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Abstract: A better performance and consequently the widespread use of polymeric insulators in different parts of the power grid
can increase their role in the grid reliability. The accumulation of contamination and housing-erosion are the two most effective
factors in undermining the performance of this type of insulators. Therefore, electric utilities need to identify contaminated
insulators for washing and cracks in polymeric housing to replace them with healthy specimens. This paper discusses the
impact of contamination layer and housing-erosion of polymeric insulators on the partial discharges (PD) at the insulator
surface, through RF-PRPD (phase resolved partial discharge) patterns. The existence of different sources of PDs in a real
environment (transmission line or station) makes it difficult to use the PRPD patterns to distinguish them from each other.
Therefore, using a conical monopole antenna, the simultaneous PD signals and the related RF-PRPD pattern of samples under
test are captured. The grayscale image was obtained using the time-frequency matrix of the PD signals transform, by wavelet.
Then, features are extracted and selected from grayscale image. By clustering of the PD signals, the resulted RF-PRPD sub-
patterns are well separated and provided the necessary means to distinguish among the status of different samples under test.

1௑Introduction
Power system transmission and distribution insulators are one of
the most effective equipment in the reliability of the power grid. In
recent years, the use of polymeric insulators has become
commonplace due to better performance in the humid and
contaminated conditions [1].

Hydrophobicity is one of the essential and practical properties
of polymeric insulators. This feature prevents the insulator surface
from being completely covered with water in humid and rainy
conditions. As a result, the flashover voltage of the insulator does
not decrease too much [2].

Ageing and pollution level are two factors that cause polymeric
insulators to malfunction. Dissolving contaminants accumulated at
the surface of the insulator in rainwater increases the surface
conductivity of the insulator, as a result, the leakage current
passing through the insulation surface increases. The thermal
energy produced as a result of leakage current causes the water
layer to evaporate at some points on the surface of the polymeric
insulator. The uneven distribution of the electric field at the
insulator surface and its increase in the dry bands cause partial
discharges (PDs) at the insulation surface. The growth of the PDs
at the surface of the insulator causes a flashover [3]. To avoid these
problems, electric utilities need to identify polluted insulators to
wash them.

As a result of ageing, the hydrophobicity of the polymeric
insulator is reduced. This causes the surface of the polymeric
insulator to be utterly wet in humid conditions, reducing the
flashover voltage of insulator and reliability of operation [4].
Environmental factors and electrical stresses cause the ageing of
the polymeric insulators [5]. In [6], the effect of the thickness and
conductivity of the pollution layer accumulated on the polymeric
insulation surface which is located inside an electric field
distribution has been demonstrated. The results show that by
increasing the conductivity and thickness of the pollution layer, the
electrical stresses increase along the insulator. As the insulator ages
and the contamination level on the surface increases, PD activities
increase [7]. The occurrence of PD at the insulation surface is one
of the causes of polymer chain degradation, resulting in the ageing
of the polymeric insulator [8, 9]. The influence of relative

humidity, ageing and contamination level on PRPD patterns of PD
activities on the polymeric insulator is discussed in [3]. The results
show the ascending trend of the peak value and number of PDs
with increasing relative humidity and contamination level. The
presence of pollution at the insulation surface changes the PRPD
patterns. These patterns can be used to identify the contamination
level of a polymeric insulator [10]. To avoid intensifying the
process of ageing of the polymeric insulator, contaminated
insulators should be identified and washed.

In some cases, with the ageing of the polymeric insulator,
erosions and cracks are observed in the polymeric housing of the
Fibre Glass Reinforced (FRP) rod [11, 12]. The presence of defects
like deep housing-erosion changes the distribution of the electric
field and increases its value along with defected insulator relative
to the healthy insulator. These erosions occur mostly at the end
fittings and cause the more ageing of the insulator by increasing
electrical stress [13]. Fahimi et al. [14] examine the process of
changing the third and fifth harmonics of leakage current during 15
days of testing the defected insulators. The results showed the
decreasing trend; for the defected insulator and the increasing
trend; for the healthy sample. Exposure of FRP core to the
environmental and electrical stresses causes the tracking and cracks
on it and reduces the mechanical strength of insulator. Given these
reasons, these defective insulators should be detected and replaced
with new and healthy ones [12–15].

The financial constraints of the electric utilities make them
more willing to make the maximum advantage out of the
equipment available in the power grid. Owing to the fact that
polymeric insulators are widely used in the power grid, it is
important to determine the status of insulators in deciding whether
to wash or replace them because of contamination or defects like
housing-erosion. PD signals are used to detect the type of defects
in other power equipment insulation and their location, such as
transformer [16, 17], therefore authors believe a high potential
exists that these signals can be used in the detection of types of
faults in polymeric insulators. Also, due to the different sources of
PD activities in the real environment, it is important to separate PD
signals from different sources to decide on the type of defects in
the equipment insulation system. Firuzi et al. [18] used the
DBSCAN clustering method to discriminate multi-source PD
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signals. Anjum et al. [19] has shown the use of PD signals to detect
the defective discs in ceramic insulators to replace them with new
ones. Electromagnetic waves caused by PD activities on insulators
in urban areas interfere with radio waves. Moore et al. [20] identify
the three-dimensional position of the PDs that occur on the
defective insulators of 132 kV overhead lines in order to prevent
their interference with radio and television receptions. The use of
PRPD patterns and PD signals at the same time is useful to detect
defects in the insulation of electrical equipment [21].

The rest of this paper is divided into the following sections: in
Section 2, test setup and test samples are described. In Section 3,
the histogram of oriented gradients (HOGs) feature extraction
method by the use of greyscale image obtained from wavelet
transform matrix of the PD signals and the reduction of feature
space dimensions by the principal component analysis (PCA)
method are described. Section 4 describes the Davies–Bouldin
criterion and k-medoids method to determine the number of PD
sources and the employed clustering method. In Section 5, PD
signals and radiofrequency (RF)-PRPD patterns due to the
pollution layer and housing-erosion of FRP rod are investigated.
Considering the concurrent occurrence of these defects and
formation of pollution layer on insulators surfaces, simultaneously
in the field, the RF-PRPD pattern and PD signals of the healthy
insulator, insulator with deep housing-erosion, an insulator with the
polluted surface and the corona discharge (as a common discharge
in a real environment) are recorded simultaneously. Using the
feature extraction and clustering methods described, the RF-PRPD
sub-patterns of healthy, polluted and defected insulators are
separated to determine the status of different samples.

2௑Test setup
The test circuit consists of 50 Hz, 5 kVA, 100 kV test transformer,
300 pF coupling capacitor and 10 MΩ current-limiting resistor. The

conical monopole antenna connected to a 1 GHz oscilloscope with
a sampling rate of 5 GSa/s is used to detect PD signals as shown in
Fig. 1. In this study, 20 kV polymeric insulator S7 series
manufactured by Niroo Kelid Pars Co. was used [22].

The contamination on the surface of the polymeric insulator
changes the patterns of PRPD [10]. ESDD and NSDD information
of 12 insulators from the Hormozgan province (in the south of
Iran) are used to simulate the pollution layer of the contaminated
specimen. Most insulators had a ‘very heavy’ pollution level with a
mean conductivity of 0.0307 S/m dissolved in 1 L distilled water
[23]. Insulators with this contamination level must be identified
and washed to prevent them from malfunctioning. A contaminated
sample is simulated using 36 g of kaolin and 28 g of salt dissolved
in 1 L of distilled water with the conductivity of 0.0307 S/m and
spraying it on the specimen as shown in Fig. 2a [24]. 

The FRP rod of the insulator is responsible for its mechanical
strength. One of the reasons for the mechanical failure of the
polymeric insulators is the brittle fracture of FRP rod, which is
often seen at the energised end fitting [15]. Since the polymeric
housing of the rod is responsible for protecting it against
environmental destructive factors, any deep erosion of the
polymeric housing of the FRP rod in this area, as a result of ageing,
increases the probability of mechanical failure of insulators [12].
Examination of specimens with different lengths and shapes of
housing-erosion showed that these erosion parameters had the
greatest effect on the amplitude of PDs, while slight differences in
the RF-PRPD patterns of them were found. As shown in Fig. 2b, a
deep housing-erosion was discovered on the sample under study
which demonstrated the effect of erosion on the measured PD
signals.

Corona is one of the common PD sources in power transmission
and distribution lines and substations. The pin-plate configuration
is used to simulate the corona discharges as shown in Fig. 2c.

The sampling rate of the oscilloscope is 2 GS/s. The PD signals
and their occurrence phases are recorded and stored over 3.5 µs
time intervals. Therefore, each of these PD signal samples consists
of 7000 points.

3௑Feature extraction
The feature extraction and clustering of PD signals are used to
distinguish PD sources. To reduce the effect of the distance
between the antenna and the insulators, each PD signal is
normalised to its maximum absolute value. The wavelet transform
and the HOGs feature extraction method are used to distinguish the
PD signals from the different samples.

3.1 Wavelet transform

The features extracted from the time–frequency transforms of PD
signals have an excellent ability to distinguish different sources of
these signals from one another [21]. Wavelet transforms are
popular because the transformed signal contains both time and
frequency information [25]. Wavelet transform of a signal can be
described as
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∫
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1
s

ψ
t − τ

s
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where X(t), ψ t , s and τ are normalised PD signal, mother wavelet,
scaling factor and shift factor, respectively.

In this paper, generalised Morse wavelets are used to transform
PD signals [26]. Magnitude scalogram of the wavelet transform of
a sample PD signal is shown in Fig. 3a. Given that the output of
the analytic wavelets is complex, the magnitude of each element in
the wavelet transform matrix is calculated. Depending on the size
of the PD signals, the greyscale image size will be 99 × 7000
pixels.

Fig. 1௒ Schematic diagram of setup used to measure PD signals
 

Fig. 2௒ Simulated test samples
(a) Contaminated sample, (b) Deep housing-erosion of the FRP rod, (c) Pin-plate
configuration (corona PD source)
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3.2 Greyscale image

To avoid any information loss, the extracted greyscale image from
the wavelet transform of the PD signals is used to extract features.
By converting the elements of wavelet transform matrix (I) to
values between zero and one, the corresponding greyscale image
(s) is obtained (see (2))

Si, j =
Ii, j − min I

max I − min I
(2)

where max(I) and min(I) are maximum and minimum values of the
matrix I elements. As shown in Fig. 3b, to reduce the input data, a
smaller part of the image containing useful data is used for feature
extraction (60 × 4200 pixels).

3.3 Histogram of oriented gradients

HOGs is a feature extraction method from an image that is mostly
used for identifying objects in the computer vision field. The
analysis of the greyscale image is performed to extract the features
based on the HOG method [27, 28]. First, the image is divided into
cells which consist of 5 × 120 pixels (so each image is made up of
12 × 35 cells). Magnitude and orientation of gradient values in
polar coordinates (M and θ) for each pixel [i, j] of cells are
computed and put in bins (see (3)). Nine orientation bins that are

uniformly distributed over 0°–180° are used. All magnitude of the
gradients (M) of pixels in a cell for each orientation is added
together to form the feature vector of a cell. So, the size of the
feature vector for each cell will be 1 × 9

M i, j = Mx
2

i, j + My
2

i, j

θ i, j = tan−1
My i, j /Mx i, j

Mx i, j = M i + 1, j − M i − 1, j

My i, j = M i, j + 1 − M i, j − 1

(3)

Every four adjacent cells form a block. So the size of the feature
vector (V) for each block is 1 × 36. This feature vector is
normalised for each block

Vnormalized n =
v n

1 + ∑k = 1
36

v k
2 (4)

This normalisation is done for all four adjacent blocks,
respectively. So at the end of this step, the feature vector will be a
1 × [(12 − 1) × (35 − 1) × 36] = 1 × 13,464 vector for each image as
shown in Fig. 4. Due to the high number of features, PCA
transform is used to reduce the size of the feature space.

3.4 PCA transform

Due to a high number of extracted features, the resultant feature
space is of a high-dimensional characteristic. Many of these
features do not help to clearly distinguish the status of tested
samples. However, one of the methods to reduce the
dimensionality of the feature space is to use the PCA method and
select a limited number of the best features that enable us to cluster
PD signals emitted from different samples [29].

At first, the covariance matrix (C) of the feature space (F) is
calculated

C = (Ci j Ci j = cov(Fi, F j)) (5)

Concerning (6), the eigenvalues (λ) and eigenvectors (x) are
obtained

det C − λI = 0

C − λI x = 0
(6)

The absolute magnitude of the eigenvalue indicates the greater
variance of the data along the corresponding eigenvector. Using the
PCA, the two features corresponding to eigenvectors that have the
biggest eigenvalue and are most capable of distinguishing the PD
signals that occurred on different samples are selected.

4௑PD source clustering
Clustering by using the extracted features is used to illustrate the
distinction among the PD signals originated from different sources.

4.1 K-medoids clustering method

K-medoids is one of the famous data clustering methods. This
method is resistant to outlier data. In contrast to the k-means
method that the centre of the cluster is gravity-based; in this
method, the centre of the cluster itself is a member of the cluster
[30].

After determining the initial medoids, each data point is placed
in the cluster of closest medoid to itself. The sum of the distances
of each data point from the medoid points corresponding to its
cluster is calculated as

S = ∑
j = 1

k

∑
di ∈ C j

di − mj (7)

Fig. 3௒ Greyscale image
(a) Magnitude scalogram of the wavelet transform of PD signal, (b) Greyscale image
and selected part to extract HOG features

 

Fig. 4௒ HOG feature extraction method
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In which k is the number of clusters, di is data points that belong to
cluster j (C j) and mj is medoid of cluster j.

If the S-value is reduced by replacing each of the medoids with
a non-medoids data point, the new point is considered as the new
medoid point. This algorithm repeats until the medoids remain
unchanged.

For using this method the number of clusters must be
determined. Davies–Bouldin criterion is used to determine the
number of clusters.

4.2 Davies–Bouldin criterion

This method first clusters the data using the k-means algorithm for
different values of k and then determines the number of clusters by
measuring the within-cluster and between-cluster intervals as [31]:

DB =
1
k

∑
i = 1

k

max
j ≠ i

Di, j

Di, j =
di + d j

di, j

di, j = d vi, vj , di =
1

∥ ci ∥ ∑
xϵci

d x, vi

(8)

where k, vi , d x, y  and ∥ ci ∥ are the number of clusters, centroid
of the cluster ci, Euclidean distance between x and y and norm of ci.
As the within-cluster distance decreases and the between-cluster
distance increases, the data are better clustered. So, the best
number of clusters has a minimum Davies–Bouldin index value.

5௑Results and discussion
In this section, first, the RF-PRPD patterns of healthy, polluted and
defected insulators are examined. Due to the proximity of
insulators installed in different parts of the power grid, the
measured RF-PRPD pattern is the result of PD activities on all

nearby insulators and other PD sources such as corona on other
equipment with a very short distance from insulators (for insulators
in the substations(. For this reason, it is necessary to separate the
RF-PRPD sub-patterns from the RF-PRPD. Therefore, in the
following case studies, the results of the proposed method for
detecting, clustering and separating PD signals co-occurring on the
studied samples are investigated. First, three samples consisting of
the healthy insulator, polluted insulator, and corona discharge
source were tested simultaneously. Then by adding an insulator
with housing-erosion to the above three sets of PD sources, the
proposed method is evaluated, when there are four PD sources.

5.1 RF-PRPD-based identification

Corona sample and healthy, polluted and defected insulators were
tested separately to see the effect of pollution layer and housing-
erosion on the PD signals occurring on the polymeric insulators
and RF-PRPD patterns. Despite the effect of changes in the relative
humidity on the number and magnitude of PD signals occurring on
the insulator, this factor does not have a considerable effect on the
PRPD patterns and, consequently, the accuracy of the proposed
algorithm [7]. The obtained RF-PRPD patterns for each sample and
an example of PD signals that occur on each specimen are shown
in Fig. 5 along with their greyscale image obtained from their
wavelet transform matrix. The density of PD activity increase as
the colour changes from blue to yellow in RF-PRPD patterns.

As it can be seen, The RF-PRPD pattern for each sample differs
from the other samples. The most similarity is found between the
patterns of the cracked sample and the polluted one. However, the
level of PD activities during the voltage transition from zero
(change of voltage polarity) is higher in the sample preserving a
crack, if compared with the polluted sample. In fact, PD activities
in this sample are more affected by the change of voltage polarity
than the voltage magnitude. This is more evident when the voltage
polarity changes from negative to positive values. Despite the
similarity in the PD signals occurring on the insulators, differences
are observed in the greyscale images obtained from their wavelet
transform matrix. HOG features extracted from these images can

Fig. 5௒ Results of testing the samples individually (healthy sample under 54 kV, the polluted sample under 52 kV, the cracked sample under 49 kV, corona
under 50 kV)
(a) PRPD patterns, (b) PD signal, (c) Corresponding greyscale image
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be used to cluster different sources of PD signals to elicit RF-
PRPD sub-patterns of each insulator from RF-PRPD pattern when
they co-occur on the insulators next to each other or there are
different sources of PD. Finally, RF-PRPD sub-patterns can be
used to identify different sources of PD.

5.2 Distinguishing and identification of polluted insulator

As explained in Section 1, the contamination accumulated at the
surface of the polymeric insulators is one of the most important
causes of the malfunction of these insulators. Identifying and
washing contaminated insulators of power transmission and
distribution lines or substations is essential to prevent power
outages caused by the malfunction of this component of the power

system. As the shape of the PRPD patterns of the corona and
surface PD activities on the polymeric insulators do not change
much with changing the level of the applied voltage, the obtained
patterns in one voltage level, above the inception voltage of PD,
can be used in higher voltage levels as well [10]. In this section,
three samples of the healthy insulator, polluted insulator and
corona were tested simultaneously at 54 kV, which is equal to the
maximum PD inception voltage of all samples. The PDs occurring
on samples and their occurrence phase were measured and
recorded. According to the proposed method, the HOG feature
extraction method was applied to the greyscale images obtained
from the wavelet transform matrix of the PD signals. After
reducing the size of the feature space and selecting two best
features that give the best results in distinguishing among the
different specimens using PCA, the number of clusters (PD
sources) is determined, using the Davies–Bouldin criterion. As
shown in Fig. 6a, this algorithm is well able to calculate the
optimal number of clusters in the data (three clusters). For better
observation, the clustering results using PC#1 and PC#2 are shown
in Fig. 6b. The density of data increase as the colour changes from
blue to cyan. Given the ability of the proposed method to
distinguish PD signals from different sources, the RF-PRPD sub-
patterns corresponding to each sample was elicited from the RF-
PRPD pattern obtained from the experiment.

The RF-PRPD pattern and the RF-PRPD sub-patterns are
shown in Fig. 6c. Despite the change in test voltage, the RF-PRPD
sub-patterns differ slightly from the results in Section 5.1.
Considering the similarity of the RF-PRPD sub-patterns obtained
in this section with the results shown in Fig. 5, the pattern of each
sample is determined. As such, the cluster #1, #2 and #3 are
corresponding to the healthy sample, the polluted sample and the
corona simulation, respectively.

5.3 Separating polluted and defected insulators

As stated in Section 1, due to the cracks occurring in the polymeric
housing of the polymeric insulator, its core is exposed to
environmental corrosive materials (such as acid rain). At the same
time, PDs occur near the core of the insulator, causing erosion and
tracking in FRP core. This factor increases the probability of
mechanical failure of insulator. It is challenging to distinguish
defected insulator among other insulators with PD activity due to
the pollution.

The specimen with housing-erosion was added to the test setup
to evaluate the feasibility of the proposed method for separating
and identifying contaminated and defected samples. As in the
previous section, the PD signals from the samples were recorded
simultaneously and then features extracted from them using the
wavelet transform, HOG feature extraction method and PCA,
respectively. The result of the Davies–Bouldin criterion is shown in
Fig. 7a. Given that four clusters has the minimum value of the
Davies–Bouldin criterion and it is equal to the number of samples
tested, it can be concluded that this algorithm is well able to detect
the number of PD sources.

Fig. 7b shows clusters of PD signals from different samples
using PC#1 and PC#2. Finally, after clustering, the RF-PRPD sub-
patterns are separated. As it can be seen, the first three RF-PRPD
sub-patterns are similar to the patterns obtained in the previous
section. The fourth sub-pattern is related to the sample added in
this section, similar to the pattern shown in Fig. 5 for defected
sample, when the sample is tested separately.

As shown in RF-PRPD sub-patterns, more PD activities
compared to the PD activities of other samples; when the voltage
polarity changes from negative to positive, is an indication of
proper pattern recognition for this sample. Finally, using the new
approach that introduced in this paper it is possible to separate and
identify the defected and polluted insulators.

6௑Summary and conclusion
Contamination and housing-erosion are the two major factors
contributing to the inadequate electrical and mechanical
performance of polymeric insulators. In this paper, the effect of
pollution layer accumulation on polymeric insulator and deep

Fig. 6௒ Distinguishing and identification of polluted insulator
(a) Davies–Bouldin values (optimal number of clusters), (b) k-medoids clustering
result, (c) RF-PRPD and RF-PRPD sub-patterns
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housing-erosion on PD signals and their resulting RF-PRPD
patterns is investigated. Section 5.1 presents PD signals and RF-
PRPD patterns obtained from a separate experiment of healthy
insulator, polluted insulator, defected insulator and corona sample.
Differences in the RF-PRPD patterns can be used to identify the
test samples from each other and to plan for washing contaminated
specimens and replacing defected insulators.

Given the presence of insulators adjacent to each other in the
field conditions, it is important to separate the RF-PRPD sub-
patterns from the RF-PRPD pattern to determine the conditions of
insulators. HOG features extracted from the greyscale image
obtained from the wavelet transform matrix of PD signals were
used to cluster different sources of PDs. Using PCA, two features
that were most capable of distinguishing among the clusters were

selected. Davies–Bouldin criterion and k-medoids method are used
to find the number of PD sources and clustering them. Using the
clustering results, the PRPD sub-patterns are obtained.

According to the results obtained from the testing of different
specimens simultaneously in Sections 5.2 and 5.3 and by using the
similarity between the RF-PRPD sub-patterns with the RF-PRPD
patterns obtained from testing of each specimen separately, it is
verified that the proposed method is capable of distinguishing the
healthy insulators, from the insulators that their performance is
affected by a high level of pollution on their surface, and those are
engaged with a kind of defect (housing erosion). Finally, after
determining the status of insulators, it can be decided to wash or
replace them in case of excessive contamination, or deep housing-
erosion, respectively.

Authors expect that by application of this method, when
performing the online PD monitoring and measurement in the field,
the PDs that are raised due to insulator surface contamination or a
real defect in different parts of a polymeric insulator can be
differentiated. Then, based on these results the operating utility can
plan its future maintenance and repair work on the lines insulators.
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