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UNBOUNDED p-CONVERGENCE IN LATTICE-NORMED

VECTOR LATTICES

ABDULLAH AYDIN1, EDUARD EMELYANOV2, NAZIFE ERKURŞUN ÖZCAN3, and
MOHAMMAD MARABEH4∗

Abstract. A net xα in a lattice-normed vector lattice (X, p,E) is unbounded

p-convergent to x ∈ X if p(|xα − x| ∧ u)
o
−→ 0 for every u ∈ X+. This con-

vergence has been investigated recently for (X, p,E) = (X, |·|, X) under the
name of uo-convergence, for (X, p,E) = (X, ‖·‖,R) under the name of un-
convergence, and also for (X, p,RX

∗

), where p(x)[f ] := |f |(|x|), under the
name uaw-convergence. In this paper we study general properties of the un-
bounded p-convergence.

1. Introduction and preliminaries

Lattice-valued norms on vector lattices provide natural and efficient tools in
the theory of vector lattices. It is enough to mention the theory of lattice-normed
vector lattices (see, for example, [19, 20, 10]). The main aim of the present paper
is to illustrate usefulness of lattice-valued norms for investigation of different
types of unbounded convergences in vector lattices, which attracted attention of
several authors in series of recent papers [15, 12, 14, 13, 9, 7, 16, 3, 30, 4, 24, 5,
11, 25, 17, 8].

The uo-convergence was introduced in [23] under the name individual con-
vergence, and the un-convergence was introduced in [26] under the name d-
convergence. We refer the reader for an exposition on uo-convergence to [14, 15]
and on un-convergence to [7] (see also recent paper [16]). For applications of
uo-convergence, we refer to [9, 14, 15, 13, 22]. Throughout the paper, all vector
lattices are assumed to be real and Archimedean.

Recall that a net (xα)α∈A in a vector lattice X is order convergent (or o-
convergent, for short) to x ∈ X , if there exists another net (yβ)β∈B satisfying
yβ ↓ 0, and for any β ∈ B, there exists αβ ∈ A such that |xα − x| ≤ yβ for all

α ≥ αβ. In this case we write xα
o
−→ x. In a vector latticeX , a net xα is unbounded

order convergent (or uo-convergent, for short) to x ∈ X if |xα − x| ∧ u
o
−→ 0

for every u ∈ X+. In this case we write xα
uo
−→ x. The uo-convergence is an

abstraction of a.e.-convergence in Lp-spaces for 1 ≤ p < ∞, [14, 15]. In a normed
lattice (X, ‖·‖), a net xα is unbounded norm convergent to x ∈ X , written as

xα
un
−→ x, if ‖|xα − x| ∧ u‖ → 0 for every u ∈ X+. Clearly, if the norm is order
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continuous, then uo-convergence implies un-convergence. For a finite measure µ,
un-convergence of sequences in Lp(µ), 1 ≤ p < ∞, is equivalent to convergence
in measure, see [7, 26]. Recently, Zabeti [30] introduced the following notion. A
net xα in a Banach lattice X is said to be unbounded absolute weak convergent
(or uaw-convergent, for short) to x ∈ X if, for each u ∈ X+, |xα − x| ∧ u → 0
weakly.

Let X be a vector space, E be a vector lattice, and p : X → E+ be a vector
norm (i.e. p(x) = 0 ⇔ x = 0, p(λx) = |λ|p(x) for all λ ∈ R, x ∈ X , and
p(x + y) ≤ p(x) + p(y) for all x, y ∈ X), then the triple (X, p, E) is called a
lattice-normed space, abbreviated as LNS. We say that elements x and y of an
LNS X are p-disjoint if their lattice norms are disjoint, and abbreviate this by
x⊥py. The lattice norm p in an LNS (X, p, E) is said to be decomposable if, for all
x ∈ X and e1, e2 ∈ E+, from p(x) = e1 + e2 it follows that there exist x1, x2 ∈ X

such that x = x1+x2 and p(xk) = ek for k = 1, 2. We abbreviate the convergence

p(xα − x)
o
−→ 0 as xα

p
−→ x and say in this case that xα p-converges to x. We refer

the reader for more information on LNSs to [19, 20].
If, in addition, X is a vector lattice and the vector norm p is monotone (i.e.

|x| ≤ |y| ⇒ p(x) ≤ p(y)), then the triple (X, p, E) is called lattice-normed vector
lattice, abbreviated as LNVL. In an LNVL (X, p, E), p-disjointness implies dis-
jointness. Indeed, let x⊥py and 0 ≤ u ≤ |x| ∧ |y|. Then p(u) ≤ p(|x| ∧ |y|) ≤
p(x) ∧ p(y) = 0 and hence u = 0. Thus x⊥y. We shall make difference between
two notions of bands in an LNVL X = (X, p, E). More precisely, a subset B of X
is called a band if it is a band in the usual sense of the vector lattice X . Following
to [20, 2.1.2.], we say that a subset B of X is a p-band if

B = M⊥p = {x ∈ X : (∀m ∈ M) x⊥pm}

for some nonempty M ⊆ X . In general, there are many bands which are not
p-bands. To see this, consider the normed lattice (R2, ‖ · ‖,R). It has four bands,
but only two of them are p-bands. It is easy to see that any p-band is an order
ideal. The following example shows that a p-band may not be a band in general.

Example 1.1. Consider the LNVL (c, p, c) with

p(x) := |x|+ ( lim
n→∞

|xn|) · 1 (x = (xn)n ∈ c),

where 1 denotes the sequence identically equal to 1. Take M = {e1}. Then the
p-band M⊥p = {x ∈ c0 : x1 = 0} is not a band.

In Proposition 2.18, we show that, under some mild conditions, every p-band
is a band. Unless otherwise stated, we do not assume lattice norms to be de-
composable. While dealing with LNVLs, we shall keep in mind also the following
examples.

Example 1.2. Let X be a normed lattice with a norm ‖·‖. Then X is the LNVL
(X, ‖·‖,R).

Example 1.3. Let X be a vector lattice. Then X is the LNVL (X, |·|, X).

Example 1.4. Let X = (X, ‖·‖) be a normed lattice. Consider the closed unit
ball BX∗ of the dual Banach lattice X∗. Let E = ℓ∞(BX∗) be the vector lattice
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of all bounded real-valued functions on BX∗ . Define an E-valued norm p on X

by

p(x)[f ] := |f |(|x|) (f ∈ BX∗)

for any x ∈ X . The Hahn-Banach theorem ensures that p(x) = 0 iff x = 0. All
other properties of lattice norm are obvious for p. Thus (X, p, E) is an LNVL. No-
tice also that the lattice norm p takes values in the space C(BX∗) of all continuous
functions on the w∗-compact ball BX∗ of X∗. Hence, instead of (X, p, ℓ∞(BX∗)),
one may also consider the LNVL (X, p, C(BX∗)).

Example 1.5. Let X be a vector lattice, X# be the algebraic dual of X , and Y

be a sublattice of X# such that 〈X, Y 〉 is a dual system. Define p : X → R
Y by

p(x)[f ] := |f |(|x|). Then (X, p,RY ) is an LNVL.

The LNVLs in Examples 1.1, 1.2, and 1.3 have decomposable norms. It can be
shown easily that in Examples 1.4 and 1.5 the lattice norms are decomposable iff
dim(X) = 1.

We refer the reader for further examples of LNSs to [20]. It should be noticed
that the theory of lattice-normed spaces is well developed in the case of decom-
posable lattice norms (cf. [19, 20]). In general, we do not assume lattice norms
to be decomposable.

The structure of the paper is as follows. In Section 2, we study several notions
related to LNVLs in parallel to the theory of Banach lattices. In particular, an

LNVL (X, p, E) is said to be: op-continuous if X ∋ xα
o
−→ 0 implies xα

p
−→ 0; a

p-KB-space if, for any 0 ≤ xα ↑ with p(xα) ≤ e ∈ E, there exists x ∈ X satisfying

xα
p
−→ x. We give a characterization of op-continuity in Theorem 2.9, and study

some properties of p-KB-spaces, e.g. in Proposition 2.14 and in Proposition 2.15.
A vector e ∈ X is called a p-unit if, for any x ∈ X+, p(x−ne∧x)

o
−→ 0. Any p-unit

is a weak unit, whereas strong units are p-units. For a normed lattice (X, ‖·‖), a
vector in X is a p-unit in (X, ‖·‖,R) iff it is a quasi-interior point of the normed
lattice (X, ‖·‖).

In Section 3, some basic theory of unbounded p-convergence in LNVLs is de-
veloped in parallel to uo- and un-convergences. For example, it is enough to
check out the uo-convergence at a weak unit, while the un-convergence needs to
be checked only at a quasi-interior point. Similarly, in LNVLs, up-convergence
needs to be examined at a p-unit by Theorem 3.9.

In Section 4, we introduce and study up-regular sublattices. Majorizing sub-
lattices and projection bands are examples of up-regular sublattices by Theorem
4.3. Also some further investigation of up-regular sublattices is carried out in
certain LNVLs in this section.

In the last section, we study properties of mixed-normed LNVLs in Proposi-
tion 5.1, in Theorem 5.2, and in Theorem 5.5. We also prove that in a certain
LNVL, the up-null nets are “p-almost disjoint” (see Theorem 5.6). Those results
generalize correspondent results from [14, 7].

We refer the reader for unexplained notions and terminology to [2, 20, 21].
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2. p-Notions in lattice-normed vector lattices

Most of notions and results of this preliminary section are direct analogies of
well-known facts of the theory of normed lattices. We include them for conve-
nience of the reader. They are also of certain proper interest and some of them
will be used in further sections. In the present section, we define and study cer-
tain necessary notions such as: op-continuity of LNVLs, p-KB-spaces, p-Fatou
spaces, p-units, etc. In particular, we characterize the op-continuity, prove some
properties of p-KB-spaces, discuss p-dense subsets, and study p-units in LNVLs.

2.1. p-Continuity of lattice operations in LNVLs. The lattice operations
in an LNVL X are p-continuous in the following sense.

Lemma 2.1. Let (xα)α∈A and (yβ)β∈B be two nets in an LNVL (X, p, E). If

xα
p
−→ x and yβ

p
−→ y, then (xα ∨ yβ)(α,β)∈A×B

p
−→ x ∨ y. In particular, xα

p
−→ x

implies that x−
α

p
−→ x−.

However this result seems to be well-known, we did not find appropriate ref-
erences for it and therefore, its elementary proof is included for the reader’s
convenience.

Proof. There exist two nets (zγ)γ∈Γ and (wλ)λ∈Λ in E satisfying zγ ↓ 0 and wλ ↓ 0,
and for all (γ, λ) ∈ Γ× Λ there are αγ ∈ A and βλ ∈ B such that p(xα − x) ≤ zγ
and p(yβ − y) ≤ wλ for all (α, β) ≥ (αγ, βλ). It follows from the inequality
|a ∨ b− a ∨ c| ≤ |b− c| that

p(xα ∨ yβ − x ∨ y) = p(|xα ∨ yβ − xα ∨ y + xα ∨ y − x ∨ y|)

≤ p(|xα ∨ yβ − xα ∨ y|) + p(|xα ∨ y − x ∨ y|)

≤ p(|yβ − y|) + p(|xα − x|) ≤ wλ + zγ

for all α ≥ αγ and β ≥ βλ. Since (wλ + zγ) ↓ 0, then p(xα ∨ yβ − x ∨ y)
o
−→ 0. �

Definition 2.2. Let (X, p, E) be an LNVL and Y ⊆ X . Then Y is called p-closed
in X if, for any net yα in Y that is p-convergent to x ∈ X , it holds that x ∈ Y .

Remark 2.3.

(1) Every band is p-closed. Indeed, given a band B in an LNVL (X, p, E). If

B ∋ xα
p
−→ x, then, by Lemma 2.1, |xα| ∧ |y|

p
−→ |x| ∧ |y| for any y ∈ B⊥.

Since |xα| ∧ |y| = 0 for all α, then |x| ∧ |y| = 0, and so x ∈ B⊥⊥ = B.
(2) Every p-band is p-closed. Indeed, let B = M⊥p for some nonempty M ⊆

X and B ∋ xα
p
−→ x0 ∈ X . Take any m ∈ M . It follows from

p(x0) ∧ p(m) ≤ (p(x0 − xα) + p(xα)) ∧ p(m) ≤

p(x0 − xα) ∧ p(m) + p(xα) ∧ p(m) = p(x0 − xα) ∧ p(m)
o
−→ 0,

that p(x0) ∧ p(m) = 0. Since m ∈ M is arbitrary, then x0 ∈ B.

The following well-known property is a direct consequence of Lemma 2.1.

Proposition 2.4. The positive cone X+ in any LNVL X is p-closed.

Proposition 2.4 implies the following well-known fact.
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Proposition 2.5. Any monotone p-convergent net in an LNVL o-converges to
its p-limit.

Proof. It is enough to show that if (X, p, E) ∋ xα ↑ and xα
p
−→ x, then xα ↑ x.

Fix arbitrary α. Then xβ −xα ∈ X+ for β ≥ α. By Proposition 2.4, xβ −xα
p
−→

x − xα ∈ X+. Therefore, x ≥ xα for any α. Since α is arbitrary, then x is an
upper bound of xα.

If y ≥ xα for all α, then, again by Proposition 2.4, y − xα
p
−→ y − x ∈ X+, or

y ≥ x. Thus xα ↑ x. �

2.2. Several basic p-notions in LNVLs. We continue with several basic no-
tions in LNVLs, which are motivated by their analogies from vector lattice theory.

Definition 2.6. Let X = (X, p, E) be an LNVL. Then
(i) a net (xα)α∈A in X is said to be p-Cauchy if the net (xα − xα′)(α,α′)∈A×A

p-converges to 0;
(ii) X is called p-complete if every p-Cauchy net in X is p-convergent;
(iii) a subset Y ⊆ X is called p-bounded if there exists e ∈ E such that p(y) ≤ e

for all y ∈ Y ;
(iv) X is called op-continuous if xα

o
−→ 0 implies that p(xα)

o
−→ 0;

(v) X is called a p-KB-space if every p-bounded increasing net in X+ is p-
convergent;

(vi) p is said to be additive on X+ if p(x+ y) = p(x) + p(y) for all x, y ∈ X+.

Remark 2.7.

(1) p-convergence, a p-Cauchy net, p-completeness, and p-boundedness in
LNVLs are also known as bo-convergence, a bo-fundamental net, bo-completeness,
and norm-boundedness respectively (see, e.g. [20, p.48]).

(2) Clearly, any LNVL (X, |·|, X) is op-continuous.
(3) In Definition 2.6(v) we do not require p-completeness of X .
(4) It is easy to see that a p-KB-space (X, ‖·‖ ,R) is always p-complete (see,

e.g. [29, Ex.95.4]). Therefore, the notion of p-KB-space coincides with
the notion of KB-space.

(5) Clearly, an LNVL X = (X, |·|, X) is a p-KB-space iff X is order complete.
(6) Notice that, for a p-KB-space X = (X, p, E) the vector lattice p(X)⊥⊥

need not to be order complete. To see this, take a KB-space (X, ‖·‖) and
E = C[0, 1]. Then the LNVL X = (X, p, E) with p(x) := ‖x‖ · 1[0,1] is
clearly a p-KB-space, yet p(X)⊥⊥ = E is not order complete.

Lemma 2.8. For an LNVL (X, p, E), the following statements are equivalent.
(i) X is op-continuous;
(ii) xα ↓ 0 in X implies p(xα) ↓ 0.

Proof. The implication (i) ⇒ (ii) is trivial.

(ii) ⇒ (i): Let xα
o
−→ 0, then there exists a net zβ ↓ 0 in X such that, for any

β there exists αβ so that |xα| ≤ zβ for all α ≥ αβ. Hence p(xα) ≤ p(zβ) for all

α ≥ αβ. By (ii), p(zβ) ↓ 0. Therefore, p(xα)
o
−→ 0 or xα

p
−→ 0. �



6 A. AYDIN, E. EMELYANOV, N. ERKURŞUN ÖZCAN, and M. MARABEH

From this proposition, it follows that the op-continuity in LNVLs is equivalent
to the order continuity in the sense of [20, 2.1.4, p.48]. In the case of a p-complete
LNVL, we have further conditions for op-continuity.

Theorem 2.9. For a p-complete LNVL (X, p, E), the following statements are
equivalent:

(i) X is op-continuous;
(ii) if 0 ≤ xα ↑≤ x holds in X, then xα is a p-Cauchy net;
(iii) xα ↓ 0 in X implies p(xα) ↓ 0.

Proof. (i) ⇒ (ii): Let 0 ≤ xα ↑≤ x in X. By [2, Lm.12.8], there exists a net yβ
in X such that (yβ − xα)α,β ↓ 0. So p(yβ − xα)

o
−→ 0, and hence the net xα is

p-Cauchy.
(ii) ⇒ (iii): Assume that xα ↓ 0 in X. Fix arbitrary α0, then, for α ≥ α0,

xα ≤ xα0
, and so 0 ≤ (xα0

− xα)α≥α0
↑≤ xα0

. By (ii), the net (xα0
− xα)α≥α0

is

p-Cauchy, i.e. p(xα
′ − xα)

o
−→ 0 as α0 ≤ α, α

′
→ ∞. Since X is p-complete, then

there exists x ∈ X satisfying p(xα−x)
o
−→ 0 as α0 ≤ α → ∞. By Proposition 2.5,

xα ↓ x and hence x = 0. As a result, xα
p
−→ 0 and the monotonicity of p implies

p(xα) ↓ 0.
(iii) ⇒ (i): It is just the implication (ii) ⇒ (i) of Lemma 2.8. �

Corollary 2.10. Let (X, p, E) be an op-continuous and p-complete LNVL, then
X is order complete.

Proof. Assume 0 ≤ xα ↑≤ u, then by Theorem 2.9 (ii), xα is a p-Cauchy net

and since X is p-complete, then there is x such that xα
p
−→ x. It follows from

Proposition 2.5 that xα ↑ x, and so X is order complete. �

Corollary 2.11. Any p-KB-space is op-continuous.

Proof. Let xα ↓ 0. Take any α0 and let yα := xα0
− xα for α ≥ α0. Clearly,

yα ↑≤ xα0
. Hence p(yα) ↑≤ p(xα0

) for α ≥ α0. Since X is a p-KB-space, there

exists y ∈ X such that p(yα − y)
o
−→ 0. Since yα ↑ and yα

p
−→ y, Proposition 2.5

ensures that
y = sup

α≥α0

yα = sup
α≥α0

(xα0
− xα) = xα0

,

and hence yα = xα0
− xα

p
−→ xα0

or xα
p
−→ 0. Again by Proposition 2.5 we get

p(xα) ↓ 0. So by Lemma 2.8, X is op-continuous. �

Proposition 2.12. Any p-KB-space is order complete.

Proof. Let X be a p-KB-space and 0 ≤ xα ↑≤ z ∈ X . Then p(xα) ≤ p(z). Hence

the net xα is p-bounded and therefore, xα
p
−→ x for some x ∈ X . By Proposition

2.5, xα ↑ x. �

The following question arises naturally.

Problem 2.13. Let (X, p, E) be a p-KB-space. Is (X, p, E) p-complete?

We do not know the answer to Problem 2.13 even under the assumption that
E is order complete.
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Proposition 2.14. Let (X, p, E) be a p-KB-space, and Y ⊆ X be an order closed
sublattice. Then (Y, p, E) is also a p-KB-space.

Proof. Let Y+ ∋ yα ↑ and p(yα) ≤ e ∈ E+ for all α. Since X is a p-KB-space,

there exists x ∈ X+ such that yα
p
−→ x. By Proposition 2.5, we have yα ↑ x, and

so x ∈ Y , because Y is order closed. Thus (Y, p, E) is a p-KB-space. �

It is clear from the proof of Proposition 2.14, that every p-closed sublattice Y

of a p-KB-space X is also a p-KB-space.

Proposition 2.15. Let (X, p, E) be a p-complete LNVL, E be atomic, and p be
additive on X+. Then X is a p-KB-space.

Proof. Let a net xα in X+ be increasing and p-bounded by e ∈ E+. If the net xα

is not p-Cauchy, then there exists an atom a ∈ E such that fa(p(xα − xα′)) 6→ 0,
where fa is the biorthogonal functional of a. Then there exist ǫ > 0 and a strictly
increasing sequence (αn) of indices such that

fa(p(xαn
− xαn−1

)) ≥ ǫ > 0 (∀n ∈ N).

Thus

nǫ ≤
n+1
∑

k=2

fa(p(xαk
− xαk−1

))

= fa

(

n+1
∑

k=2

p(xαk
− xαk−1

)

= fa

(

p
(

n+1
∑

k=2

xαk
− xαk−1

))

= fa(p(xαn+1
− xα1

)) ≤ 2fa(e).

Thus nǫ ≤ 2fa(e) for all n ∈ N, and hence ǫ ≤ 0; a contradiction. �

Remark that the LNVL (c0, |·|, ℓ∞) is not p-complete, yet the norming lattice
ℓ∞ is atomic and its lattice norm is additive on (c0)+. Consider the sequence
xn =

∑n

i=1 ei, where en’s are the standard unit vectors of c0. Then 0 ≤ xn ↑ and
xn’s are p-bounded by 1 = (1, 1, · · · ) ∈ ℓ∞. Clearly, it is not p-convergent, so the
LNVL (c0, |·|, ℓ∞) is not p-KB-space. Notice also that (c0, |·|, ℓ∞) is op-continuous.

2.3. More details on Example 1.4. Let us discuss Example 1.4 in more details.

(i) If X is an order continuous Banach lattice, then (X, p, ℓ∞(BX∗)) is op-
continuous.

Proof. Assume xα ↓ 0, we show p(xα) ↓ 0. Our claim is the following:
p(xα) ↓ 0 iff p(xα)[f ] ↓ 0 for all f ∈ BX∗ .
For the necessity, let p(xα) ↓ 0 and f ∈ BX∗ . Trivially, |f |(xα) ↓. If

there exists zf ∈ R such that 0 ≤ zf ≤ |f |(xα) for all α, then

0 ≤ zf ≤ |f |(xα) ≤ ‖f‖ ‖xα‖ ↓ 0.

Hence zf = 0 and p(xα)[f ] = |f |(xα) ↓ 0.
For the sufficiency, let p(xα)[f ] ↓ 0 for every f ∈ BX∗ . Since p is

monotone and xα ↓, then p(xα) ↓. If 0 ≤ ϕ ≤ p(xα) for all α, then

0 ≤ ϕ(f) ≤ p(xα)[f ] = |f |(xα) (∀f ∈ BX∗).
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So by the assumption, we get ϕ(f) = 0 for all f ∈ BX∗ , and hence ϕ = 0.
Therefore, p(xα) ↓ 0. � �

(ii) If (X, ‖·‖) is a KB-space, then (X, p, E) is a p-KB-space.

Proof. Suppose that 0 ≤ xα ↑ and p(xα) ≤ ϕ ∈ ℓ∞(BX∗). As

‖xα‖ = sup
f∈BX∗

|f(xα)| ≤ sup
f∈BX∗

|f |(xα)

= sup
f∈BX∗

p(xα)[f ] ≤ ϕ[f ] ≤ ‖ϕ‖∞ ≤ ∞ (∀α),

and since X is a KB-space, we get ‖xα − x‖ → 0 for some x ∈ X+. So,
for any f ∈ BX∗ , we have |f |(|xα − x|) → 0 or p(xα − x)[f ] → 0. Thus

p(xα − x)
o
−→ 0 in ℓ∞(BX∗) and hence xα

p
−→ x. �

Recall that a vector lattice X is called perfect if the natural embedding from X

into (X∼
n )

∼
n is one-to-one and onto, where X∼

n denotes the order continuous dual
of X [2, pp.58-59]. If X is a perfect vector lattice, then X∼

n separates the points
of X [2, Thm.5.6(1)].

Proposition 2.16. Let X be a perfect vector lattice, Y = X∼
n and p : X → R

Y

be defined as p(x)[f ] := |f |(|x|), where f ∈ Y . Then the LNVL (X, p,RY ) is a
p-KB-space.

Proof. Assume 0 ≤ xα ↑ in X and p(xα) ≤ ϕ ∈ R
Y . Then, for all f ∈ Y , we

have p(xα)[f ] ≤ ϕ(f) or |f |(xα) ≤ ϕ(f). So for all f ∈ Y , sup
α

|f |(xα) < ∞, and

hence, by [2, Thm.5.6(2)], there is x ∈ X with xα ↑ x. An argument similar to

(i) above shows that X is op-continuous. Therefore, xα
p
−→ x. �

2.4. p-Fatou space. In this subsection, we introduce and discuss p-Fatou spaces.

Definition 2.17. An LNVL (X, p, E) is called p-Fatou space if 0 ≤ xα ↑ x in X

implies p(xα) ↑ p(x).

Note that (X, p, E) is a p-Fatou space iff p is order semicontinuous [20, 2.1.4,
p.48]. Clearly any op-continuous LNVL (X, p, E) is a p-Fatou space. It is easy to
see that the LNVL (c, p, c) in Example 1.1 is not a p-Fatou space. Moreover the
p-Fatou property ensures that p-bands are bands.

Proposition 2.18. Let B be a p-band in a p-Fatou space (X, p, E). Then B is
a band in X.

Proof. Let B = M⊥p = {x ∈ X : (∀m ∈ M) p(x)⊥p(m)} for some nonempty
M ⊆ X . Since B is an ideal in X to show that B is a band it is enough to prove
that if B+ ∋ bα ↑ x ∈ X , then x ∈ B. That is easy, since p(bα) ↑ p(x) as X is a
p-Fatou space. By o-continuity of lattice operations in E, we obtain that

0 = p(bα) ∧ p(m)
o
−→ p(x) ∧ p(m) (∀m ∈ M).

Therefore, p(x) ∧ p(m) = 0 for all m ∈ M , and hence x ∈ B. �

In connection with Proposition 2.18 and Example 1.1, the following open prob-
lem arises.
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Problem 2.19. Let (X, p, E) be a decomposable LNVL p-Fatou space in which
every p-band is a band. Is X a p-Fatou space?

2.5. p-Density and p-units. In the present paper, we use the following defini-
tion of a p-dense subset in an LNS, which is motivated by the notion of a dense
subset of a normed space.

Definition 2.20. Given an LNS (X, p, E) and A ⊆ X . A subset B ⊆ A is said
to be p-dense in A if, for any a ∈ A and for any 0 6= u ∈ p(X) there is b ∈ B

such that p(a− b) ≤ u.

Remark 2.21.

(1) Consider the LNVL (X, p, E) with p = |·|, E = X , and let Y be a sub-
lattice X . If Y is p-dense in X , then Y is order dense. Indeed, let
0 6= x ∈ X+, then there is y ∈ Y such that |y − 1

2
x| ≤ 1

3
x which implies

0 < 1
6
x ≤ y ≤ 5

6
x, and so 0 < y ≤ x.

(2) c is order dense, yet is not p-dense in both of the following LNVLs:
(ℓ∞, ‖·‖∞,R) and (ℓ∞, |·|, ℓ∞).

(3) If X = (X, ‖·‖) is a normed lattice, p = ‖·‖ and E = R, then clearly a
subset Y of X is p-dense iff Y is norm dense.

The following notion is motivated by the notion of a weak order unit in a vector
lattice X = (X, |·|, X) and by the notion of a quasi-interior point in a normed
lattice X = (X, ‖·‖,R)

Definition 2.22. Let (X, p, E) be an LNVL. A vector e ∈ X is called a p-unit

if, for any x ∈ X+ we have p(x− x ∧ ne)
o
−→ 0.

Remark 2.23. Let (X, p, E) be an LNVL.

(1) If X 6= {0} then, for any p-unit e in X it holds that e > 0. Indeed, let
e be a p-unit in X 6= {0}. Trivially, e 6= 0. Suppose e− > 0. Then, for
x := e−, we obtain that

p(x− x ∧ ne) = p(e− − (e− ∧ n(e+ − e−))) =

p(e− − (e− ∧ n(−e−))) = p(e− − (−ne−)) = p((n+ 1)e−) =

(n+ 1)p(e−) 6
o
−→ 0

as n → ∞. This is impossible, because e is a p-unit. Therefore, e− = 0
and e > 0.

(2) Let e ∈ X be a p-unit. Given 0 < α ∈ R+ and z ∈ X+. Observe that,
for x ∈ X+, p(x− nαe ∧ x) = αp( x

α
− ne ∧ x

α
) and p(x− n(e + z) ∧ x) ≤

p(x − x ∧ ne), from which it follows easily that αe and e + z are both
p-units.

(3) If e ∈ X is a strong unit, then e is a p-unit. Indeed, let x ∈ X+, then
there is k ∈ N such that x ≤ ke, so x− x ∧ ne = 0 for any n ≥ k.

(4) If e ∈ X is a p-unit, then e is a weak unit. Assume x ∧ e = 0, then
x ∧ ne = 0 for any n ∈ N. Since e is a p-unit, then p(x) = 0 and hence
x = 0.

(5) If X is op-continuous, then clearly every weak unit of X is a p-unit.
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(6) In X = (X, |·|, X), the lattice norm p(x) = |x| is always order continuous.
Therefore, the notions of p-unit and of weak unit coincide in X .

(7) If X = (X, ‖·‖) is a normed lattice, p = ‖·‖, E = R, and e ∈ X , then e is
a p-unit iff e is a quasi-interior point of X .

In the proof of the following proposition, we use the same technique as in the
proof of [1, Lm.4.15].

Proposition 2.24. Let (X, p, E) be an LNVL, e ∈ X+, and Ie be the order ideal
generated by e in X. If Ie is p-dense in X, then e is a p-unit.

Proof. Let 0 6= u ∈ p(X). Let x ∈ X+, then there exists y ∈ Ie such that
p(x − y) ≤ u. Since |y+ ∧ x − x| ≤ |y+ − x| = |y+ − x+| ≤ |y − x|, then, by
replacing y by y+ ∧ x, we may assume without loss of generality that there is
y ∈ Ie such that 0 ≤ y ≤ x and p(x − y) ≤ u. Thus, for any m ∈ N, there is
ym ∈ Ie such that 0 ≤ ym ≤ x and

p(x− ym) ≤
1

m
u.

Since ym ∈ Ie, then there exists k = k(m) ∈ N such that 0 ≤ ym ≤ ke, and so
0 ≤ ym ≤ ke ∧ x.

For n ≥ k, x−x∧ne ≤ x−x∧ke ≤ x−ym, and so p(x−x∧ne) ≤ p(x−ym) ≤
1
m
u.

Hence p(x− x ∧ ne)
o
−→ 0. Thus e is a p-unit. �

3. Unbounded p-convergence

The up-convergence in LNVLs generalizes the uo-convergence in vector lat-
tices [14, 12, 15], the un-convergence [7] and the uaw-convergence [30] in Banach
lattices. We study basic properties of the up-convergence and characterize the
up-convergence in certain LNVLs.

3.1. Main definition and its motivation. Let (X, p, E) be an LNVL. The
following definition is motivated by its special case when it is reduced to the
un-convergence for a normed lattice (X, p, E) = (X, ‖ · ‖,R) = (X, ‖ · ‖).

Definition 3.1. A net xα ⊆ X is said to be unbounded p-convergent to x ∈ X

(shortly, xα up-converges to x or xα
up
−→ x), if

p(|xα − x| ∧ u)
o
−→ 0 (∀u ∈ X+).

It is immediate to see that up-convergence coincides with un-convergence in
the case when p is the norm in a normed lattice, and with uo-convergence in the

case when X = E and p(x) = |x|. It is clear that xα
p
−→ x implies xα

up
−→ x, and

for order bounded nets up-convergence and p-convergence agree. It should be
also clear that, if an LNVL X is op-continuous, then uo-convergence in X implies
up-convergence. The uaw-convergence is also a particular case of up-convergence
as it follows from the next proposition.

Proposition 3.2. In the notation of Example 1.5, xα
up
−→ 0 in X iff for every

u ∈ X+, |xα| ∧ u
|σ|(X,Y )
−−−−−→ 0.
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Proof. xα
up
−→ 0 in X iff for all u ∈ X+, p(|xα| ∧ u)

o
−→ 0 in E iff for every u ∈ X+,

p(|xα| ∧ u)[y] → 0 for all y ∈ Y iff for every u ∈ X+, |y|(|xα| ∧ u) → 0 for all

y ∈ Y iff for every u ∈ X+, |xα| ∧ u
|σ|(X,Y )
−−−−−→ 0. �

In particular, if X is a Banach lattice, Y = X∗, the topological dual of X ,

E = R
Y and p : X → E as defined above, then xα

up
−→ 0 in X iff xα

uaw
−−→ 0.

3.2. Basic results on up-convergence. We begin with the next list of proper-
ties of up-convergence which follows directly from Lemma 2.1.

Lemma 3.3. Let xα
up
−→ x and yα

up
−→ y in an LNVL (X, p, E), then:

(i) axα + byα
up
−→ ax + by for any a, b ∈ R, in particular, if xα = yα, then

x = y;

(ii) xαβ

up
−→ x for any subnet xαβ

of xα;

(iii) |xα|
up
−→ |x|;

(iv) if xα ≥ yα for all α, then x ≥ y.

Lemma 3.4. Let xα be a monotone net in an LNVL (X, p, E) such that xα
up
−→ x,

then xα
o
−→ x.

Proof. The proof of Proposition 2.5 is applicable here as well. �

The following result is a p-generalization of [16, Lm.1.2 (ii)].

Theorem 3.5. Let xα be a monotone net in an LNVL (X, p, E) which up-

converges to x. Then xα
p
−→ x.

Proof. Without loss of generality we may assume that 0 ≤ xα ↑ . From Lemma
3.4 it follows that 0 ≤ xα ↑ x for some x ∈ X . So 0 ≤ x−xα ≤ x for all α. Since,
for each u ∈ X+, we know that

p((x− xα) ∧ u)
o
−→ 0.

In particular, for u = x, we obtain that

p(x− xα) = p((xα − x) ∧ x)
o
−→ 0.

�

Similar to [12, Lm.1.2.(1)] we have that if xα
up
−→ 0 in an LNVL (X, p, E), then

infβ |yβ| = 0 for any subnet yβ of the net xα. Indeed, let yβ be a subnet of xα.

Clearly, yβ
up
−→ 0. If 0 ≤ z ≤ |yβ| for all β, then p(z) = p(z ∧ |yβ|)

o
−→ 0, and so

z = 0. Hence infβ |yβ| = 0.

The following two results, which are analogies of Lemma 2.8 in [7] and of
Lemma 3.6 in [15], we have respectively.

Lemma 3.6. Let (X, p, E) be an LNVL. Assume that E is order complete and

xα
up
−→ x, then p(|x| − |x| ∧ |xα|)

o
−→ 0 and p(x) = lim infα p(|x| ∧ |xα|). Moreover,

if xα is p-bounded, then p(x) ≤ lim infα p(xα).
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Proof. Note that

|x| − |x| ∧ |xα| = | |xα| ∧ |x| − |x| ∧ |x| | ≤ | |xα| − |x| | ∧ |x| ≤ |xα − x| ∧ |x|.

Since xα
up
−→ x, we get p(|x| − |x| ∧ |xα|)

o
−→ 0. Thus

p(x) = p(|x|) ≤ p(|x| − |x| ∧ |xα|) + p(|x| ∧ |xα|).

So p(x) ≤ lim infα p(|x| ∧ |xα|). Hence p(x) = lim infα p(|x| ∧ |xα|). �

Lemma 3.7. Let (X, p, E) be an op-continuous LNVL. Assume that E is order

complete and xα
uo
−→ x, then p(|x|−|x|∧|xα|)

o
−→ 0 and p(x) = lim infα p(|x|∧|xα|).

Moreover, if xα is p-bounded, then p(x) ≤ lim infα p(xα).

We finish this subsection with the following technical lemma.

Lemma 3.8. Given an LNVL (X, p, E). If xα
p
−→ x and xα is an o-Cauchy net,

then xα
o
−→ x. Moreover, if xα

p
−→ x and xα is uo-Cauchy, then xα

uo
−→ x.

Proof. Since xα is order Cauchy, then xα − xβ
o
−→ 0 as α, β → ∞. So there exists

zγ ↓ 0 such that, for every γ, there exists αγ satisfying

|xα − xβ | ≤ zγ , ∀α, β ≥ αγ . (3.1)

By taking limit over β in (3.1) and applying Lemma 2.1, we get |xα −x| ≤ zγ for

all α ≥ αγ. Thus xα
o
−→ x.

For the uo-convergence, the similar argument is used, so the proof is omitted.
�

3.3. up-Convergence and p-units. The following result is a generalization of
[7, Lm.2.11] and of [14, Cor.3.5] in LNVLs.

First of all, we recall useful characterizations of order convergence. For any or-
der bounded net xα in an order complete vector lattice E, xα

o
−→ x iff lim sup

α

|xα−

x| = infα supβ≥α |xβ − x| = 0. Moreover, for any net xα in a vector lattice E,

xα
o
−→ 0 in E iff xα

o
−→ 0 in Eδ (the order completion of E); see, e.g., [14, Cor.2.9].

Theorem 3.9. Let (X, p, E) be an LNVL and e ∈ X+ be a p-unit. Then xα
up
−→ 0

iff p(|xα| ∧ e)
o
−→ 0 in E.

Proof. The “only if” part is trivial. For the “if” part, let u ∈ X+, then

|xα| ∧ u ≤ |xα| ∧ (u− u ∧ ne) + |xα| ∧ (u ∧ ne) ≤ (u− u ∧ ne) + n(|xα| ∧ e),

and so
p(|xα| ∧ u) ≤ p(u− u ∧ ne) + np(|xα| ∧ e)

holds in Eδ for any α and any n ∈ N. Hence

lim sup
α

p(|xα| ∧ u) ≤ p(u− u ∧ ne) + n lim sup
α

p(|xα| ∧ e)

holds in Eδ for all n ∈ N. Since p(|xα| ∧ e)
o
−→ 0 in E, then p(|xα| ∧ e)

o
−→ 0 in Eδ,

and so lim sup
α

p(|xα| ∧ e) = 0 in Eδ. Thus

lim sup
α

p(|xα| ∧ u) ≤ p(u− u ∧ ne)
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holds in Eδ for all n ∈ N. Since e is a p-unit, we have that lim sup
α

p(|xα| ∧u) = 0

in Eδ or p(|xα| ∧ u)
o
−→ 0 in Eδ. It follows that p(|xα| ∧ u)

o
−→ 0 in E and hence

xα
up
−→ 0. �

3.4. up-Convergence and sublattices. Given an LNVL (X, p, E), a sublattice

Y of X , and a net (yα)α ⊆ Y . Then yα
up
−→ 0 in Y has the meaning that

p(|yα| ∧ u)
o
−→ 0 (∀u ∈ Y+).

The following lemma is a p-version of [15, Lm.3.3].

Lemma 3.10. Let (X, p, E) be the LNVL, B be a projection band of X, and PB

be the corresponding band projection. If xα
up
−→ x in X, then PB(xα)

up
−→ PB(x) in

both X and B.

Proof. It is known that PB is a lattice homomorphism and 0 ≤ PB ≤ I. Since

|PB(xα)− PB(x)| = PB|xα − x| ≤ |xα − x|, then it follows easily that PB(xα)
up
−→

PB(x) in both X and B. �

Let (X, p, E) be an LNVL and Y be a subset of X . Then Y is called up-closed
in X if, for any net yα in Y that is up-convergent to x ∈ X , we have x ∈ Y .
Clearly, every band is up-closed.

We present a p-version of [14, Prop.3.15] with a similar proof.

Proposition 3.11. Let X be an LNVL and Y be a sublattice of X. Suppose
that either X is op-continuous or Y is a p-KB-space in its own right. Then Y is
up-closed in X iff it is p-closed in X.

Proof. Only the sufficiency requires a proof. Let Y be p-closed in X and yα
be a net in Y with yα

up
−→ x ∈ X . WLOG, we assume (yα)α ⊆ Y+ because

the lattice operations in X are p-continuous. Note that, for every z ∈ X+,
|yα∧z−x∧z| ≤ |yα−x|∧z (cf. the inequality (1) in the proof of [14, Prop.3.15]).

So p(yα ∧ z − x ∧ z) ≤ p(|yα − x| ∧ z)
o
−→ 0. In particular, Y ∋ yα ∧ y

p
−→ x ∧ y in

X for any y ∈ Y+. Since Y is p-closed, x ∧ y ∈ Y for any y ∈ Y+. Since, for any
0 ≤ z ∈ Y ⊥ and for any α we have yα ∧ z = 0, then

|x ∧ z| = |yα ∧ z − x ∧ z| ≤ |yα − x| ∧ z
p
−→ 0.

Therefore, x∧z = 0, and hence x ∈ Y ⊥⊥. Since Y ⊥⊥ is the band generated by Y in
X , there is a net zβ in the ideal IY generated by Y such that 0 ≤ zβ ↑ x inX . Take
for every β an element wβ ∈ Y with zβ ≤ wβ. Then x ≥ wβ ∧x ≥ zβ ∧x = zβ ↑ x

in X , and so wβ ∧ x
o
−→ x in X .

Case 1: If X is op-continuous, then wβ ∧ x
p
−→ x. Since wβ ∧ x ∈ Y and Y is

p-closed, we get x ∈ Y .
Case 2: Suppose Y is a p-KB-space in its own right. Let ∆ be the collection

of all finite subsets of the index set B. For each δ = {β1, . . . , βn} ∈ ∆ let
yδ := (wβ1

∨ . . . ∨ wβn
) ∧ x. Clearly, yδ ∈ Y , 0 ≤ yδ ↑, and the net (yδ) is p-

bounded in Y . Since Y is a p-KB-space, then there is y0 ∈ Y such that yδ
p
−→ y0
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in Y and trivially in X . Since (yδ) is monotone then it follows from Proposition

2.5 that yδ ↑ y0 in X . Also, we have yδ
o
−→ x in X . Thus, x = y0 ∈ Y . �

3.5. p-Almost order bounded sets. Recall that a subset A in a normed lattice
(X, ‖ · ‖) is said to be almost order bounded if, for any ǫ > 0, there is uǫ ∈ X+

such that ‖(|x| − uǫ)
+‖ = ‖|x| − uǫ ∧ |x|‖ ≤ ǫ for any x ∈ A. Similarly we have:

Definition 3.12. Given an LNVL (X, p, E). A subset A of X is called a p-almost
order bounded if, for any w ∈ E+, there is xw ∈ X+ such that p((|x| − xw)

+) =
p(|x| − xw ∧ |x|) ≤ w for any x ∈ A.

It is clear that p-almost order boundedness notion in LNVLs is a generalization
of almost order boundedness in normed lattices. In the LNVL (X, |·|, X), a subset
of X is p-almost order bounded, iff it is order bounded in X .

The following result is a p-version of [7, Lm.2.9], and it is also similar to [15,
Prop.3.7].

Proposition 3.13. If (X, p, E) is an LNVL, xα is p-almost order bounded, and

xα
up
−→ x, then xα

p
−→ x.

Proof. Since xα is p-almost order bounded, then it is easy to see that the net
(|xα − x|)α is also p-almost order bounded. So given w ∈ E+. Then there exists
xw ∈ X+ with

p(|xα − x| − |xα − x| ∧ xw) ≤ w

But xα
up
−→ x, so lim sup

α

p(|xα − x| ∧ xw) = 0 in Eδ. Thus, for any α,

p(xα−x) = p(|xα−x|) ≤ p(|xα−x|−|xα−x|∧xw)+p(|xα−x|∧xw) ≤ w+p(|xα−x|∧xw)

Hence

lim sup
α

p(xα − x) ≤ w + lim sup
α

p(|xα − x| ∧ xw) ≤ w

holds in Eδ. But w ∈ E+ is arbitrary, so lim sup
α

p(xα − x) = 0 in Eδ. Thus

p(xα − x)
o
−→ 0 in Eδ, and so in E. �

The following proposition is a p-version of [15, Prop.4.2].

Proposition 3.14. Given an op-continuous and p-complete LNVL (X, p, E).
Then every p-almost order bounded uo-Cauchy net is uo- and p-convergent to
the same limit.

Proof. Let xα be a p-almost order bounded uo-Cauchy net. Then the net (xα−xα′)
is p-almost order bounded and is uo-converges to 0. Since X is op-continuous,

then xα − xα′
up
−→ 0 and, by Proposition 3.13, we get xα − xα′

p
−→ 0. Thus xα

is p-Cauchy, and so is p-convergent. By Lemma 3.8, we get that xα is also uo-
convergent to its p-limit. �
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3.6. rup-Convergence. In this subsection, we introduce the notions of rup-
convergence and of an rp-unit. Recall that a net (xα)α∈A in a vector lattice
E is relatively uniform convergent (or ru-convergent, for short) to x ∈ E if there
is y ∈ E+, such that, for any ε > 0, there exists α0 ∈ A such that |xα − x| ≤ εy

for any α ≥ α0, [21, Thm.16.2]. In this case we write xα
ru
−→ x.

Definition 3.15. Let (X, p, E) be an LNVL. A net (xα)α ⊆ X is said to be
relatively unbounded p-convergent (rup-convergent) to x ∈ X if

p(|xα − x| ∧ u)
ru
−→ 0 (∀u ∈ X+).

In this case we write xα
rup
−−→ x.

Clearly, rup-convergence implies up-convergence, but the converse need not be
true.

Definition 3.16. Given an LNVL (X, p, E). A vector e ∈ X is called an rp-unit

if, for any x ∈ X+, we have p(x− x ∧ ne)
ru
−→ 0.

Obviously, every rp-unit is a p-unit. So, by Remark 2.23 (1) after Definition
2.22, if e ∈ X 6= {0} is an rp-unit then e > 0. Not every p-unit is an rp-unit.
To see this, take X = (Cb(R), |·|, Cb(R)) and e = e(t) = e−|t|. Then e is a p-unit.
However, e is not an rp-unit since p(1− 1∧ ne) does not ru-converge to 0, where
1(t) ≡ 1.

The following result generalizes [14, Cor.3.5] and [7, Lm.2.11].

Proposition 3.17. Let (X, p, E) be an LNVL with an rp-unit e. Then xα
rup
−−→ 0

iff p(|xα| ∧ e)
ru
−→ 0.

Proof. The “only if” part is trivial. For the “if” part let u ∈ X+, then

|xα| ∧ u ≤ |xα| ∧ (u− u ∧ ne) + |xα| ∧ (u ∧ ne) ≤ (u− u ∧ ne) + n(|xα| ∧ e),

and so

p(|xα| ∧ u) ≤ p(u− u ∧ ne) + np(|xα| ∧ e)

holds for any α and any n ∈ N.
Given ε > 0. Since e is an rp-unit, then there is y ∈ E+ and n0 ∈ N such that

p(u− u ∧ n0e) ≤
ε

2
y.

It follows from p(|xα| ∧ e)
ru
−→ 0 that there exists z ∈ E+ and α0 such that

p(|xα| ∧ e) ≤
ε

2n0
z

for any α ≥ α0. Take w := y ∨ z, then

p(|xα| ∧ u) ≤ εw

for any α ≥ α0. Therefore, p(|xα| ∧ u)
ru
−→ 0. �
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4. up-Regular sublattices

The up-convergence passes obviously to any sublattice ofX . As it was remarked
in [7, p.3], in opposite to uo-convergence [14, Thm.3.2], the un-convergence does
not pass even from regular sublattices. These two facts motivate the following
notion in LNVLs.

Definition 4.1. Let (X, p, E) be an LNVL and Y be a sublattice of X . Then Y

is called up-regular if, for any net yα in Y , yα
up
−→ 0 in Y implies yα

up
−→ 0 in X .

Equivalently, Y is up-regular in X when yα
up
−→ 0 in Y iff yα

up
−→ 0 in X for any

net yα in Y .

It is clear that if Y is a regular sublattice of a vector lattice X , then Y is
up-regular in the LNVL (X, |·|); see [14, Thm.3.2]. The converse does not hold
in general.

Example 4.2. Let X = B([0, 1]) be the space of all real-valued bounded func-
tions on [0, 1] and Y = C[0, 1]. First of all X under the pointwise ordering (i.e.,
f ≤ g in X iff f(t) ≤ g(t) for all t ∈ [0, 1]) is a vector lattice and if we equip X

with the ∞-norm, then it becomes a Banach lattice.
We claim that the sublattice Y = (Y, |·|, Y ) is a up-regular sublattice of X =

(X, |·|, X). Let (fα) be a net in Y such that fα
up
−→ 0 in Y . That is |fα|∧g

o
−→ 0 in

X for any g ∈ Y+. In particular, we have |fα| ∧ 1
o
−→ 0 in X , where 1 denotes the

constant function one. Since 1 is a strong unit in X , then it is a p-unit for the

LNVL (X, |·|, X). It follows from Theorem 3.9 in Subsection 5.1.3 that fα
up
−→ 0

in X . However, the sublattice Y is not regular in X . Indeed, for each n ∈ N let
fn be a continuous function on [0, 1] defined as:

• fn is zero on the intervals [0, 1
2
− 1

n+2
] and [1

2
+ 1

n+2
, 1],

• fn(
1
2
) = 1,

• fn is linear on the intervals [1
2
− 1

n+2
, 1
2
] and [1

2
, 1
2
+ 1

n+2
].

Then fn ↓ 0 in C[0, 1] but fn ↓ χ 1

2

in B([0, 1]). So by Lemma 2.5 in [14], we have

that Y is not regular in X .

Consider the sublattice c0 of ℓ∞. Then (c0, ‖·‖∞,R) is not up-regular in the
LNVL (ℓ∞, ‖·‖∞,R). Indeed, (en) is un-convergent in c0 but not in ℓ∞. However,
(c0, |·|, ℓ∞) is up-regular in the LNVL (ℓ∞, |·|, ℓ∞).

4.1. Several basic results. We begin with the following result which is a p-
version of [16, Thm.4.3]

Theorem 4.3. Let Y be a sublattice of an LNVL X = (X, p, E). Then Y is
up-regular in each of the following cases:

(i) Y is majorizing in X;
(ii) Y is p-dense in X;
(iii) Y is a projection band in X.

Proof. Let (yα) ⊆ Y be such that yα
up
−→ 0 in Y . Let 0 6= x ∈ X+.
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(i) There exists y ∈ Y such that x ≤ y. It follows from

0 ≤ |yα| ∧ x ≤ |yα| ∧ y
p
−→ 0,

that yα
up
−→ 0 in X .

(ii) Choose an arbitrary 0 6= u ∈ p(X). Then there exists y ∈ Y with p(x−y) ≤
u. Since

|yα| ∧ x ≤ |yα| ∧ |x− y|+ |yα| ∧ |y|,

then

p(|yα| ∧ x) ≤ p(|yα| ∧ |x− y|) + p(|yα| ∧ |y|) ≤ u+ p(|yα| ∧ |y|).

Since 0 6= u ∈ p(X) is arbitrary and |yα| ∧ |y|
p
−→ 0, then |yα| ∧ x

p
−→ 0. Hence

yα
up
−→ 0 in X .
(iii) Y = Y ⊥⊥ implies that X = Y ⊕ Y ⊥. Hence x = x1 + x2 with x1 ∈ Y and

x1 ∈ Y ⊥ Since yα ∧ x2 = 0, we have

p(yα ∧ x) = p(yα ∧ (x1 + x2)) = p(yα ∧ x1)
o
−→ 0.

Hence yα
up
−→ 0 in X . �

The following result deals with a particular case of Example 1.5.

Theorem 4.4. Let X be a vector lattice and Y = X∼
n . Assume X∼

n separates
the points of X. Define p : X → R

Y by p(x)[y] = |y|(|x|). Then any ideal of X
is up-regular in (X, p,RY ).

Proof. Let I be an ideal of X and xα be a net in I such that xα
up
−→ 0 in I. We

show xα
up
−→ 0 in X . By Example 3.2, this is equivalent to show |xα|∧u

|σ|(X,Y )
−−−−−→ 0

for any u ∈ X+. First note that if v ∈ I⊥, then |xα| ∧ |v| = 0, and so, for any

w ∈ (I ⊕ I⊥)+, we have |xα| ∧ w
|σ|(X,Y )
−−−−−→ 0. Note also that I ⊕ I⊥ is order dense

(see, e.g., [2, Thm.3.3.(2)]). Let u ∈ X+ and y ∈ Y , then there is a net wβ in
(I ⊕ I⊥)+ such that wβ ↑ u, and so |y|(wβ ∧ u) ↑ |y|(u). Given ε > 0. There is β0

such that

|y|(u)− |y|(wβ0
∧ u) <

ε

2
.

Also there is α0 such that

|y|(|xα| ∧ wβ0
) <

ε

2
for all α ≥ α0. Taking into account the inequality |a∧ c− b ∧ c| ≤ |a− c| (cf. [2,
Thm.1.6.(2)]) we have for any α ≥ α0,

|y|(|xα| ∧ u) = |y|(|xα| ∧ u)− |y|(|xα| ∧ u ∧ wβ0
) + |y|(|xα| ∧ u ∧ wβ0

)

≤ |y|(u)− |y|(wβ0
∧ u) + |y|(|xα| ∧ wβ0

) < ε.

Since u ∈ X+ and y ∈ Y are arbitrary, we get |xα| ∧ u
|σ|(X,Y )
−−−−−→ 0 for any u ∈ X+,

and this completes the proof. �

The next Corollary might be compared with [16, Cor.4.6]
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Corollary 4.5. Let X be a vector lattice and Y = X∼
n be the order continuous

dual. Assume that X∼
n separates the points of X. Define p : X → R

Y by
p(x)[y] = |y|(|x|). Then any sublattice of X is up-regular in the LNVL (X, p,RY ).

Proof. Let X0 be a sublattice of X and xα be a net in X0 such that xα
up
−→ 0 in

X0. Let IX0
be the ideal generated by X0 in X . Then X0 is majorizing in IX0

and, by Theorem 4.3(i), we get xα
up
−→ 0 in IX0

. Now, Theorem 4.4 implies that

xα
up
−→ 0 in X . �

4.2. Order completion. Denote by Xδ the order completion of a vector lattice
X .

Lemma 4.6. Let (Xδ, p, E) be an LNVL, where Xδ is the order completion of
X. For any sublattice Y ⊆ X, if Y δ is up-regular in Xδ, then Y is up-regular in
X = (X, p|X , E).

Proof. Take a net (yα)α ⊆ Y such that yα
up
−→ 0 in Y . Then p(|yα| ∧ u)

o
−→ 0 for

all u ∈ Y+. Let w ∈ Y δ and, since Y is majorizing in Y δ, there exists y ∈ Y such

that w ≤ y. Therefore, we obtain yα
up
−→ 0 in Y δ. Since Y δ is up-regular in Xδ,

the net yα is up-convergent to 0 in Xδ, and so in X . �

Lemma 4.7. Let (Xδ, p, E) be an LNVL. For any sublattice Y ⊆ X, if Y is
up-regular in X, then Y is up-regular in Xδ.

Proof. Let (yα)α ⊆ Y and yα
up
−→ 0 in Y . By assumption yα

up
−→ 0 in X . Let

u ∈ Xδ
+, then there exists x ∈ X such that u ≤ x. Therefore, we obtain p(|yα| ∧

u) ≤ p(|yα| ∧ x)
o
−→ 0, i.e. yα

up
−→ 0 in Xδ. �

In connection with Lemma 4.7, the following question arises.

Problem 4.8. Is it true that Iδ is up-regular in Xδ, whenever I is a up-regular
ideal in X?

Proposition 4.9. Let (X, p, E) be an LNVL. Define pδL : Xδ → Eδ and pδU :
Xδ → Eδ as follows: pδL(z) = sup

0≤x≤|z|

p(x) and pδU(z) = inf
|z|≤x

p(x) for all z ∈ Xδ

(clearly, both pδU and pδL are extensions of p). Then:

(i) pδL is a monotone Eδ-valued norm;
(ii) pδU is a monotone Eδ-valued seminorm;
(iii) if X is op-continuous, then pδU is p-continuous (i.e. zγ ↓ 0 in Xδ implies

pδU(zγ) ↓ 0 in Eδ);
(iv) if X is op-continuous, then pδU = pδL.

Proof. (i) Let Xδ ∋ z 6= 0. Since X is order dense in Xδ, there is x ∈ X such
that 0 < x ≤ |z|, and so pδL(z) ≥ p(x) > 0.

Let 0 6= λ ∈ R, then

pδL(λz) = sup
0≤x≤|λz|

p(x) = sup
0≤ 1

|λ|
x≤|z|

p(x) = |λ| sup
0≤ 1

|λ|
x≤|z|

p(|λ|−1
x) = |λ|pδL(z).
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Let z, w ∈ Xδ, we show pδL(z + w) ≤ pδL(z) + pδL(w). Suppose 0 ≤ x ≤ |z + w|,
then 0 ≤ x ≤ |z| + |w|. By the Riesz Decomposition Property, there exist
x1, x2 ∈ X such that 0 ≤ x1 ≤ |z|, 0 ≤ x2 ≤ |w|, and x = x1 + x2. So

p(x) = p(x1 + x2) ≤ p(x1) + p(x2) ≤ pδL(z) + pδL(w).

Thus pδL(z + w) = sup
0≤x≤|z+w|

p(x) ≤ pδL(z) + pδL(w).

Now, we prove the monotonicity of the lattice norm pδL. If |z| ≤ |w| then, for
any x ∈ X with 0 ≤ x ≤ |z|, we get 0 ≤ x ≤ |w|. So sup

0≤x≤|z|

p(x) ≤ sup
0≤x≤|w|

p(x) or

pδL(z) ≤ pδL(w).
(ii) We show firstly the triangle inequality. Let z, w ∈ Xδ and x1, x2 ∈ X be

such that |z| ≤ x1 and |w| ≤ x2, then |z + w| ≤ |z|+ |w| ≤ x1 + x2. So

pδU(z + w) = inf
|z+w|≤x

p(x) ≤ p(x1 + x2) ≤ p(x1) + p(x2).

Thus pδU(z+w)−p(x1) ≤ p(x2) for any x2 ∈ X with |w| ≤ x2. Hence p
δ
U(z+w)−

p(x1) ≤ pδU(w) or pδU(z + w) − pδU(w) ≤ p(x1), which holds for all x1 ∈ X with
|z| ≤ x1. Therefore, p

δ
U(z + w)− pδU(w) ≤ pδU(z) or p

δ
U(z + w) ≤ pδU(w) + pδU(z).

Now, if |z| ≤ |w|, then, for any x ∈ X with 0 < |w| ≤ x, we have |z| ≤ x. So
inf

|w|≤x
p(x) ≥ inf

|z|≤x
p(x) or pδU(z) ≤ pδU(w).

(iii) Assume zγ ↓ 0 in Xδ. Let A = {a ∈ X : zγ ≤ a for some γ}. Then
inf A = 0. Indeed, if 0 ≤ x ≤ a for all a ∈ A, then 0 ≤ x ≤ Aγ for all γ, where
Aγ = {a ∈ X : zγ ≤ a}. So, by [14, Lm.2.7], we have x ≤ zα. Thus x = 0.

Clearly, A is directed downward and dominates the net (zα)α. Since X is op-
continuous, then p(A) ↓ 0 and, by the definition of pδU , we get that p(A) dominates
the net (pδUzα). Therefore, p

δ
Uzα ↓ 0.

(iv) Let z ∈ Xδ, then |z| = sup{x ∈ X : 0 ≤ x ≤ |z|}. By (iii), we have

pδU(z) = pδU(|z|) = sup{pδU(x) : x ∈ X, 0 ≤ x ≤ |z|}

= sup{p(x) : x ∈ X, 0 ≤ x ≤ |z|} = pδL(z).

�

In connection with Proposition 4.9(iv), the following question arises.

Problem 4.10. Does the equality pδU = pδL imply the op-continuity of X?

Proposition 4.11. Let (X, p, E) be an LNVL. Then, for every net xα in X,

xα
up
−→ 0 in (X, p, E) ⇔ xα

up
−→ 0 in (Xδ, pδ, Eδ),

where pδ = pδL.

Proof. Assume xα
up
−→ 0 in (X, p, E). Then p(|xα| ∧ x)

o
−→ 0 in E for all x ∈ X+,

and so p(|xα| ∧ x)
o
−→ 0 in Eδ for all x ∈ X+, by [14, Cor.2.9]. Hence

pδ(|xα| ∧ x)
o
−→ 0 (4.1)

in Eδ for all x ∈ X+. Let u ∈ Xδ
+, then there exists xu ∈ X+ such that u ≤ xu,

since X majorizes Xδ. From (4.1) it follows that pδ(|xα| ∧ u)
o
−→ 0 in Eδ. Since

u ∈ Xδ
+ is arbitrary, then xα

up
−→ 0 in (Xδ, pδ, Eδ).
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Conversely, assume xα
up
−→ 0 in (Xδ, pδ, Eδ) then, for all u ∈ Xδ

+, p
δ(|xα|∧u)

o
−→

0 in Eδ. In particular, for all x ∈ X+, p(|xα| ∧ x) = pδ(|xα| ∧ x)
o
−→ 0 in Eδ. By

[14, Cor.2.9], p(|xα|∧x)
o
−→ 0 in E for all x ∈ X+. Hence xα

up
−→ 0 in (X, p, E). �

5. Mixed-normed spaces

In this section, we study LNVLs with mixed lattice norms.

5.1. Mixed norms. Let (X, p, E) be an LNS and (E, ‖·‖) be a normed lattice.
The mixed norm on X is defined by

p-‖x‖ = ‖p(x)‖ (∀x ∈ X).

In this case the normed space (X, p-‖·‖) is called a mixed-normed space (see, for
example [20, 7.1.1, p.292])

The next proposition follows directly from the basic definitions and results, so
its proof is omitted.

Proposition 5.1. Let (X, p, E) be an LNVL, (E, ‖·‖) be a Banach lattice, and
(X, p-‖·‖) be a mixed-normed space. The following statements hold:

(i) if (X, p, E) is op-continuous and E is order continuous, then (X, p-‖·‖) is
an order continuous normed lattice;

(ii) if a subset Y of X is p-bounded (respectively, p-dense) in (X, p, E), then
Y is norm bounded (respectively, norm dense) in (X, p-‖·‖);

(iii) if e ∈ X is a p-unit and E is order continuous, then e is a quasi-interior
point of (X, p-‖·‖);

(iv) if (X, p, E) is a p-Fatou space and E is order continuous, then p-‖·‖ is a
Fatou norm, [21, p.42];

(v) if Y is a p-almost order bounded subset of X, then Y is almost order
bounded set in (X, p-‖·‖).

Theorem 5.2. Let (X, p, E) and (E,m, F ) be two p-KB-spaces. Then the LNVL
(X,m ◦ p, F ) is also a p-KB-space.

Proof. Let 0 ≤ xα ↑ and m
(

p(xα)
)

≤ g ∈ F . Since 0 ≤ p(xα) ↑< ∞ and since

(E,m, F ) is a p-KB-space, then there exists y ∈ E such that m
(

p(xα)− y)
)

→ 0.
Hence p(xα) ↑ y. Thus the net xα is increasing and p-bounded. Since X is p-
KB-space, then there exists x ∈ X such that p(xα − x) → 0. As (X,m ◦ p, F )

is clearly po-continuous, then m
(

p(xα − x)
) o
−→ 0 i.e. m ◦ p(xα − x)

o
−→ 0. Thus

(X,m ◦ p, F ) is a p-KB-space. �

Corollary 5.3. Let (X, p, E) be a p-KB-space and (E, ‖·‖) be a KB-space. Then
(X, p-‖·‖) is a KB-space.

5.2. up-Completeness. The following well-known technical lemma is a partic-
ular case of Lemma 3.8.

Lemma 5.4. Given a Banach lattice (X, ‖·‖). If xα

‖·‖
−→ x and xα is o-Cauchy,

then xα
o
−→ x.
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Recall that a Banach lattice is called un-complete if every un-Cauchy net is
un-convergent, [16].

Theorem 5.5. Let (X, p, E) be an LNVL and (E, ‖·‖) be an order continuous
Banach lattice. If (X, p-‖·‖) is a un-complete Banach lattice, then X is up-
complete.

Proof. Let xα be a up-Cauchy net inX . So, for every u ∈ X+, p(|xα−xβ |∧u)
o
−→ 0.

Since E is order continuous, then, for every u ∈ X+, ‖p(|xα − xβ| ∧ u)‖ → 0 or
for every u ∈ X+, p-

∥

∥|xα − xβ | ∧ u
∥

∥ → 0, i.e. xα is un-Cauchy in (X, p-‖·‖).

Since (X, p-‖·‖) is un-complete, then there exists x ∈ X such that xα
un
−→ x in

(X, p-‖·‖). That is, for every u ∈ X+, ‖p(|xα − x| ∧ u)‖ → 0. Next we show the
net

(

p(|xα − x| ∧ u)
)

α
is order Cauchy in E. Indeed,

∣

∣p(|xα−x|∧u)−p(|xβ−x|∧u)
∣

∣ ≤ p
(
∣

∣|xα−x|∧u−|xβ−x|∧u
∣

∣

)

≤ p(|xα−xβ |∧u)
o
−→ 0.

Now, Lemma 5.4 above, implies that p(|xα − x| ∧ u)
o
−→ 0. �

5.3. up-Null nets and up-null sequences in mixed-normed spaces. The fol-
lowing theorem is a p-version of [7, Thm.3.2] and a generalization of [14, Lm.6.7],
as we take (X, p, E) = (X, ‖·‖ ,R).

Theorem 5.6. Let (X, p, E) be an op-continuous and p-complete LNVL, E an

order continuous Banach lattice, and X ∋ xα
up
−→ 0. Then there exist an increas-

ing sequence αk of indices and a disjoint sequence dk ∈ X such that (xαk
−dk)

p
−→ 0

as k → ∞.

Proof. Consider the mixed norm p-‖x‖ = ‖p(x)‖. Since p(|xα| ∧ u)
o
−→ 0 for all

u ∈ X+, then p-‖|xα| ∧ u‖ = ‖p(|xα| ∧ u)‖
o
−→ 0 that means xα

un
−→ 0 in (X, p-‖·‖)

by o-continuity of (E, ‖·‖).
By [7, Thm.3.2], there exists an increasing sequence αn of indices and a disjoint

sequence dn in X such that xαn
−dn

p-‖·‖
−−→ 0. Now (X, p-‖·‖) is a Banach lattice by

[20, 7.1.3 (1), p.294]. So, by [27, Thm.VII.2.1] there is a further subsequence (αnk
)

such that |xαnk
− dnk

|
o
−→ 0 in X . By op-continuity of X , p(xαnk

− dnk
)

o
−→ 0. �

The next corollary is a p-version of [7, Cor.3.5].

Corollary 5.7. Let (X, p, E) be an op-continuous LNVL, E be an order contin-

uous Banach lattice, and X ∋ xα
up
−→ 0. Then there exist an increasing sequence

αk of indices such that xαk

up
−→ 0.

Proof. Let αk and dk be as in Theorem 5.6. Since the sequence dk is disjoint,

then dk
uo
−→ 0 by [14, Cor.3.6.]. Since X is op-continuous, then dk

up
−→ 0. Since

p(|xαk
− dk| ∧ u) ≤ p(xαk

− dk)
o
−→ 0 (∀u ∈ X+),

then xαk
− dk

up
−→ 0. Since dk

up
−→ 0, then xαk

up
−→ 0. �

Next proposition extends [7, Prop.4.1] to LNVLs.
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Proposition 5.8. Let (X, p, E) be a p-complete LNVL, (E, ‖·‖) be an order con-

tinuous Banach lattice, and X ∋ xn
up
−→ 0. Then there exist a subsequence xnk

of

xn such that xnk

uo
−→ 0 as k → ∞.

Proof. Suppose xn
up
−→ 0, then, for all u ∈ X+ p(|xn| ∧ u)

o
−→ 0, and so ‖p(|xn| ∧

u)‖ → 0 since E is order continuous. Thus |xn| ∧ u
p-‖·‖
−−→ 0, i.e. xn

un
−→ 0

in (X, p-‖·‖). It follows from [20, 7.1.2, p.293] that the mixed-normed space
(X, p-‖·‖) is a Banach lattice, and so by [7, Prop.4.1] there is a subsequence xnk

of xn such that xnk

uo
−→ 0 as k → ∞. �

Next result is a p-version of [7, Thm.4.4].

Proposition 5.9. Let (X, p, E) be an op-continuous and p-complete LNVL such
that (E, ‖·‖) is an order continuous atomic Banach lattice. Then a sequence in
X is up-null iff every subsequence has a further subsequence which uo-converges
to zero.

Proof. The forward implication follows from Proposition 5.8. Conversely, let xn

be a sequence in X and assume that xn 6
up
−→ 0. Then there is an atom a ∈ E+,

u ∈ X+, ε0 > 0 and a subsequence xnk
of xn satisfying fa

(

p(|xnk
| ∧ u)

)

≥ ε0
for all k. By the hypothesis there exist a further subsequence xnkj

of xnk
which

uo-converges to zero. By the op-continuity of X we get p(|xnkj
| ∧ u)

o
−→ 0, and so

fa
(

p(|xnkj
| ∧ u)

)

→ 0, which is a contradiction. �

Our last result is a p-version of [7, Lm.5.1].

Proposition 5.10. Let (X, p, E) be an op-continuous p-complete LNVL and
(E, ‖·‖) be an order continuous Banach lattice. If X is atomic and xn is an

order bounded sequence such that xn
p
−→ 0 in X, then xn

o
−→ 0.

Proof. The mixed-normed space (X, p-‖·‖) is an atomic order continuous Banach

lattice such that xn

p-‖·‖
−−→ 0, and so xn

o
−→ 0 by [7, Lm.5.1]. �
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