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ABSTRACT  
Purpose- A wide range of decision-makers is interested in educated forecasts for house prices. The technical analysis introduced in this study aims 
to estimate future (forecasted) house prices and provide sufficient evidence in support of the adequacy of the estimated models obtained from 
parametric and non-parametric modeling methods for Turkey's housing market. 
Methodology- We employ non-parametric and various time series methods to find appropriate fits to forecast Turkey's house price index (HPI). 
In our modelling, we consider macroeconomic indicators related to housing markets, such as; gold, interest rate and currencies. In this study, first 
using the explanatory variables, we construct two Generalized Linear Models (GLM) and a Vector Auto Regressive (VAR) model. Then, we construct 
two univariate time series models. HPI series inherits seasonality. Even though the HPI contains seasonality, first, we neglect the seasonal effect 
and come up an Autoregressive Moving Average (𝐴𝑅𝑀𝐴(𝑝, 𝑞)) model among many other alternative ARMA models. Second, we consider the 
seasonality effect on the housing market index and construct a seasonal Autoregressive Integrated Moving Average (𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞)(𝑃, 𝐷, 𝑄)) 
and exponential smoothing models. 
Findings- The analysis identifies forecasts of Turkey’s housing market index from both the seasonal 𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞)(𝑃, 𝐷, 𝑄)𝑚  and Holt Winter 
models as accurate models compared to classical time series models, namely 𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞) models, based on the explanation power measure 
(R^2) values and out-of-sample error measures MSE, RMSE and MAE. 
Conclusion- The study has three main contributions: i) Our forecast shows Turkey's housing market's return will not increase in the following 12-
months. ii) The seasonal ARIMA and exponential smoothing models forecast some negative returns within the given forecasting period, which 
should be considered a warning for Turkey's housing market for the future. iii) GLM and VAR models illustrate that Turkey's housing market shows 
a high dependence on gold, inflation, and foreign exchange rates than other well-known economic indicators. 
 
Keywords: Turkey's housing market, GLM, time series, forecasting, VAR. 
JEL Codes: R32, C22, C15 
 

 

1. INTRODUCTION 

Analyses on house price behavior and its forecasting is a critical attempt to policymakers, investors, and individual buyers and 
sellers in Turkey for many reasons. To begin with, housing represents not only a substantial aggregate portion of households' 
wealth but also it carries out an essential part of the entire economy. Hence, Turkey's housing market directly attached to its’ 
national economy through households' expenditures on housing and expenses related to housing. Consequently, house prices 
possess the potential to widely affect household consumption through the ability of housing financing-related debts. Therefore, 
price fluctuations in Turkey’s housing market are of great concern to policymakers and market participants, and also, they have 
devastating implications on its’ national economy. 
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Over the last two decades, house prices have increased regularly due to the global capital flow to Turkey's economy. Figure 1 
illustrates nationwide Turkey's nominal house price evolution for all types of housing for the period from January-2010 to May-
2019. In this period, overall house prices have increased by 143% in Turkey. This consecutive increase is uninterrupted even by 
the 2008 global economic disturbance, which is caused by the US housing market collapse.  

Figure 1 also shows that even though house prices are decreased a little bit in early 2019, they start to increase in 2019 again. 
However, such an increase is not due to Turkey's housing market recovery. There are three fundamental reasons behind the 
increase: i) the severe tax and duty burden increase, ii) the dramatic increase in currencies, iii) the decrease in mortgage loans, 
and the consumers' desire to purchase a house based on the cultural reasons. 

Figure 1: Monthly House Price Evolution in Turkey (2010:1-2019:5) 

 

 

Starting from early 2000, there has been an accelerating interest in Turkey's housing market; thanks to the growth in national 
economy and political regulations on the economy and housing market. The literature on forecasting house prices is no different, 
although the majority of studies seem to focus on multivariate forecasting methods. In Turkey, many researchers have long tried 
to identify underlying drivers of house prices and use the price drivers to estimate house prices. To this end, an increased number 
of researches has focuses on house price dynamics and explore them by employing hedonic method (see Yayar and Gül, 2014; 
Öztürk and Fitöz, 2012; Yayar and Karaca, 2014), which uses some market-specific factors and common factors such as inflation, 
income, housing statistics, and demographics. Hedonic method is the most frequently used modelling approach to identify house 
price dynamics in Turkey. 

Although the number of researches has been limited, artificial neural networks are also showing considerable potential in the field 
of house price prediction in Turkey (Selim, 2009; Dombaycı, 2010). On the contrary to hedonic, classical multiple regression and 
artificial neural networks methods, univariate time series models have been found to forecast very well over shorter periods by 
Crawford and Frantantoni (2003). It is because short-term factors are expected to have a slow change (Tse, 1997). 

Especially, autoregressive integrated moving average (ARIMA) models have received extraordinary attention from researchers to 
predict and forecast house prices in many housing markets. For instance, Tse (1997) examines forecasting of house prices in Hong 
Kong housing market by adopting ARIMA to capture the short-term house price behavior showing that integrated models perform 
better than other time series model classes. In a similar study, Crawford and Frantantoni (2003), compare ARIMA models to 
generalized autoregressive conditional heteroskedastic (GARCH) and regime-switching models and discover that simple ARIMA 
models generally perform better when comparing out-of-sample forecast accuracy, while the regime-switching model performs 
better in-sample. Chin and Fan (2005) compare three distinct ARIMA models in an application on residential house prices in 
Singapore housing market. They observe an ARIMA model that contains dummy variables performs better than an ARIMA model 
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with ARCH errors, but only marginally better than the original model. By considering a similar argument, Hepşen and Vatansever 
(2011) use a standard Box-Jenkins ARIMA modelling approach to forecast house price trends in Dubai housing market. 

Nevertheless, everyone is not as enthusiastic about the forecasting strength of ARIMA models. For instance, Stevenson (2007) 
notifies that although ARIMA models are capable in predicting broad market trends, these models differ substantially in their 
forecasts obtained from various model specifications since they are sensitive to model preference biases. 

There is a considerable amount of literature which attempts to determine house price dynamics in Turkey, but limited number of 
studies focus on the prediction of house prices. Unlike modelling house price dynamics, forecasting house prices have received 
limited attention and none of these focus on the univariate time series modelling, Vector autoregressive (VAR) and Generalize 
Linear Modelling (GLM) approaches to our best knowledge. Note also that while there are studies that using VAR to predict house 
prices in the literature (e.g. Hui and Yue, 2006), there is only Yilmaz (2019) contains application of GLM for housing market which 
analyze the US housing market. Hence, this study is the first attempt to analyze the forecastability of house prices by using 
univariate times series, VAR and GLM approaches in Turkey's housing market. 

The objective of the study is to guide the reader to better comprehend the nature of Turkey's housing market concerning its price 
movement through a robust analysis of time series, exponential smoothing, VAR, and GLM methods. The analysis culminates in 
the development of models constructed to forecast house prices in Turkey. The major contribution of the study is to provide a 
critically notified analysis of the housing market and the forecastability of house prices in Turkey.  

To support our argument, initially, we present an extensive literature review on the VAR, GLM, and univariate time series analysis 
applications to housing markets in the world and Turkey. Subsequently, we determine the related explanatory variables for VAR 
and GLM models and determine VAR, GLM, ARMA, seasonal ARIMA, and exponential smoothing models that best represent the 
log-return house price series of Turkey. Then, we made some forecasts following selected three models, among many alternatives.  

All of the models accommodate to track the direction of changes in house prices. Further, the Granger causality test determines 
the causality of the selected explanatory variables. Additionally, GLM and VAR models identify the macroeconomic drivers of 
Turkey’s housing market. VAR catch inflation and past values of HPI as the explanatory variables, while GLM picks gold and USD 
as significant explanatory variables for HPI.   

The most significant practicality of the study is to suggest a way to determine the cyclical turning points in Turkey’s house price 
series. Also, in practice, these modelling approaches are not only employed to identify the cyclical patterns and cyclical turning 
points of economic data sets but also to analyze the efficiency of the housing market (Tse, 1997; Gatzlaff and Tirtiroglu, 1995). 
Therefore, our study is expected also to lead the analysis of efficiency of Turkey's housing market. 

The organization of the study is as follows. In Section 2, we summarize the previous studies that consider the time series analysis 
for housing markets. The formulations for the GLM, VAR, univariate time series and exponential smoothing methods are given in 
Section 3 and kept brief without any proof. Section 4 reviews Turkey's house price index properties and its initial analysis. Then, 
we introduce the best selected models chosen whose details are presented in Appendixes along with their prediction and 
forecasting powers in Section 5. This section also discusses models’ prediction, accuracy, forecasting, and forecasting confidence 
intervals for the selected models. Finally, we conclude the study in Section 6. 

2. RELATED STUDIES  

McGough and Tsolacos (1995) utilize ARIMA models for the short-term forecasting of rental values of three commercial property 
sectors in the UK real estate market. The findings in this study reveal that retail, office and industrial rents are admirably fitted by 
ARIMA (1,2,0), ARIMA (0,2,1) and ARIMA (3,2,0) models in the UK, respectively. These models suggest that for retail and industrial 
rents, the past changes affect their current and future changes, while for office rents, their present and future changes are 
influenced by past shocks. Their findings provide a greater comprehension of the short-term dynamics of commercial rental values 
and the forecasting of turning points.  

In a similar study, Tse (1997) develops ARIMA models to predict the office and industrial property prices in Hong Kong real estate 
market. This study compares the forecasting performance of ARIMA models for the two property sectors. In particular, Tse applies 
the proportion of the RMSE of the model forecasts to the mean value to identify cyclical turning points. Whenever the reversed 
change in house prices is larger than the proportion value, a turning point is anticipated to occur. However, his findings also show 
that the ARIMA analysis is inadequate at identifying market turning points for the longer term. 
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Crawford and Frantantoni (2003) accurately compares both in-sample and out-of-sample forecasting performance of three 
univariate time series models for house price forecasting of the US housing market. More precisely, they meaningfully compare 
an ARIMA model, a GARCH model and finally, a regime-switching model. It is unusual to note, however, that their findings show 
that the simple ARIMA model performs better in tests of out-of-sample forecastability, while the regime-switching model 
performs better in-sample. 

Guirguis et al. (2005) present an impressive critique of house price forecasting methods. They point out that many previous 
studies, which attempt to forecast house prices had relied on forecasts that employ the use of constant coefficients and do not 
account for the sub-sample instability of house prices. To consider this instability, Guirguis et al. employ six empirical models using 
a rolling vector error correction model (VECM); a rolling autoregressive representation (RAR); a rolling generalized autoregressive 
conditional heteroskedastic (GARCH) model; a Kalman filter with a random walk (KRW); a Kalman filter with an autoregressive 
time variation (KAR) and finally; an Exponential smoothing with trend and seasonality (ES) model. 

Partially motivated by Crawford and Frantantoni (2003), Miles (2008) come up some non-linear forecasting models including a 
threshold autoregression (TAR), a bilinear (BL) and a generalized autoregressive (GAR) models. After some deliberation, Miles 
eventually adopts a GAR model for house prices in the study since it is easily estimated by employing the ordinary least squares, 
and he improves forecasting power of the models for the same US states that are analyzed by Crawford and Frantantoni (2003). 
Miles (2008) then compares the forecasting performance to the best ARMA and GARCH forecasting models and observes GAR 
model produces superior out-of-sample forecasts than both the simple ARMA and GARCH models, particularly in housing markets 
which exposed high levels of house price volatility. 

Later, Rapach and Strauss (2009) accomplish similar outcomes as outcomes of Miles (2008). Their analyses on state-level house 
price growth in the US housing market between 1995-2006 and comparison an autoregressive benchmark model with others 
including some auxiliary economic explanatory variables recommend that autoregressive model, as well as models that make use 
of additional economic explanatory variables, tend to provide fairly reliable forecasts for house prices. However, the accuracy of 
their forecasts is broadly dependent upon the strength of growth in house prices over the investigated period. More precisely, 
they observe that house price forecasts for the states that exhibited relatively moderate house price growth are often considerably 
more accurate than forecasts for states, which exhibited strong house price growth over the investigated period. The authors also 
suggest that the fact house price forecasts for states, which exhibits the strongest price growth are inaccurate may potentially 
indicate that house prices in these states are plausibly significantly out of line with economic fundamentals. 

Gao et al. (2009) also addresses the issue of house price forecast performance variability across several US sub-housing markets 
over two large panel data of the US regional housing markets. They use the empirical evidence recommending house price exhibits 
a mean reversion and serial correlation to employ an autoregressive mean reversion (ARMR) model to forecast house prices. As 
expected, their result displays forecasting of house prices for markets which display a high level of volatility in house prices tend 
to result in AR coefficients, which are generally considerably larger than those found in forecasts of less volatile housing markets. 
Also, they discover house price forecasting for prices in uptrend periods have significantly larger AR coefficients than those made 
in downtrend periods. Eventual, they suggest it as evidence of downtrend period rigidity in the housing market. 

3. METHOD  

There are three modelling approaches in this study. First, we use a Generalized Linear Model (GLM) to determine how well the 
mathematical models that based on flexible generalization of ordinary linear regression captures the housing market behavior in 
Turkey. Second, we use a Vector Autoregressive (VAR) approach to analyze the joint behavior of important related variables on 
the house prices. Third, we employ univariate time series approach, which studies the within-dynamics in the price index itself. 

In the GLM modelling, we follow the structure proposed by Nelder and Baker (1972) closely. Also, for VAR modelling approach 
Ooms (2012) offers detailed descriptions. The general model specifications for time series analysis we made in this study are 
similar to those outlined by Crawford and Fantantoni (2003). These models are theoretical in the sense that they are non-
structural. The models simply make use of the lagged value of the dependent variable, lagged values of the error terms, and in 
some cases, lagged variances as well. All of the models considered in the context of the study are ubiquitous among the forecasting 
literature and have been employed with high degrees of success in a variety of fields. Additionally, Shumway and Stoffer (2010) is 
followed for the theoretical background of the univariate time series analysis. 
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3.1. Generalized Linear Models  

Given a random variable vector 𝑌 = (𝑌1, 𝑌2, … , 𝑌𝑁) having a mean vector 𝜇 and an explanatory variable matrix 𝑋 of order 𝑁 × 𝑝 
and a p-dimensional parameter vector 𝛽, GLM have the primary objective to investigate the link between 𝜇 and 𝑋 through vector 
𝛽. Here, 𝜇 represents the systematic part of the model. It may be written as the existence of covariate 𝑥1, 𝑥2, … , 𝑥𝑝 and 𝛽𝑗  where 

𝑗 = 1,2, … , 𝑝 as 

𝝁𝒊 = ∑ 𝜷𝒋𝒙𝒊𝒋

𝒑

𝒋=𝟏

 , 𝒊 = 𝟏, 𝟐, … , 𝑵.                                                                                         (𝟏) 

Here, 𝑥𝑖𝑗  represents the value of observation i’s jth covariance. In this setting 𝛾 is normally distributed and covariates 𝑥1, 𝑥2, … , 𝑥𝑝 

produce a linear map denoted as  𝜂𝑖 = ∑ 𝛽𝑗𝑥𝑖𝑗
𝑝
𝑗=1 . Here, the relation among the systematic and the random components is η=μ. 

Note that η and μ are identical. So, it can be expressed by the help of a link function 𝑔, as 𝜂𝑖 = 𝑔(𝜇𝑖). 

3.2. Vector Autoregressive Models 

In this approach the vector time-series 𝑥[𝑛] is modelled as an auto regressive (AR) process given as 

𝒙[𝒏] = − ∑ 𝑨[𝒊]𝒙[𝒏 − 𝒊]

𝒑

𝒊=𝟏

+ 𝒖[𝒏],                                                                             (𝟐) 

where 𝑢[𝑛] represents a multivariate white noise, with a cross-covariance matrix denoted with 𝑉𝑎𝑟(𝑢[𝑛])  =  𝛴, if 𝑘 =  0, 
otherwise 𝑉𝑎𝑟(𝑢[𝑛])  =  0. Here, 𝐴[𝑖] are called AR coefficients since they regress 𝑥[𝑛] onto its own past values. In this setting, 
𝑝 is called the order of the auto-regression and it refers to the above model, with adjustable parameters 𝐴[𝑖] and 𝛴 to be 
estimated, as a 𝑉𝐴𝑅(𝑝) model.  

There are two critical interpretations of this modelling approach: i), it can be considered to model 𝑥[𝑛] as the output of a 
multivariate linear filter driven by the Brownian motion input 𝑢[𝑛]. Such a filter has a rational transfer function that containing 
𝐴[𝑖] in the denominator matrix polynomial. The interpretation makes clear that the model captures the temporal structure of 
𝑥[𝑛] since 𝑢[𝑛] has no (linear) temporal structure by its definition. All temporal structure present in 𝑥[𝑛] must be included in 𝐴[𝑖]. 
ii) VAR model can be considered as a linear prediction model, which predicts the current value of 𝑥[𝑛] based on a linear 
combination of the most recent lag values 𝑝. Consequently, the current value of a component 𝑥𝑖  [𝑛] is predicted using a linear 
combination of its own and the other components past values. Here, the second interpretation illustrates its value in quantifying 
Granger causality between (groups of) components. 

3.3. ARIMA models 

Univariate time series analysis is based on the straight modelling of the lagged relationships among a data series and its past. An 
autoregressive component (AR) indicating the number of lags of the dependent variable that is to be included, and a moving 
average (MA) component that captures the effect of lagged values of the error term form an ARMA process. 

An 𝐴𝑅𝑀𝐴(𝑝, 𝑞) process is represented by 

𝒚𝒕 = 𝜽𝟎 + 𝝓𝟏 𝒚𝒕−𝟏 + ⋯ + 𝝓𝒑 𝒚𝒕−𝒑 + 𝝐𝒕 −  𝜽𝟏 𝝐𝒕−𝟏 − ⋯ − 𝜽𝒒 𝝐𝒕−𝒒.                                    (𝟑) 

This formula can be rearranged by using the lag operator 𝐷 as follows 

𝝓(𝑫)𝒚𝒕 = 𝜽(𝑫)𝝐𝒕.                                                                                                    (𝟒) 

Here,  𝜙(𝑧) and 𝜃(𝑧) are polynomials of orders 𝑝 and 𝑞 in 𝑧, respectively, and 𝜖𝑡 is a purely random process with mean zero and 
variance 𝜎𝜖

2 .   

In practical applications, especially, most of the economic data series are non-stationary. Therefore, it is essential to remove non-
stationary sources from the data by differencing the data as many as it gets into stationary form. Thus, the series can be 
represented by an autoregressive integrated moving average process of orders, 𝑝, 𝑑, 𝑞, or an 𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞) process. ARIMA 
models do not consider any particular pattern in the observed data series to be forecasted. Here, the integrated (I) part refers to 
the degree of differencing (𝑑). The Box-Jenkins method has a three-stage approach for identifying, estimating and verifying the 
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ARIMA models. The family of ARIMA processes provides a distinct set of models that capable of representing economic data series 
that may not be stationary, but are homogeneous and in statistical equilibrium (Box et al., 1994). The Box-Jenkins approach to 
time-series model building is a method to determine if an ARIMA model adequately represents the data-generating process. 

The general 𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞) process is of the form: 

𝜟𝒅 𝒚𝒕 = 𝜽𝟎 + 𝝓𝟏 𝜟𝒅 𝒚𝒕−𝟏 + ⋯ + 𝝓𝒑 𝜟𝒅 𝒚𝒕−𝒑 + 𝝐𝒕 − 𝜽𝟏 𝝐𝒕−𝟏 − ⋯ − 𝜽𝒒 𝝐𝒕−𝒒,                                   (𝟓)  

where 𝛥 𝑦𝑡    = 𝑦𝑡 − 𝑦𝑡−1 = (1 − 𝐷)𝑦𝑡. This may be compactly rewritten as 

𝝓(𝑫)𝜟𝒅 𝒚𝒕 = 𝜽𝟎 + 𝜽(𝑫)𝝐𝒕.                                                                                     (𝟔) 

Here, 𝜙(𝐷), autoregressive operator, and 𝜃(𝐷), moving average operator, are the polynomials lag operator and 𝛥𝑑   𝑦𝑡 =
(1 − 𝐷)𝑑   𝑦𝑡 is the 𝑑𝑡ℎ  difference of 𝑦𝑡. 

3.4. Seasonal ARIMA Models 

In the previous subsection, we have restricted the focus to non-seasonal ARIMA models. However, in real life applications the 
dependence on the past tends to occur strongly at some underlying seasonal lag. The modified ARIMA models are capable of 
modelling a wide range of seasonal effect. A seasonal ARIMA model is classified by including additional seasonal parameters into 
the classical ARIMA models we introduce in the previous subsection. The seasonal ARIMA model represented with the following 
formula 

𝑨𝑹𝑰𝑴𝑨(𝒑, 𝒅, 𝒒)(𝑷, 𝑫, 𝑸)𝒎.                                                                                       (𝟕) 

We use the uppercase notation for the seasonal parts of the model, and lowercase notation for the non-seasonal parts of the 
model. Here, 𝑃, 𝐷, 𝑄 and 𝑚 denote the number of seasonal autoregressive (SAR) terms, seasonal differences, seasonal moving 
average (SMA) terms, and observations per year, respectively. 

3.5. Exponential Smoothing 

The use of exponential smoothing in automatic forecasting (Brown, 1959; Gardner Jr, 1985; Hyndman et al., 2002) includes a 
variety of methods such as the simple exponential smoothing method, Holt's linear method, additive Holt-Winters method, and 
multiplicative Holt-Winters' method, etc.  In this paper, we employ additive Holt-Winters method (Winters, 1960; Holt, 2004)) 
which is widely used to forecast time series that contains seasonality and it is given as 

𝑦̂(𝑡 + ℎ|𝑡) = 𝑙𝑡 + ℎ𝑏𝑡 + 𝑠𝑡+ℎ−𝑚(𝑘+1) .                                                                         (8) 

In this model the level, 𝑙𝑡, is defined as 

𝒍𝒕 = 𝜶(𝒚𝒕 − 𝒔𝒕−𝒎) + (𝟏 − 𝜶)(𝒍𝒕−𝟏 − 𝒃𝒕−𝟏),                                                          (𝟗) 

whereas, the trend,  𝑏𝑡, is 

𝒃𝒕 = 𝜷(𝒍𝒕 − 𝒍𝒕−𝟏) + (𝟏 − 𝜷)𝒃𝒕−𝟏,                                                                         (𝟏𝟎) 

and the seasonal component, 𝑠𝑡 , is 

𝒔𝒕 = 𝜸(𝒚𝒕 − 𝒍𝒕−𝟏 − 𝒃𝒕−𝟏) + (𝟏 − 𝜸)𝒔𝒕−𝒎,                                                          (𝟏𝟏) 

where the parameter 𝑘 is the integer part of (ℎ − 1/𝑚). Here, 𝑘 guarantees that the estimates of the seasonal indices used in 
forecasting related to the final year of the observation. The level equation gives a weighted average among the seasonally adjusted 
observation 𝑦𝑡 − 𝑠𝑡−𝑚 and non-seasonal forecast 𝑙𝑡−1 + 𝑏𝑡−1 at time 𝑡. The trend equation is identical to the classical Holt's linear 
method. The seasonal equation presents a weighted average between the current seasonal index, (𝑦𝑡 − 𝑙𝑡−1 − 𝑏𝑡−1), and the 
seasonal index of the same season in the previous year. Here, 𝛼 denotes the level component, 𝛽 denotes the trend component, 
and 𝛾 denotes the seasonality component. 
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4. HOUSE PRICES AND THE RELATED VARIABLES  

Government agencies publish various indices such as house price index, index of private housing rental prices, New Privately 
Owned Housing index, mortgage rate, on housing markets to design urban planning and national economic policies, and various 
studies aim to predict future movements based on historical indices. Among those indices the house price indices are appraised 
as a very valuable indicator for judging housing markets behavior accurately. These indices are basically the compilation of every 
possible factors which may have an influence on the house price, such as city, size, type, location, use etc. Additionally, real estate 
as a commodity has an influential effect on the economies, though transactions are extremely infrequent. 

Perhaps the most transparent housing index for Turkey's housing market is the sales price index (HPI) provided by the Central 
Bank of the Republic Turkey (TCMB) which is chosen for carrying out the analyses on Turkey’s housing market price evaluation. 
The HPI is a major tool for professionals, researchers, and policymakers to track down the general price movements and trends in 
Turkey's housing market. The monthly HPI values between January 2010 and May 2019 are retrieved from the online portal of 
TCBM, yielding adequate number of observations (113) for the analyses. 

We use a variety of econometric variables, such as commodity (gold), financial indicators (USD, Euro, mortgage rate), 
macroeconomic indicators (unemployment, inflation, cost of living index, economic confidence index), to predict HPI values. Table 
1 presents their abbreviations and the summary statistics of these variables. USD/TL and EURO/TL currencies are chosen since 
Turkey’s economy highly relies on imports. As commodity gold prices is one of the most influential investment tools in Turkey. In 
many studies, it is proven that inflation and real estate markets are highly dependent on each other and investing in the real 
estate market may protect the capital against inflation (Yilmaz, 2019; Yilmaz and Selcuk-Kestel, 2019). Therefore, we take into 
account inflation and fixed-rate mortgage (FRM) since house prices require most buyers to finance through loan.  On the other 
hand, to show the economic power of the community and to analyze the impact of trust in the economy, we consider the cost of 
living index (COSTL) and economic confidence index (ECONOMICCI). As in fully commutative markets, housing markets are also 
highly affected by the income of the community, which is rated by unemployment rate that has an influence on the markets. Here, 
it is worth to emphasize that the summary statistics expose the transformed data since the series are not stationary in their 
original form.  Augmented Dickey-Fuller (ADF) -tests on the transformed variables justify that the series are stationary (p<0.05; 
Table 2). 

Table 1: The Summary of Descriptive Statistics 

Variable Abrv. Max Min Mean Std.Dev 

GOLD GOLD 0.086 -0.036         0.006      0.018 

USD USD 0.082        -0.038          0.005      0.015 

EURO EURO 0.076       -0.043          0.004       0.015 

INFLATION  INF 0.027       -0.006         0.003        0.004 

FRM FRM 0.289           0.083                0.132            0.040 

COSTL CTL 0.107         -0.252           0.0004      0.046 

ECONOMICCI              ECI 0.031        -0.045         -0.0004      0.012 

UNEMPLOYMENT  UE 0.147 0.073                 0.103          0.016 

HPI HPI 0.008      -0.005       0.003       0.002 
 

Table 2: Stationarity of Variables (ADF-Test) 

 Dickey-Fuller 

GOLD -4.507* 

USD -5.7478* 

EURO -5.3233* 

INFLATION -5.1387* 

FRM -4.3148* 
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COSTL -4.7555* 

ECONOMICCI -4.4213* 

UNEMPLOYMENT -4.6518* 

HPI -3.4549** 

*p<0.01; **p<0.05  

The variables chosen pose strong association among each other. Table 3 illustrates that the highest correlation is between 
currencies (83%), which is followed by between GOLD and USD (64%) and EURO (60%). The remaining associations are relatively 
small. The lowest correlation is observed between GOLD and UE (2%). On the other hand, while the dependent variable has the 
highest and lowest correlation with FRM (-30%) and CTL (-0.3%) yielding a negative dependence to these and all others except 
ECI.  Such a result is expected since the community prefers to invest in alternative products while they are becoming more 
valuable. This result might also express as the population prefers to invest in liquid assets rather than illiquid assets. Additionally, 
the correlation between HPI and unemployment reveals that when the number of unemployment increases, house prices are 
affected negatively, which might be considered as the effect of a decrease in housing demand. Also consistent with the literature, 
the correlation coefficients show that house prices are negatively correlated with mortgage rate (-30%). Interestingly, on the 
contrary to common belief, the house prices are negatively correlated with inflation (-30%) in Turkey. 

Table 3: Correlation Matrix 

  GOLD USD EURO INF FRM CTL ECI UE 

USD 0.66 1       

EURO 0.59 0.83 1      

INF 0.17 0.35 0.38 1     

FRM 0.11 0.17 0.24 0.30 1    

CTL 0.19 0.24 0.17 0.37 0.18 1   

ECI -0.30 -0.48 -0.49 -0.40 -0.39 -0.31 1  

UE 0.02 0.06 0.08 -0.03 0.05 0.03 -0.16 1 

HPI -0.25 -0.19 -0.32 -0.15 -0.29 -0.03 0.18 -0.28 

It is well known that the correlations may not be strong enough to show the direction of influence even they are very high. 
Therefore, we employ the Granger causality tests to capture the direction of the causality between variables. Table 4 illustrates 
the outcomes of Granger causalities which expose two important facts about the data set: i) Unemployment rate and cost of living 
do not have causal influence on house prices. Furthermore, even though these series have correlations, house prices are not 
causing these two variables either, ii) On the contrary to other common believes in the literature, the fixed rate mortgage rate 
does not cause HPI, however, house prices cause fixed rate mortgage. In this respect, we may conclude that the mortgage rate is 
used to adjust house prices and hence it is determined according to house prices in the market. Therefore, we include the high 
impact variables except FRM, and employment rate and cost of living variables. 

Table 4: Granger Causality (GC) Tests 

Hypothesis F-Stat p-value Causality Direction 

HPI do not GC GOLD 
GOLD do not GC HPI 

0.575 
4.459 

0.6810 
0.0018* 

GOLD→HPI 

HPI do not GC USD 
USD do not GC HPI 

0.643 
4.022 

0.5883 
0.0082* 

USD→HPI 

HPI do not GC EURO 
EURO do not GC HPI 

0.823 
3.206 

0.4824 
0.0241* 

EURO→HPI 

HPI do not GC INF 
INF do not GC HPI 

1.566 
2.407 

0.1068 
0.0069* 

INF → HPI 

HPI do not GC FRM 
FRM do not GC HPI 

3.742 
1.279 

5.4E-05* 
0.2355 

HPI→FRM 
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HPI do not GC CTL 
CTL do not GC HPI 

2.923 
0.048 

0.0886* 
0.8274 

COSTL ↕ HPI 

HPI do not GC ECI 
ECI do not GC HPI 

5.333 
1.782 

0.0015* 
0.1517 

HPI→ECI 

HPI do not GC UE 
UE do not GC HPI 

1.031 
0.645 

0.4219 
0.7882 

UET↕ HPI 

*significant at p-val.<0.01 

It can be seen that HPI over years (Figure 1) has an increasing trend and is not stationary.  To handle this, the log-returns of the 
HPI series is taken and its graph, autocorrelation function (ACF) plot (Figure 2) and summary statistics together with monthly 
interest rate (r) are presented (Table 5).  We see that the average monthly log-return of HPI (0.8%) is lower than average interest 
rate (9.6%) for the same period, in contrast to its volatility against interest rate (0.48%<3.83%). Even though the return in housing 
investment less than the bank account, consumers prefer purchasing houses. At this point, to make a neutral interpretation, one 
should also consider the rental benefit since the buyer will not be paying rent anymore when they own a house. Contrary to the 
interest rate, the HPI log-return is right-skewed. Anderson-Darling (AD) and Shapiro-Wilk normality tests confirm that HPI log-
return series do not follow normal distribution. 

Table 5: Descriptive of Log-Returns and Interest Rates 

 Mean Max Min  Std.De Skewness Kurtosis 

HPI 0.008 0.0172 -0.011 0.0048 -0.955 5.1704 
r 0.097 0.2285 0.0526 0.0383 2.0871 6.8356 

Both the ADF and Phillips-Perron (PP) tests indicate that that the log-return series of HPI is stationary (p<0.01). The figure of log-
return illustrates (Figure 3-top) that the return variability on housing market is increased recent years. Further, the housing market 
have negative returns in recent years. The single significant spike in the ACF strongly suggests that the AR part should be of order 
1. 

Figure 2: HPI Log-Returns, ACF and PACF Plot 

 

Decomposition to an additive time series model (Figure 3) illustrates top to bottom the actual plot, the overall upward and 
downward movement, seasonality or monthly pattern, and unexplainable part of the house price log-return series. We see that 
the log-return series has seasonality which is tested using the WO-test (Webel and Ollech, 2018). The WO-test supports the 
existence of seasonality.  

In our data analyses, we consider the 𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞) model without and with seasonality component to have a solid base to 
make comparison with other models (linear GLM, taken into account). Second, we introduce a seasonal ARIMA and an exponential 
smoothing model that considers the seasonality in the HPI log-return series. Then, we compare the models with respect to their 
efficiency indicators, MAPE and MAE. Our analyses are performed using R-software. 
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Figure 3: The Decomposed Monthly Return Series 

  

 

5. EMPIRICAL FINDINGS AND COMPARISONS 

5.1. GLM Models 

Due to its flexibility on normality and linearity assumptions, we construct two GLM models having linear (L-Model) and quadratic 
terms (Q-Model).  At this point it is worth to mention that in this setting we use the stepwise method to eliminate un-significant 
variables. The outputs presented in Table 6 show that for both models GOLD and USD have influence on house prices, whereas 
the other variables are not significant. The L-Model shows that under ceteris paribus assumptions, the increase in both GOLD and 
USD will cause an increase in house prices in Turkey’s housing market (F-stat.=33.1, p-value <0.0001, R2 = 0.36916). On the other 
hand, a power increase such as, a quadratic increase in GOLD has dominant power on increase in the prices (F-stat. = 26.7, p-val. 
<0.0001, R^2= 0.4171). It is also noticed that the explanatory power (R^2) of Q-model is significantly better than L-model. 

Table 6: The GLM model estimations 

L-Model Estimate SE t-stat p-value 

Intercept         0.0005        0.0003 1.6098 0.11024 

GOLD 0.0897           0.0204             4.3968 2.49E-05 

USD 0.0898 0.0299             2.9959           0.00336 

Q-Model Estimate   SE t-stat p-value 

Intercept 0.0001       0.0003         0.3302               0.74184 

GOLD 0.0802           0.0199           4.0223                 0.00011 

USD 0.0749           0.0294          2.5505                  0.01211 

GOLD^2 1.4604                0.4811               3.0356                  0.00299 
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5.2. VAR(p) Model 

To detect the order of VAR(p) model, we employ information criteria such as AIC, HQ, SC and FPE. All these four criteria suggest 
that the order of VAR to explain HPI in terms of its own lags and the other explanatory variables and their lags is 𝑝 = 1. GOLD, 
USD, EURO, INF are the variables, which interact with also their first order lags (l1) to HPI. The estimates of the coefficients are 
summarized in Table 7. 

Table 7:  Parameter Estimates of  VAR(1) for HPI 

HPI Estimate Std.Er t-stat p-val 

Constant 0.0009   0.004   2.39    0.02*   

HPI.l1         0.6394   0.080   7.96   1.8E-12* 

GOLD.l1        0.0127   0.011    1.103    0.27     

USD.l1        -0.031   0.020   -1.58    0.12     

EURO.l1        0.0228   0.020    1.124    0.26     

INF.l1   0.1128  0.041    2.739    0.01* 

*p.val<  0.01; F-stat= 13.96 p-val<0.0001; R^2= 0.3904 

Here, it should be noticed that VAR(1) considers the other equations estimated in coefficient matrix, A. The models for all 
explanatory variables based on this approach are presented in Table 11 given in Appendix 1. 

5.3. ARIMA Models 

First, we neglect the seasonality effect for a moment and attempt to construct an 𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑞) model for HPI. The best selected 
model is chosen among many other alternatives whose Bayesian or Schwarz Information Criteria (BIC and SIC, resp.) are the 
smallest (Table 12 given in Appendix 2). Based on these, we choose 𝐴𝑅𝑀𝐴(1,1) (BIC=-897.4912) which is also supported by Ljung-
Box test (p-val. = 0.1678). The estimated model is with a significant drift; however, MA coefficient is found to be irrelevant in the 
model (Table 8). 

Table 8: 𝑨𝑹𝑴𝑨(𝟏, 𝟏) Coefficient Estimates 

 AR(1)  MA(1) Intercept 

Coefficient 0.6560 -0.1172 0.0079 
Std. Error 0.1684 0.2494 0.0009 
z value 3.8947 -0.4700 8.4240 
p value <0.001 0.6383 <0.001 

R2 =0.69345 

For this reason, we improve the accuracy by incorporating the seasonality component of HPI. The plausible seasonal ARIMA 
models for HPI are estimated and listed in Table 13 (Appendix 3). The smallest AIC proposes that 𝐴𝑅𝐼𝑀𝐴(1,1,3)(0,0,2)12  is the 
best fitting one yielding significant coefficients (p-val.<0.01) (Table 9). 

Table 9: 𝑨𝑹𝑰𝑴𝑨(𝟏, 𝟏, 𝟑)(𝟎, 𝟎, 𝟐)𝟏𝟐 Parameter Estimates 

 AR(1) MA(1) MA(2) MA(3) SMA(1) SMA(2) 

Coef. -0.86 0.392 -0.842 -0.255 0.187 0.418 

Std. 0.091 0.141 0.052 0.119 0.113 0.151 

z-val. -9.39 2.776 -14.64 -2.139 1.653 2.768 

p-val 0* 0.005* 0* 0.032
4* 

0.0982* 0.0056* 

R2=0.76753; *Significant at 0.01% 

The lag structure of both 𝐴𝑅𝑀𝐴(1,1) and 𝐴𝑅𝐼𝑀𝐴(1,1,3)(0,0,2)12  implies that the cyclical effects of Turkey’s housing market 
produced from the past information are transferred endogenously to current house prices through its lagged variables. The error-
correction terms represent the random fluctuations that lead to cover the fundamental movements of the housing market. 
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In case of exponential smoothing method, Holt-Winter model estimates the smoothing parameters as 𝛼 = 0.034, 𝛽 = 0.295, and 
𝛾 = 0.385. Such parameter values are determined by minimizing one-step-ahead MSE. 

5.4. Efficiency of the Models 

Even though including more explanatory variables to explain the change in HPI, the GLM and VAR(1) models yield smaller 
coefficient of determination (R^2) compared to the ones obtained using time series models. Also, note that since GLM and VAR 
models contain more than one explanatory variable, their forecasting power will decrease dramatically due to forecasting errors 
related to the independent variables. Therefore, we present forecasts for the time series models. To measure the fitting and 
forecasting performance of the time series models, we separate HPI series into two components and apply in-sample modelling. 
We consider the first 102 points as training period (train) and consider the remaining 12 points as validation period (test). To 
detect the performance, mean square error (MSE), root means square error (RMSE) and mean absolute error (MAE) are calculated. 
Table 10 reveals that in the training part, all three error measures are the smallest in Holt-Winter model compared to 𝐴𝑅𝑀𝐴(1,1) 
and 𝐴𝑅𝐼𝑀𝐴(1,1,3)(0,0,2)12 . On the other hand, in the validation period, 𝐴𝑅𝐼𝑀𝐴(1,1,3)(0,0,2)12 is superior to both 𝐴𝑅𝑀𝐴(1,1) 
and Holt-winter models according to all three error measures (See Table 10). 

Table 10: Performance Measures of the Models 

 𝑨𝑹𝑴𝑨(𝟏, 𝟏) 𝑨𝑹𝑰𝑴𝑨(𝟏, 𝟏, 𝟑)(𝟎, 𝟎, 𝟐)𝟏𝟐 Holt-Winter 

 Train Test Train Test Train Test 

MSE 2E-05 4E-05 2E-05 2E-05 1E-05 4E-05 

RMSE 0.005 0.006 0.0054 2E-05 0.004 0.007 

MAE 0.004 0.006 0.0049 0.003 0.003 0.006 

5.5. Forecasting 

Forecasts for the following twelve months are plotted along with their 80% and 95% confidence intervals in Figures 4a-c for the 
time series models that fits best to the log-return series, respectively. In these figures, while the black lines represent the observed 
HPI log-returns, the red dashed lines represent estimated HPI log-returns from the models. More importantly, the blue lines 
represent forecasting results whereas the shadowed bands correspond to the confidence intervals.  

Figure 4a shows that even though 𝐴𝑅𝑀𝐴(1,1) is not failing the Ljung-Box test, it's forecasting power is not sufficient enough since 
it fails to catch the seasonality in the forecasting period. With this model, the forecasted price series appear to be a smooth line 
for the following twelve months. On the other hand, 𝐴𝑅𝐼𝑀𝐴(1,1,3)(0,0,2)12  (Figure 4b) and Holt-Winters exponential smoothing 
(Figure 4c) captures the seasonality. However, the wide and rapidly increasing prediction intervals in figures show that the housing 
index log-return can start increasing or decreasing at any time while the point forecasts trend downwards, the prediction intervals 
allow for the data to trend upwards during the forecast period. However, if we forecast further out into the future, the forecast 
results become less confident as it is reflected by the confidence intervals generated by the model that grow larger as we move 
further out through the future. 
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Figure 4: HPI 12-Month Log-Return Forecasts with Proposed Models  
 

(a) 𝑨𝑹𝑴𝑨(𝟏, 𝟏) 

 

 

(b) 𝑨𝑹𝑰𝑴𝑨(𝟏, 𝟏, 𝟑)(𝟎, 𝟎, 𝟐)𝟏𝟐 

 

(c) Holt-Winters 
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6. CONCLUSION 

Univariate time series have been widely applied in most areas of finance and economy to obtain better forecasts. Housing markets, 
however, have rarely been modelled due to the relatively illiquid nature of housing as compared to financial markets.  

The technical analysis introduced in this study aims to estimate future house prices and provides sufficient evidence in support of 
the adequacy of the estimated models for Turkey's housing market. We estimate and forecast Turkey's house price evaluation by 
using well-known models in the literature, some of which firstly applied to Turkish HPI data set. GLM, multivariate (VAR) and 
univariate time series models and exponential smoothing approaches are employed on Turkey's house price log-return series. 
Among six proposed modes, GLM and VAR contains more than one explanatory variables. However, their explanatory power is 
relatively small. The forecasting power of these models are relatively highly depending on the forecasts of the explanatory 
variables. In this respect, even though they can be used to determine the house price drivers and for house price prediction, they 
are not the best candidates for forecasting purposes.  

Considering all plausible candidates, the actual number of models considered within the study is diverse and many-fold. Among 
25 ARMA and 43 seasonal ARIMA models and Holt-Winter's exponential smoothing model, suggested models with performance 
accuracy can be used for forecasting Turkey's housing market price evolution. Under the same economic conditions, the 
forecasting results indicate that the return on Turkey's housing market will not increase in the following 12-months. As a matter 
of fact, the seasonal ARIMA and exponential smoothing models are forecasting some negative returns within the given forecasting 
period which should be considered as a warning for Turkey's housing market for the future. On the other hand, GLM and VAR 
models illustrate that along with the selected well-known explanatory variables, Turkish markets show dependence highly on 
gold, inflation and foreign exchange rate compared to other important economic indicators contrary to developed markets, such 
as USA which is highly dominated by mortgage rate (Yilmaz, 2019; Yilmaz and Selcuk-Kestel, 2019). 
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APPENDIX 1 

Table 11: VAR (1) estimates for GOLD, USD, EURO, INF 

GOLD Estimate Std. t-value p-value 

Intercept 0.013    0.004    3.284   0.0014* 

HPI.l1        -1.280    0.851   -1.504   0.1354    

GOLD.l1        0.036    0.122    0.295   0.7685    

USD.l1         0.169    0.211    0.805   0.4226    

EURO.l1        0.070    0.215    0.328   0.7435    

Inflation.l1 -1.020    0.436  -2.340   0.0211* 

*p-val.<0.001; F-stat.= 2.2048 p-val.<0.0001; R2=0.0934 

USD Estimate Std. t-value p-value 

Intercept 0.005725    0.003063    1.869   0.0643 

HPI.l1         0.260977    0.672620    0.388   0.6987    

GOLD.l1       -0.099561    0.096123   -1.036   0.3026    

USD.l1         0.534053    0.166342    3.211   0.0017* 

EURO.l1       -0.018848    0.169597   -0.111   0.9117    

Inflation.l1 -1.081128    0.344504   -3.138   0.0021* 

*p-val.<0.001; F-stat.= 5.388 p-val.<0.0001; R2=0.1982  

EURO Estimate Std. t-value p-value 

Intercept 0.0076    0.0029    2.571 0.0114 *   

HPI.l1        -0.225    0.6482 -0.347 0.7294     

GOLD.l1       -0.149    0.0926 -1.607 0.1110     

USD.l1         0.318    0.1603    1.985 0.0496 *   

EURO.l1        0.258    0.1634    1.575 0.1180     

Inflation.l1 -1.300    0.3320   -3.917 0.0001* 

*p-val.<0.001; F-stat.= 6.097 p-val.<0.0001; R2=0.2186 

INFLATION Estimate Std. t-value p-value 

Intercept 0.003   0.0008    4.060  9.25E-05* 

HPI.l1        -0.202   0.1731   -1.164     0.247     

GOLD.l1       -0.002   0.0247   -0.082     0.934 

USD.l1         0.066   0.0428    1.542     0.126 

EURO.l1        0.067   0.0437    1.527         0.130 

Inflation.l1   0.072   0.0887    0.808         0.421 

*p-val.<0.001; F-stat.= 8.363 p-val.<0.0001; R2=2.0277 

 

APPENDIX 2 

Table 12: SIC values of ARMA(p,q) models 

AR\MA 1 2 3 4 5 

1 -897.49 -896.73 -891.38 -888.03 -891.32 

2 -896.90 -894.38 -890.70 -883.48 -887.12 

3 -891.61 -891.59 -887.44 -883.27 -886.66 

4 -886.86 -883.33 -882.97 -879.70 -876.81 

5 -882.71 -888.06 -879.73 -878.5 -873.43 
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APPENDIX 3 

Table 13:  AIC values of 𝑨𝑹𝑰𝑴𝑨(𝒑, 𝒅, 𝒒)(𝑷, 𝑫, 𝑸) models (*without Drift) 

(p,d,q)\(P,D,Q) (1,0,1) (1,0,0) (0,0,1) (0,0,2) (1,0,2) 

0,1,1 Inf  -891.63 -897.49 Inf 

0,1,2    -908.09  

   -909.89*  

 
0,1,3 

   -906.30  

   -908.10  

 
(0,1,4) 

   -904.33  

   -906.12*  

(1,1,0)  -880.3  -881.61  

(1,1,1) Inf  -900.84 -905.16 -903.74 

 
(1,1,2) 

   -906.31  

   -908.10*  

 
(1,1,3) 

Inf  -898.57 -909.30 -903.11 

  -900.41* -911.09* Inf* 

 
(1,1,4) 

   -902.32  

   -909.09*  

(2,1,0)    -895.59  

(2,1,1) Inf  -900.07 -905.43 -904.36 

 
(2,1,2) 

Inf  -902.79 -908.78 -903.16 

   -910.58*  

 
(2,1,3) 

   -905.72  

   -907.49*  

 
(2,1,4) 

   Inf  

   Inf*  

(3,1,1)    -904.81  

(3,1,2)    -907.31  
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APPENDIX 4 

To observe the stationary and invertibility of the univariate time series models we show the complex roots of the polynomials lie 
outside the unit circle. Therefore, for the sake of simplicity, we plot the inverse roots of the selected models instead in Figure 5. 
As it is observed from these figures, the complex roots of the polynomials lie within the unit circle. The red dot in the left-hand 
side of both plots corresponds to the root of the auto regressive part polynomials and the red dot in the right-hand side of both 
plots corresponds to the root of moving average part. At this point we can conclude that both models are stationary and invertible 

since their complex roots lie in the unit circle. 

Figure 5: Inverse Characteristic Roots for ARIMA and SARIMA 

(a)ARIMA 

 

 

(b)SARIMA 

 

 


