (1.43)

The k-th component of the above momentum equation becomes with equations (1.39)

and (1.40)

ρ
∂Vz
∂t

= −∂p
∂z

+ ρν∇2Vz +
1

µ0

B0(t)
∂Bz

∂x
(1.44)

which equals in dimensional form

ρν∇2Vz +
1

µ0

B0(t)
∂Bz

∂x
=
∂p

∂z
+ ρ

∂Vz
∂t

. (1.45)
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Thus, the coupled dimensional equations for the velocity Vz and induced magnetic

field Bz are equations (1.45) and (1.36)

ρν∇2Vz +
1

µ0

B0(t)
∂Bz

∂x
=
∂p

∂z
+ ρ

∂Vz
∂t

(1.46)

1

µ0σ
∇2Bz +B0(t)

∂Vz
∂x

=
∂Bz

∂t
(1.47)

under the applied time-varying magnetic field B0(t) in x-direction.

The velocity and induced magnetic field equations (1.46) and (1.47) are nondimen-

sionalized by taking dimensionless variables as

x′ =
x

L0

, y′ =
y

L0

, B′ =
Bz

vcµ0
√
σµ

, V ′ =
Vz
vc
,
∂p

∂z
= − µ

L2
0

vc,

vc = −L
2
0

µ

∂p

∂z
, µ = ρν, t′ =

t

L0

vc

(1.48)

where L0 and vc are the characteristic length and characteristic velocity (mean axis

velocity) of the problem.

Substituting variables (1.48) into equations (1.46)-(1.47) yields

ρν
vc
L2

0

∇2V ′ +
1

µ0

B0(t)µ0vc

√
σµ

L0

∂B′

∂x′
= − µ

L2
0

vc + ρvc
∂V ′

∂t′
vc
L0

(1.49)

1

µ0σ
µ0vc

√
σµ

L2
0

∇2B′ +B0(t)
vc
L0

∂V ′

∂x′
= µ0vc

√
σµ

∂B′

∂t′
vc
L0

. (1.50)

Simplification gives

∇2V ′ +B0(t)L0

√
σ
√
µ

∂B′

∂x′
= −1 +

L0

ν
vc
∂V ′

∂t′
(1.51)

∇2B′ +B0(t)L0

√
σ
√
µ

∂V ′

∂x′
= vcL0σµ0

∂B′

∂t′
. (1.52)

Finally, the non-dimensional equations take the form by dropping the prime notations

in the above equations as

∇2V +Mf(t)
∂B

∂x
= −1 +Re

∂V

∂t
(1.53)

∇2B +Mf(t)
∂V

∂x
= Rm

∂B

∂t
. (1.54)

where Re =
vcL0

ν
, Rm = vcL0σµ0 and M =

L0B0

√
σ

√
ρν

are the Reynolds number,

magnetic Reynolds number and Hartmann number, respectively.
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We can equivalently write,

∇2V +M
∂B

∂x
= −1 +Re

∂V

∂t
(1.55)

∇2B +M
∂V

∂x
= Rm

∂B

∂t
(1.56)

where M = Mf(t).

When Reynolds number Re and magnetic Reynolds number Rm are assumed to be

one (according to the physics of the problem), the MHD equations take the form

∇2V +M
∂B

∂x
= −1 +

∂V

∂t
(1.57)

∇2B +M
∂V

∂x
=
∂B

∂t
. (1.58)

When the applied magnetic field is oblique, the MHD duct flow equations can be

modified by doing the necessary changes in the vector definition of the magnetic

field B as B = (B0(t)sinα,B0(t)cosα,Bz) where α is the angle between the ap-

plied magnetic field and the positive y-axis. Following equations from (1.37) through

(1.45) and (1.22) through (1.36) bring the dimensional velocity and induced magnetic

field equations as

ρν∇2Vz +
1

µ0

(B0(t)sinα
∂Bz

∂x
+B0(t)cosα

∂Bz

∂y
) =

∂p

∂z
+ ρ

∂Vz
∂t

(1.59)

1

µ0σ
∇2Bz +B0(t)sinα

∂Vz
∂x

+B0(t)cosα
∂Vz
∂y

=
∂Bz

∂t
. (1.60)

Substituting dimensionless variables (1.48) in equations (1.59) and (1.60) and the

dropping the prime notations yields

∇2V +Mf(t)sinα
∂B

∂x
+Mf(t)cosα

∂B

∂y
= −1 +Re

∂V

∂t
(1.61)

∇2B +Mf(t)sinα
∂V

∂x
+Mf(t)cosα

∂V

∂y
= Rm

∂B

∂t
. (1.62)

These equations are solved by using the DRBEM. The solution is proceed iteratively

until the desired time level tn with an initial guess for the velocity and induced mag-

netic field as zero. This procedure is explained in detail in Section 3.2, Chapter 3.

The numerical results are presented in Section 4.2, Chapter 4.
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1.4 Inductionless MHD flow and electric potential with variably conducting

walls under axial-dependent magnetic field

In this section, we consider the two-dimensional laminar MHD flow of a viscous and

incompressible fluid in an infinitely long pipe of rectangular cross-section which is

placed in a magnetic field B = (B0(z)cosα,B0(z)sinα, 0) as in Figure 1.2. The

axially changing magnetic field is B0(z) = B0g(z) where B0 is the intensity of the

applied magnetic field and g(z) is the function determining the strength of the applied

magnetic field along the z-axis, i.e. pipe-axis.

x

y

z

z = z1

z = z2 = 0

z = z3

z = z4

B0(z)

Figure 1.2: Physical configuration of axially-changing MHD flow

The MHD flow is considered in two-dimensional ducts located at some points z1,

z2,..., zn on the pipe-axis. On each cross-section at zi, the external magnetic field

B0(z) is applied as a function of zi. The flow is assumed to be fully-developed be-

tween two fixed z-values which has only one component in the pipe-axis direction

varying in the ducts xy-plane at these fixed points zi of the axis. Physically, it may

be considered as the fully-developed flow between two magnets placed on the pipe-
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axis direction. The fluid is electrically conducting and it is subjected to an applied

magnetic field but changing at the points where the magnets placed on the pipe-axis.

However, in this section the induced magnetic field is neglected due to the small mag-

netic Reynolds number.

The steady MHD flow equations are derived from the Maxwell’s equations and Navier-

Stokes equations including Lorentz force [18]. Here, the MHD flow equations are

constructed for the steady flow under externally applied axial-dependent magnetic

field. Therefore, the first term which is the time derivative in equation (1.43) drops,

and the continuity and momentum equations for steady flow become

∇ · u = 0 (1.63)

ρ(u · ∇)u = −∇p+ ρν∇2u+ J ×B (1.64)

where the velocity and the magnetic field for a two-dimensional MHD flow are rep-

resented by the velocity u = (0, 0, w(x, y)) and the magnetic field

B = (B0(z)cosα,B0(z)sinα, 0), respectively. The external magnetic field applies

with an angle α made with the positive x-axis.

The first term in (1.64), (u · ∇) is clearly zero since the first two components of the

velocity vector are zero and ∂w(x, y)/∂z = 0 for a fully-developed flow. The Lorentz

force in (1.64) is computed from the Ohm’s law [20] which is

J = σ(−∇Φ + u×B) (1.65)

by taking J ×B since E = −∇Φ where Φ defines a scalar electric potential and the

electric field is irrotational∇×E = 0. Now,

J = σ(−∂Φ

∂x
− (B0(z)sinα)w,−∂Φ

∂y
+ (B0(z)cosα)w,−∂Φ

∂z
) (1.66)

since

u×B =

∣∣∣∣∣∣∣∣
i j k

0 0 w

B0(z)cosα B0(z)sinα 0

∣∣∣∣∣∣∣∣
= i((−B0(z)sinα) · w)− j(−(B0(z)cosα) · w) + k · 0.

(1.67)
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Thus,

J ×B =

∣∣∣∣∣∣∣∣∣
i j k

σ(−∂Φ

∂x
− (B0(z)sinα)w) σ(−∂Φ

∂y
+ (B0(z)cosα)w) σ(−∂Φ

∂z
)

B0(z)cosα B0(z)sinα 0

∣∣∣∣∣∣∣∣∣
= i((B0(z)sinα)σ

∂Φ

∂z
)− j((B0(z)cosα)σ

∂Φ

∂z
))

+ k(σ(B0(z)sinα)(−∂Φ

∂x
− (B0(z)sinα)w)

− σ(B0(z)cosα)(−∂Φ

∂y
+ (B0(z)cosα)w)).

(1.68)

Then, the k−th component of the momentum equation (1.64) is

ρν∇2w − (B0(z))2σw =
∂p

∂z
+ σ(B0(z)sinα)

∂Φ

∂x
− σ(B0(z)cosα)

∂Φ

∂y
. (1.69)

In order to get non-dimensional equations, introduce the following non-dimensional

parameters as

x′ =
x

L0

, y′ =
y

L0

, w′ =
w

vc
, ρνvc = −L2

0

∂p

∂z
, Φ′ =

Φ

µ0vcL0H0

(1.70)

where H0 is the strength of the magnetic field having a constitute relation with B0 as

B0 = µ0H0. Substituting equation (1.70) into equation (1.69) brings

ρν
vc
L2

0

∇2w′ − (B0(z))2σvcw
′ = −ρνvc

L2
0

+ σ(B0(z)sinα)µ0vcL0H0
1

L0

∂Φ′

∂x′
− σ(B0(z)cosα)µ0vcL0H0

1

L0

∂Φ′

∂y′
.

(1.71)

Necessary simplification and dropping prime notations yield the dimensionless ve-

locity equation as

∇2w − (Mg(z))2w = −1 +M2g(z)sinα
∂Φ

∂x
−M2g(z)cosα

∂Φ

∂y
(1.72)

since B0 = µ0H0 and M =
L0B0

√
σ

√
ρν

.

Furthermore, the non-dimensional form of the electric current equation is obtained

from the Ohm’s law (1.65). The conservation of current ∇ · J = 0 gives the electric

potential equation for the flow

0 = σ(∇ · (−∇Φ) +∇ · (u×B)) (1.73)
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which equals

0 = σ(−∇2Φ +∇ · (u×B)). (1.74)

Since the vector (u×B) is calculated in (1.67), equation (1.74) becomes

∇2Φ = −B0(z)sinα
∂w

∂x
+B0(z)cosα

∂w

∂y
. (1.75)

In order to get non-dimensional equation substituting equation (1.70) into equation

(1.75) brings

µ0L0H0
vc
L2

0

∇2Φ′ = −B0(z)sinα
vc
L0

∂w′

∂x′
+B0(z)cosα

vc
L0

∂w′

∂y′
. (1.76)

Necessary simplifications and dropping prime notations yield the dimensionless elec-

tric potential equation as

∇2Φ = −g(z)sinα
∂w

∂x
+ g(z)cosα

∂w

∂y
. (1.77)

Consequently, the non-dimensional flow and electric potential are

∇2w − (Mg(z))2w = −1 +M2g(z)sinα
∂Φ

∂x
−M2g(z)cosα

∂Φ

∂y
(1.78)

∇2Φ = −g(z)sinα
∂w

∂x
+ g(z)cosα

∂w

∂y
. (1.79)

When the magnetic field is applied vertically, with an angle α = π/2 with the x-axis,

then the equations become

∇2w − (Mg(z))2w = −1 +M2g(z)
∂Φ

∂x
(1.80)

∇2Φ = −g(z)
∂w

∂x
. (1.81)

The momentum and electric potential equations are reduced to a simplified form un-

der a uniform applied magnetic field by taking the function g(z) as 1. Then, the MHD

flow equations become

∇2w −M2w = −1 +M2∂Φ

∂x
(1.82)

∇2Φ = −∂w
∂x

. (1.83)

Both types of magnetic field either uniform or axially changing are considered in the

thesis.
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The obtained equations (1.80)-(1.81) and (1.82)-(1.83) are the mathematical mod-

els of the fully-developed MHD flow of a viscous and incompressible fluid along a

long pipe of rectangular cross-section where the applied magnetic field changes in the

pipe-axis direction. The velocity and electric potential equations are solved with suit-

able boundary conditions on the walls of the rectangular ducts. The no-slip velocity

condition is imposed for the flow and the walls are both assumed to be electrically

non-conducting and conducting (in general variably conducting). The conductance

depends on the material of the duct with a ratio c which can be different at each wall.

Therefore, the boundary conditions are

w(x,±1) = w(±1, y) = 0 no-slip velocity

and

∂Φ

∂y
(x,±1) =

∂Φ

∂x
(±1, y) = 0 non-conducting walls

(1.84)

or

w(x,±1) = w(±1, y) = 0 no-slip velocity

and

± ∂Φ

∂y
(x,±1) = c

∂2Φ

∂x2
(x,±1)

± ∂Φ

∂x
(±1, y) = c

∂2Φ

∂y2
(±1, y)

}
variably conducting walls.

(1.85)

The suitable boundary conditions for the electric potential is defined by the conductiv-

ity ratio c times the second derivative of Φ, itself. This makes the solution procedure

of the non-dimensional equations as iteratively to generate the required Neumann

type boundary conditions of Φ, with an initial guess as Φ0 = 0. The solution is iter-

ated till the convergence criteria is satisfied with a tolerance as explained in detail in

Chapter 3, Section 3.3. The numerical results and the discussion are given in Chapter

4, Section 4.3.

1.5 MHD duct flow with axially-changing external magnetic field

In this section, finally the MHD duct flow in a long pipe of rectangular cross-section

is considered under the influence of axially changing magnetic field again as in the
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previous section. With the interaction of the electrically conducting fluid and mag-

netic field B0(z) applied vertically to the duct, an induced magnetic field Bz(x, y) is

introduced inside the fluid through the pipe-axis direction. Axial dependent magnetic

field is written as B0(z) = B0g(z) where B0 is the constant intensity and g(z) de-

notes the function determining the strength of the applied magnetic field. The flow

is laminar and steady and, the fluid is incompressible, viscous, electrically conduct-

ing and pumped through the pipe with a constant pressure gradient. The velocity u

and the magnetic field B have unknown components only in the pipe-axis (z-axis)

direction as u = (0, 0, Vz(x, y)) and B = (0, B0(z), Bz(x, y)). The flow is as-

sumed to be fully-developed between two fixed z-values, varying only in the ducts

xy-plane at these zi points of the axis. The velocity and the induced magnetic field

are changing in the two-dimensional ducts but also influenced from the magnets lo-

cated at the points along the pipe-axis. The pipe-axis dependent function is taken as

g(z) =
1

1 + e−z/0.15
. Thus, three-dimensional effects are caused by variations of this

applied magnetic field B0(z) in the pipe-axis direction between two values of z in

which the flow is assumed to be fully-developed. This case formulates and results in

an extention to the equations obtained in the previous section 1.4 in the sense that in-

duced magnetic field equation is also involved. The flow is represented by the vector

u = (0, 0, Vz(x, y)) and the electric potential is E = (0, 0, Ez(x, y)).

To obtain the MHD flow equations in terms of velocity, induced magnetic field and

electric potential, a similar procedure is used as in the previous sections as using

momentum equations, Maxwell’s equations and Ohm’s law. Firstly, to get the induced

magnetic field equation, both the curl of the Ampere’s law and Ohm’s law are used

simultaneously for the steady flow which are respectively as

∇× (∇×B) = ∇× (µ0J) (1.86)

being equal to

−∇2B = µ0(∇× J) (1.87)

and ∇× J from the Ohm’s law

∇× J = σ(∇×E) + σ(∇× (u×B)). (1.88)
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When ∇× J ’s are equated from the above two equations (1.87) and (1.88) we get

− 1

µ0

∇2B = σ(∇×E) + σ(∇× (u×B)). (1.89)

Application of the Faraday’s law to the first term on the right hand side of equation

(1.89) which is

σ(∇×E) = σ(−∂B
∂t

). (1.90)

However, since the flow is steady in the pipe-axis direction the term
∂B

∂t
drops and

equation (1.89) becomes

− 1

µ0

∇2B = σ(∇× (u×B)). (1.91)

Since

u×B =

∣∣∣∣∣∣∣∣
i j k

0 0 Vz(x, y)

0 B0(z) Bz(x, y)

∣∣∣∣∣∣∣∣ = i(−B0(z) · Vz(x, y))− j · 0 + k · 0 (1.92)

the term on the right hand side of equation (1.91) is

∇× (u×B) =

∣∣∣∣∣∣∣∣
i j k

∂
∂x

∂
∂y

∂
∂z

−B0(z) · Vz(x, y) 0 0

∣∣∣∣∣∣∣∣
= i · 0− j · 0 + k(B0(z)

∂Vz(x, y)

∂y
).

(1.93)

Therefore, the k-th component of the induced magnetic field equation is

1

µ0σ
∇2Bz +B0(z)

∂Vz
∂y

= 0. (1.94)

The derivation of the velocity equation of the MHD flow is obtained from the mo-

mentum equation (1.64) where the force term is Lorentz force

f =
1

µ0

(∇×B)×B. (1.95)

The k−th component of the momentum equation is

0 = −∂p
∂z

+ ρν∇2Vz +
1

µ0

(B0(z)
∂Bz

∂y
−B0(z)

∂B0(z)

∂z
) (1.96)
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since

(∇×B)×B =

∣∣∣∣∣∣∣∣
i j k

∂Bz

∂y
− ∂B0(z)

∂z
∂Bz

∂x
0

0 B0(z) Bz

∣∣∣∣∣∣∣∣ (1.97)

=i(−Bz
∂Bz

∂x
)− j(Bz(

∂Bz

∂y
− ∂B0(z)

∂z
)) + k(B0(z)(

∂Bz

∂y
− ∂B0(z)

∂z
))

(1.98)

where

∇×B =

∣∣∣∣∣∣∣∣
i j k

∂
∂x

∂
∂y

∂
∂z

0 B0(z) Bz

∣∣∣∣∣∣∣∣ = i(
∂Bz

∂y
− ∂B0(z)

∂z
)− j(

∂Bz

∂x
) + k · 0. (1.99)

Rearrangement of equation (1.96) is

ρν∇2Vz +
1

µ0

(B0(z)
∂Bz

∂y
) =

∂p

∂z
+

1

µ0

(B0(z)
∂B0(z)

∂z
). (1.100)

To nondimensionalize the equations, introduce the following non-dimensional param-

eters as

x′ =
x

L0

, y′ =
y

L0

, z′ =
z

L0

, V ′ =
Vz
vc
, B′ =

Bz

µ0vc
√
µσ

, vc = −L
2
0

µ

∂p

∂z
. (1.101)

First, the non-dimensional form of the induced magnetic field is

1

µ0σ

vcµ0
√
σµ

L2
0

∇2B′ +B0g(z)
vc
L0

∂V ′

∂y′
= 0 (1.102)

equals to

∇2B′ +B0L0

√
σ

µ
g(z)

∂V ′

∂y′
= 0 (1.103)

dropping the prime notations and using the definition of Hartmann number as M =

B0L0

√
σ

µ
the induced magnetic field equation becomes

∇2B +Mg(z)
∂V

∂y
= 0. (1.104)

Then, the dimensionless velocity equation is

µ
vc
L2

0

∇2V ′ +
1

µ0

(B0g(z)vcµ0

√
σµ

L0

∂B′

∂y′
) =
−vcµ
L2

0

+B0g(z)
1

µ0L0

(B0
∂g(z)

∂z′
)

(1.105)
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which equals to

∇2V ′ +

√
σ

µ
L0B0g(z)

∂B′

∂y′
= −1 +B2

0g(z)
L0

µ0vcµ

∂g(z)

∂z′
(1.106)

dropping the prime notations again and using the Hartmann number M bring the

equation to the form

∇2V +Mg(z)
∂B

∂y
= −1 +M2g(z)

1

Rm

∂g(z)

∂z
(1.107)

where magnetic Reynolds number Rm is Rm = L0σµ0vc.

Therefore, the coupled steady MHD flow equations in terms of velocity V (x, y) and

induced magnetic field B(x, y) is

∇2V +Mg(z)
∂B

∂y
= −1 +

M2

Rm

g(z)
∂g(z)

∂z
(1.108)

∇2B +Mg(z)
∂V

∂y
= 0. (1.109)

When the electric potential Φ(x, y) is required, it can be derived by using the Ohm’s

law, J = σ(−∇Φ +u×B). The conservation of the electric current∇·J = 0 gives

the electric potential equation of the flow as

∇ · J = 0 = σ(∇ · (−∇Φ) +∇ · (u×B)). (1.110)

Since the vector u ×B is calculated in equation (1.92), the above equation (1.110)

becomes

∇2Φ = −B0g(z)
∂Vz
∂x

. (1.111)

Using non-dimensional parameters for Φ and Vz as Φ′ =
Φ

µ0vcL0H0

and V ′ =
Vz
vc

,

respectively yields

µ0vcL0H0
1

L2
0

∇2Φ′ = −B0g(z)vc
1

L0

∂V ′

∂x′
(1.112)

which equals to

∇2Φ′ = − 1

µ0H0

B0g(z)
∂V ′

∂x′

= −g(z)
∂V ′

∂x′
.

(1.113)
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Dropping the prime notations yields the non-dimensional electric potential equation

as

∇2Φ = −g(z)
∂V

∂x
. (1.114)

The obtained velocity, induced magnetic field and electric potential equations

∇2V +Mg(z)
∂B

∂y
= −1 +

M2

Rm

g(z)
∂g(z)

∂z

∇2B +Mg(z)
∂V

∂y
= 0

∇2Φ = −g(z)
∂V

∂x

(1.115)

are studied to examine the behavior of MHD flow under axially changing applied

magnetic field. Proper boundary conditions for V , B and Φ are added to equations

(1.115) according to the physics of the problem and the conductivity of the material of

the ducts walls. The equations are discretized with the DRBEM in Chapter 3 Section

3.4, and the numerical results are given in Chapter 4 Section 4.4.

1.6 Literature Survey

The convection–diffusion equation describes the balance between the diffusion and

convection terms of a physical phenomena in which the particles, energy or other

physical quantities are in motion inside a physical system. The convection-diffusion

type partial differential equations may involve a variable coefficient in the diffusion

term such as viscosity of the fluid. The term viscosity defines the resistance of a fluid,

either liquid or gas to change its shape. From our daily life, it is a common knowledge

that viscosity varies with temperature. Therefore, there are quite a number of fluid

dynamics problems in which the fluid viscosity is varying with the temperature of the

fluid. The governing equations for laminar flow of viscous fluids through a channel

are the Navier-Stokes and the energy equations together with the continuity equation.

Understanding the importance of the temperature dependent viscosity, one can list

the significant applications of the laminar flow and heat transfer through rectangular

channels. Designing heat exchangers, chemical reactors, nuclear reactors, cooling

of electronic systems and combustion systems are some of these application areas.
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Therefore, there have been many theoretical and experimental studies and several

numerical methods on the solution of the flow and heat transfer of electrically con-

ducting fluids through rectangular channels. Xie and Hartnett [21] have conducted

an experimental study of laminar flow and heat transfer in 2:1 rectangular duct filled

by mineral oil since the viscosity of the mineral oil changes dramatically under the

heat. They have obtained good agreement between experimental data and the analyt-

ical solution. Then, Shin et al. [22] have also investigated the influence of variable

viscosity of temperature-dependent fluids on the laminar flow and heat transfer with

friction factor in a rectangular duct. The governing mass, momentum and energy

equations have been solved using the finite volume method (FVM). The authors have

obtained an excellent agreement with the experimental results conducted by Xie and

Hartnett [21]. Then, the two-dimensional, incompressible, non-Newtonian fluid be-

tween two infinite plates has been considered in [23] including the effect of viscous

heating. The viscosity of the fluid depends on both temperature and shear-rate. The

viscosity depending on the temperature exponentially is modeled with Arrhenius law

and Chebyshev polynomials has been used for the numerical solution of the boundary

value problem. Pinarbasi et al. [24] have investigated the effects of variable viscosity

depending on the temperature of a non-isothermal, incompressible Newtonian fluid

which flows under a constant pressure gradient. The non-linear coupled boundary

value problem has been solved iteratively using Chebyshev pseudospectral method.

Moreover, the effects of the temperature dependent viscosity and thermal conduc-

tivity on natural convection boundary layer flow have been studied theoretically in

[25]. The authors have both used the perturbation method and FDM to compare their

results and they have concluded that their solutions from both methods agreed very

well. However, among the variable viscosities depending on the temperature, expo-

nential dependence is the most suitable according to the experimental results which

has been indicated in [26].

In the case of temperature dependent viscosity, a significant heat transfer enhance-

ment is accomplished even neglecting the Hall effect, viscous and Joule dissipations.

However, under a strong external magnetic field, the Hall current becomes important

since it affects the current density due to the influence of the electromagnetic force.

The study of MHD flows with Hall current has some important industrial applica-
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tions in geophysical and astrophysical situations and in engineering problems such as

Hall effect sensors, Hall accelerators, constructions of turbines, and flight magneto-

hydrodynamics. The investigation of the influence of Hall current on the fluid flow

is essential when these applications are considered. Attia [27, 28] has solved the

transient MHD flow and heat transfer equations for dusty fluid with temperature de-

pendent viscosity. The effects of both the variable viscosity and magnetic field on the

flow have been shown between parallel plates together with the heat transfer of the

fluid and dust particles. Moreover, Sayed-Ahmed [29] has also investigated the effect

of Hall current on MHD flow and heat transfer for Bingham fluids in a rectangular

duct using FDM. Evcin et al. [30] have studied the same MHD flow and heat transfer

problem with a viscosity depending on the temperature exponentially, by using mixed

finite element method (FEM). They have also used optimal control techniques in or-

der to control the system in desired velocity and temperature by the help of physically

significant parameters of the system as control variables.

The magnetohydrodynamic (MHD) duct flow problem is another important appli-

cation area of convection-diffusion type equations with constant convection coeffi-

cients. MHD duct flow problems can be steady or transient as depending on time.

Both types of MHD flow problems are studied widely in the literature with some nu-

merical methods used in CFD, through channels with different regular cross-sections

like triangle, rectangle or circle. Singh and Lal [31] have solved steady MHD flow in

a triangular pipe under the transverse magnetic field by using FDM for small values

of Hartmann number. The FEM solutions for steady MHD duct flow problem for

Hartmann number less than 10 have also been presented by the same authors [32].

In their study, they have extended their FEM solutions though rectangular, triangu-

lar and circular pipes with non-conducting walls. Then, Tezer-Sezgin and Köksal

[33] have solved steady MHD flow problem in a duct with rectangular cross-section

having arbitrarily conducting walls. The FEM has been used to obtain numerical

solutions for Hartmann number values 5 ≤ M ≤ 100. In the study given in [34],

both polynomial based and Fourier expansion based differential quadrature methods,

(PDQ) and (FDQ), for the solution of the steady MHD flow problem have been pro-

posed for the first time with equal and unequal grid points. Moreover, Tezer-Sezgin

and Gürbüz [35] have presented the linear polynomial radial basis function (RBF)
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approximation to the solution of MHD convection flow in a constricted rectangular

domain under a uniformly applied magnetic field in terms of the velocity, temperature

and pressure of the fluid. Afterwards, the steady MHD duct flow problem through

a rectangular duct has been solved by using Chebyshev collocation method for the

first time in [36]. In this study the flow is under a uniform oblique magnetic field

and the solutions in terms of the velocity and induced magnetic field have been ob-

tained for large Hartmann number values, M ≤ 1000. In the study [37], MHD flow

in a straight pipe having circular cross-section has been studied under a transverse

magnetic field. The wall and outside of the duct are assumed to be electrically con-

ducting. Partial differential equations for inside region have been solved by using the

DRBEM together with the PDEs for outside region of the duct. The study concludes

that, as the magnetic Reynolds number of the fluid increases, MHD flow behaves as

it is in a pipe with insulated walls. Apart from the above mentioned studies, MHD

flow problems can be considered in irregular domains (complex geometries) rather

than regular domains. Bozkaya and Tezer-Sezgin [38] have considered steady MHD

pipe flow in irregular type annular-like domains with conducting walls by using the

extended-domain-eigenfunction method (EDEM) and the boundary element method

(BEM). However, steady MHD duct flows can be solved by using an element free

method like in the study [39]. The authors have introduced a meshless method based

on the element free Galerkin method (EFGM) for MHD flow in a rectangular duct

having arbitrary electrical conductivity.

The researches on the unsteady MHD duct flow problems are as follows. Gupta and

Singh [40] have obtained an exact solution for the unsteady MHD flow only for some

special cases. The fluid flows in a circular pipe under a uniform magnetic field ap-

plied parallel to the diameter of the cross-section of pipe having insulated wall. The

unsteady MHD flow in a duct having insulated walls has been solved by Tezer-Sezgin

and Gürbüz [41] by using the RBF approximation. They have used the explicit Euler

time integration scheme for the time derivatives and also they showed the numerical

stability of the solution. In the study [42], the meshless local boundary integral equa-

tion (LBIE) method has been presented for the solution of the unsteady MHD flow

through rectangular and circular pipes having non-conducting walls. The proposed

method uses moving least squares (MLS) approach to approximate the unknown func-
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tions. The behaviors of the velocity and the induced magnetic field have been ob-

tained at desired time levels for Hartmann number values 5 ≤ M ≤ 40. The study

[43] conducted by Bozkaya and Tezer-Sezgin, unsteady convection-diffusion-type

equations in two-dimension have been solved by using the boundary element method

(BEM) having a fundamental solution depending on time. In this study, arbitrary wall

conductivities are considered for the MHD duct flow problems along with the coupled

boundary conditions. Singh and Lal [44] have presented a numerical solution for the

unsteady MHD flow in a pipe having arbitrarily conducting walls. The FEM solutions

have been illustrated with rectangular, circular and triangular cross-sections of the

pipe. Salah et al. [45] have developed a FEM solution for the three-dimensional cou-

pled MHD flow equations. They have presented the stability and accuracy analysis of

their FEM solutions which is valid for both low and high magnetic Reynolds number.

Moreover, a combination of the dual reciprocity BEM (DRBEM) and the differential

quadrature method (DQM) has been proposed to obtain a numerical solution of the

unsteady MHD flow in a rectangular duct having insulated walls in [46]. The authors

have concluded that, a large increment for time can be used to obtain the solution at

any desired time level instead of step by step computations in time. Moreover, the

magnetic field can be generated by an electric current through a thin wire which is lo-

cated parallel to the axis of duct with a small distance. This configuration at the each

cross-section resembles the MHD flow under a point source magnetic field. Senel

and Tezer-Sezgin [47] have solved both the Stokes and Navier–Stokes equations in

rectangular and circular cavities under the effect of external point source magnetic

field. The numerical solution of the velocity and pressure of the fluid have been ob-

tained by using DRBEM. The biomagnetic fluid flow equations are solved under a

point source magnetic field in a 3D rectangular duct by using the numerical method

based on a pressure-linked pseudotransient method in [48]. The semi-implicit method

for pressure linked equations (SIMPLE) has been used for the solution of electrically

conducting magnetic fluid flow equations in a lid-driven cavity in [49] .

In the above mentioned studies, the MHD duct flow problems have several numeri-

cal implementations, however, they have a common property that the external mag-

netic field is uniformly applied in the xy-plane with a constant intensity B0. On the

other hand, applied magnetic field can vary with time making the velocity and the
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induced magnetic field time-dependent as well as the coefficients of convection terms

(e.g. Hartmann number in the case of uniform applied magnetic field) depending on

time. Bandaru [50] and Bandaru, et al. [51] have applied the general approach of the

boundary integral procedure to the problem of turbulent magnetohydrodynamic flow

in rectangular ducts as magnetic Reynolds number Rm ≈ 1. In this case, both mag-

netic advection and diffusion terms have important roles in the flow behavior. The

MHD flow through a pipe which is subjected to a time-varied oblique magnetic field

B0(t) = B0f(t) where B0 is the intensity of the applied magnetic field at the initial

time level (t = 0) and f(t) is a time varied function is considered as a second problem

in the thesis. The governing transient flow and induced magnetic field equations are

solved by using the DRBEM. For the function f(t), several definitions have been used

such as polynomial, exponential, trigonometric, impulse and step functions. Then,

the MHD flow with time-dependent applied magnetic field is generalized by includ-

ing the Reynolds number Re and magnetic Reynolds number Rm influences to the

time derivatives of the velocity and the induced magnetic field. Dehghan and Mirzaei

[52] have solved the equations with Re and Rm but in the case of uniform magnetic

field. Thus, as a third problem of the thesis, the effects of the problem parameters

Re and Rm have been investigated on the same time-varied MHD duct flow problem

under the time-dependent applied magnetic field.

Up to here, all the considered MHD duct flow problems are under the influence of

an external uniform magnetic field applied in the xy-plane (in the cross section of the

pipe (duct)). That means that, the strenght of the applied magnetic fieldB0 is constant.

However, there are gradients of the applied magnetic field varying in the streamwise

direction in real life applications such as in designing the self cooled liquid-metal

blankets which are used for fusion reactor systems. Therefore, understanding the

MHD flows under a non-uniform applied magnetic field is the key point for the de-

velopment of liquid-metal blankets for future power plants. The MHD effects origi-

nated from the liquid metal flow in a pipe under a magnetic field cause a large drop on

the fluid pressure [53]. Furthermore, the induced currents are closed within the flow

domain for the flow in a duct with conducing walls. The currents returning through

the conducting walls enhance the MHD pressure drop [54]. Therefore, the electrical

conductivity of the duct walls also influences the flow behavior greatly [55]. A non-
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uniform applied magnetic field especially depending on the direction of the pipe-axis

causes some deviations on the fully-developed two-dimensional flow, and leads to

interesting three-dimensional effects. In the thesis, we have also studied the MHD

flows in a rectangular duct under the influence of an axially-changing applied mag-

netic field as in the third and fourth problems. The MHD duct flow studies under

a non-uniform applied magnetic field are as follows. Kim [56] has studied three-

dimensional liquid-metal MHD flow in a square duct under a non-uniform magnetic

field. The axial-dependent magnetic field is applied perpendicularly to streamwise

direction of the flow. The induced magnetic field is neglected due to small magnetic

Reynolds number, and the inductionless MHD flow problem is solved in terms of the

velocity and electric potential equations. Sterl [57] has also considered MHD flow in

rectangular ducts in two and three dimensional regions. Firstly, he has studied two-

dimensional MHD duct flow under a uniform magnetic field to examine the effect of

the wall conductance ratio and several Hartmann number values on the flow behavior.

Then, he has investigated three-dimensional MHD flow and shown the effects caused

by axial-dependent applied magnetic field through the duct having well-conducting

walls. Moreover, the MHD flow of liquid metal in thin conducting rectangular ducts

under an inclined non-uniform transverse magnetic field has been studied in [58]. The

aims of this study are to confine the angle between the magnetic field lines and side

walls and to examine the MHD flow behavior in terms of the velocity, pressure and

electric potential equations. Then, Kamamaru et al. [53] have also obtained numeri-

cal solution of the three-dimensional liquid-metal MHD flow through a circular pipe

in the inlet region of the applied magnetic field. The flow is under the influence of

an axially varying vertically applied magnetic field. They have considered the MHD

duct flow equations in terms of velocity and induced magnetic field.

On the other hand, there are also MHD duct flow problems under the influence of

spatially varying magnetic fields in the literature. Some of these studies are as fol-

lows. Klüber et al. [59] have solved the turbulent MHD flow equations in terms of

the velocity and electric potential using FVM with a consistent current-conservative

scheme. In their simulations, they have assumed that the magnetic field is stationary

and not affected by the flow. In other words, they have considered an inductionless

MHD flow since the magnetic Reynolds number is small. Then, Walker [60] has
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studied a non-uniform, spatially varying magnetic field effect on the flow experimen-

tally, again neglecting the induced magnetic field with the small magnetic Reynolds

number assumption. Moreover, the steady flow of an electrically conducting fluid

through a duct having rectangular cross-section with thin and electrically conduct-

ing walls has been considered in [61]. The fluid is under a non-uniform, spatially

varying transverse magnetic field which is parallel to two duct walls. Furthermore,

Bühler and Mistrangelo [62] have studied MHD flow under a spatially varying mag-

netic field. The author’s main concern is to observe the MHD pressure drop and flow

behavior under the influence of spatially varying magnetic field. The velocity, pres-

sure and electric current equations are solved numerically. They have analyzed MHD

flow in two entire cupled breeder units under this non-uniform strong magnetic field

for the first time.

1.7 Originality of the Thesis

In the thesis, four different MHD duct flow problems are studied under the bound-

ary conditions which are suitable according to the physics of the problem. The in-

ductionless MHD flow with temperature dependent viscosity and heat transfer is the

first considered problem. Secondly, the MHD duct flow under a time-varied external

magnetic field is studied. Then, we turn our concern to MHD flow problems under

an external magnetic field varying in the streamwise direction (pipe-axis direction)

in the third and the fourth problems. Specifically, the inductionless MHD flow with

electric potential is considered under the effect of the axially-changing magnetic field

as the third problem. Adding the induced magnetic field to the velocity and electric

potential equations as a triple, MHD flow equations under axial-dependent magnetic

field are examined as the last problem considered throughout the thesis.

In the first problem, the diffusion term in the velocity equation contains variable co-

efficient in it, depending on the temperature. The parametrix BEM and the DRBEM

procedures are applied to solve the velocity equation while the energy equation of

the MHD flow is solved by using the DRBEM in both cases. The parametrix BEM

procedure uses a fundamental solution which is a Levi function treating all the terms

of the diffusion term in its original form. On the other hand, DRBEM procedure uses
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fundamental solution of Laplace equation which is the dominant or main operator

and obtaining this term requires some arrangements in the equation. However, when

a PDE contains a variable coefficient, a fundamental solution which is required in the

BEM applications is generally not available in explicit form. Contrarily, a Levi func-

tion is usually available in parametrix BEM. In this considered problem, our aim is

to examine the behavior of the MHD flow and also to compare the efficiency of both

parametrix BEM and DRBEM. In the literature, most of the BEM solutions are used

with the fundamental solution of the Laplace equation. However, in this problem, the

use of both a Levi function in parametrix BEM and the Laplace operator in DRBEM

is deeply studied and the solutions are compared. This procedure is an original con-

tribution to the solution of variable coefficient convection-diffusion type equations,

especially to the solution of MHD flow and heat transfer with temperature dependent

viscosity.

There is a wide range of steady or unsteady MHD duct flow problems under a uniform

applied magnetic field. Some MHD duct flow studies with point-source magnetic

field (space dependent) are also presented. On the other hand, non-uniform applied

magnetic field (i.e. time dependent) studies are not given to the best knowledge of us.

Thus, in the second problem of the thesis, we consider the MHD flow through a pipe

having rectangular cross-section which is subjected to a time-varied oblique magnetic

field. This constitutes another originality of the thesis since the governing equations

are derived taking a magnetic field depending on time and they are solved by the

use of DRBEM. Solving the coupled equations in terms of the velocity and induced

magnetic field by choosing several definitions of time varied-function presents the

first part of the numerical results for the Re = Rm = 1 assumption. Then, the

computations are enriched with the effects of Re and Rm increasing values. Thus,

both the effects of Re and Rm and several choices of the time-variation on the flow

behavior are discussed in the thesis.

As the third and fourth problems, the two-dimensional, laminar, MHD flow of a vis-

cous, incompressible and electrically conducting fluid in a rectangular duct has been

considered. The flow is under the influence of an axially-varying applied magnetic

field B0(z). Some magnets are placed on the duct axis at fixed z-values and they are

varying as a function of z. The flow is assumed to be fully-developed between two
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fixed z-values. In the third problem, the flow behavior and the structure of the bound-

ary layers influenced from the changes in the electrical conductivity of the walls, and

the axial dependence of the applied magnetic field have been studied. The induced

magnetic field is neglected due to small magnetic Reynolds number, and the induc-

tionless MHD flow problem is solved in terms of velocity and electric potential equa-

tions. On the other hand, in the fourth considered problem in the thesis, the induced

magnetic field with the interaction of an axially dependent applied magnetic field is

introduced inside the fluid. Thus, the induced magnetic field equation along with the

velocity and electric potential equations are considered for the MHD duct flow prob-

lem. Actually, the last problem is an extention of the equations obtained in the third

problem in the sense that the induced magnetic field is also involved. Obtaining the

DRBEM solutions of the third and fourth problems are original contribution of the

thesis.

1.8 Plan of the Thesis

In this thesis, the governing equations of the considered MHD flow problems are de-

scribed and the dimensionless forms are acquired in Chapter 1. Moreover, a literature

survey on the thesis subject and the originality of the thesis are presented in Section

1.6 and Section 1.7, respectively.

In Chapter 2, the BEM for the Laplace and Poisson’s equations and the parametrix

BEM for the diffusion equation containing variable coefficient are introduced. More-

over, the DRBEM which has the advantage of applying the BEM to all Poisson’s type

equations involving the solution itself, is also introduced. The constant and linear ele-

ment discretizations for the boundary are provided since both types of discretizations

are used to obtain numerical solutions of the problems considered in the thesis. Then,

composite trapezoidal rule is presented to approximate the domain integral arising

from the application of the BEM to Poisson’s type equations. The last section of this

Chapter is devoted to the Implicit Euler method which is used to approximate the time

derivative in the equations by using the finite difference scheme.

In Chapter 3, the applications of BEM procedures to the MHD duct flow equations
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are given. The BEM solution of the MHD flow and heat transfer with temperature

dependent viscosity is presented in the first section of Chapter 3. The parametrix

BEM procedure which uses a Levi function to reduce the two-dimensional mixed

BVPs to a boundary-domain integral equation (BDIE) together with the DRBEM

procedure are explained in detail for the solution of the MHD flow equations in terms

of the momentum and energy. Section 3.2 is devoted to the iterative DRBEM solution

procedure for the unsteady MHD duct flow equations under a time-varied external

magnetic field. The last two parts of Chapter 3 focus on the DRBEM solutions of the

MHD duct flow problems under axial-dependent magnetic field. Some magnets are

placed on the pipe-axis and they determine the strength of the applied magnetic field

and constitute electromagnetic force in the flow. In Section 3.3 the induced magnetic

field is neglected due to the small magnetic Reynolds number and so the MHD flow

problem is solved in terms of the velocity and electric potential. On the other hand, the

induced magnetic field equation is accompanied to the velocity and electric potential

equations in Section 3.4 for the case of axial-dependent applied magnetic field.

Chapter 4 of the thesis is dedicated to the numerical results of each considered prob-

lem in Chapter 3. The detailed discussions of the results obtained for the MHD duct

flow problems are given.

In Chapter 5, all the important numerical results obtained from the studies are sum-

marized.

36



CHAPTER 2

THE BOUNDARY AND THE DUAL RECIPROCITY BOUNDARY

ELEMENT METHODS

In this thesis, the Boundary Element Method (BEM) for the Laplace and Poisson’s

equations, the parametrix BEM for the diffusion equation containing variable coeffi-

cient, and the Dual Reciprocity Boundary Element Method (DRBEM) which has the

advantage of applying the BEM to all Poisson’s type equations involving the solution

itself, are presented following the references [5], [63], [7], respectively. The BEM

is a boundary-only nature technique for solving partial differential equations (PDEs).

The most important feature of BEM is its unique ability to provide the problem so-

lution by discretizing only the boundary of the problem region. In this method, a

partial differential equation defined in a domain is converted to an integral equation

defined on the boundary of the domain. The use of BEM reduces the dimension of

the discretized system, and so it provides less computational cost compared to the

other domain type discretization techniques such as Finite Element Method (FEM),

Finite Difference Method (FDM) and Finite Volume Method (FVM). Especially for

the homogeneous PDEs the BEM is a very suitable technique. However, the applica-

tion of BEM to the non-homogeneous PDEs brings domain integrals in the integral

equations and the BEM is accompanied with the computation of these domain inte-

grals requiring internal discretization along with the boundary discretization which

enlarges the dimension of the problem.

In some cases, a PDE contains a variable coefficient in its dominant operator. For this

type of equation, a fundamental solution which is required in the BEM application is

generally not available in explicit form. On the other hand, a parametrix (Levi func-

tion) is usually available. With the help of the parametrix, the differential equation is
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reduced to a boundary-domain integral equation (BDIE). This formulation is called

as parametrix BEM. Using a parametrix as a fundamental solution treats the variable

coefficient in the PDE directly. When the parametrix BEM is applied to a PDE with

variable coefficient in its diffusion term, a domain integral also arises besides the

boundary integrals which causes again the loss of the advantages of BEM.

In order to overcome these drawbacks of BEM, new methods have been revealed.

The most prominent one is the DRBEM. In this method, the Laplacian term or the

main operator term of the differential equation is kept on one side of the equation and

all the other terms of the differential equation are preserved on the other side. The

main idea of the DRBEM is to treat these terms on the other side as inhomogeneities

and approximating them by series of radial basis functions which are connected to

the particular solution of the differential equation through the main, i.e. the Laplacian

operator. The DRBEM procedure enables one to transform the differential equation

into boundary-only integral equation. Interior computation is also included to the

final system of linear equations.

In this chapter, the BEM formulation on the Laplace equation is explained in details

by using both constant and linear element discretizations in Section 2.1, [5]. Then,

the BEM formulation is specified on the Poisson’s equation with the fundamental

solution of Laplace equation in Section 2.2. Since this approach brings a domain

integral in the integral equation, composite trapezoidal rule is given in Section 2.2.1 to

handle this domain integral accurately. Moreover, in Section 2.3 the parametrix BEM

formulation is also described for diffusion equation with a variable coefficient, [63].

Furthermore, the DRBEM formulation is presented in details on the Poisson’s type

equations using the fundamental solution of Laplace equation in Section 2.4. Also,

the usage of DRBEM is extended further for the Poisson’s type equations, containing

the unknown and its derivatives with respect to space variables and time, in Sections

2.4.1- 2.4.3. Finally, a time integration scheme which is implicit Euler method is

introduced for the solution of the system of ordinary differential equations resulted

from the time dependent problems in Section 2.4.3.1, [7].
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2.1 The BEM procedure for the Laplace equation∇2u = 0

The two-dimensional Laplace’s equation in a domain Ω ⊂ R2 is given as

∇2u = 0, (x, y) ∈ Ω (2.1)

with Dirichlet and Neumann types boundary conditions

u(x, y) = u(x, y), (x, y) ∈ Γ1

q(x, y) =
∂u

∂n
(x, y) = q(x, y), (x, y) ∈ Γ2

(2.2)

where ∇2 =
∂2

∂x2
+

∂2

∂y2
denotes the Laplace operator, Γ = ∂Ω is the boundary with

Γ = Γ1 ∪ Γ2. The right hand side functions u(x, y) and q(x, y) are given functions

and n is the unit normal vector to the boundary Γ of Ω.

Ω

Γ1

u = u

Γ2

q = q

Figure 2.1: Configuration of the problem domain and the boundary conditions

The solution of equation (2.1) and its normal derivative are represented as

u(x, y) =

u(x, y), (x, y) ∈ Γ1

ũ(x, y), (x, y) ∈ Γ2

(2.3)

and

q(x, y) =

q(x, y), (x, y) ∈ Γ2

q̃(x, y), (x, y) ∈ Γ1

(2.4)

where ũ(x, y) and q̃(x, y) are the unknown values of u and q on Γ2 and Γ1, respec-

tively.
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For solving the Laplace equation, the BEM uses the fundamental solution of Laplace

equation which is

u∗ =
1

2π
ln(

1

r
) =

1

2π
ln(

1

|r − ri|
) (2.5)

where r = (x, y) and ri = (xi, yi) are the variable and fixed points in Γ ∪ Ω, respec-

tively. The fundamental solution u∗ satisfies

∇2u∗ = −∆i (2.6)

where ∆i is the Dirac delta function satisfying the following properties

∆i(x) =

0 if x 6= xi

∞ if x = xi

,

∫
Ω

∆i(x)dΩ = 1 (2.7)

and ∫
Ω

φ(x)∆idΩ =

φ(xi) if xi ∈ Ω

0 if xi /∈ Ω
(2.8)

for a continuous function φ at xi.

In the BEM application of the problem (2.1)-(2.2), firstly, the weighted residual state-

ment is obtained by multiplying both sides of equation (2.1) with the fundamental

solution u∗ and integrating over the domain Ω as∫
Ω

(∇2u)u∗dΩ = 0. (2.9)

Applying Green’s second identity two times to the equation (2.9) yields∫
Ω

u∇2u∗dΩ +

∫
Γ

∂u

∂n
u∗dΓ−

∫
Γ

∂u∗

∂n
udΓ = 0. (2.10)

After inserting the boundary conditions given in equation (2.2) by using the defini-

tions (2.3) and (2.4), the following boundary-domain integral equation is obtained∫
Ω

u∇2u∗dΩ +

∫
Γ1

q̃u∗dΓ1 +

∫
Γ2

qu∗dΓ2 −
∫

Γ1

uq∗dΓ1 −
∫

Γ2

ũq∗dΓ2 = 0 (2.11)

where q∗ =
∂u∗

∂n
is the normal derivative of u∗.

Application of the Dirac delta function properties in (2.7)-(2.8) for the first term of

equation (2.11) results in∫
Ω

u∇2u∗dΩ =

∫
Ω

u(−∆i)dΩ = −ciui (2.12)
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i

Boundary point i

θiε

Boundary curve Γ

Figure 2.2: Internal angle at the boundary point i

where the coefficient ci is given as

ci =


θi
2π
, i ∈ Γ

1, i ∈ Ω \ Γ
(2.13)

with an internal angle θi at the point i as shown in Figure 2.2.

Thus, the equation (2.10) becomes

ciui −
∫

Γ

qu∗dΓ +

∫
Γ

q∗udΓ = 0. (2.14)

For solving the above equation in terms of the unknown values of u on the bound-

ary and inside the region, and normal derivative values q =
∂u

∂n
on the boundary,

discretization of the boundary Γ is the essential part. Various forms of the elements

such as constant, linear, quadratic or cubic may be used for the discretization. In this

thesis, constant and linear element discretizations are used and so they are presented

here in details.

2.1.1 Boundary discretization with constant elements

In constant element discretization, the nodes are taken as a mid-point of each element

as shown in Figure 2.3. The boundary is smooth at the nodes and the number of

boundary nodes N equals to the number of constant elements on Γ.

Discretized form of the boundary-integral equation (2.14) is

ciui −
N∑
k=1

∫
Γk

u∗qdΓk +
N∑
k=1

∫
Γk

q∗udΓk = 0, i = 1, ..., N. (2.15)

The integrands in equation (2.15) contain the unknown boundary values u and q. In

this type of discretization, the function values of u and q are considered as constants

41



boundary element boundary nodes

interior nodes

Figure 2.3: Configuration for constant elements discretization

over each element and the values of u and q are equivalent to their value only at the

mid-point of each element. Therefore, u and q in equation (2.15) can be taken outside

of the integral over each element k by taking the mid-point value of the element k. In

other words, the nodal values of u and q are denoted by uk and qk, respectively. Thus,

equation (2.15) is rewritten as

ciui −
N∑
k=1

qk

∫
Γk

u∗dΓk +
N∑
k=1

uk

∫
Γk

q∗dΓk = 0, i = 1, ..., N. (2.16)

The integrals over each boundary element Γk,
∫

Γk

u∗dΓk and
∫

Γk

q∗dΓk need to be

computed. The evaluation of these integrals brings

ciui +
N∑
k=1

H ikuk −
N∑
k=1

Gikqk = 0, i = 1, ..., N (2.17)

where the entries of the matrices H and G are [5]

H ik =

∫
Γk

q∗dΓk = − 1

2π

∫
Γk

(r − ri).~n
|r − ri|2

dΓk if i 6= k

Gik =

∫
Γk

u∗dΓk =
1

2π

∫
Γk

ln(
1

|r − ri|
)dΓk if i 6= k.

(2.18)

The vectors ~r = (x, y) and ~ri = (xi, yi) are both changing depending on the position

of k-th boundary element and boundary nodes, respectively.

The matrices H and G can be computed analytically or numerically for the case i 6= k.

When i = k, H ii equals to zero due to the dot product with the normal in the defini-

tion. In this case, the difference vector (~r− ~ri) is always perpendicular to the normal

vector ~n on the same element i. For the diagonal entries of the matrix G, the singular-

ity arises due to logarithmic function in the fundamental solution u∗. Therefore, the
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diagonal entries of the matrix G can be computed using exact logarithmic integration

such as

Gii =
`e
2π

(
ln
( 2

`e

)
+ 1
)

(2.19)

where `e denotes the length of each element [7].

When, the entries of H and G matrices are evaluated, to solve the system of equations

in (2.17) the value ci needs to be clarified. For boundary solutions the constant ci

equals to 1/2 since the internal angle θi at any node is π. The value ci equals to 1 for

the interior computations.

Thus, the discretized equation (2.17) for a node i on the boundary takes the form

1

2
ui +

N∑
k=1

H ikuk −
N∑
k=1

Gikqk = 0, i = 1, ..., N (2.20)

which can also be expressed as

N∑
k=1

Hikuk −
N∑
k=1

Gikqk = 0, i = 1, ..., N (2.21)

where

Hik = H ik +
1

2
δij, (2.22)

δik representing the Kronecker delta function as

δik =

1 if i = k

0 if i 6= k.
(2.23)

Equation (2.21) can also be written in a matrix-vector form as

Hu = Gq (2.24)

where H and G are N × N matrices with the entries defined in (2.18), (2.19) and

(2.22). The vectors u and q have length N ×1 containing the solution of the problem

and its normal derivative on the boundary, respectively. After inserting the boundary

conditions (2.3) and (2.4) to the matrix-vector equation (2.24), both the vectors u and

q contain some known and unknown values. One must collect the unknown values of

u and q on the left hand side of the equation by swapping the corresponding columns
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of the matrices H and G as described in [5]. Thus, a linear system of algebraic

equations can be obtained such as

Ax = d (2.25)

where x is the vector of unknowns (ũ on Γ2 and q̃ on Γ1). Gaussian elimination or

any other linear system solution scheme can be applied to obtain the unknown values

of ũ and q̃ on the boundary parts Γ2 and Γ1, respectively. The matrix A is a full

matrix showing no special form although it contains lots of zero entries.

Then, these obtained boundary values are used in equation (2.17) to compute un-

known values of u at each interior point i by taking ci = 1 which is

ui = −
N∑
k=1

H ikuk +
N∑
k=1

Gikqk, i = 1, ..., L. (2.26)

Here, uk and qk represent the known values (given and already computed) on the

boundary Γ of Ω. Matrices H and G have entries defined in equation (2.18) with the

vectors r and ri on the boundary element and at the internal nodes, respectively. L is

the number of interior nodes. The vector r is measured now from the interior point i

to the boundary elements.

2.1.2 Boundary discretization with linear elements

When the position of nodes are changed from the mid-point of elements to the corner

points of polygon, the linear element discretization is obtained as shown in Figure

2.4.

boundary element boundary nodes

interior nodes

Figure 2.4: Configuration for linear elements discretization
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If N number of boundary elements are used for the discretization of the boundary, we

have the following discretized equation for the equation (2.14)

ciui −
N∑
k=1

∫
Γk

u∗qdΓk +
N∑
k=1

∫
Γk

q∗udΓk = 0, i = 1, ..., N. (2.27)

Now, the u and q values are not constants anymore and they are varying linearly

over each element Γk. Therefore, u and q can not be taken outside of the integral in

equation (2.27). The values of u and q over each element vary linearly as

u(ξ) = ψ1u1 + ψ2u2

q(ξ) = ψ1q1 + ψ2q2

(2.28)

where u1 and u2 are the values of the function u at the first and second nodes of an

element, respectively. ψ1 and ψ2 are the linear interpolation functions and they are

also referred as linear shape functions in local coordinate ξ varying from −1 to 1.

The interpolation functions ψ1 and ψ2 are linear functions in local coordinate ξ

ψ1 =
1

2
(1− ξ)

ψ2 =
1

2
(1 + ξ).

(2.29)

The insertion of the functions u and q given in (2.28) into equation (2.27) results in

ciui −
N∑
k=1

∫
Γk

(ψ1q1 + ψ2q2)u∗dΓk +
N∑
k=1

∫
Γk

(ψ1u1 + ψ2u2)q∗dΓk = 0, (2.30)

which is rewritten as

ciui −
N∑
k=1

∫
Γk

[
ψ1 ψ2

]
u∗dΓk

q1

q2

+
N∑
k=1

∫
Γk

[
ψ1 ψ2

]
q∗dΓk

u1

u2

 = 0,

(2.31)

for i = 1, ..., N .

With the evaluation of the integrals in equation (2.31), it is also expressed as

ciui +
N∑
k=1

[
h1
ik h2

ik

]u1

u2

 =
N∑
k=1

[
g1
ik g2

ik

]q1

q2

 , i = 1, ..., N (2.32)

with

h1
ik =

∫
Γk

ψ1q
∗dΓk, h2

ik =

∫
Γk

ψ2q
∗dΓk

g1
ik =

∫
Γk

ψ1u
∗dΓk, g2

ik =

∫
Γk

ψ2u
∗dΓk.

(2.33)
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(1)(2)

(1)(2)

element k + 1
element k

Figure 2.5: Nodes connection of linear elements

Figure 2.5 represents the linear element configuration. The nodes (1) and (2) denote

the first and second nodes of an element. It can be seen from Figure 2.5 that, the first

node of the element k + 1 is the second node of the element k. Therefore, a special

arrangement called as assembly procedure is needed to evaluate the contribution of a

node to an element. That is,

H ik = h2
i(k−1) + h1

ik if k = 2, 3, ..., N

H i1 = h2
iN + h1

i1,

Gik = g2
i(k−1) + g1

ik if k = 2, 3, ..., N

Gi1 = g2
iN + g1

i1.

(2.34)

Then, equation (2.30) can be written in assembled form for a boundary point i =

1, ..., N as

ciui +
[
H i1 H i2 . . . H iN

]


u1

u2

.

.

.

uN


=
[
Gi1 Gi2 . . . GiN

]


q1

q2

.

.

.

qN


.

(2.35)

As in the constant element case, the same singularity arises to evaluate the diagonal

entries of the matrix G. In this time, Gii can be computed as follows [5]

Gii =
`e
2

(1

2
− ln(`e)

)
, if i = k1

Gii =
`e
2

(3

2
− ln(`e)

)
, if i = k2

(2.36)

where k1 and k2 denote the first and the second nodes of the element k, respectively.
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Equation (2.35) is arranged for a node i as

ciui +
N∑
k=1

H ikuk −
N∑
k=1

Gikqk = 0, i = 1, ..., N (2.37)

which can be transformed into the following matrix-vector equation as

Hu = Gq (2.38)

where H and G are N ×N matrices with Hik = ciδik +H ik. The value ci depends on

the internal angle of nodes or equivalently smoothness of the corner of each boundary

element. The diagonal entries of the matrix H in equation (2.38) is calculated by using

the following fact; whenever a uniform potential is applied over a bounded region, all

the derivative values must be zero. Consequently, equation (2.38) becomes

Hu = 0 (2.39)

where u is the vector of constant values. Hence, the sum of all elements of any row

of H should be zero, and the values of the diagonal entries is calculated, once the

off-diagonal entries are all known as given in [5]

Hii = −
N∑

k=1 (k 6=i)

Hik. (2.40)

Reconsidering equation (2.38), the N × 1 vectors u and q have some known and un-

known values after inserting the boundary conditions of the problem. By implement-

ing the required swapping procedure, a linear system of algebraic equations Ax = d

can be obtained where the unknown boundary values of u and q are in the vector x.

The solution of this system brings all the unknown values on the boundary. Now, the

values of u and q are known everywhere on the boundary. Then, the interior solution

of u can be found by solving the following equation by taking the constant ci as 1

ui = −
N∑
k=1

H ikuk +
N∑
k=1

Gikqk, i = 1, ..., L (2.41)

whereL is the interior nodes number and the matricesH andG are computed from the

above definitions given in equation (2.34) with the vectors r and ri on the boundary

element and at the internal nodes, respectively.
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2.2 The BEM procedure for the Poisson’s equation∇2u = b(x, y)

The two-dimensional boundary value problem defined by the Poisson’s equation with

inhomogeneity b(x, y) is

∇2u = b(x, y), (x, y) ∈ Ω (2.42)

which can be appended by the boundary conditions

u(x, y) = u(x, y), (x, y) ∈ Γ1

q(x, y) =
∂u

∂n
(x, y) = q(x, y), (x, y) ∈ Γ2.

(2.43)

The BEM procedure enables one to get

ciui −
∫

Γ

qu∗dΓ +

∫
Γ

q∗udΓ = −
∫

Ω

bu∗dΩ. (2.44)

The same boundary integral terms on the left hand side of equation (2.44) are obtained

as in the solution of Laplace equation, ∇2u = 0. Along with, the domain integral

over Ω arises for the solution of Poisson’s equation, ∇2u = b. To obtain accurate

solution one needs to handle this domain integral carefully. A numerical integration

technique has to be used to evaluate the domain integral in integration cells of Ω and

the composite trapezoidal rule is one of the valuable numerical integration technique

to compute this two-dimensional integral.

2.2.1 Composite trapezoidal rule

Consider a double integral

I =

∫∫
Ω

f(x, y)dxdy, (2.45)

where Ω = {(x, y) ∈ R2 : a ≤ x ≤ b, u(x) ≤ y ≤ v(x)}.

The iterated form is

I =

∫ b

a

( ∫ v(x)

u(x)

f(x, y)dy
)
dx. (2.46)

To calculate the integral I , firstly the inner integral has to be approximated using the

one-dimensional composite trapezoidal rule with respect to y, and x is kept as fixed.

Then, the outer integral has to be evaluated in the same manner.
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Hence, define F (x) as

F (x) =

∫ v(x)

u(x)

f(x, y)dy (2.47)

which converts the integral I into I =

∫ b

a

F (x)dx.

Further, I is approximated using the composite trapezoidal rule given in [64]

I ≈ C(F, h) =
h

2

n∑
i=1

(F (xi−1) + F (xi)) (2.48)

where xi = x0 + ih and h =
xn − x0

n
. Therefore, F (xi) can be calculated as

F (xi) =

∫ v(xi)

u(xi)

f(xi, y)dy ≈ C(f(xi), hi)

=
hi
2

ni∑
j=1

(f(xi, yi,j−1) + f(xi, yi,j))

(2.49)

where yi,j = u(xi) + jhi and hi =
v(xi)− u(xi)

ni
.

Generally, ni is chosen such that h ≈ hi for all i for simplicity.

Thus, the general formula can be prescribed as

I ≈ hhi
4

n∑
i=0

ni∑
j=0

wi,jf(xi, yi,j) (2.50)

wherewi,j equals to 4 in the interior and equals to 2 on the boundary, and lastly equals

to 1 at the corner points of the domain Ω. The points (xi, yi,j) are taken as the end

points of the constant elements.

In the following section, the parametrix BEM procedure which is a modified form of

the BEM for Diffusion operator involving coefficient of space variables is detailed by

considering a two-dimensional diffusion equation with a variable coefficient.

2.3 The parametrix BEM procedure for the diffusion equation containing a

variable coefficient

The parametrix BEM gives a boundary-domain integral equation (BDIE) for the nu-

merical solution of two-dimensional mixed boundary value problems (BVPs) of the
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type, second-order, linear, elliptic PDE with variable coefficients in the elliptic oper-

ator. The method uses a parametrix (Levi function) to reduce the BVP to BDIE.

The second-order, linear, elliptic, variable coefficient partial differential equation of

diffusion type is

Lu(x, y) =
∂

∂x

(
a(x, y)

∂u

∂x

)
+

∂

∂y

(
a(x, y)

∂u

∂y

)
= b(x, y), (x, y) ∈ Ω (2.51)

with partially given boundary conditions of the unknown and flux as

u(x, y) = u(x, y), (x, y) ∈ Γ1

Tu(x, y) = a(x, y)
∂u

∂n
(x, y) = t(x, y), (x, y) ∈ Γ2.

(2.52)

For partial differential operators with variable coefficients as L in equation (2.51), a

fundamental solution is generally not available in explicit form. However, a parametrix

is often available, which is a function P (x, xi; y, yi) as given in [6] satisfying

LP (x, xi; y, yi) = ∆i(x− y, xi − yi) +R(x, xi; y, yi). (2.53)

The fundamental solution of the operatorLwith frozen coefficients a(x, y) = a(xi, yi)

corresponding to the equation (2.51) is used as a parametrix,

P (x, xi; y, yi) =
1

2πa(xi, yi)
ln|r − ri| (2.54)

where |r − ri| =
√

(x− xi)2 + (y − yi)2 for the variable and source points, r =

(x, y) and ri = (xi, yi) in Γ ∪ Ω, respectively.

Substituting equation (2.54) into equation (2.53) results in

∂

∂x

(
a(x, y)

∂

∂x

[ 1

2πa(xi, yi)
ln|r − ri|

])
+

∂

∂y

(
a(x, y)

∂

∂y

[ 1

2πa(xi, yi)
ln|r − ri|

])
=

∆i(x− y, xi − yi) +R(x, xi; y, yi).

(2.55)

By taking a(x, y) = a(xi, yi) and (
∂2

∂x2
+
∂2

∂y2
)(

1

2π
ln|r− ri|) = ∆i(x−y, xi−yi),

we have

∆i(x− y, xi − yi) =
a(x, y)

a(xi, yi)

( ∂2

∂x2
(

1

2π
ln|r − ri|) +

∂2

∂y2
(

1

2π
ln|r − ri|)

)
(2.56)
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and

R(x, xi; y, yi) =
1

a(xi, yi)

∂a(x, y)

∂x

∂

∂x
(

1

2π
ln|r − ri|)+

1

a(xi, yi)

∂a(x, y)

∂y

∂

∂y
(

1

2π
ln|r − ri|)

=
x− xi

2πa(xi, yi)|r − ri|2
∂a(x, y)

∂x
+

y − yi
2πa(xi, yi)|r − ri|2

∂a(x, y)

∂y

(2.57)

which stands for R =
∂a

∂n

∂P

∂n
.

For simplicity, we continue with P (x, y) and R(x, y) instead of P (x, xi; y, yi) and

R(x, xi; y, yi) in the following equations.

By using Green’s formula for the differential operator L,∫
Ω

[u(x, y) LP (x, y)− P (x, y) Lu(x, y)]dΩ =∫
∂Ω

[u(x, y) TP (x, y)− P (x, y) Tu(x, y)]dΓ

(2.58)

the following integral equation is obtained

ciui −
∫
∂Ω

[u(x, y) TP (x, y)− P (x, y) Tu(x, y)]dΓ+∫
Ω

R(x, y)u(x, y)dΩ =

∫
Ω

P (x, y)b(x, y)dΩ.

(2.59)

Therefore, the fundamental solution P (x, y) treats the variable coefficient in the dif-

fusion term directly. That means, the parametrix BEM is capable of addressing to the

PDE containing a variable coefficient in its dominating operator term.

The above equation (2.59) contains two domain integrals. The one on the right hand

side,
∫

Ω

b(x, y)P (x, y)dΩ arises from the non-homogeneous term of the diffusion

equation. However, the left hand side one,
∫

Ω

R(x, y)u(x, y)dΩ is originated from

the parametrix BEM procedure itself. Once more, the correct evaluation of these do-

main integrals is required to obtain accurate solution of the two-dimensional diffusion

equation. The composite trapezoidal rule in Section 2.2.1 can be used in evaluation

of these domain integrals. However, the numerical integration techniques gives at

least computational and round-off errors which causes the BEM to lose its advantage.

Nonetheless, the domain integral arises from the BEM procedures can be transformed
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into a boundary integral by using the DRBEM which will be given in the next Section.

This is the main advantage of the DRBEM over the BEM.

2.4 DRBEM procedure for the Poisson’s equation∇2u = b(x, y)

Previously, application of the BEM procedure to the two-dimensional Poisson’s equa-

tion,

∇2u = b(x, y), (x, y) ∈ Ω

u(x, y) = u(x, y), (x, y) ∈ Γ1

q(x, y) =
∂u

∂n
(x, y) = q(x, y), (x, y) ∈ Γ2

(2.60)

has given the following boundary-domain integral equation

ciui −
∫

Γ

qu∗dΓ +

∫
Γ

q∗udΓ = −
∫

Ω

bu∗dΩ. (2.61)

Now, the domain integral on the right hand side of the equation will be transformed

into an equivalent boundary integral with the help of radial basis functions, [7]. For

this reason, the solution of (2.60) can be written as a sum of the Laplace equation

(∇2u = 0) and particular solution û which satisfies

∇2û = b(x, y). (2.62)

There are generally difficulties to find out a particular solution û in equation (2.62)

especially for non-linear and time dependent problems. The DRBEM introduces the

idea of using series of particular solutions ûj instead of a single particular solution û.

The total number of these particular solutions used in DRBEM equals to the number

of nodes used in the discretization of the domain [7]. Hence, the non-homogeneous

term b(x, y) on the right hand side of the Poisson’s equation (2.62) is approximated

as

b(x, y) =
N+L∑
j=1

αjfj(x, y) (2.63)

where N and L denote the number of boundary and interior nodes, respectively. The

coefficients αj’s are undetermined constants and fj(x, y)’s are the radial basis func-

tions which are connected to the particular solutions ûj’s with the Laplace operator

∇2ûj = fj. (2.64)
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Substituting equation (2.64) into equation (2.63) gives

b(x, y) =
N+L∑
j=1

αj(∇2ûj) (2.65)

once and for all, substitution of (2.65) into equation (2.61) yields

ciui −
∫

Γ

qu∗dΓ +

∫
Γ

q∗udΓ = −
N+L∑
j=1

αj

∫
Ω

(∇2ûj)u
∗dΩ. (2.66)

Now, the weighted residual statement is also seen on the right hand side of equation

(2.66). After applying Green’s second identity two times to this side of the equation,

the following boundary integral equation is obtained for each source node i

ciui +

∫
Γ

uq∗dΓ−
∫

Γ

qu∗dΓ =
N+L∑
j=1

αj(ciûij +

∫
Γ

ûjq
∗dΓ−

∫
Γ

q̂ju
∗dΓ) (2.67)

where i = 1, ..., N , ûj = ûj(xi, yi) and q̂j is the normal derivative of ûj , explicitly as

q̂j =
∂ûj
∂n

=
∂ûj
∂x

∂x

∂n
+
∂ûj
∂y

∂y

∂n
. (2.68)

Here, it needs to be pointed out that equation (2.67) does not contain domain inte-

gral anymore. The domain integral involving b in (2.61) is replaced by equivalent

boundary integrals. The discretized form of equation (2.67) at a source point i is

ciui +
N∑
k=1

∫
Γk

uq∗dΓk −
N∑
k=1

∫
Γk

qu∗dΓk =

N+L∑
j=1

αj
(
ciûij +

N∑
k=1

∫
Γk

ûjq
∗dΓk −

N∑
k=1

∫
Γk

q̂ju
∗dΓk

)
, i = 1, ..., N

(2.69)

for N number of boundary elements. The discretization of the boundary can be done

by using constant or linear elements.

Note that, the values u∗, q∗, ûj and q̂j are defined before. Therefore, all the boundary

integrals can be calculated, and as a result, the following matrix-vector equation for

each node i is obtained as

ciui +
N∑
k=1

H ikuk −
N∑
k=1

Gikqk =

N+L∑
j=1

αj
(
ciûij +

N∑
k=1

H ikûkj −
N∑
k=1

Gikq̂kj
)
, i = 1, ..., N

(2.70)
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where the definitions of H ik and Gik are given previously for both constant and linear

element discretizations in equations (2.18), (2.19) and (2.34), (2.36), (2.40), respec-

tively.

To obtain the solution on the boundary, equation (2.70) becomes for a boundary point

i

1

2
ui +

N∑
k=1

H ikuk −
N∑
k=1

Gikqk =
N+L∑
j=1

αj
(1

2
ûij +

N∑
k=1

H ikûkj −
N∑
k=1

Gikq̂kj
)

(2.71)

where i ∈ [1, N ]. Also, the equivalent form is

N∑
k=1

Hikuk −
N∑
k=1

Gikqk =
N+L∑
j=1

αj
( N∑
k=1

Hikûkj −
N∑
k=1

Gikq̂kj
)

(2.72)

where Hik = H ik +
1

2
δij .

Then, the matrix-vector equation is obtained as

Hu−Gq =
N+L∑
j=1

αj
(
Hûj −Gq̂j

)
. (2.73)

When, Û and Q̂ matrices are constructed by considering the vectors ûj and q̂j as

columns of these matrices, respectively, the previous equation is converted into

Hu−Gq =
(
HÛ−GQ̂

)
α. (2.74)

The dimensions of the matrices Û and Q̂ are N × (N + L) and the vector α has

dimension (N + L) × 1. The solution in terms of u and q on the boundary can be

found by inserting the boundary conditions to equation (2.74) and applying Gaussian

elimination after the required swapping procedure.

For the interior solution, the following equation need to be solved by using the ob-

tained or given boundary values of u and q as well as taking the constant ci = 1

ui =
N∑
k=1

Gikqk −
N∑
k=1

H ikuk +
N+L∑
j=1

αj
(
ûij +

N∑
k=1

H ikûkj −
N∑
k=1

Gikq̂kj
)

(2.75)

which is equivalently to the matrix-vector form

Iui = Gq −Hu+
(
IÛi + HÛ−GQ̂

)
α, i = 1, ..., L. (2.76)
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In the above equation, ui denotes the vector evaluated at the interior nodes. Its di-

mension is L× 1. The matrix I is the identity matrix of order L× L.

Therefore, all the unknowns on the boundary and inside the region can be obtained.

However, in DRBEM this procedure for finding the solution over the domain Ω can

be achieved at the same time by combining the linear system of algebraic equations

for the boundary and inside the region. This combination in matrix-vector equation isHbs 0

His I

ubs

uis

−
Gbs 0

Gis 0

qbs

0


=

Hbs 0

His I

Ûbs

Ûis

−
Gbs 0

Gis 0

Q̂bs

0


α (2.77)

where bs and is represent the boundary and interior nodes, respectively. 0 is the zero

matrix with size N ×N .

Equivalently, equation (2.77) is expressed as

Hu−Gq = (HÛ−GQ̂)α. (2.78)

The enlarged matrices H, G, Û and Q̂ have dimension (N+L)×(N+L). The vector

α has size (N + L) × 1 and, u, q contain both boundary and interior values which

have sizes (N + L)× 1.

Now, equation (2.78) contains the vector α which has undetermined coefficients αj

in its entries. To approximate the vector α, firstly the coordinate matrix F must be

constructed by considering fj , for j = 1, ..., N + L as columns which gives

b = Fα (2.79)

where F is the coordinate matrix of size (N + L)× (N + L). The vector b contains

the function value of b(x, y) evaluated at each (N + L) nodes.

By taking the inverse of the matrix F which exists, α can be found

α = F−1b. (2.80)

Eventually, equation (2.78) can be written as

Hu−Gq = (HÛ−GQ̂)F−1b. (2.81)
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The matrices and the vector on the right hand side of equation (2.81) are known.

Hence, inserting the boundary conditions into the equation and doing the necessary

shuffling, one ends up with a linear system of equations such as Ax = d, from which

the unknown values of u and q can be obtained.

At this moment, approximating function f from which the functions û and q̂ are

constructed is taken into consideration. Choice of the function f is unlimited and

many types of function are proposed. Then, the idea of using the distance function r

in the fundamental solution u∗ has been selected as the most convenient type for f .

Thus, the function f is well chosen as

f = 1 + r + r2 + ...+ rm (2.82)

where r =
√
r2
x + r2

y in a two-dimensional region.

Inserting the polynomial form of f in equation (2.64) results in

∇2û = 1 + r + r2 + ...+ rm (2.83)

related particular solution û converts in

û =
r2

4
+
r3

9
+ ...+

rm+2

(m+ 2)2
(2.84)

and the normal derivative eventually be

q̂ = (rx
∂x

∂n
+ ry

∂y

∂n
)(

1

2
+
r

3
+ ...+

rm

(m+ 2)
). (2.85)

2.4.1 DRBEM procedure for the equation∇2u = b(x, y, u)

In the previous section, the application of DRBEM is shown on the Poisson type

equation (∇2u = b(x, y)) where the non-homogeneous term is a known function

depending on the position. However, in this section the inhomogeneity is no longer a

known function, it is considered as containing the problem variable u in itself as

∇2u = b(x, y, u) (2.86)

with the same partly essential partly natural boundary conditions given in (2.60).
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Before the DRBEM procedure is applied, the non-homogeneous term b is splitted as

a linear function of u as

b = b1(x, y) + b2(x, y)u (2.87)

and then b is approximated as

b = b1 + b2u '
N+L∑
j=1

αjfj(x, y) (2.88)

where αj’s and fj’s denote undetermined coefficients and approximating radial basis

functions, respectively.

The DRBEM procedure emerges then

Hu−Gq =
(
HÛ−GQ̂

)
α (2.89)

where

α = F−1(b1 + Bu) (2.90)

and F is the coordinate function, b1 denotes the column vector with entries b1(xi, yi)

at each node i = 1, ..., N + L. Also, B is the diagonal matrix containing b2(xi, yi) on

the diagonal entries for i = 1, ..., N + L. Since the vector α involves the unknown u

itself, it can not be calculated explicitly now. Thus, it is going to be kept as unknown

in the solution process.

Inserting the equality of α from (2.90) into (2.89) yields

Hu−Gq =
(
HÛ−GQ̂

)
F−1(b1 + Bu). (2.91)

Equation (2.91) can be simplified as

(H−KB)u−Gq = Kb1 (2.92)

where

K =
(
HÛ−GQ̂

)
F−1. (2.93)

At this point, inserting the given boundary conditions of u and q into (2.92) and

swapping procedure converts the first order partial differential equations (2.92) into

a system of linear algebraic equations such as Ax = d since the vector b1 can be

calculated at N + L points. Therefore, one ends up with the solution easily.
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2.4.2 DRBEM procedure for the equation∇2u = b(x, y, u, ux, uy)

Here, the DRBEM procedure is modified for an extended form of equation (2.86)

including the convection terms ux and uy also

∇2u = b(x, y, u, ux, uy) (2.94)

with the same boundary conditions given in (2.60).

The non-homogeneous term b can be splitted into four functions as

b = b1(x, y) + b2(x, y)u+ b3(x, y)ux + b4(x, y)uy. (2.95)

Up to now, only a standard system is obtained in the form b = Fα. However, a

new special approximation along with the standard one becomes requisite for this

type of equation giving the relation between the nodal values of u and its coordinate

derivatives with respect to x and y as
∂u

∂x
and

∂u

∂y
.

The solution u can be approximated with the help of the same approximating func-

tions fj as

u '
N+L∑
j=1

βjfj(x, y) (2.96)

where βj’s are undetermined coefficients and βj’s are different from αj’s given in

equation (2.88).

The matrix-vector form of equation (2.96) is

u = Fβ (2.97)

giving

β = F−1u (2.98)

since F is an invertible matrix.

Taking the derivatives of both sides with respect to x and y provides

∂u

∂x
=
∂F
∂x
β

∂u

∂y
=
∂F
∂y
β.

(2.99)
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Substituting β in equation (2.98) gives

∂u

∂x
=
∂F
∂x

F−1u

∂u

∂y
=
∂F
∂y

F−1u.
(2.100)

The DRBEM application ends up with the matrix-vector equation

Hu−Gq =
(
HÛ−GQ̂

)
α (2.101)

where α = F−1b or equivalently,

Hu−Gq =
(
HÛ−GQ̂

)
F−1b (2.102)

which turns up to be

Hu−Gq =
(
HÛ−GQ̂

)
F−1(b1 + Bu+ B̄ux + B̃uy) (2.103)

where B, B̄ and B̃ are the diagonal matrices with entries b2(xi, yi), b3(xi, yi) and

b4(xi, yi) on their diagonals for i = 1, ..., N +L, respectively. The vector b1 contains

b1(xi, yi) at N + L nodes.

Using the equalities of coordinate derivatives of u from equation (2.100) in the above

equation provides

Hu−Gq =
(
HÛ−GQ̂

)
F−1(b1 + Bu+ B̄

∂F
∂x

F−1u+ B̃
∂F
∂y

F−1u). (2.104)

Finally, rearrangement of the terms by keeping u as unknown gives the following

linear system of equations as(
H−KR

)
u−Gq = Kb1 (2.105)

which can be rearranged as a linear system Ax = d where K =
(
HÛ − GQ̂

)
F−1

and R =
(
B + B̄

∂F
∂x

F−1 + B̃
∂F
∂y

F−1
)
.

Therefore, the solution u can be obtained easily by using Gaussian elimination from

the linear system of algebraic equations, Ax = d. To get this system, firstly insert the

boundary conditions of u and q into equation (2.105) together with the zero for the

interior values of q. Then, swap the corresponding columns of (H − KR) and G to

obtain all the unknown values of u and q as x on the left hand side.
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2.4.3 DRBEM procedure for the equation∇2u = b(x, y, t, u, ut, ux, uy)

In this section, the non-homogeneous term b is enlarged once more by adding the time

variable t and the derivative of the solution with respect to time,
∂u

∂t

∇2u = b(x, y, t, u, ut, ux, uy). (2.106)

The DRBEM solution is considered then for time-dependent Poisson’s equation (Dif-

fusion equation). Assume that, the term b contains linear combination of the unknown

u, the convection terms ux and uy, and the time derivative ut. Thus, the inhomogene-

ity b can be expressed as

b = ut + b1(x, y) + b2(x, y)u+ b3(x, y)ux + b4(x, y)uy. (2.107)

It is estimated by using the radial basis functions fj as

b = ut + b1 + b2u+ b3ux + b4uy '
N+L∑
j=1

αj(t)fj(x, y) (2.108)

where αj(t)’s are also functions of time which makes the difference from the previ-

ously defined parameters αj’s. The approximating functions fj are connected to the

particular solutions ûj again through equation (2.64) with the Laplace operator.

The DRBEM application to Poisson’s type equation (2.106) brings

Hu−Gq =
(
HÛ−GQ̂

)
α (2.109)

with α = F−1b which results in

Hu−Gq =
(
HÛ−GQ̂

)
F−1b (2.110)

embedding the equality of the vector b as

Hu−Gq =
(
HÛ−GQ̂

)
F−1(

∂u

∂t
+ b1 + Bu+ B̄

∂F
∂x

F−1u+ B̃
∂F
∂y

F−1u).

(2.111)

The following linear system of ordinary differential equations in time, can be obtained

by rearranging the terms in (2.111)

Ku̇−
(
H−KR

)
u+ Gq = −Kb1 (2.112)
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with the diagonal matrices K and R defined in equation (2.105).

Therefore, a first order initial value problem is obtained

u̇− Du+ Eq = −b1 (2.113)

where D = K−1H− R and E = K−1G.

The above system of equations can be solved for transient time levels by using any

time integration scheme. However, in this thesis implicit Euler method is used for the

time derivative.

2.4.3.1 Implicit Euler method for time integration scheme

The implicit Euler method is a first order numerically stable method and it is an easy

finite difference approximation for the time derivative. Contrary to the other methods,

a rather larger step size ∆t can be used due to its unconditional stability which is

the main advantage of the method. The time step represents the size between two

consecutive iterations, i.e. ∆t = tm+1 − tm.

Introducing the notation u(x, y, tm) = um and using the Taylor series expansion about

tm, one can get

um = um+1 −∆t
∂um+1

∂t
+

∆t
2

2!

∂2um+1

∂t2
− ... (2.114)

which can be rewritten as

∂um+1

∂t
=
um+1 − um

∆t

+O(∆t). (2.115)

Substituting this approximation into equation (2.113) and rearranging the matrix-

vector system of equations in increasing time levels yields

um+1 − um

∆t

− Dum+1 + Eqm+1 = −b1 (2.116)

where um+1 and qm+1 are the vectors at the (m+1)-th time level. By using the initial

condition for the vector u, i.e. u0, the solution can be obtained at any desired time

level.
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CHAPTER 3

THE BEM SOLUTIONS OF THE MHD DUCT FLOW PROBLEMS

In this chapter, the BEM solutions for convection-diffusion type PDEs are going to

be presented. Mainly, three types of PDEs are solved. In the first type, the diffusion

term contains variable coefficient in it depending on the space variables. Application

for this type is given on the MHD flow and heat transfer with temperature dependent

viscosity. The second and third convection-diffusion type PDEs considered in this

chapter also contain variable coefficients but in front of the convection terms. Ap-

plications are also given for MHD flow problems in rectangular ducts. In the second

problem convection coefficients are changing with respect to time t, and the third one

contains axial dependent convection coefficients that is the external magnetic field ap-

plies in the streamwise direction (pipe-axis direction). Actually, in the second prob-

lem the variable coefficients depend on time due to the applied magnetic field varying

with time. Similarly, axial-dependent applied magnetic field makes the variable coef-

ficients of the convection terms depending on the streamwise direction. The common

feature of these three types of PDEs is that each contains Laplace operator in their

diffusion term after doing the required rearrangements. They become then, Poisson’s

type equations which can be treated by the techniques, parametrix BEM and DRBEM

as given in Chapter 2. Thus, in this chapter, only the basic steps of the application of

these numerical methods are going to be shown on these three convection-diffusion

types PDEs. The outline of this chapter is as follows; the MHD flow and heat transfer

problem with temperature dependent viscosity is the first convection-diffusion type

PDE considered. The discretized BEM solutions for the coupled equations are given

in Section 3.1. The time-dependent MHD duct flow equations in terms of the veloc-

ity and induced magnetic field constitute the second type convection-diffusion PDEs,

and their DRBEM discretizations are given in Section 3.2. Then, the MHD duct flow
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with streamwise direction applied magnetic field is solved in terms of the velocity and

the electric potential by using the DRBEM in Section 3.3. Once and for all, the MHD

duct flow equations in Section 3.3 are considered along with the induced magnetic

field equation in Section 3.4 and solved by using the DRBEM.

3.1 Parametrix BEM and DRBEM applications to inductionless MHD flow and

heat transfer with temperature dependent viscosity

The laminar, steady flow of a viscous, incompressible, electrically conducting fluid

is considered in a long channel of rectangular cross-section (duct) in conjunction

with heat transfer. A uniform magnetic field with intensity B0 is applied to the duct

perpendicular to the axis of the channel, i.e. z−axis. However, the induced magnetic

field is neglected due to the assumption of small magnetic Reynolds number. The

physical configuration of the flow is shown in Figure 3.1. Both the flow and the

temperature are steady and fully-developed along the channel.

x

y

z

1

1

B0

flow

Ω

Figure 3.1: Physical configuration of the problem

The governing equations are
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∂

∂x
(µ
∂w

∂x
) +

∂

∂y
(µ
∂w

∂y
) = −1 +

M2

1 +m2
w (3.1)

∇2T +Brµ
[(∂w
∂x

)2
+
(∂w
∂y

)2]
+
M2Br

1 +m2
w2 =

w

wm
(3.2)

where B, m, M and Br denote the viscosity parameter, Hall parameter, Hartmann

number and Brinkmann number, respectively. The flow has a temperature dependent

viscosity µ = e−BT and wm is the volumetric flow defined as
∫

Ω

wdΩ.

The coupled equations in terms of the velocity w and the temperature T are consid-

ered in a rectangular cross-section (duct) of a pipe with no-slip velocity and zero-

temperature on the walls.

The velocity equation (3.1) is solved by using the parametrix BEM procedure first

while the energy equation (3.2) is solved by using the DRBEM. In the BEM ap-

proach, the fundamental solution is going to be a parametrix and since the variable

coefficient of diffusion equation is µ, the fundamental solution in Section 2.3 be-

comes P (x, xi; y, yi) = 1
2π

1
µ(xi,yi)

ln|r − ri|. This fundamental solution helps one to

treat the diffusion operator of the equation directly. The energy equation is rewritten

by leaving ∇2T on the left alone and treating all the other terms as inhomogeneities.

Then, it is solved by DRBEM using the fundamental solution of Laplace equation

u∗ = 1
2π
ln(1

r
). Secondly, both the velocity equation (3.1) and energy equation (3.2)

are solved by using the DRBEM procedure, leaving the Laplacian terms alone on the

left and using fundamental solution of Laplace equation in the application of DRBEM

for both of the equations.

3.1.1 Parametrix BEM-DRBEM approach

Discretizing the boundary of Ω withN constant elements and applying the parametrix

BEM and the DRBEM approaches transform the differential equations (3.1) and (3.2)

into the following equivalent integral equations (3.3) and (3.4), respectively,

ciwi +

∫
Γ

[
(µ
∂w

∂n
)P − (µ

∂P

∂n
)w

]
dΓ +

∫
Ω

w
∂µ

∂n

∂P

∂n
dΩ =

∫
Ω

b1PdΩ (3.3)
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and

ciTi −
∫

Γ

∂T

∂n
u∗dΓ +

∫
Γ

q∗TdΓ = −
∫

Ω

b2u
∗dΩ (3.4)

where the constants ci are ci = θi/2π with the internal angle θi at the source point

i = 1, ..., N , and

b1 = −1 +
M2

1 +m2
w (3.5)

b2 = −Brµ
[(∂w
∂x

)2
+
(∂w
∂y

)2]− M2Br

1 +m2
w2 +

w

wm
. (3.6)

The integral equation obtained from the parametrix BEM procedure (3.3) contains

domain integrals on both sides of equation. These domain integrals are preserved and

evaluated by using numerical integration techniques. However, the domain integral

resulting from the DRBEM on the right hand side of equation (3.4) is transformed

into boundary integrals by using radial basis functions fj as mentioned in the previous

chapter.

Equation (3.3) with the definition of b1 in (3.5) can be converted into the following

matrix-vector equation as

Hw −G(µ
∂w

∂n
) = I1(w)− I2(w) (3.7)

where

I1(w) =

∫
Ω

1

2πµ(xi, yi)
w

(r − ri)−→n
|r − ri|2

∂µ(x, y)

∂n
dΩ

I2(w) =

∫
Ω

1

2πµ(xi, yi)
ln|r − ri|(−1 +

M2

1 +m2
w)dΩ.

(3.8)

These domain integrals are evaluated by using the composite trapezoidal rule men-

tioned in Section 2.2.1. The rectangular domain is divided into cells with edges have

equal length. That means, the cells pass from the end points of constant boundary

elements.

The H and G are the parametrix BEM matrices with entries

Hij = −ciδij +
1

2π

∫
Γj

(r − ri)~n
|r − ri|2

µ(x, y)

µ(xi, yi)
dΓj, Hii = −

N∑
j=1,j 6=i

Hij,

Gij =
1

2π

∫
Γj

ln|r − ri|
1

µ(xi, yi)
dΓj, Gii =

1

µ(xi, yi)

`e
2π

(ln(
`e
2

)− 1),

(3.9)
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where `e represents the length of the boundary element.

The unknown values of
∂w

∂n
on the boundary can be obtained by solving the system

(3.7) by using the Gaussian elimination since the velocityw values are 0 everywhere

on the boundary. Then, the obtained boundary values are inserted in the following

equation to compute the velocity w values at each interior nodes by taking the con-

stant ci = 1, as

wi = Hw −G(µ
∂w

∂n
)− I1(w) + I2(w) (3.10)

where H ij =
1

2π

∫
Γj

(r − ri)~n
|r − ri|2

µ(x, y)

µ(xi, yi)
dΓj, i = 1, ..., L, j = 1, ..., N . L denotes

the number of interior nodes with the vectors r and ri on the boundary element and

at the internal nodes, respectively. The I1 and I2 are the same domain integrals as in

(3.8) with the vector ri at the internal nodes.

Then, the BEM discretized equation (3.4) with the definition b2 in (3.6) is

ciTi −
∫

Γ

∂T

∂n
u∗dΓ +

∫
Γ

q∗TdΓ =

−
∫

Ω

(−Brµ
[(∂w
∂x

)2
+
(∂w
∂y

)2]− M2Br

1 +m2
w2 +

w

wm
)u∗dΩ

(3.11)

Except the term u∗ on the right hand side of equation (3.11), all other terms in the

domain integral are considered as inhomogeneities and these non-homogeneous terms

are approximated by a set of radial basis functions fj(x, y) linked with the particular

solutions ûj to the equation ∇2ûj = fj as mentioned in Section 2.4. Therefore, the

approximation is

N+L∑
j=1

αjfj(x, y) =
N+L∑
j=1

αj∇2ûj (3.12)

where αj’s are undetermined coefficients for the velocity. Inserting the approximation

(3.12) in the right hand side of equation (3.11) brings the multiplication of the Laplace

operator with the fundamental solution u∗. Then, applying the BEM procedure also

to this side of equation gives the following DRBEM boundary integral equation

ciTi −
∫

Γ

∂T

∂n
u∗dΓ +

∫
Γ

q∗TdΓ =
N+L∑
j=1

αj(ciûij +

∫
Γ

ûjq
∗dΓ−

∫
Γ

q̂ju
∗dΓ). (3.13)
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After the boundary discretization with constant elements again, the following matrix-

vector equation is achieved

HT −G
∂T

∂n
=
(
HÛ−GQ̂

)
F−1
{
−Brµ

[(∂w
∂x

)2
+
(∂w
∂y

)2]− M2Br

1 +m2
w2 +

w

wm

}
(3.14)

where µ is a vector constructed from the viscosity parameter µ = e−BT .

The vector T and ∂T /∂n contain the values at N + L points. The matrices H and G

are the standard DRBEM matrices with entries

Hij = ciδij −
1

2π

∫
Γj

(r − ri).~n
|r − ri|2

dΓj, Hii = −
N∑

j=1,j 6=i

Hij,

Gij =
1

2π

∫
Γj

ln(
1

|r − ri|
)dΓj, Gii =

`e
2π

(
ln
( 2

`e

)
+ 1
)
,

(3.15)

where `e represents the length of the boundary element.

The matrices Û and Q̂ have dimensions (N + L) × (N + L). They are constructed

by taking each of the vectors ûj and q̂j as columns, respectively as detailed in Section

2.4.

The coordinate derivatives of the velocityw with respect to the variables x and y such

as
∂w

∂x
,
∂w

∂y
in equation (3.14) can be approximated by using the coordinate matrix F

which yields the following equation

HT −G
∂T

∂n
= (HÛ−GQ̂)F−1

{
−Brµ

[(∂F
∂x

F−1w
)2

+
(∂F
∂y

F−1w
)2 ]

−M
2Br

1 +m2
w2 +

w

wm

}
.

(3.16)

Up to now, the matrix-vector forms of the velocity and the energy equations have

been obtained by using two methods, namely the parametrix BEM and DRBEM,

respectively in (3.7)-(3.10) and (3.16). The system of the velocity equation (3.7)-

(3.10) for the boundary and interior solutions, and the energy equation (3.16) for

both boundary and interior solutions are going to be solved iteratively following the

algorithm below.

Step 1. Pre-assign a tolerance ε for the convergence criteria.

Step 2. Define a relaxation parameter κ, 0 < κ < 1 for slowing down the sharp

decrease of velocity magnitude in using parametrix BEM.
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Step 3. Take initial guesses for the velocity w0 and the temperature T 0 as zero.

Step 4. Solve the following coupled equations in terms of the velocity and temper-

ature by using the Dirichlet type boundary conditions (w = 0 and T = 0 on the

boundary) as

Hwn+1 −G(µ
∂wn+1

∂n
) = I1(wn)− I2(wn), (3.17)

wi = Hw −G(µ
∂w

∂n
)− I1(w) + I2(w). (3.18)

HT n+1 −G
∂T n+1

∂n
= (HÛ−GQ̂)F−1

{
−Brµ

[(∂F
∂x

F−1wn+1
)2

+
(∂F
∂y

F−1wn+1
)2 ]− M2Br

1 +m2
(w2)n+1 +

wn+1

wm

}
.

(3.19)

Step 5. Relax the obtained velocity values using

wn+1 = κwn+1 + (1− κ)wn, 0 < κ < 1 (3.20)

between n-th and (n+ 1)-th iterations.

Step 6. Check the convergence criteria

||un+1 − un||∞
||un||∞

< ε (3.21)

where ||u||∞ = max{|u1|, |u2|, ..., |uN+L|} for the velocity w and the temperature T ,

and n denotes the iteration level.

Step 7. If the criteria is achieved for w and T then stop.

Step 8. If the criteria is not achieved for one of the unknowns then repeat the Steps

4-6.

Thus, the unknown problem parameters, the velocity and temperature values inside

the region, and the normal derivatives of them on the boundary can be obtained along

with using the normal derivatives of the velocity and the temperature as zero in the

domain.
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3.1.2 DRBEM-DRBEM approach

In this section, the boundary integral formulations resulted from the DRBEM formu-

lations for the velocity and the energy equations are going to be given by discretizing

the boundary of the duct with N constant elements and L interior nodes. Before

applying DRBEM procedures to both equations, a rearrangement is required for the

velocity equation (3.1) to leave the Laplacian term alone. Thus, the governing equa-

tions are

∇2w =
1

µ
(−1 +

M2

1 +m2
w − ∂µ

∂x

∂w

∂x
− ∂µ

∂y

∂w

∂y
) (3.22)

∇2T = −Brµ
[(∂w
∂x

)2
+
(∂w
∂y

)2]− M2Br

1 +m2
w2 +

w

wm
(3.23)

The DRBEM procedures bring the following boundary-domain integral equations

ciwi −
∫

Γ

∂w

∂n
u∗dΓ +

∫
Γ

q∗wdΓ =

−
∫

Ω

[
1

µ

(
− 1 +

M2

1 +m2
w − ∂µ

∂x

∂w

∂x
− ∂µ

∂y

∂w

∂y

)]
u∗dΩ

(3.24)

and

ciTi −
∫

Γ

∂T

∂n
u∗dΓ +

∫
Γ

q∗TdΓ =

−
∫

Ω

(−Brµ
[(∂w
∂x

)2
+
(∂w
∂y

)2]− M2Br

1 +m2
w2 +

w

wm
)u∗dΩ.

(3.25)

The following DRBEM matrix-vector equations are obtained by considering the in-

tegrands in the domain integrals of the right hand sides as inhomogeneities, and ap-

proximating them by sets of radial basis functions given in details in Section 2.4 as

Hw −G
∂w

∂n
= (HÛ−GQ̂)F−1

{ 1

µ

(
− 1 +

M2

1 +m2
w − ∂µ

∂x

∂w

∂x
− ∂µ

∂y

∂w

∂y

)}
(3.26)

and

HT −G
∂T

∂n
=
(
HÛ−GQ̂

)
F−1
{
−Brµ

[(∂w
∂x

)2
+
(∂w
∂y

)2]− M2Br

1 +m2
w2 +

w

wm

}
(3.27)
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where H, G, Û, Q̂ and F are the standard DRBEM matrices described in (3.15).

Again, with the help of the coordinate matrix F, the derivatives of the velocity w

and the viscosity coefficient µ with respect to x and y are approximated. Thus, the

equations (3.26) and (3.27) yield to the following equations

Hw−G
∂w

∂n
= (HÛ−GQ̂)F−1

{ 1

µ

(
− 1 +

M2

1 +m2
w − ∂F

∂x
F−1µ

∂F
∂x

F−1w

− ∂F
∂y

F−1µ
∂F
∂y

F−1w
)} (3.28)

equivalently, equation (3.28) can be written as

Hw −Gq = (HÛ−GQ̂)F−1 1

µ
(−1), (3.29)

where the matrix H is

H = H− R, and

R = (HÛ−GQ̂)F−1 1

µ

( M2

1 +m2
− ∂F
∂x

F−1µ
∂F
∂x

F−1 − ∂F
∂y

F−1µ
∂F
∂y

F−1
) (3.30)

and

HT −G
∂T

∂n
= (HÛ−GQ̂)F−1

{
−Brµ

[(∂F
∂x

F−1w
)2

+
(∂F
∂y

F−1w
)2 ]

−M
2Br

1 +m2
w2 +

w

wm

}
.

(3.31)

All the terms in equations (3.28) and (3.29) are matrices while µ and
1

µ
are diagonal

matrices constructed by taking viscosity parameter µ = e−BT and
1

µ
as their diagonal

entries, respectively.

Then, in the DRBEM procedure for the flow and temperature equations (3.29) and

(3.31) are going to be solved iteratively by following the algorithm below.

Step 1. Pre-assign a tolerance ε for the convergence criteria.

Step 2. Take initial guesses for the velocity w0 and the temperature T 0 as zero.

Step 3. Solve the following coupled DRBEM equations in terms of the velocity and

temperature by using the Dirichlet type boundary conditions (w = 0 and T = 0 on

the boundary) as
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Hwn+1 −Gqn+1 = (HÛ−GQ̂)F−1 1

µ
(−1). (3.32)

HT n+1 −G
∂T n+1

∂n
= (HÛ−GQ̂)F−1

{
−Brµ

[(∂F
∂x

F−1wn+1
)2

+
(∂F
∂y

F−1wn+1
)2 ]− M2Br

1 +m2
(w2)n+1 +

wn+1

wm

}
.

(3.33)

Step 4. Check the convergence criteria

||un+1 − un||∞
||un||∞

< ε (3.34)

where ||u||∞ = max{|u1|, |u2|, ..., |uN+L|} for the velocity w and the temperature T ,

and n denotes the iteration level.

Step 5. If the criteria is achieved for w and T , then stop.

Step 6. If the criteria is not achieved for one of the unknowns then repeat the Steps

3-4.

Therefore, all the unknown values of the velocity and temperature inside the region,

and their normal derivatives on the boundary are obtained.

3.2 DRBEM applications to MHD duct flow with time-varied external mag-

netic field

A viscous, incompressible and electrically conducting fluid is flowing in a long pipe

having a rectangular cross-section. The fully-developed flow through the pipe is sub-

jected to a time-varied oblique magnetic field B0(t) = B0f(t) where B0 is the in-

tensity of the applied magnetic field at the initial time level (t = 0) and f(t) is a

time-varied function. The MHD equations are derived in Chapter 1 from the Navier-

Stokes equations and the Maxwell’s equation through Ohm’s law containing the effect

of time-varied applied magnetic field B0(t) [50].

The velocity V (x, y, t) and the induced magnetic field B(x, y, t) vary only in the duct

Ω of the pipe under the effect of magnetic field changing with respect to time. The
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governing equations in a domain Ω× [0,∞) are (equations (1.61)-(1.62))

∇2V +Mx
∂B

∂x
+My

∂B

∂y
= −1 +Re

∂V

∂t

∇2B +Mx
∂V

∂x
+My

∂V

∂y
= Rm

∂B

∂t

(3.35)

where Ω = {(x, y) ∈ R2 : −1 ≤ x, y ≤ 1}. Mx = Mf(t)sinα, My = Mf(t)cosα,

M is the Hartmann number and α is the angle between the applied magnetic field and

the y-axis. Re and Rm denote the Reynolds and magnetic Reynolds numbers, and

defined in equations (1.53), (1.54), respectively.

The problem is considered with the following boundary conditions

V (x, y, t) = 0 B(x, y, t) = 0 (x, y) ∈ Γ, t > 0 (3.36)

which means the walls of the duct have no-slip velocity and they are insulated, and

initially both the velocity and induced magnetic field are zero

V (x, y, 0) = 0 B(x, y, 0) = 0 (x, y) ∈ Ω. (3.37)

3.2.1 Re = 1, Rm = 1 case

In this section, the DRBEM solution for the equations in (3.35) is going to be pre-

sented. The unsteady MHD equations are in coupled form. Unless the Reynolds

number Re and magnetic Reynolds number Rm equal to 1, one must handle these

PDEs in its original coupled form. However, if Re and Rm are taken as 1 according

to the physics of the problem, then they can be transformed into decoupled unsteady

convection-diffusion type equations with time dependent coefficients by using the

change of variables given in [65]

U1 = V +B, U2 = V −B. (3.38)

Equations in (3.35) are rewritten in decoupled form

∇2U1 +Mx
∂U1

∂x
+My

∂U1

∂y
= −1 +

∂U1

∂t

∇2U2 −Mx
∂U2

∂x
−My

∂U2

∂y
= −1 +

∂U2

∂t

(3.39)
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with the following boundary and initial conditions

U1(x, y, t) = 0 U2(x, y, t) = 0 (x, y) ∈ Γ

U1(x, y, 0) = 0 U2(x, y, 0) = 0 (x, y) ∈ Ω
(3.40)

where (x, y, t) ∈ Ω× [0,∞).

Leaving the Laplacian terms alone on one side of the equations and treating all the

other terms as inhomogeneities, the application of the DRBEM procedure brings the

discretized equations in the following matrix-vector form as

HU1 −G
∂U1

∂n
= (HÛ−GQ̂)F−1

{
− 1 +

∂U1

∂t
−Mx

∂U1

∂x
−My

∂U1

∂y

}
HU2 −G

∂U2

∂n
= (HÛ−GQ̂)F−1

{
− 1 +

∂U2

∂t
+Mx

∂U2

∂x
+My

∂U2

∂y

}
.

(3.41)

Evaluating the space derivatives ofU1 andU2 with the help of the coordinate function

F yields

(
H + (HÛ−GQ̂)F−1(Mx

∂F
∂x

F−1 +My
∂F
∂y

F−1)
)
U1 −G

∂U1

∂n
=

(HÛ−GQ̂)F−1{−1 +
∂U1

∂t
}(

H + (HÛ−GQ̂)F−1(Mx
∂F
∂x

F−1 +My
∂F
∂y

F−1)
)
U2 −G

∂U2

∂n
=

(HÛ−GQ̂)F−1{−1 +
∂U2

∂t
}.

(3.42)

When the time derivatives of U1 and U2 are discretized by using the implicit Eu-

ler method and following the procedure detailed in Section 2.4.3.1, equations (3.42)

become

C
(
H + (HÛ−GQ̂)F−1(Mx

∂F
∂x

F−1 +My
∂F
∂y

F−1)
)
U1 − CG

∂U1

∂n
=

{−1 +
Un+1

1 −Un
1

∆t
}

C
(
H− (HÛ−GQ̂)F−1(Mx

∂F
∂x

F−1 +My
∂F
∂y

F−1)
)
U2 − CG

∂U2

∂n
=

{−1 +
Un+1

2 −Un
2

∆t
}

(3.43)

where C = ((HÛ−GQ̂)F−1)−1.
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Rearrangment of equation (3.43) for increasing time levels results in(
A1 −

1

∆t

)
Un+1

1 −G1
∂Un+1

1

∂n
= {−1− U

n
1

∆t
}(

A2 −
1

∆t

)
Un+1

2 −G2
∂Un+1

2

∂n
= {−1− U

n
2

∆t
}

(3.44)

where

A1 = C
(
H + (HÛ−GQ̂)F−1(Mx

∂F
∂x

F−1 +My
∂F
∂y

F−1)
)
, G1 = CG

A2 = C
(
H− (HÛ−GQ̂)F−1(Mx

∂F
∂x

F−1 +My
∂F
∂y

F−1)
)
, G2 = CG.

(3.45)

Now, the equations in (3.44) can be solved separately and iteratively for increasing

time levels tn starting with the initials U0
1 = 0 and U0

2 = 0. The solution proce-

dure for U1 (or U2) is going to be detailed as follows. The values of U1 (or U2)

is known on the boundary as zero and the normal derivative of U1 (or U2) is taken

as zero at the interior nodes. However, the values of U1 (or U2) in the region and

its normal derivative on the boundary are the unknowns. Then, all the known values

for the boundary and interior nodes are inserted into the corresponding matrix-vector

equation in (3.44). This makes the vectors in (3.44) on both sides have some known

and unknown values. All the unknown values of U1 and
∂U1

∂n
(or U2 and

∂U2

∂n
)

can be collected on one side by swapping the corresponding columns of the matri-

ces
(
A1 −

1

∆t

)
(or
(
A2 −

1

∆t

)
) with G1 (or G2). This shuffling procedure gives a

system of linear algebraic equations such as Ax = d. Solving this system gives the

values of U1 (or U2) inside the region and
∂U1

∂n
(or

∂U2

∂n
) on the boundary. The iter-

ative process is repeated until the desired time level or the preassigned convergence

tolerance between two successive iterations is reached. After then, by using the back

substitutions in (3.38) which is

V = (U1 + U2)/2, B = (U1 − U2)/2 (3.46)

the velocity V (x, y) and the induced magnetic field B(x, y) can be obtained at the

points on which they are unknowns.

3.2.2 Varying Re and Rm case

Without the restriction on the Reynolds number Re and magnetic Reynolds number

Rm which approximates them as 1, the coupled equations (3.35) must be solved in
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their original form

∇2V +Mx
∂B

∂x
+My

∂B

∂y
= −1 +Re

∂V

∂t

∇2B +Mx
∂V

∂x
+My

∂V

∂y
= Rm

∂B

∂t

(3.47)

where (x, y, t) ∈ Ω× [0,∞).

The discretized DRBEM matrix-vector equations corresponding to the MHD flow

problem (3.47) are

HV −G
∂V

∂n
= (HÛ−GQ̂)F−1

{
− 1 +Re

∂V

∂t
−Mx

∂B

∂x
−My

∂B

∂y

}
HB −G

∂B

∂n
= (HÛ−GQ̂)F−1

{
Rm

∂B

∂t
−Mx

∂V

∂x
−My

∂V

∂y

}
.

(3.48)

Then, the same procedures mentioned above for the special caseRe = 1 = Rm, which

are approximating the space derivatives of V and B with the help of the coordinate

function F and evaluating the time derivatives of V andB by using the implicit Euler

method, bring the coupled discretized system

(
H− Re

∆t
K
)
V n+1 −G

∂V n+1

∂n
+ PBn+1 + RBn+1 = K(−1− Re

∆t
V n)(

H− Rm

∆t
K
)
Bn+1 −G

∂Bn+1

∂n
+ PV n+1 + RV n+1 = K(−Rm

∆t
Bn)

(3.49)

which are solved for increasing time levels where K = (HÛ − GQ̂)F−1, P =

K(Mx
∂F
∂x

F−1) and R = K(My
∂F
∂y

F−1).

Eventually, the equations in (3.49) can be put into the form

H̃V n+1 −G
∂V n+1

∂n
+ (P + R)Bn+1 = b1

ȞBn+1 −G
∂Bn+1

∂n
+ (P + R)V n+1 = b2

(3.50)

where H̃ = H− Re

∆t
K, Ȟ = H − Rm

∆t
K, b1 = K(−1 − Re

∆t
V n) and b2 =

K(−Rm

∆t
Bn).

The coupled matrix-vector equations in (3.50) are solved together, by constructing
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the following enlarged system
H̃ (P + R)

(P + R) Ȟ



V n+1

Bn+1

 =


G 0

0 G



∂V n+1

∂n

∂Bn+1

∂n

+


b1

b2

 (3.51)

where all the matrices and vectors in the system have sizes (N + L) × (N + L) and

(N + L)× 1, respectively. The (N + L)× (N + L) zero matrix is denoted by 0.

Prescribing new matrices as

H′ =


H̃ (P + R)

(P + R) Ȟ

 , G′ =


G 0

0 G

 (3.52)

where H′ and G′ have dimensions 2(N+L)×2(N+L), the enlarged system becomes

H′


V n+1

Bn+1

 = G′


∂V n+1

∂n

∂Bn+1

∂n

+


b1

b2

 . (3.53)

For this considered MHD duct flow problem, the velocity and the induced magnetic

field are known on the boundary. The unknowns are their values inside the region

and their normal derivatives on the boundary. The normal derivatives are taken as

zero in the region. After inserting all the known values of the velocity and induced

magnetic field into the system of equations (3.53), the vectors on both sides contain

some known and unknown values. In order to get a linear system of equations, an

arrangement is required. Each unknown on the right hand side of equation (3.53) is

carried to the left hand side by swapping the corresponding columns of the matrices

H′ and G′. Once all the unknown and know values are changed respectively to the left

hand side and right hand side, a linear system of equations such as Ax = d is obtained

and solution of this system provides the velocity V (x, y) and the induced magnetic

field B(x, y) values in the discretized points in the region in one stroke for increasing

time levels starting from the initial values V (x, y, 0) and B(x, y, 0), i.e. V 0 = 0 and

B0 = 0. This solution procedure is repeated iteratively up to the desired time level or

preassigned convergence tolerance is reached.
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3.3 DRBEM applications to inductionless MHD flow and electric potential

with variably conducting walls under axial-dependent magnetic field

In this section, the MHD flow of a viscous and incompressible fluid is considered

in a long pipe of rectangular cross-section under the effect of pipe-axis direction-

dependent vertically applied magnetic field B = (0, B0(z), 0) and B0(z) = B0g(z)

where B0 is the external magnetic field intensity and g(z) is the function determin-

ing the strength of the applied magnetic field along the z-axis, i.e. pipe-axis. The

configuration of the MHD flow in a long pipe under streamwise-dependent applied

magnetic field is seen in Figure 3.2.

x

y

z

z = z1

z = z2 = 0

z = z3

z = z4

B0(z)

Figure 3.2: Physical configuration of the rectangular pipe

The flow is assumed to be fully developed between two fixed z-values and its velocity

has only one component in the pipe-axis direction varying in the ducts xy-plane at

these fixed points of the axis. Physically, it may be considered as the fully-developed

flow between two magnets placed on the pipe-axis direction. The flow is considered

as two-dimensional on these ducts of the xy-plane where the magnets are located.
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The fluid is electrically conducting and it is subjected to a magnetic field applied

vertically but changing at the points where the magnets placed on the pipe-axis. The

induced magnetic field is neglected. Thus, the magnetic field B = (0, B0(z), 0), the

velocity u = (0, 0, w(x, y)) and the electric potential Φ = Φ(x, y) are varying in the

ducts along with the pipe-axis.

The non-dimensional momentum and electric potential equations (divergence of cur-

rent density) are coupled in Ω as

∇2w − (Mg(z))2w = −1 +M2g(z)
∂Φ

∂x

∇2Φ = −g(z)
∂w

∂x

(3.54)

where M is the Hartmann number, Ω = {(x, y) : −1 ≤ x, y ≤ 1} and g(z) =
1

1 + e−z/0.15
.

The no-slip velocity condition is imposed for the flow on the walls of the duct. How-

ever, the Neumann or mixed type boundary conditions are used for the electric po-

tential depending on the conductivity of the materials of the walls. Therefore, the

boundary conditions are shown in Figure 3.3 and Figure 3.4, and written as

w(x,±1) = w(±1, y) = 0 no-slip velocity

and

∂Φ

∂y
(x,±1) =

∂Φ

∂x
(±1, y) = 0 non-conducting walls

(3.55)

or

w(x,±1) = w(±1, y) = 0 no-slip velocity

and

± ∂Φ

∂y
(x,±1) = c

∂2Φ

∂x2
(x,±1)

± ∂Φ

∂x
(±1, y) = c

∂2Φ

∂y2
(±1, y)

}
variably conducting walls

(3.56)

where c denotes the wall conductance ratio of the four walls (ct (top), cb (bottom), cl

(left), cr (right)) which can be taken different from each other. That is, c is a measure

of the conductance of the wall compared to that of the fluid.
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Figure 3.3: The boundary conditions on non-conducting duct walls
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Figure 3.4: The boundary conditions on variably conducting duct walls

The discretized DRBEM equations in matrix-vector form for equation (3.54) are

Hw −G
∂w

∂n
= (HÛ−GQ̂)F−1

{
(Mg(z))2w − 1 +M2g(z)

∂Φ

∂x

}
HΦ−G

∂Φ

∂n
= (HU−GQ̂)F−1

{
− g(z)

∂w

∂x

}
.

(3.57)

Implementing the DRBEM procedure for the space derivatives brings

(
H−K(Mg(z))2)w −G

∂w

∂n
= K

{
− 1 +M2g(z)

∂F
∂x

F−1Φ
}

HΦ−G
∂Φ

∂n
= K

{
− g(z)

∂F
∂x

F−1w
} (3.58)

where K = (HÛ−GQ̂)F−1.

The matrix-vector equations in (3.58) are going to be solved as a whole by construct-
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ing the following enlarged system
H1 H2

H3 H4



w

Φ

−


G 0

0 G



∂w

∂n

∂Φ

∂n

 =


b1

0

 (3.59)

where

H1 = H−K(Mg(z))2,

H2 = −K(M2g(z))
∂F
∂x

F−1,

H3 = K
(
g(z)

∂F
∂x

F−1
)
,

H4 = H, and

b1 = K{−1}.

(3.60)

Prescribing new matrices

H′ =


H1 H2

H3 H4

 , G′ =


G 0

0 G

 , (3.61)

the enlarged system having dimensions 2(N + L)× 2(N + L) becomes

H′


w

Φ

−G′


∂w

∂n

∂Φ

∂n

 =


b1

0

 . (3.62)

In this problem, the no-slip walls of the duct are considered either electrically non-

conducting or variably conducting, and/or perfectly conducting. The conductivity

ratios are all zero for non-conducting walls. For the case of variably conducting

walls, the conductivity ratios on the Hartmann walls are non-zero, i.e. cb = ct 6= 0.

However, cl = cr = cb = ct 6= 0 on electrically perfectly conducting walls. The

solution procedure of enlarged system of equation (3.62) for non-conducting walls

with no-slip velocity as follows. Firstly, the boundary conditions of the velocity and

electric potential are inserted into the system of equation (3.62) along with the known

values which are the normal derivatives of the velocity and electric potential being

zero inside the region Ω. Then, a linear system of equations in the form

Ax = d (3.63)
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is obtained after required swapping procedure is done. Lastly, by solving the system

(3.63), the velocity ω and electric potential Φ values are obtained on the nodes where

they are unknown. On the other hand, the solution procedure of this problem having

no-slip velocity with variably or perfectly conducting walls requires iterative solution

since the Neumann type boundary conditions of the electric potential Φ are not given

explicitly. The normal derivatives of Φ are given in terms of the second partial deriva-

tives of it with respect to space variables x and y. The solution can be obtained by

following the algorithm described below.

Step 1. Pre-assign a tolerance ε for the convergence criteria and define a relaxation

parameter κ for the electric potential.

Step 2. Take an initial guess for the electric potential, Φ0 = 0.

Step 3. Compute the Neumann type boundary conditions of the electric potential Φ

by using the coordinate matrix F as in [66]

∂2Φn+1

∂x2
=
∂F
∂x

F−1∂F
∂x

F−1Φn ∂2Φn+1

∂y2
=
∂F
∂y

F−1∂F
∂y

F−1Φn. (3.64)

Step 4. Solve the matrix-vector equation (3.62) at (n+ 1)-th time level

H′


wn+1

Φn+1

−G′


∂wn+1

∂n

∂Φn+1

∂n

 =


b1

0

 (3.65)

by using the Dirichlet type boundary conditions for the velocity and Neumann type

boundary conditions for the electric potential obtained from the n−th level.

Step 5. Relax the obtained electric potential values as

Φn+1 = κΦn+1 + (1− κ)Φn, 0 < κ < 1. (3.66)

Step 6. Check the convergence criteria

||un+1 − un||∞
||un||∞

< ε (3.67)

where ||u||∞ = max{|u1|, |u2|, ..., |uN+L|} denoting for the velocity w and the elec-

tric potential Φ, and n denotes the iteration level.

Step 7. If the criteria is achieved for w and Φ, then stop.
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Step 8. If the criteria is not achieved for one of the unknowns then repeat the Steps

3-6.

3.4 DRBEM applications to MHD duct flow with axially dependent external

magnetic field

In this section, the MHD duct flow in a long pipe of rectangular cross-section which

is placed in a magnetic field B = (0, B0(z), Bz(x, y)) is considered and B0(z) =

B0g(z) where g(z) denotes the function determining the strength of the applied mag-

netic field along the pipe-axis, and B0 is the uniform constant intensity in the vertical

direction as shown in Figure 3.2. The flow is laminar and steady and the fluid is

incompressible, viscous and electrically conducting, and it is under the effect of an

axially changing magnetic field. The velocity and induced magnetic field have un-

known components only in the pipe-axis (z-axis) direction. The flow is also assumed

to be fully-developed between two fixed z-values varying only in the ducts xy-plane

at these points of the axis as in Section 3.2. The velocity and the induced magnetic

field are changing in the two-dimensional ducts but also influenced from the mag-

nets located at the points along the pipe-axis. The applied magnetic field B0(z) in

B = (0, B0(z), Bz(x, y)) with B0(z) = B0g(z) applies vertically to the duct (in

the y-direction) and the pipe-axis dependent function is taken as g(z) =
1

1 + e−z/0.15
.

Thus, three-dimensional effects are caused by variations of this applied magnetic field

in the pipe-axis direction between two values of z in which the flow is assumed to be

fully-developed.

Firstly, the coupled MHD flow equations are considered in terms of velocity and

induced magnetic field. Then, the electric potential equation is included and coupled

with these MHD equations. The governing equations are

∇2V +Mg(z)
∂B

∂y
= −1 +

M2

Rm

g(z)
∂g(z)

∂z

∇2B +Mg(z)
∂V

∂y
= 0

∇2Φ = −g(z)
∂V

∂x
.

(3.68)
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Figure 3.5: The boundary conditions for the velocity and induced magnetic field

The equations for the velocity V and the induced magnetic field B in (3.68) are con-

sidered with the boundary conditions given in Figure 3.5 (a) and (b). When the elec-

tric potential equation (3rd equation in (3.68)) is included, the problem is considered

with no-slip and insulated duct walls together with the Dirichlet, and Dirichlet and

Neumann type boundary conditions for Φ as in Figure 3.6 (a) and (b).
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Figure 3.6: The boundary conditions of Φ on the insulated and no-slip duct walls

The DRBEM implementation to the equations (3.68) respectively bring the DRBEM

84



discretized system

HV −G
∂V

∂n
= (HÛ−GQ̂)F−1

{
−Mg(z)

∂B

∂y
− 1 +

M2

Rm

g(z)
∂g(z)

∂z

}
HB −G

∂B

∂n
= (HÛ−GQ̂)F−1

{
−Mg(z)

∂V

∂y

}
HΦ−G

∂Φ

∂n
= (HÛ−GQ̂)F−1

{
− g(z)

∂V

∂x

}
(3.69)

or equivalently,

HV −G
∂V

∂n
+ K

(
Mg(z)

∂F
∂y

F−1B
)

= K
{
− 1 +

M2

Rm

g(z)
∂g(z)

∂z

}
HB −G

∂B

∂n
+ K

(
Mg(z)

∂F
∂y

F−1V
)

= 0

HΦ−G
∂Φ

∂n
+ K

(
g(z)

∂F
∂x

F−1V
)

= 0

(3.70)

where K = (HÛ−GQ̂)F−1.

The solution of


V

B

Φ

 can be obtained from the following enlarged system of equa-

tions 
H1 H2 H3

H4 H5 H6

H7 H8 H9



V

B

Φ

−


G 0 0

0 G 0

0 0 G



∂V /∂n

∂B/∂n

∂Φ/∂n

 =


b1

0

0

 (3.71)

where the (N + L)× (N + L) matrices are

H1 = H H4 = H2 H7 = K
(
g(z)

∂F
∂x

F−1
)

H2 = K
(
Mg(z)

∂F
∂y

F−1
)

H5 = H H8 = 0

H3 = 0 H6 = 0 H9 = H

(3.72)

and b1 = K
(
− 1 +

M2

Rm

g(z)
∂g(z)

∂z

)
.

Further, the solution

VB
 with the boundary conditions shown in Figure 3.4 can

also be obtained from the same system of equations (3.71) by eliminating the last

column and row of the matrices and vectors.
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Prescribing new matrices as

H′ =


H1 H2 H3

H4 H5 H6

H7 H8 H9

 , G′ =


G 0 0

0 G 0

0 0 G

 (3.73)

the enlarged system having dimensions 3(N + L)× 3(N + L) becomes

H′


V

B

Φ

 = G′


∂V /∂n

∂B/∂n

∂Φ/∂n

+


b1

0

0

 . (3.74)

A linear system of equations such as Ax = d can be obtained after inserting the given

boundary conditions shown on Figure 3.6 into (3.74) and swapping the corresponding

columns of H′ and G′. The solution of Ax = d gives the unknown values of V , B

and Φ at the discretized points wherever they are unknown.

In Chapter 3, the BEM solutions for convection-diffusion type PDEs (MHD flow

equations) are given. Although, mainly the MHD flow equations are solved, the dif-

ferences occur in the temperature dependent viscosity coefficients in the first problem

considered in Section 3.1, and time dependent or axial-dependent externally applied

magnetic field cases which are treated in Sections 3.2 and 3.3-3.4, respectively. For

the variable viscosity coefficients, the parametrix BEM is employed as well as the

DRBEM. When the applied magnetic field depends on the pipe-axis direction, MHD

flow equations in terms of the velocity and electric potential are solved in Section 3.3

and, the MHD equations are also solved in Section 3.4 when the induced magnetic

field is included.
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CHAPTER 4

NUMERICAL RESULTS OF THE MHD DUCT FLOW PROBLEMS

The MHD flow through pipes has important application areas such as MHD genera-

tors, accelerators, MHD flow meters, blood flow measurements and nuclear reactors.

In most cases, finding an analytical solution is a challenging process. Most of the

convection-diffusion type PDEs including MHD flow equations do not have known

analytical solutions and so finding numerical solutions becomes attractive. Since a

second-order, linear, elliptic PDE with variable convection coefficients has many ap-

plications in some classes of thermostatic, elastostatic and electrostatic fields, the

present chapter is devoted first to the numerical solutions of such problems. First, a

heat conduction problem with variable coefficients is solved and compared with the

exact solution. Then, the convection-diffusion type MHD flow problem with temper-

ature dependent viscosity and heat transfer, is solved numerically in the absence of

induced magnetic field, and the results are presented in Section 4.1. The parametrix

BEM and DRBEM are both used for obtaining numerical results. In the parametrix

BEM procedure, Levi function helps one to solve the equation in its original form,

and the DRBEM uses fundamental solution of Laplace equation treating all the terms

as inhomogeneities other than the Laplacian. Then, the numerical solutions of the

MHD duct flow problems by using the DRBEM are presented in the rest of the chap-

ter. In Section 4.2, the transient behaviors of the MHD duct flow are shown in terms

of the velocity and induced magnetic field under the effect of a time-varied applied

magnetic field B0(t). The MHD duct flow under the effect of axially changing im-

posed magnetic field B0(z) is solved numerically in Section 4.3. This study focuses

mainly on the flow behavior and the structure of the boundary layers influenced from

the changes in the electrical conductivity of the walls, and the strength of the axially

changing applied magnetic field. The obtained results are displayed in terms of the
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flow velocity and electric currents showing redistribution of the flow. In the latter

Section 4.4, the numerical results of the MHD duct flow problem under the influence

of the axial-dependent applied magnetic field are simulated in terms of the velocity,

induced magnetic field and electric potential equal lines.

4.1 Inductionless MHD flow and heat transfer with temperature dependent vis-

cosity

In this section, the steady, laminar, fully developed MHD flow and heat transfer of an

incompressible, electrically conducting fluid with temperature dependent viscosity,

is solved in a rectangular duct in terms of the velocity and temperature of the fluid

not considering the induced magnetic field. Before dealing with the MHD flow equa-

tions, we first want to see the parametrix BEM solutions of two non-homogeneous

heat conduction problems with variable coefficients as test problems as in [63] for

validating our parametrix BEM code.

Test Problems :

The second-order, linear, elliptic, variable coefficient partial differential equation of

diffusion type is given as (equation (2.51))

∂

∂x

(
a(x, y)

∂u

∂x

)
+

∂

∂y

(
a(x, y)

∂u

∂y

)
= b(x, y), (x, y) ∈ Ω (4.1)

with partially given boundary conditions of the unknown and flux as

u(x, y) = u(x, y), (x, y) ∈ Γ1

Tu(x, y) = a(x, y)
∂u

∂n
(x, y) = t(x, y), (x, y) ∈ Γ2.

(4.2)

The numerical simulations are carried by solving two test problems with parametrix

BEM which uses a Levi function or parametrix P (x, xi; y, yi) =
1

2πa(xi, yi)
ln|r−ri|

as a fundamental solution. In order to validate our numerical codes for the parametrix

BEM, we particularly consider the problems for which the exact solutions are avail-

able. The variable coefficients a(x, y), the non-homogeneous terms b(x, y) and the

exact solutions of the problems along with the problem domains and boundary con-

ditions corresponding to the problems are given in Table 4.1
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Table 4.1: Variable coefficient heat conduction problems

Test Problem 1 Test Problem 2

a(x, y) 2(x+ y) x2 + y2

b(x, y) 4 8(x2 + y2)

uexact x+ y x2 + y2

Ω [2, 3]× [2, 3] [1, 2]× [1, 2]

u = u x+ 2, on y = 2; x ∈ [2, 3] x2 + 1, on y = 1; x ∈ [1, 2]

u = u x+ 3, on y = 3; x ∈ [2, 3] x2 + 4, on y = 2; x ∈ [1, 2]

Tu = t 2(x+ y), on x = 3; y ∈ [2, 3] 2x(x2 + y2), on x = 2; y ∈ [1, 2]

Tu = t −2(x+ y), on x = 2; y ∈ [2, 3] −2x(x2 + y2), on x = 1; y ∈ [1, 2]
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Figure 4.1: Heat conduction problems. Isotherms from parametrix BEM and Exact

solutions.

Figure 4.1 visualizes exact solutions and numerical solutions obtained from parametrix

BEM for two test, variable coefficient heat conduction problems. In both solutions,

the domain Ω is discretized with N = 300 boundary elements and L = 5625 interior

nodes. The domain integrals arising from the parametrix BEM are computed by us-

ing composite trapezoidal rule. Figure 4.1 shows that, the parametrix BEM solutions
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agree very well with the exact solutions.

Table 4.2: Error L2 norms of the test problems for increasing number of boundary

elements.

Test Problem 1 Test Problem 2

N = 160 0.1874 0.6353

N = 200 0.1828 0.6212

N = 240 0.1796 0.6116

N = 300 0.1764 0.6019

From the Table 4.2 it can be seen that, as the number boundary elements increases the

error between the exact and parametrix BEM solutions of the test problems decreases

in the sense of L2 norm.

Then, we continue with the non-dimensional MHD flow and heat transfer equations

in which the viscosity coefficient µ = e−BT depends on the temperature T as given

in equations (3.1) and (3.2) in Section 3.1 for a duct of area Ω

∂

∂x
(µ
∂w

∂x
) +

∂

∂y
(µ
∂w

∂y
) = −1 +

M2

1 +m2
w (4.3)

∇2T +Brµ

[(
∂w

∂x

)2

+

(
∂w

∂y

)2]
+
M2Br

1 +m2
w2 =

w

wm
, (4.4)

where B, Br, m, M are the viscosity parameter, Brinkmann number, Hall parameter,

Hartmann number, respectively and wm is the volumetric flow defined as
∫

Ω

wdΩ. w

and T are the flow velocity and the temperature of the fluid, respectively. No-slip

velocity and cold wall conditions, i.e. w = T = 0 on the boundary Γ of the duct Ω

are specified. A uniform magnetic field with intensity B0 is applied with an angle to

the duct perpendicular to the axis of the channel, i.e. z−axis as shown in Figure 3.1.

The MHD duct flow equation (4.3) and (4.4) are solved iteratively in terms of the

velocity w of the flow and the temperature T of the fluid. The momentum equation

(4.3) is solved by using both the parametrix BEM and the DRBEM. Since the diffu-

sion term contains variable viscosity parameter depending on the temperature expo-

nentially, the Levi function is considered as a fundamental solution, P (x, xi; y, yi) =
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1
2π

1
µ(xi,yi)

ln|r − ri| which treats the variable coefficient in the equation (4.3) directly.

By weigthing the momentum equation with this fundamental solution converts the

momentum equation into a boundary-domain integral equation. Also, by transform-

ing the momentum equation (4.3) into Poisson equation, the DRBEM procedure is

applied with the fundamental solution of Laplace’s equation, u∗ = 1
2π
ln(1

r
). Then,

the energy equation (4.4) is solved by using the DRBEM keeping all the terms con-

taining the velocity as inhomogeneities.

The discretized boundary-domain integral equations in matrix-vector form resulted

from the parametrix BEM for the solution of the velocity w, and the DRBEM for the

solution of the temperature T are obtained in Chapter 3 (equations (3.7), (3.14)) as

Hw −G(µ
∂w

∂n
) = I1(w)− I2(w)

HT −G
∂T

∂n
=
(
HÛ−GQ̂

)
F−1
{
−Brµ

[(∂w
∂x

)2
+
(∂w
∂y

)2]− M2Br

1 +m2
w2 +

w

wm

}
(4.5)

where from equation (3.8)

I1(w) =

∫
Ω

w
∂µ

∂n

∂P

∂n
dΩ and I2(w) =

∫
Ω

(−1 +
M2

1 +m2
w)PdΩ (4.6)

and the BEM matrices H,G are as defined in (3.9) and (3.15), respectively forw and

T .

When the DRBEM is applied to both the velocity and temperature equations (4.3)

and (4.4), one arrives at the matrix-vector equations (equations (3.26), (3.27))

Hw −G
∂w

∂n
= (HÛ−GQ̂)F−1

{ 1

µ

(
− 1 +

M2

1 +m2
w − ∂µ

∂x

∂w

∂x
− ∂µ

∂y

∂w

∂y

)}
HT −G

∂T

∂n
=
(
HÛ−GQ̂

)
F−1
{
−Brµ

[(∂w
∂x

)2
+
(∂w
∂y

)2]− M2Br

1 +m2
w2 +

w

wm

}
.

(4.7)

The velocity and the temperature behaviors of the fluid obtained from the solution

of the coupled equations in (4.3) and (4.4) are shown in terms of equivelocity curves

and isolines in Figures 4.2-4.6. In each figure part (a) belongs to the solution using

parametrix BEM-DRBEM (equation (4.5)), and part (b) shows DRBEM-DRBEM

results from equation (4.7). The domain of the duct Ω = [0, 1] × [0, 1] is discretized
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by using N = 100 and N = 180 constant boundary elements, and L = 625 and

L = 2025 interior nodes to obtain the solution using the parametrix BEM-DRBEM.

And N = 180 constant boundary elements and L = 2025 interior nodes to obtain the

solution by using the DRBEM-DRBEM.

Figure 4.2 shows the velocity and temperature behaviors as Hartmann number M

is increasing for m = 0, Br = 0, B = 1. It is observed that as Hartmann num-

ber increases, the velocity magnitude drops, due to the damping effect of the applied

magnetic field with increasing intensity, this is a well-known flattening tendency of

the MHD duct flow. It is observed that as Hartmann number increases, the tem-

perature magnitude also drops. The magnitudes of the velocity obtained from the

parametrix BEM-DRBEM are slightly less than the velocity magnitudes obtained

with the DRBEM-DRBEM. This may be due to the errors resulting from the compu-

tations of the domain integrals.

From Figure 4.3 and also from Figure 4.4, it is also observed that, as the viscosity

parameter B is increasing, the magnitudes of the velocity and the temperature drop

due to the increment in the viscosity for different Hall parameter (m = 0, m = 3) and

Brinkmann number (Br = 0, Br = 1) values when Hartmann number M = 3. The

same drop in the increase of the velocity magnitudes is observed with the parametrix

BEM-DRBEM computations compared to the increase of the velocity magnitudes

obtained from the DRBEM-DRBEM.

From Figure 4.5 and also from Figure 4.6 for Br = 0 and Br = 1, respectively,

it is seen that when the Hall parameter m increases for fixed M = 3, B = 1, the

damping effect of the magnetic force decreases due to the term σ/(1 + m2). That

is, the velocity magnitude increases. It is also observed that as the Hall parameter

increases, the effective conductivity decreases, which reduces the Joule dissipation.

Therefore, the magnitude of the temperature also increases.

The effects of the Hall parameter m and Hartmann number M on the Nusselt num-

ber, Nu, are given on Tables 4.3, 4.4 and 4.5 where Nu = − 1

4Tm
and Tm =

1

wm

∫ 1

0

∫ 1

0

wTdxdy for Br = 0, B = 1 obtained from the parametrix BEM-

DRBEM and the DRBEM-DRBEM procedures, respectively. It is observed that as
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Hartmann number increases, the values of Nusselt number are increasing since the

values of the temperature decrease. However, as the Hall parameter is increasing, the

values of Nusselt number are decreasing since the temperature increases. But, it can

be seen that, the effect of Hall parameter on the Nusselt number may be neglected for

small values of Hartmann number (M < 2).
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Figure 4.2: Equavelocity and isolines for m = 0, Br = 0 and B = 1. (a) pBEM-

DRBEM, (b) DRBEM-DRBEM

94



(a)

B = 0 B = 1 B = 2

V
el
oc
it
y

T
em

pe
ra
tu
re

max w = 0.03510 max w = 0.03361 max w = 0.03200
min T = −0.11123 min T = −0.11122 min T = −0.11107

(b)

V
el
oc
it
y

T
em

pe
ra
tu
re

max w = 0.04876 max w = 0.04712 max w = 0.04557
min T = −0.11293 min T = −0.11219 min T = −0.11147

Figure 4.3: Equavelocity and isolines for M = 3, m = 0 and Br = 0. (a) pBEM-

DRBEM, (b) DRBEM-DRBEM
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Figure 4.4: Equavelocity and isolines for M = 3, m = 3 and Br = 1. (a) pBEM-

DRBEM, (b) DRBEM-DRBEM
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Figure 4.5: Equavelocity and isolines for M = 3, Br = 0 and B = 1. (a) pBEM-

DRBEM, (b) DRBEM-DRBEM
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Figure 4.6: Equavelocity and isolines for M = 3, Br = 1 and B = 1. (a) pBEM-

DRBEM, (b) DRBEM-DRBEM

98



Table 4.3: Nusselt number, Nu, by using the pBEM-DRBEM with 100 boundary

elements (Br = 0, B = 1).

m M 0.0 1.0 2.0 3.0 4.0 5.0

0.0 3.5662 3.6113 3.7533 3.7772 3.8586 3.9340

3.0 3.5662 3.5711 3.5896 3.6082 3.6247 3.6774

5.0 3.5662 3.5680 3.5738 3.5873 3.5981 3.6101

8.0 3.5662 3.5669 3.5692 3.5730 3.5830 3.5889

Table 4.4: Nusselt number, Nu, by using the pBEM-DRBEM with 180 boundary

elements (Br = 0, B = 1).

m M 0.0 1.0 2.0 3.0 4.0 5.0

0.0 3.6125 3.6595 3.8099 3.8342 3.9202 4.0000

3.0 3.6125 3.6176 3.6368 3.6563 3.6735 3.7294

5.0 3.6125 3.6144 3.6204 3.6344 3.6458 3.6583

8.0 3.6125 3.6132 3.6156 3.6196 3.6299 3.6361

Table 4.5: Nusselt number, Nu, by using the DRBEM-DRBEM with 180 boundary

elements (Br = 0, B = 1).

m M 0.0 1.0 2.0 3.0 4.0 5.0

0.0 3.6276 3.6417 3.6825 3.7467 3.8294 3.9250

3.0 3.6276 3.6290 3.6333 3.6403 3.6500 3.6623

5.0 3.6276 3.6282 3.6298 3.6325 3.6363 3.6411

8.0 3.6276 3.6278 3.6285 3.6296 3.6311 3.6330

The solutions obtained by the parametrix BEM-DRBEM and the DRBEM-DRBEM

in terms of wmax and Tmin slightly differ (still with almost 10−2 accuracy) in the val-

ues, they all catch the same behaviour of the velocity and the temperature of the MHD

duct flow. When the number of boundary elements is increased from 100 to 180, Nus-

99



selt numbers are computed more accurately than DRBEM-DRBEM when FEM re-

sults [30] are taken as a basis. As the number of boundary elements is increased form

100 to 180 in parametrix BEM-DRBEM procedure, the Nusselt numbers are close

with almost 10−2 accuracy as shown in Tables 4.3-4.5 and in agreement with FEM

results given in [30]. However, when the Hall parameter is zero, m = 0, a relaxation

parameter is needed in using parametrix BEM since parametrix BEM has to compute

domain integrals. This is why it takes more CPU time compared to DRBEM-DRBEM

procedure. Thus, the Table 4.6 shows that, solving this MHD flow problem with tem-

perature dependent viscosity by using the DRBEM-DRBEM is more time saving than

solving with the parametrix BEM-DRBEM formulation due to the domain integrals

computations. For this reason the DRBEM-DRBEM is preferable for solving this

MHD flow problem.

Table 4.6: CPU Times with 180 boundary elements (Br = 0, B = 1).

pBEM-DRBEM DRBEM-DRBEM

m M 3.0 5.0 10.0 3.0 5.0 10.0

0.0 139.2711 69.8268 21.2650 13.3409 13.4086 13.3453

3.0 21.7195 28.3811 132.2293 13.4548 13.3198 13.3639

5.0 21.4600 21.6551 42.2826 13.4389 13.3265 13.1714

8.0 14.6996 21.3188 21.5575 13.3785 13.2181 13.2437

Figures 4.7 and 4.8 show the velocity profiles along the midline of the rectangular

duct obtained by using the DRBEM-DRBEM for increasing Hartmann number and

viscosity parameter, and Brinkmann number and Hall parameter, respectively. It can

be seen from Figure 4.7 (a), as Hartmann number increases, the velocity magnitude

drops for fixed values of the Hall parameter, Brinkman number and viscosity param-

eter. From Figure 4.7 (b) it is observed that, as the viscosity parameter is increasing,

the magnitude of the velocity drops for fixed values of Hartmann number, Hall pa-

rameter and Brinkman number. Also, it can be seen from Figure 4.8 (a) and 4.8 (b)

that, as the Hall parameter increases, the flow magnitude also increases for Hartmann

number M = 3, viscosity parameter B = 1 and Brinkman number values (Br = 0,

Br = 1) taken as in the references [15] and [30].
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(b) M = 3, m = 0 and Br = 0.

Figure 4.7: Midline velocity profiles at y = 0.5 using DRBEM-DRBEM.
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(a) Br = 0, B = 1 and M = 3.
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(b) Br = 1, B = 1 and M = 3.

Figure 4.8: Midline velocity profiles at y = 0.5 using DRBEM-DRBEM.

Figure 4.9 shows the temperature profiles along the midline of the rectangular duct

obtained by using the DRBEM-DRBEM for increasing Hartmann number and viscos-

ity parameter, respectively. It can be seen from Figure 4.9 (a), as Hartmann number

increases the temperature magnitude drops for fixed values of the Hall parameter,

Brinkman number and viscosity parameter. This is why the terms which are multi-

plied by these parameters form the force term in the diffusion equation for the tem-

perature. The effect of viscosity parameter is almost negligible in the magnitude of

the temperature for fixed values of Hartmann number, Hall parameter and Brinkman
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number as can be seen from Figure 4.9 (b).
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Figure 4.9: Midline temperature profiles at y = 0.5 using DRBEM-DRBEM.

Finally, Figures 4.10-4.12 show the midline velocity profiles obtained from both the

parametrix BEM-DRBEM and the DRBEM-DRBEM approaches for increasing vis-

cosity parameter, Hartmann number and Hall parameter, respectively. Temperature

profiles for increasing Hartmann number along the midline of the rectangular duct is

shown in Figure 4.13. Although, the velocity magnitudes obtained by the parametrix

BEM-DRBEM procedure is less than the velocity magnitudes from the DRBEM-

DRBEM procedure, the velocity profiles show the same flattening tendency behavior

of the MHD duct flow. From Figure 4.10 it is seen that, as the viscosity parame-

ter increases, this difference between the velocity magnitudes increases due to the

increment in the viscosity term µ = e−BT . We can also see from Figure 4.11 that,

as Hartmann number increases, the difference between the velocity magnitudes ob-

tained from the parametrix BEM-DRBEM and the DRBEM-DRBEM increases due

to the increment in the nonlinear term
M2

1 +m2
w, and from Figure 4.12 when the Hall

parameter is increasing, the effect of the nonlinear term decreases and so the differ-

ence between the velocity magnitudes obtained from both procedures decreases. It

is expected that, the difference in the velocity magnitudes obtained from both meth-

ods results due to the extra domain integral computations in the parametrix BEM

procedure. The computations of the domain integrals in parametrix BEM must be

numerical, and the composite trapezoidal rule has been used. They cause at least
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computational and round-off errors. This may be responsible for the discrepancies in

parametrix BEM-DRBEM and DRBEM-DRBEM velocity values near the maximum.

The increase of the number of constant elements, N , from 100 to 180 does not further

reduce this discrepancy in the velocity values. However, from Figure 4.13, it can be

seen that, the coincidence of the two methods, the parametrix BEM and the DRBEM

is very well in terms of midline temperature values.
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Figure 4.10: Midline velocity profiles at y = 0.5, and M = 3, m = 5 and Br = 1
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Figure 4.11: Midline velocity profiles at y = 0.5, and Br = 1, B = 1, m = 3.
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Figure 4.12: Midline velocity profiles at y = 0.5, and Br = 1, B = 1, M = 3.
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Figure 4.13: Midline temperature profiles at y = 0.5, and Br = 1, B = 1, m = 3.

4.2 MHD duct flow with time-varied external magnetic field

In this section, the transient behavior of the MHD flow of a viscous, incompressible

and electrically conducting fluid in a long pipe of rectangular cross-section (duct) is

considered. The fully developed flow through the pipe is affected by a time-varied

oblique magnetic field B0(t) = B0f(t) where B0 is the intensity of the applied mag-

netic field at the initial time level, i.e. t = 0, and f(t) is a time varied function. The

governing non-dimensional flow and induced magnetic field equations are derived in

104



Chapter 1 (equations (1.61)-(1.62)) and also given in Section 3.2 (equation (3.35)) as

∇2V +Mx
∂B

∂x
+My

∂B

∂y
= −1 +Re

∂V

∂t

∇2B +Mx
∂V

∂x
+My

∂V

∂y
= Rm

∂B

∂t

(4.8)

in Ω × [0,∞) where Ω = {(x, y) ∈ R2 : −1 ≤ x, y ≤ 1}. Mx = Mf(t)sinα,

My = Mf(t)cosα,M is the Hartmann number and α is the angle between the applied

magnetic field and the y-axis. Re and Rm denote the Reynolds number and magnetic

Reynolds number, respectively and given in (equations (1.53)-(1.54)). V (x, y, t) and

B(x, y, t) are only the velocity and induced magnetic field components in the pipe-

axis direction.

The boundary of the duct is considered as insulated and with no-slip velocity

V (x, y, t) = 0 B(x, y, t) = 0 (x, y) ∈ Γ, t > 0 (4.9)

where initial values of the velocity and induced magnetic field taken as zero

V (x, y, 0) = 0 B(x, y, 0) = 0 (x, y) ∈ Ω. (4.10)

4.2.1 Re = 1, Rm = 1 case

Firstly, we consider the MHD duct flow problem by taking the Reynolds and magnetic

Reynolds numbers as one which reduces equations (4.8) to

∇2V +Mx
∂B

∂x
+My

∂B

∂y
= −1 +

∂V

∂t

∇2B +Mx
∂V

∂x
+My

∂V

∂y
=
∂B

∂t

(4.11)

where (x, y, t) ∈ Ω× [0,∞) and, the boundary and initial conditions are the same as

given in (4.9) and (4.10), respectively.

Now, by using the change of variables U1 = V + B and U2 = V − B, the coupled

velocity and induced magnetic field equations in (4.11) are converted into decoupled

equations (decoupling procedure is given in Section 3.2)

∇2U1 +Mx
∂U1

∂x
+My

∂U1

∂y
= −1 +

∂U1

∂t

∇2U2 −Mx
∂U2

∂x
−My

∂U2

∂y
= −1 +

∂U2

∂t

(4.12)
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with the following boundary and initial conditions

U1(x, y, t) = 0 U2(x, y, t) = 0 (x, y) ∈ Γ

U1(x, y, 0) = 0 U2(x, y, 0) = 0 (x, y) ∈ Ω.
(4.13)

The discretized matrix-vector equations obtained from the DRBEM application to the

decoupled equations (4.12) are as given in equation (3.41)

HU1 −G
∂U1

∂n
= (HÛ−GQ̂)F−1

{
− 1 +

∂U1

∂t
−Mx

∂U1

∂x
−My

∂U1

∂y

}
HU2 −G

∂U2

∂n
= (HÛ−GQ̂)F−1

{
− 1 +

∂U2

∂t
+Mx

∂U2

∂x
+My

∂U2

∂y

}
.

(4.14)

Rearrangement of the above equations for increasing time levels results in(
A1 −

1

∆t

)
Un+1

1 −G1
∂Un+1

1

∂n
= {−1− U

n
1

∆t
}(

A2 −
1

∆t

)
Un+1

2 −G2
∂Un+1

2

∂n
= {−1− U

n
2

∆t
}

(4.15)

where

A1 = C
(
H + (HÛ−GQ̂)F−1(Mx

∂F
∂x

F−1 +My
∂F
∂y

F−1)
)
, G1 = CG

A2 = C
(
H− (HÛ−GQ̂)F−1(Mx

∂F
∂x

F−1 +My
∂F
∂y

F−1)
)
, G2 = CG

(4.16)

and C = ((HÛ−GQ̂)F−1)−1.

The decoupled equations (4.15) are solved in terms of U1 and U2 iteratively with

a tolerance 10−3 as max
i
|Un+1

1,i − Un
1,i| < 10−3 and max

i
|Un+1

2,i − Un
2,i| < 10−3 for a

time level tn, i = 1, ..., N + L. Then, the velocity V and the induced magnetic field

B values are obtained using V =
U1 + U2

2
, B =

U1 − U2

2
at transient time levels

using several definitions of f(t) as polynomial, exponential, trigonometric, impulse

and step functions. Hartmann number valuesM = 20, 50 and the time step ∆t = 0.01

are taken. This solution procedure is given in details in Section 3.2.

The cross-section of the pipe (duct), Ω = [−1, 1]×[−1, 1] is discretized by usingN =

100, 120, 140, 160, 200 and 300 boundary elements andL = 625, 900, 1225, 1600, 2500

and 5625 interior nodes. The number of boundary elements are increased for increas-

ing Hartmann number values, and for simulating the impulse and step function behav-

ior of induced magnetic field. The steady-state is defined for the solution of equations

in (4.14) with a tolerance as given above. This tolerance is satisfied periodically at
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several time levels for the solution of equations in (4.14) for trigonometric function

f(t). That is, the flow repeats its behavior change with a so called period. Pipe-axis

velocity and the induced magnetic field are simulated at the time levels where the

effect of the time-dependent applied magnetic field (i.e. f(t)) starts to change the

flow behavior, and also the time level where the flow stabilizes which is so called the

steady-state.

The proposed method is validated first for the case of horizontally applied uniform,

constant magnetic field in Figure 4.14 by comparing our steady-state solution with

the steady solution obtained by differential quadrature method [67]. The agreement

is very well. Steady-state is taken with tolerance of 10−4 and 10−6 which occurs at

tn = 0.20 and tn = 0.30, respectively.

tn = 0.20 tn = 0.30V B V B

Figure 4.14: Velocity and induced magnetic field lines, f(t) = 1, B0(t) = B0, M =

20, N = 120, α = π/2.

The effects of the time step ∆t and the number of boundary elements N on the accu-

racy and numerical stability of the solution are also investigated in Figures 4.15 and

4.16, respectively. Since the time integration method is an explicit forward difference

(Euler) method, one needs to take small ∆t. From Figure 4.15 we see that at least

∆t = 0.01 must be taken to capture the beginning of the flow elongation at the correct

time level tn ≈ 0.10. Thus, the rest of the computations are carried with ∆t = 0.01

on account of CPU times required since smaller ∆t’s need more iterations.

One can notice from Figure 4.16 that as N increases the behavior of V and B are

settled down and smoothed. Thus, we use N = 120 giving accurate enough results

with less CPU time compared to N = 140, 160.
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V
B

Figure 4.15: Velocity and induced magnetic field lines, f(t) = 1 + t, M = 20,

α = π/2, tn = 0.10.
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CPU = 3.29 CPU = 7.38 CPU = 16.22 CPU = 28.93

V
B

Figure 4.16: Velocity and induced magnetic field lines, f(t) = 1 + t, M = 20,

α = π/2, tn = 0.14.

V B V B

Constant boundary elements Linear boundary elements
Figure 4.17: Velocity and induced magnetic field lines, f(t) = 1 + t, M = 20,

α = π/2, tn = 0.14, ∆t = 0.01 and N = 140.
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The linear boundary element approximation is also used for comparison with the con-

stant element approximation in terms of the accuracy of the solution. The velocity and

induced magnetic field behaviors and magnitudes are the same with 10−3 accuracy for

steady-state withN = 140 boundary elements as shown in Figure 4.17. Thus, the rest

of the computations are carried by using constant boundary element discretization.

tn = 0.02 tn = 0.08 tn = 0.10 tn = 0.14

tn = 0.17 tn = 0.20 tn = 0.23 tn = 0.25

V
B

V
B

Figure 4.18: Velocity and induced magnetic field lines, f(t) = 1 + t, M = 20,

α = π/2.

Figure 4.18 shows the velocity and induced magnetic field behaviors when the exter-

nal magnetic field varies linearly in time (f(t) = 1 + t) and applied with an angle

α = π/2 with the y-axis. The boundary is discretized by using N = 120 constant

boundary elements, and L = 900 interior nodes are used. It is observed that, the flow

is symmetrically distributed in the duct having a central vortex and obeying the thick-
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ness of Hartmann and side layers O( 1
M

) and O( 1√
M

), respectively. Then, the flow

shows an elliptical elongation in the direction of applied magnetic field. The thick-

ness of Hartmann layer decreases while side layer becomes thicker. It is seen that as

time t passes, the induced magnetic field magnitude increases continuously up to the

time level tn = 0.14 and then starts to decrease. However, the velocity magnitude

increases up to a certain time level (e.g. tn = 0.10) where elongation starts to occur

and then slowly decreases. The so called steady-state is achieved at tn = 0.14. At

further time levels the behaviors of V and B stay the same with slightly decreasing

magnitudes. This is an expected behavior since the coefficients of convection terms

contain f(t) which increases with an increase in t.

In Figures 4.19 and 4.20, the velocity and induced magnetic field are simulated for

f(t) = 1 + t at transient levels with an oblique applied magnetic field taking α =

π/3 and α = π/4, respectively, for the same Hartmann number M = 20. The

elongation of the flow starts at an earlier time level (i.e. tn = 0.06) with an oblique

external magnetic field compared to horizontally applied magnetic field (α = π/2)

aligning always in the direction of applied magnetic field, and stabilizes at again

tn = 0.14. Also, as a common feature for polynomial-type f(t), the velocity and

induced magnetic field magnitudes increase up to the flow elongation time level and

then slightly decrease. The Hartmann layers are symmetrically located through the

left bottom and right upper corners. Side layers are enlarged in front of the left upper

and right bottom corners. The current lines also align in the direction of applied

magnetic field in terms of two loops.
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tn = 0.02 tn = 0.06 tn = 0.10 tn = 0.14

V
B

Figure 4.19: Velocity and induced magnetic field lines, f(t) = 1 + t, M = 20,

α = π/3.

tn = 0.02 tn = 0.06 tn = 0.10 tn = 0.14

V
B

Figure 4.20: Velocity and induced magnetic field lines, f(t) = 1 + t, M = 20,

α = π/4.

Then, Figure 4.21 shows the effect of increased Hartmann number (M = 50) on the

velocity and induced magnetic field at transient levels for f(t) = 1 + t again. In this

case, N = 300 constant boundary elements and L = 5625 interior nodes are used for

the discretization of the duct and α = π/2 is taken. It is seen that, when Hartmann

number is increased (e.g. the strength B0 of the applied magnetic field is increased)

the elliptical elongation of the flow in the direction of applied magnetic field starts at

an earlier time level, as can be seen comparing Figure 4.21 with Figure 4.18. Then,
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the flow is flattened with thin Hartmann layers and side layers are enlarged. In this

case, the velocity magnitude increases up to the time level (e.g. tn = 0.06), and then

decrease because of the increase in the strength of the applied magnetic field. The

induced magnetic field magnitude shows the same behavior as in the small Hartmann

number.

tn = 0.03 tn = 0.05 tn = 0.06 tn = 0.07

V
B

Figure 4.21: Velocity and induced magnetic field lines, f(t) = 1 + t, M = 50,

α = π/2.

tn = 0.02 tn = 0.06 tn = 0.09 tn = 0.14

V
B

Figure 4.22: Velocity and induced magnetic field lines, f(t) = et, M = 20, α = π/2.

Figure 4.22 depicts the velocity and induced magnetic field behaviors at transient

levels for exponentially increasing applied magnetic field in time by taking f(t) = et.

N = 120 constant boundary elements and L = 900 interior nodes are taken since
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Hartmann number M is again 20. The magnetic field is applied horizontally (α =

π/2). Behavior change in the flow is similar to the case of linear f(t) starting to

elongate around tn = 0.09 and stabilizing around tn = 0.14, respectively. Again,

as time increases, the velocity and induced magnetic field magnitudes increase up to

the time level that nearly the flow elongates and then starts to decrease slightly. This

can also be seen in terms of volumetric flow rates Q =

∫
Ω

V dΩ in Table 4.7 which

decreases slightly when the flow elongation time level is passed.

Table 4.7: The volumetric flow rate Q, f(t) = et, M = 20, N = 120, α = π/2.

tn 0.02 0.06 0.09 0.14 0.20 0.25 0.30

Q 0.0562 0.1190 0.1361 0.1390 0.1328 0.1272 0.1217

Then, Hartmann number is increased to M = 50 for f(t) = et. In this case, N = 300

boundary nodes and L = 5625 interior nodes are needed again for the discretization

of the duct and α = π/2 is taken. It is seen that, when Hartmann number is increased

similar to the linear f(t) = 1 + t case, the elliptical elongation of the flow in the

direction of applied magnetic field starts at much earlier time level (tn = 0.06) as can

be seen in Figures 4.22 and 4.23. Flattening of the flow and formation of boundary

layers are observed when M is increased from 20 to 50 which is the well-known

behavior of MHD flow.

tn = 0.02 tn = 0.05 tn = 0.06 tn = 0.07

V
B

Figure 4.23: Velocity and induced magnetic field lines, f(t) = et, M = 50, α = π/2.
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tn = 0.01 tn = 0.09 tn = 0.14 tn = 0.18 tn = 0.26

V
B

tn = 0.34 tn = 0.39 tn = 0.43 tn = 0.51 tn = 0.59

V
B

tn = 0.64 tn = 0.68 tn = 0.76 tn = 0.84 tn = 0.89

V
B

tn = 0.93 tn = 1.01 tn = 1.09 tn = 1.14 tn = 1.18

V
B

Figure 4.24: Velocity and induced magnetic field lines, f(t) = cos(2πt), M = 20,

α = π/2.
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The velocity and induced magnetic field behaviors at transient levels for a trigonomet-

ric function f(t) = cos(2πt) are given in Figure 4.24 when external magnetic field

applies horizontally. The boundary is again discretized by using N = 120 constant

boundary elements and L = 900 interior nodes since M = 20. The periodic effect

is observed in the flow as repeating its behavior with approximately a time period

0.5 after the elliptical elongation occurs at a time level tn = 0.14 in the direction of

applied magnetic field (e.g. tn = 0.14, 0.64, 1.14). Also, as time increases the veloc-

ity and the induced magnetic field magnitudes show both increasing and decreasing

behaviors.

An impulse function effect is visualized in Figure 4.25, on the velocity and induced

magnetic field behaviors at transient levels by taking f(t) as

f(t) =

2 t = 0.06

1 otherwise.

In this case, the boundary is discretized by using more constant elements and interior

nodes as N = 200 and L = 2500 to capture the changes due to the impulse in the

applied magnetic field. The magnetic field is applied horizontally and B0 = 1 is

taken. The flow behavior starts to change around tn = 0.06 since the applied field

strength is increased suddenly. Then, it shows elliptical elongation around tn = 0.09.

The velocity magnitude shows a slight drop at tn = 0.07 otherwise they increase.

However, the induced magnetic field magnitude continues to increase and its behavior

is not changed.

tn = 0.02 tn = 0.06 tn = 0.07 tn = 0.09 tn = 0.18

V
B

Figure 4.25: Velocity and induced magnetic field lines, f(t) is impulse function,

M = 20, α = π/2.
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Then, in Figure 4.26, the flow and induced magnetic field lines are presented at tran-

sient levels by taking f(t) as a step function

f(t) =

2 t ≤ 0.06

t t > 0.06.

The discretization of the duct is the same as in the case of impulse function used

for M = 20. The magnetic field is applied horizontally and B0 is taken as 2 in

the nondimensionalization. Since the time variation of the applied magnetic field is

constant before tn = 0.06 and linear after tn = 0.06, elongation of the flow occurs

exactly at tn = 0.07, then it shows the flow behavior of the case where linear f(t) = t

is taken. Thus, new elongation appears after the time level, tn = 0.33 and exactly

around tn = 0.98. Then, the flow behavior does not change any more as in the case of

linear function f(t) = 1+t. The induced magnetic filed starts to show linear function

f(t) = t effect after tn = 0.06 forming vortices in front of the Hartmann layers and

then stabilizing down.

tn = 0.03 tn = 0.07 tn = 0.26 tn = 0.33 tn = 0.98

V
B

Figure 4.26: Velocity and induced magnetic field lines, step function, M = 20, α =

π/2.

Lastly, the step function f(t) is rearranged (modified) by adding a constant close to 2

to its linear variation after t > 0.06,

f(t) =

2 t ≤ 0.06

1.94 + t t > 0.06.
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Figure 4.27 presents the flow and induced magnetic field lines for the same Hartmann

number M = 20 and angle α = π/2 as in the previous step function case. After

tn = 0.06, the intensity of the applied magnetic field is greater than 2. Therefore,

the flow shows only one elliptical elongation at tn = 0.07 and the behavior of the

flow does not change anymore. The magnitude of the velocity increases up to the

time level where the flow elongates and then starts to decrease. This behavior is

given in Table 4.8 in terms of volumetric flow rates showing that the flow flattens

after the elongation. However, the magnitude of the induced magnetic field increases

continuously till reaching steady-state.

tn = 0.01 tn = 0.04 tn = 0.06 tn = 0.07 tn = 0.10

V
B

Figure 4.27: Velocity and induced magnetic field lines, modified step function, M =

20, α = π/2.

Table 4.8: The volumetric flow rate Q for the step function f(t), M = 20, N = 120,

α = π/2.

tn 0.01 0.04 0.06 0.07 0.10 0.15 0.20

Q 0.0282 0.0719 0.0807 0.0825 0.0834 0.0819 0.0802
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4.2.2 Effects of Re and Rm on the MHD flow

Then, the same MHD duct flow equations (4.8) are solved by taking the effect of

Reynolds Re and magnetic Reynolds Rm numbers into account, so we eliminate the

restriction taking these number as one. The MHD flow in a rectangular duct is as-

sumed to be under the effect of a horizontally (α = π/2) applied magnetic field. The

governing equations are

∇2V +Mx
∂B

∂x
= −1 +Re

∂V

∂t

in Ω× [0,∞)

∇2B +Mx
∂V

∂x
= Rm

∂B

∂t

(4.17)

with the same no-slip velocity and insulated wall conditions, and initial conditions

V (x, y, t) = 0 B(x, y, t) = 0 (x, y) ∈ Γ

V (x, y, 0) = 0 B(x, y, 0) = 0 (x, y) ∈ Ω.
(4.18)

The discretized matrix-vector equations obtained from the DRBEM procedure are

(given in equation (3.48))

HV −G
∂V

∂n
= (HÛ−GQ̂)F−1

{
− 1 +Re

∂V

∂t
−Mx

∂B

∂x

}
HB −G

∂B

∂n
= (HÛ−GQ̂)F−1

{
Rm

∂B

∂t
−Mx

∂V

∂x

}
.

(4.19)

The duct Ω = [−1, 1] × [−1, 1] is discretized by using N = 200 constant boundary

elements and L = 2500 interior nodes. The velocity and induced magnetic field

values are obtained at transient time levels using several definitions of f(t) such as

polynomial, exponential and trigonometric function, with Hartmann number value

M = 20, and the time step ∆t is taken as 0.01. Pipe-axis velocity V (x, y, t) and the

induced magnetic field B(x, y, t) are simulated at transient time levels to show the

effect of the problem parameters Re and Rm. The solution of these coupled equations

in (4.19) must be iteratively by constructing the enlarged system of equations as(
H− Re

∆t
K
)
V n+1 −G

∂V n+1

∂n
+ PBn+1 = K(−1− Re

∆t
V n)(

H− Rm

∆t
K
)
Bn+1 −G

∂Bn+1

∂n
+ PV n+1 = K(−Rm

∆t
Bn)

(4.20)

for increasing time levels where K = (HÛ−GQ̂)F−1 and P = K(Mx
∂F
∂x

F−1).
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The enlarged system of equations in (4.20) are constructed by approximating the

space derivatives of V andB with respect to x,
∂V

∂x
and

∂B

∂x
by using the coordinate

matrix F, and the time derivatives of V and B,
∂V

∂t
and

∂B

∂t
in equation (4.19) are

calculated by using the Euler’s method as detailed in Section 3.2.

Figure 4.28 shows the flow behavior at several time levels for increasing values of

magnetic Reynolds number Rm as 1, 3, 5 when Re = 1. The external magnetic field

varies exponentially in time, i.e. f(t) = et. The time levels tn where the flow elon-

gation (central vortex turns to be aligned in the direction of the applied magnetic

field) occurs for each value of Rm are included. Actually, the flow elongates at

tn = 0.10, 0.15, 0.19 for the values of magnetic Reynolds number Rm = 1, 3 and

5, respectively. One can deduce from Figure 4.28 that, as Rm increases the time level

where the elongation occurs is postponed to a further time level and also the magni-

tude of the flow increases as the value of Rm increases. The effect of increasing Rm

(Rm 6= 1) is seen after the elongation, that is, the flow circulates in front of the Hart-

mann walls and then settles down in the applied magnetic field direction dropping its

magnitude.

From Figure 4.29 the effect of the increase in Reynolds number Re on the flow be-

havior can be seen when the time-varied function is f(t) = et. The Reynolds num-

ber values are taken as Re = 5, 10, 25 and magnetic Reynolds number is fixed as

Rm = 1. The flow behaviors are presented at the time levels tn where the elonga-

tion occurs as well as the time levels before and after the elongations for increasing

values of Reynolds number Re. The time levels tn = 0.20, 0.30, 0.50 are the values

where the flow elongates for Reynolds number Re = 5, 10 and 25, respectively. The

increase in Re postpones the elongation of the flow to a further time level. Moreover,

as Re increases the magnitude of the flow decreases which is an opposite effect on

the behavior compared to the increase in Rm.

Figure 4.30 depicts the velocity and induced magnetic field when the external mag-

netic field varies linearly and exponentially in time (f(t) = 1 + t and f(t) = et,

respectively) for increasing values of magnetic Reynolds number Rm as 1, 3, 5 and

Re = 1 at the time levels where the elongation of the flow occurs. The first row in

Figure 4.30 where Re = Rm = 1 shows an agreement with the solution of the de-
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coupled MHD equations in which it is possible only for the values Re = Rm = 1 as

shown in Section 4.2.1. The flow elongates almost at the same time levels for both

linear and exponential functions for the same Re and Rm values. Although, the be-

havior of the induced magnetic field does not change as Rm increases, its magnitude

increases as well as the increase in the flow magnitude.

Figure 4.31 shows the flow and induced current profiles for f(t) = 1+t and f(t) = et,

keeping Rm = 1 and for increasing values of Reynolds number Re as 5, 10 and 25.

The magnitude of the induced magnetic field decreases similar to the decrease in the

flow magnitudes as Re increases.
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Figure 4.28: Velocity contours, f(t) = et, Re = 1, Rm = 1, 3, 5, M = 20, α = π/2.
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Figure 4.29: Velocity contours, f(t) = et, Rm = 1, Re = 5, 10, 25, M = 20,

α = π/2.
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Figure 4.30: Velocity and induced magnetic field, Re = 1, M = 20, α = π/2.
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Figure 4.31: Velocity and induced magnetic field, Rm = 1, M = 20, α = π/2.

In Figure 4.32, the Reynolds and magnetic Reynolds number values are taken differ-

ent than one as Re = 10, Rm = 2. It can be seen that, the flow elongation occurs at
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tn = 0.40 forRe = 10 andRm = 2 which is a postponed time level, with the effect of

the increase in Rm, compared to the case Re = 10 and Rm = 1 given in Figure 4.31.

Since the elongation occurs around small time levels (e.g. tn = 0.40) the effects of

the functions f(t) = 1 + t, f(t) = et are almost the same. They may differ for larger

values of t but the behavior of the flows do not change after the elongations.
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Figure 4.32: Velocity and induced magnetic field, Re = 10, Rm = 2, M = 20,

α = π/2.

Figure 4.33 stands to validate again the solution of the MHD flow equations solved

in coupled form for Re = Rm = 1 with f(t) = cos(2πt), with the solution in [68]

obtained from the decoupled MHD equations. The flow repeats its behavior with a

period 0.5. Then, Figure 4.34 depicts the profiles of the velocity and induced magnetic

field for Re = 1, Rm = 2 and Re = 5, Rm = 1, respectively. In both cases, the first
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time level exhibits where the flow shows an elliptical elongation for the first time.

Once more, the time level where the elongation occurs is postponed when compared

to Figure 4.33. The period of f(t) = cos(2πt) does not change with the changes in

the values of the problem parameters Re and Rm staying again 0.5.

tn = 0.13 tn = 0.34 tn = 0.63 tn = 0.84 tn = 1.13

V
B

Figure 4.33: Velocity and induced magnetic field, f(t) = cos(2πt), Re = Rm = 1,

M = 20, α = π/2.
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Figure 4.34: Velocity and induced magnetic field, at transient levels, f(t) = cos(2πt),

M = 20, α = π/2.
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The flow and induced magnetic field profiles are demonstrated at further transient

time levels for f(t) = cos(2πt), when Re = 5 and Rm = 2 in Figure 4.35. It is

confirmed that the period of the flow for the elongation is really 0.5. The periodic

effect of the function f(t) in the applied magnetic field, can be seen on the flow

behavior in Figure 4.33, Figure 4.34 and Figure 4.35 as the flow is repeating itself.

tn = 0.50 tn = 0.88 tn = 1.00 tn = 1.38

V
B

tn = 1.50 tn = 1.88 tn = 2.00 tn = 2.38

V
B

Figure 4.35: Velocity and induced magnetic field, f(t) = cos(2πt), Re = 5, Rm = 2,

M = 20, α = π/2.
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4.3 Inductionless MHD flow with electric potential under axially-changing mag-

netic field

The two-dimensional steady, fully developed MHD flow of a viscous and incompress-

ible fluid is considered along a long pipe of rectangular cross-section Ω = {(x, y) :

−1 ≤ x, y ≤ 1}. The flow is under the effect of axial-dependent, vertically im-

posed (α = π/2 with the positive x-axis) magnetic field B = (0, B0(z), 0) and

B0(z) = B0g(z) where B0 denotes the external magnetic field intensity, and g(z) is

the function determining the strength of the applied magnetic field along the pipe-

axis. The governing non-dimensional flow and electric potential equations are given

in equation (3.54)

∇2w − (Mg(z))2w = −1 +M2g(z)
∂Φ

∂x

∇2Φ = −g(z)
∂w

∂x

(4.21)

where M is the Hartmann number.

The walls on the duct Γ have no-slip velocity. However, the Neumann or mixed type

boundary conditions depending on the conductivity of the materials of the walls are

imposed for the electric potential. Therefore, the boundary conditions can be written

as

w(x,±1) = w(±1, y) = 0 no-slip velocity and

∂Φ

∂y
(x,±1) =

∂Φ

∂x
(±1, y) = 0 non-conducting walls

(4.22)

or

w(x,±1) = w(±1, y) = 0 no-slip velocity and

± ∂Φ

∂y
(x,±1) = c

∂2Φ

∂x2
(x,±1)

± ∂Φ

∂x
(±1, y) = c

∂2Φ

∂y2
(±1, y)

}
variably conducting walls

(4.23)

where c denotes the wall conductance ratio of the four walls (ct (top), cb (bottom), cl

(left), cr (right)) which can be taken as different values. That is, c is a measure of the

conductance of the wall compared to that of the fluid. The figure corresponding to the

boundary conditions respectively are
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Figure 4.36: Flow and electric potential boundary conditions on non-conducting duct

walls
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Figure 4.37: Flow and electric potential boundary conditions on variably conducting

duct walls

This study investigates the flow behavior and the structure of the boundary layers

influenced from the changes in the electrical conductivity of the walls, and the axial

dependence and the strength of the applied magnetic field. Firstly, the effects of

variably conducting duct walls are deeply studied and simulated in terms of the flow

and electric potential for the case of uniform vertically applied magnetic field. Then,

numerical results are obtained for the redistribution of flows when the magnetic field

applies vertically but changes with respect to the streamwise (pipe-axis) direction in

the following subsections, respectively.
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4.3.1 Uniform magnetic field

As a basic case, we have considered a vertically applied uniform magnetic field by

taking the function g(z) = 1 in the equations (4.21) to examine the effect of Hartmann

number M with different wall conductance. Therefore, the equations take the form

∇2w −M2ω = −1 +M2∂Φ

∂x

∇2Φ = −∂w
∂x

(4.24)

with the given boundary conditions given in (4.22) and (4.23).

The DRBEM implementation gives the following discretized matrix-vector equations

Hw −G
∂w

∂n
= (HÛ−GQ̂)F−1

{
M2w − 1 +M2∂Φ

∂x

}
HΦ−G

∂Φ

∂n
= (HÛ−GQ̂)F−1

{
− ∂w

∂x

}
.

(4.25)

The matrix-vector equations in (4.25) are solved for the velocity w and electric po-

tential Φ values by constructing enlarged system of equations as in (3.59). The nu-

merical results of this study with a uniform applied magnetic field are given in the

following Sections 4.3.1.1-4.3.1.4. When the problem is considered with no-slip and

non-conducting (c = 0) duct walls, the matrix-vector equations in (4.25) are solved

at once by using the boundary conditions given in equation (4.22). On the other hand,

the solution procedure of the matrix-vector equations in (4.25) must be iterative start-

ing with initial guess Φ0 = 0 if one of the duct wall is conducting with a non-zero

conductivity ratio, i.e. c 6= 0. In this case, at least one of the boundary condition is

not given explicitly however, it is depending on the second order partial space deriva-

tive of the unknown Φ itself. These boundary conditions for conducting duct walls

are computed by using the coordinate matrix F. Then, the values of w1 and Φ1 are

obtained and the solution procedure is repeated until the convergence criteria is sat-

isfied. This solution process requires to relax the electric potential Φ as described in

Section 3.3.
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4.3.1.1 Uniform magnetic field: Non-conducting duct walls

First, the coupled equations in matrix-vector form (4.25) are solved in a duct with

no-slip and non-conducting walls (c = 0, ∂Φ
∂n

= 0) as shown in Figure 4.36 on which

the boundary conditions written on the walls. The effect of Hartmann number M on

the flow has been demonstrated by taking M as 30, 50, 100. For M = 30 and 50,

N = 200 constant boundary elements are used, but M = 100 requires N = 300

boundary elements since the first equation in (4.24) becomes reaction dominant.

ω Φ ω

M
=

30
M

=
50

M
=

10
0

Figure 4.38: Velocity and electric potential profiles with no-slip and non-conducting

duct walls. Uniform magnetic field, α = π/2.

Increasing N for large M increases accuracy of the solution since more clustered

point are used close to the walls capturing boundary layer profiles. Figure 4.38 shows

the contour plots of the velocity and electric potential and the velocity level curves.

It is observed from Figure 4.38 that, as M increases boundary layers are formed

(Hartmann and side layers on perpendicular and parallel walls to the vertically applied

magnetic field, respectively) and the magnitude of the velocity drops. This is the

well-known behavior of MHD flow, that is the flow is flattened as M increases. The
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magnitude of electric potential also drops. Electric potential always aligns in the

direction of applied magnetic field, the flow is maximum at the centre of the duct

when M is small and its velocity drops to zero at the walls, this drop becomes sudden

for large M and the centre becomes stagnant for the fluid. This behavior is observed

as parabolic velocity profile in the level curves as is also observed in [57].

4.3.1.2 Uniform magnetic field: Non-conducting side walls, variably conduct-

ing Hartmann walls

Then, we have solved MHD equations with vertically applied uniform magnetic field

by considering non-conducting side walls and variably conducting Hartmann walls

(i.e cl = cr = 0 and cb = ct = 0.1), and with no-slip velocity everywhere to examine

the behavior of the flow for increasing Hartmann number values. The coupled equa-

ω Φ ω

M
=

30
M

=
50

M
=

10
0

Figure 4.39: Velocity and electric potential profiles with no-slip and, non-conducting

side walls, variably conducting Hartmann walls, uniform magnetic field, α = π/2.
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tions (4.25) for uniform magnetic field are solved iteratively forw and Φ using the ini-

tial value Φ0 as zero. The results are obtained with a tolerance max
i
|wn+1

i − wni | < 10−4

and max
i
|Φn+1

i − Φn
i | < 10−4 for i = 1, ..., N + L and the electric potential Φ is re-

laxed using the equation Φn+1 = (1 − κ)Φn + κΦn+1 with a relaxation parameter

taken as κ = 0.01. The obtained results are shown in Figure 4.39 in terms of velocity,

electric potential contours and level curves of velocity.

The flow aligns in terms of two loops parallel to applied magnetic field in front of

the side walls. That means, the fluid mainly flows in front of the side walls. As M

increases the velocity and electric potential behaviors stay the same with a decrease

in magnitudes. The magnitudes of the velocity and electric potential are smaller than

the ones in the case of non-conducting duct walls. This means that the increase in

the conductivity of the top and bottom walls causes the drop of the magnitudes. The

fluid is nearly stagnant in the centre of the duct. Due to the peaks with higher velocity

values occurring on the side layers, the flow form M-shape profile for increasing

Hartmann number values. This case is the validation of the numerical results obtained

by the proposed method with the finite difference results given in [57].

4.3.1.3 Uniform magnetic field: Variably conducting walls with the same con-

ductivity ratio

Then, the MHD flow in the duct is solved with well-conducting walls for again Hart-

mann number values M = 30, 50, 100. The number of boundary elements are the

same as in the previous cases of conductivity of the walls. In this case, electric poten-

tial satisfies mixed type boundary conditions as given in equation (4.23) for variably

conducting walls with c = 0.1 (i.e ct = cb = ct = cr = 0.1). Again, it is required

to solve the coupled matrix-vector equations in (4.25) for w and Φ iteratively with

the initial values Φ0 = 0. The results are demonstrated with the same tolerance and

relaxation parameter used in the case of non-conducting side walls and variably con-

ducting Hartmann walls given in Section 4.3.1.2. The velocity level curves as well as

the contour plots of w and Φ are shown in Figure 4.40. It can be deduced that, the

magnitudes of the velocity and electric potential slightly drop compared to the case

when the side walls are non-conducting as given in Section 4.3.1.2. Also, the increase
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Figure 4.40: Velocity and electric potential profiles with no-slip and well-conducting

duct walls, uniform magnetic field, α = π/2.

in the conductivity ratio at all the walls accelerates the formation of boundary layers

and the M-shape of the flow. Thus, the increase in both theM and walls conductivities

cause the slow motion of the fluid in the pipe.

4.3.1.4 Uniform magnetic field: Variably conducting walls with different con-

ductivity ratios

In this section, the effect of different wall conductivities such as cb = ct = cl = 0.1

and cr = 5 × 10−3 are examined with the same Hartmann number M values 30, 50

and 100. The three walls of the duct have high electrical conductivity whereas the

left wall has a small electrical conductivity. The obtained results are shown in Figure

4.41. The coupled matrix-vector equations for w and Φ are solved iteratively using

the same N , tolerance, relaxation parameter and initial values as in the previous cases
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of wall conductivities. It is seen that, the flow turbulence occurs with the effect of

the increasing Hartmann number M and this turbulence effect is not symmetric since

the side walls have different conductivities. Magnitudes of w and Φ slightly increase

compared to the magnitudes when all the walls have the same high conductivity (c =

0.1). This is due to the drop of the conductivity on the right side wall. Velocity shows

a minimum between core and right side wall distorting slightly the M-shape as in the

study [57]. Therefore, it can be deduced from the Figure 4.41 that, the conductivities

of the walls determine the structure of the boundary layers significantly.
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0

Figure 4.41: Velocity and electric potential profiles with different conductivity ratios

on the no-slip duct walls. Uniform magnetic field, α = π/2.

The effects of Hartmann number M and wall conductivity ratio on the flow behavior

under uniform applied magnetic field have been visualized in Sections 4.3.1.1-4.3.1.4.

In the following section, we present the effect of axially changing applied magnetic

field when g(z) 6= 1, B0(z) = B0g(z) on the flow.
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4.3.2 Axial dependent magnetic field: Variably conducting walls

The DRBEM discretized matrix-vector equation of the coupled equations (4.21) gives

Hw −G
∂w

∂n
= (HÛ−GQ̂)F−1

{
(Mg(z))2w − 1 + (M2g(z))

∂Φ

∂x

}
HΦ−G

∂Φ

∂n
= (HU−GQ̂)F−1

{
− g(z)

∂w

∂x

}
.

(4.26)

The external magnetic field with strength Mg(z) is applied vertically. The function

g(z) in equations (4.26) is chosen as
1

1 + e−z/z0
where z0 = 0.15 as given in [57].

The distance between two consecutive zi and zi+1 values are assumed to be long

enough that, the flow is considered fully developed between these z values. Since z0

is positive B0(z) rises from zero to one. The magnitude of z0 governs the gradient

of the field. The reason for choosing z0 = 0.15 is to keep the streamwise extension

of the computational domain as small as possible in order to obtain good resolution.

Figures 4.42-4.43 show the velocity level curves at different positions of z-axis along

the pipe by taking M = 50 and N = 200. The strength of the magnetic field B0(z)

is also displayed. The no-slip velocity and high electrical conductivity such as cb =

ct = cr = cl = 0.1 are inserted as boundary conditions for w and Φ, respectively. The

velocity and electric potential profiles are obtained by solving the equations in (4.26)

iteratively with a tolerance max
i
|wn+1

i − wni | < 10−4 and max
i
|Φn+1

i − Φn
i | < 10−4

for i = 1, ..., N + L. The electric potential Φ is relaxed with a parameter κ using the

equation Φn+1 = (1−κ)Φn+κΦn+1 where κ is taken in the range 0.0001 ≤ κ ≤ 0.01

appropriately chosen for the z-values on the axis that the magnetic field B0(z) is

changing. In Figure 4.42, flow behavior for negative z-values is shown along with

the corresponding increase in the magnitude of the applied magnetic field B0(z). The

first velocity profile in (a) shows the flow behavior when z = −1.13 and B0(z) =

5.34 × 10−4 which is not a strong enough magnetic field. In this case, the velocity

has a parabolic shape which is almost purely hydrodynamic profile. The velocity

profiles in Figure 4.42 (b)-(f) show the effects of increasing strength of the applied

magnetic field from B0(z) = 0.00669 to B0(z) = 0.1192. The increasing strength of

the magnetic field causes a decrease in the magnitude of the velocity keeping still the

parabolic profile since the strength of B0(z) is still weak. Then, the velocity profiles

in Figures 4.42 (g)-(h) are obtained at z = −0.20 and z = −0.10, and the strength

of the applied magnetic field is increased to B0(z) = 0.2086 and B0(z) = 0.3392,
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respectively. An increase in the strength of the applied magnetic field flattens the

flow. When z-value approaches through the origin the formation of M-shape profile

slightly starts as in (i). The M-shape grows when z is at the origin which can be seen

in Figure 4.42 (j).

The velocity profiles in Figure 4.43 are obtained when z values pass the origin. The

M-shape profile of the flow is getting deeper and deeper. Moreover, the fluid is driven

towards the side walls parallel to B0(z) which can be seen from the Figures 4.43 (k)-

(s). The value of z where M-shape reaches its maximum, the applied magnetic field

is also maximum. Then, the M-shape profile of the flow is preserved for further z

values since the strength of the applied magnetic field is no longer changed as can be

seen from Figure 4.43 (t). Therefore, the applied magnetic field varying through the

pipe-axis direction as if the magnets of different strengths are placed in the stream-

wise direction results in three-dimensional effects on the flow. The MHD equations

are solved in two-dimensional ducts where the magnets are placed. Between the

two magnets (applied magnetic fields of different strength) the flow is assumed to be

fully-developed. The changes in the flow behavior through the pipe are due to the

velocity magnitude depending on the z-values and the M-shape due to the conduct-

ing duct walls. The transition of the flow from fully-developed hydrodynamic to the

fully-developed magnetohydrodynamic occurs through several states as can be seen

in Figures 4.42 and 4.43. The flow shows a highly M-shape profile due to the side

layers developed. The same flow behavior has been seen in Sterl’s study [57] when

the three-dimensional MHD flow equations were solved.
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Figure 4.42: Velocity profiles for axial dependent magnetic field, M = 50, α = π/2.
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Figure 4.43: Velocity profiles for axial dependent magnetic field, M = 50, α = π/2.
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4.4 MHD duct flow with axially-changing external magnetic field

The laminar, fully-developed MHD flow of a viscous and incompressible fluid has

been considered between consecutive magnets placed on the pipe-axis. The flow is

under the effect of an axial-dependent vertically applied magnetic field. The MHD

flow equations in terms of the velocity, induced magnetic field and electric potential

are (Section 3.4, equations (3.68))

∇2V +Mg(z)
∂B

∂y
= −1 +

M2

Rm

g(z)
∂g(z)

∂z

∇2B +Mg(z)
∂V

∂y
= 0 − 1 ≤ x, y ≤ 1

∇2Φ = −g(z)
∂V

∂x
.

(4.27)

The coupled equations of the velocity V and the induced magnetic field B in (4.27)

are considered with the boundary conditions given in Figure 4.44 (a) and (b). The

coupled equations along with the electric potential equation (3rd equation) are con-

sidered with no-slip and insulated duct walls together with the Dirichlet, and Dirichlet

and Neumann type boundary conditions for Φ as given in Figure 4.45 (a) and (b).
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lated side walls

Figure 4.44: Flow and induced magnetic field boundary conditions on the duct walls.
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Figure 4.45: The boundary conditions of Φ on the insulated and no-slip duct walls.

The DRBEM implementation to equations (4.27) bring the following DRBEM dis-

cretized system, (equations (3.69))

HV −G
∂V

∂n
= (HÛ−GQ̂)F−1

{
−Mg(z)

∂B

∂y
− 1 +

M2

Rm

g(z)
∂g(z)

∂z

}
HB −G

∂B

∂n
= (HÛ−GQ̂)F−1

{
−Mg(z)

∂V

∂y

}
HΦ−G

∂Φ

∂n
= (HÛ−GQ̂)F−1

{
− g(z)

∂V

∂x

}
(4.28)

where the BEM matrices are given in (3.15).

The equations in (4.28) are either solved by considering coupled equations in terms

of the velocity V and induced magnetic field B values with the boundary conditions

given in Figure 4.44 or the equations in (4.28) are solved for the velocity V , induced

magnetic field B and the electric potential Φ values with the boundary conditions

given in Figure 4.45.

The ducts Ωi = [−1, 1] × [−1, 1] are discretized at the locations zi on the pipe-axis

by using N = 200 constant boundary elements and L = 2500 interior nodes. The

pipe-axis dependent function in B0(z) is taken as g(z) =
1

1 + e−z/0.15
. The zi val-

ues (positions of the magnets) are considered between −2.13 ≤ z ≤ 2.13 (a section

of length 4.26 around the origin in the pipe-axis direction). First, the velocity V

and induced magnetic field B are obtained by solving the discretized matrix-vector

equations (4.28) with no-slip and insulated duct walls as shown in Figure 4.44 (a)

for increasing values of Hartmann number M as 10, 30 and 50 by taking magnetic
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Reynolds number fixed as Rm = 2. The velocity and induced current contours and

velocity level curves at several locations in [−2.13, 2.13] along the pipe are presented

in Figures 4.46, 4.47 and 4.48. The fluid flows in the positive pipe-axis direction first

and then it reverses its direction at a certain z-value, and then the flow becomes pos-

itive again in that interval. It can be seen from these figures that, as M increases the

reversed flow occurs much earlier, and then the flow turns to the pipe-axis direction

(positive z-axis) much later. That is, the length of the interval on the pipe-axis on

which the flow is reversed is increasing (i.e. for M = 10 the length of the interval for

reversed flow is 1.30, for M = 30 it is 1.80 and for M = 50 it is 2.03). The flattening

tendency of the flow is also observed as M increases at the same location of the pipe

(i.e. at z = 2.13).

Figures 4.47, 4.49 and 4.50 depict the behavior of the flow and induced current for

increasing values of magnetic Reynolds number as Rm = 2, 5, 25 for a fixed Hart-

mann number M = 30 in the interval −2.13 ≤ z ≤ 2.13 again for the case of no-slip

and insulated duct walls. It is observed that, as Rm increases the flow reverses much

later however, reversing back to the pipe-axis direction occurs much earlier. That

is, the length of the interval for the reverse flow is getting shorter as Rm increases.

The lengths are 1.80, 1.59 and 1.22 for Rm as 2, 5 and 25, respectively. This oppo-

site effects of the increase in the values of Hartmann number and magnetic Reynolds

number, on the lengths of the sections of the pipes for the reversed flow can be ex-

plained physically. For the same fluid of constant viscosity µ and electric conductivity

σ, Hartmann number increases when the intensity of the applied magnetic field B0 is

strong. Its effect is also strong on the fluid and the flow reversion occurs on a longer

interval on the pipe-axis. But, the magnetic Reynolds number Rm increases when

magnetic permeability µ0 increases. Thus, the flow changes direction quickly on the

pipe-axis.
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Figure 4.46: Velocity and induced magnetic field (V = B = 0 duct walls), M = 10,

Rm = 2. Axially-changing magnetic field, α = π/2.
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Figure 4.47: Velocity and induced magnetic field (V = B = 0 duct walls), M = 30,

Rm = 2. Axially-changing magnetic field, α = π/2.

143



z
=
−

2.
13

z
=
−

0.
68

z
=
−

0.
67

z
=

1.
35

z
=

1.
36

z
=

2.
13

V B V

Figure 4.48: Velocity and induced magnetic field (V = B = 0 duct walls), M = 50,

Rm = 2. Axially-changing magnetic field, α = π/2.
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Figure 4.49: Velocity and induced magnetic field (V = B = 0 duct walls), M = 30,

Rm = 5. Axially-changing magnetic field, α = π/2.
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Figure 4.50: Velocity and induced magnetic field (V = B = 0 duct walls), M = 30,

Rm = 25. Axially-changing magnetic field, α = π/2.

When the Hartmann walls (walls perpendicular to the applied magnetic field, top and

bottom walls) are changed from insulated to perfectly conducting (Figure 4.44 (b)),

the points on the pipe-axis where the flow is reversed are not changed. This can be

seen from Figures 4.51 and 4.52 which are drawn for M = 30 and Rm = 1 where
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Figure 4.51 is still with the V = B = 0 wall conditions. On the other hand, the

flow is greatly affected aligning in terms of two loops in front of side walls parallel

to applied magnetic field. The current lines do not close themselves in front of the

Hartmann walls anymore due to the
∂B

∂n
= 0 boundary conditions.

z
=
−

2.
13

z
=
−

0.
65

z
=
−

0.
64

z
=

1.
30

z
=

1.
31

z
=

2.
13

V B V

Figure 4.51: Velocity and induced magnetic field (V = B = 0 duct walls), M = 30,

Rm = 1. Axially-changing magnetic field, α = π/2.
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Figure 4.52: Velocity and induced magnetic field (V = 0, B = 0 side walls, V = 0,
∂B

∂n
= 0 Hartmann walls), M = 30, Rm = 1. Axially-changing magnetic field,

α = π/2.

The inclusion of electric potential Φ requires the solution of discretized DRBEM

equations (4.28). When the unknowns V , B and Φ are obtained numerically for the

case M = 30, Rm = 2, we see from Figures 4.53 and 4.54 that, the velocity and
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induced magnetic field contours stay exactly the same since velocity and induced

magnetic field equations do not contain Φ. Thus, the flow reversion locations are also

the same. For Dirichlet type boundary condition for Φ, Φ = 0 and V = B = 0,

electric potential curves show the same behavior in opposite direction with induced

current B curves but in different magnitude. For the Neumann boundary conditions
∂Φ

∂n
= 0 on the top and bottom walls, the flow and the induced current profiles are

again the same, only the electric potential lines do not close in front of the Hartmann

walls anymore.
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Figure 4.53: Velocity, induced magnetic field and electric current (V = B = Φ = 0

walls), M = 30, Rm = 2. Axially-changing magnetic field, α = π/2.
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Figure 4.54: Velocity, induced magnetic field and electric current (V = B = 0, Φ = 0

side walls,
∂Φ

∂n
= 0 Hartmann walls), M = 30, Rm = 2. Axially-changing magnetic

field, α = π/2.

In Chapter 4, the numerical results of the MHD duct flow problems are simulated in

four different parts. In Section 4.1, the numerical result are presented for the MHD
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flow and heat transfer equations containing variable viscosity coefficient. Then, un-

steady MHD duct flow under the influence of a time-varied applied magnetic field

B0(t) is considered with different types of time-varied functions f(t) in Section 4.2.

Furthermore, in Sections 4.3 and 4.4 the numerical results of the MHD duct flow

problems under the effect of axially changing applied magnetic field B0(z) are dis-

played. Sections 4.3 and 4.4 are also supplied with electric potential equation giving

flow and electric potential profiles in Section 4.3 whereas Section 4.4 presents the full

problem solutions as the velocity, induced magnetic field as well as electric potential.
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CHAPTER 5

CONCLUSION

This thesis provides the numerical solutions of four kinds of two-dimensional, steady

or unsteady, fully-developed MHD problems. The electrically conducting fluid inside

the rectangular duct is influenced by a uniform magnetic field in the first problem, a

time-varied magnetic field in the second problem and an axial-dependent magnetic

field in the third and fourth problems. Mainly, the BEM is applied for the solution of

the MHD duct flow equations, differing as the parametrix BEM or the DRBEM ac-

cording to the dominating operator of the equations. The parametrix BEM procedure

is carried out with the help of a Levi function which treats the variable viscosity in the

diffusion term directly to reduce the differential equation into a boundary-domain in-

tegral equation, while the DRBEM is used with the fundamental solution of Laplace

equation to transform the boundary value problems into the system of boundary in-

tegral equations. The linear radial basis function approximation is used for the inho-

mogeneity in the usage of DRBEM. In most of the simulations, constant boundary

elements are used to discretize the boundaries of the problem domains.

First, the numerical solution of the convection-diffusion type MHD flow problem

with temperature dependent viscosity and heat transfer is obtained in the absence of

induced magnetic field. The parametrix BEM and DRBEM are both used for obtain-

ing numerical results. The momentum and energy equations are solved iteratively.

The use of the parametrix BEM makes it possible to treat the diffusion operator of the

equation in its original form. Although, the obtained results form parametrix BEM

and DRBEM differ slightly in maximum values of the velocity and temperature mag-

nitudes, both methods capture the well known flattening property of the MHD duct

flow as Hartmann number increases. The numerical results also show that, parametrix
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BEM with the same number of boundary elements requires more CPU time than the

one in DRBEM.

Then, the transient behavior of the MHD duct flow is presented in terms of the ve-

locity and induced magnetic field when the flow is subjected to a time-varied oblique

magnetic field. The implicit forward finite difference approximation is used for the

time derivatives. This MHD flow problem is solved in two cases. In the first case, the

Reynolds and magnetic Reynolds number are taken as 1 which enables to write the

MHD flow equations in decoupled form. The simulations of the flow behavior are ob-

tained by using several definitions of time-dependent functions such as polynomial,

exponential, trigonometric, step and impulse type functions. Increasing Hartmann

number and the orientation of the magnetic field affect the flow behavior for each type

of functions. Then, in the second case, Reynolds and magnetic Reynolds numbers are

involved forcing the MHD flow equations to be solved in coupled form. Capturing an

elliptical elongation for the flow in the direction of applied magnetic field at a certain

time level is the common feature for all the type of functions considered. The flow

elongation repeats itself periodically if trigonometric function is used. The elonga-

tion starts at an earlier time level in the flow when the Hartmann number increases

or the applied magnetic field is oblique rather than being horizontal. As time passes,

the Hartmann layers are more pronounced while the side layers get thinner due to

the elongation of the flow. The well-known behavior of the MHD flow, drop in the

velocity magnitude and the formation of the boundary layers are observed. Also, an

increase in Reynolds or magnetic Reynolds numbers postpones the time level where

the flow elongates.

Afterwards, the DRBEM solution of the MHD duct flow under the effect of an axially

changing imposed magnetic field is obtained. The induced magnetic field is neglected

due to small magnetic Reynolds number, however the electric potential from the di-

vergence of Ohm’s law is taken into consideration. The influences of the Hartmann

number and the electrical conductivity of the walls on the flow are presented. The re-

sults show that, the Hartmann number controls the thickness of the boundary layers,

while the wall conductivity determines the structure of the flow. The maximum value

of the velocity occurs on the non-conducting or conducting side walls instead of the

centre of the duct causing M-shape for the flow. Moreover, an increase in the Hart-
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mann number leads to stronger fluctuation on the flow behavior on the side layers for

the case of variably conducting walls. The three-dimensional effects of the MHD flow

are obtained in the pipe when axially varying magnetic field is applied at consecutive

two points for which the flow is fully-developed. MHD flow shows a highly M-shape

profile due to the side layers developed. Therefore, the structure a redistribution of

the flow greatly depend on the strength of the axially changing applied magnetic field

throughout the pipe.

Furthermore, the DRBEM solution of the MHD duct flow under the effect of an axi-

ally changing magnetic field is presented taking also into consideration of the induced

magnetic field in ducts where the magnets are located at several points through the

pipe. The MHD flow equations are solved in terms of velocity, induced magnetic field

and electric potential with the fully-developed flow assumption between these points.

This way, the three-dimensional effects on the MHD flow are obtained throughout the

pipe. The flow behavior is investigated for increasing values of problem parameters,

Hartmann number and magnetic Reynolds number. The numerical results show that,

axially changing magnetic field makes the flow to change its direction at a certain

position of the pipe-axis. But then, the flow turns back to the pipe-axis direction after

traveled a shorter distance for the case of increasing Hartmann number than the case

of increasing magnetic Reynolds number.

To conclude, the DRBEM is the most effective numerical method for the solution of

the MHD duct flow problems through pipes or channels in the presence or absence

of induced magnetic field for the most general form of wall conductivity conditions.

It provides both the unknown (velocity, temperature, induced magnetic field, electric

potential) itself and its normal derivative at once on the duct walls by only discretizing

the boundary of the considered problem which reduces the dimension of the final dis-

cretized system. Thus, the numerical solutions are obtained with a low computational

cost compared to the other domain type discretization techniques.
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