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On Multi-Dimensional and Noisy Quadratic Signaling Games and Affine
Equilibria
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Abstract— This study investigates extensions of the quadratic
cheap talk and signaling game problem, which has been intro-
duced in the economics literature. Two main contributions of
this study are the extension of Crawford and Sobel’s cheap talk
formulation to multi-dimensional sources, and the extension to
noisy channel setups as a signaling game problem. We show
that, in the presence of misalignment, the quantized nature of
all equilibrium policies holds for any scalar random source. It
is shown that for multi-dimensional setups, unlike the scalar
case, equilibrium policies may be of non-quantized nature, and
even linear. In the noisy setup, a Gaussian source is to be
transmitted over an additive Gaussian channel. The goals of
the encoder and the decoder are misaligned by a bias term
and encoder’s cost also includes a power term scaled by a
multiplier. Conditions for the existence of affine equilibrium
policies as well as general informative equilibria are presented
for both the scalar and multi-dimensional setups.

I. INTRODUCTION

Signaling games and cheap talk are concerned with a
class of Bayesian games where an informed decision maker
transmits information to another decision maker and the
information transmission policy can be viewed as the action
of this decision maker. Signaling game and its specific case
cheap talk can be viewed in the classical communications
theory setup with the encoder as the sender and the de-
coder as the receiver taking part in a team decision problem
where the encoder and the decoder have aligned objectives.
Namely, the sender and receiver reach the most informative
equilibrium. In this case, the fields of information theory and
estimation theory have studied such problems extensively.

Such problems find applications in network control sys-
tems when a communication channel is present among com-
petitive and non-cooperative decision makers [1]. One may
consider a utility company which wishes to inform users
regarding pricing information; if the utility company and
the users engage in selfish behaviour, it may be beneficial
for the utility company to hide information and the users to
be strategic about how they interpret the given information.
Another application area is smart-grids; there may be cor-
rupted sensors with misaligned goals in the system [2] and
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the security of the smart-grid infrastructure can be analyzed
by applying the game theoretic approach to the interaction
between an attacker and a defender [3], [4]. One further
area of application is recommender systems (as in rating
agencies) [5].

This study investigates extensions of the quadratic cheap
talk and signaling game problem studied by Crawford and
Sobel [6] in the economics literature. In this literature; there
have been a number of related contributions, which we briefly
review in the following: In [7], Krishna and Morgan study
the setup in [6] with two senders; in [8], Shintaro studies
an unbounded state space setup with two senders. More-
over, multi-dimensional cheap talk with single and multiple
senders is analyzed in [9]-[12] under various considera-
tions. Andreas et.al. [13] add uniform noise between the
sender and receiver. Furthermore, there are some contribu-
tions which modify the information structure in Crawford
and Sobel’s game setup. In [14], the sender knows that
the receiver has partial information about his/her private
information; whereas the sender doesn’t know this in [15],
[16]. Golosov et al. [17] study Crawford and Sobel’s game
setup in a finite horizon environment where, in each period,
a privately informed sender sends a message and a receiver
takes an action.

In the control community, recently, there have been few
studies: [18] considered a Gaussian cheap talk game with
quadratic cost functions where the analysis considers Stack-
elberg equilibria, for a class of single- and multi-terminal
setups and where linear equilibria have been studied. For
the setup of Crawford and Sobel but when the source ad-
mits an exponentially distributed real random variable, [19]
establishes the discrete-nature of equilibria, and obtains the
equilibrium bins with finite upper bounds on the number of
bins under any equilibrium in addition to some structural
results on informative equilibria for general sources.

A. Contributions of this Paper

The main contributions of this study are the extension
of Crawford and Sobel’s cheap talk formulation to multi-
dimensional sources, and the extension to noisy channel
setups (as a signaling game) where a Gaussian source and
a Gaussian channel are assumed. We show that for multi-
dimensional setups, unlike the scalar case, equilibrium poli-
cies may be non-quantized and even linear. In the noisy
setup, a Gaussian source is to be transmitted over an ad-
ditive Gaussian channel. The goals of the encoder and the
decoder are misaligned by a bias term and encoder’s cost
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also includes a power term scaled by a multiplier. Conditions
for the existence of affine equilibrium policies as well as
general informative equilibria are presented for both the
scalar and multi-dimensional setups. We compare the results
with socially optimal costs and information theoretic lower
bounds, and discuss the effects of the bias term. Due to
space constraints, the sketches of a number of results are
presented. Details are included in [20].

II. FORMAL DESCRIPTION

Let there be two decision makers (DMs): An encoder
(DM 1) and a decoder (DM 2). DM 1 wishes to encode the
M-valued random variable M to DM 2. Let X denote the X-
valued random variable which is transmitted to DM 2. DM
2, upon receiving X, generates its optimal decision U which
we also take to be M-valued. We allow for randomized
decisions, therefore, we let the policy space of DM 1 be
the set of all stochastic kernels from M to X. Recall that
P is a stochastic kernel from M to X if P(-|X = z) is
a probability measure on B(X) for every z € M and for
every Borel A, P(A|X = z) is a measurable function of x.
Let I'* denote the set of all such policies. We let the policy
space of DM 2 be the set of all stochastic kernels from X
to U. Let I'¢ denote the set of all such stochastic kernels.

Given ¢ € I'® and v¢ € TI'%, the goal in the classical
communications theory is to minimize the expectation

(37 = / e(m, )y (delm)y(dulr) P(dm),

where ¢ is some cost function. Typical applications have
c(m,u) = |m — ul?. It is well-known that for such prob-
lems the extreme solutions are the most informative ones:
Optimal encoders and decoders are deterministic with as
high information rate as possible.

Recall that a collection of decision makers who have an
agreement on the probabilistic description of a system and a
cost function to be minimized, but who may have different
on-line information is said to be a team (see, e.g. [21]).
Hence, the classical communications setup may be viewed
as a team of an encoder and a decoder.

In many applications (in networked systems, recommen-
dation systems, and applications in economics) the objec-
tives of the encoder and the decoder may not be aligned.
For example, DM 1 may aim to minimize

(7, 4) = / ¢ (m, uy® (dalm)y*(dulz) P(dm), (1)

whereas DM 2 may aim to minimize

T4y 7y = / e (m, w)y* (dem)y (dulz) Pdm).  (2)

Such a problem is known in the economics literature as
cheap talk. A more general formulation would be the case
when the transmitted signal is also an explicit part of the
cost function ¢¢ or ¢%; in that case, the setup is called a
signaling game. We will consider a noisy communication
setup, where the problem may be viewed as a signaling
game, rather than cheap talk, later in this study.

Since the goals are not aligned, such a problem is studied
under the tools and concepts provided by game theory. A
pair of policies 7*¢,v*? is said to be a Nash equilibrium
if

Je(’y*7677*7d) < Je(’}/e,’}/*’d) V,Ye cTe
JHye ) < Tyt el )

We note that when ¢ = ¢ the setup is a traditional commu-
nication theoretic setup. If ¢® = —c?, that is, if the setup is
a zero-sum game, then an equilibrium is achieved when ~¢
is non-informative (e.g., a kernel with actions statistically
independent of the source) and y¢ uses only the prior infor-
mation (since the received information is non-informative).
We call such an equilibrium a non-informative equilibrium.
The following can be shown:

Proposition 2.1: A non-informative equilibrium always
exists for the cheap talk game.

Crawford and Sobel [6] have made foundational contribu-
tions to the study of cheap talk with misaligned objectives
where the cost functions ¢® and c? satisfy certain monotonic-
ity and differentiability properties but there is a bias term in
the cost functions for a uniform source. Their result is that
the number of bins in an equilibrium is upper bounded by
a function which is negatively correlated to the bias.

A. Equilibrium, price of anarchy, and the issue of commit-
ment

In this paper, we take the cost functions as

2

2 A myu) = (m—u)’.

c® (m,u) = (m—u—>)
where b denotes the bias term. The motivation for such
functions stems from the fields of information theory, com-
munication theory and LQG control. Recall that for the
b = 0 case, the cost functions simply reduce to a minimum
mean-square estimation (MMSE) problem.

The formulation considered in this study focuses on se-
tups where there is not necessarily a commitment: If the
encoder and the decoder take part in a repeated game and are
committed to their announced policies, they should play ac-
cording to a policy that minimizes the total cost: J¢(¢, v%)+
J(v¢,v%); which results in 2inf . L« E[(m—u—%)?]+ %
However, a lack of commitment may lead one of the players
to deviate from their strategy and pick another function,
hence the need for a game theoretic solution arises.

Among the equilibria, one particular interest is on the
most informative ones: The (socially optimal) equilibrium
with the smallest .J¢(y*¢,y*®) + J¢(y*¢, y*1). As is com-
mon in game theoretic problems, a socially optimal solution
which minimizes the sum J¢(v¢,~v%) + J4(7¢,~74) is typ-
ically not achieved in any equilibrium, as we will observe
later in the manuscript.

B. Structural results on equilibrium policies

Let the cost functions defined as ¢¢ (m,u) = (m — u — b)*
and ¢ (m,u) = (m — u)” where b is bias term. Some exis-
tence and deterministic properties of the equilibrium policies
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of the encoder and the decoder are stated in [19] and [21,
Chp.4].

Theorem 2.1: [19] (i) For any ~°, there exists an opti-
mal %, which is deterministic. (ii) For any ¢, any random-
ized encoding policy can be replaced with a deterministic
~¢ without any loss to DM 1. (iii) Suppose v° is an M-
cell quantizer, then there exists an optimal ¢, which is the
conditional expectation of the respective bin.

The following builds on [6, Lem.1], which considers uni-
form scalar sources. We note that the analysis here applies
to arbitrary scalar valued random variables.

Theorem 2.2: An equilibrium policy has to be quantized
(or is equivalent to a quantized policy) for the encoder cost
function ¢® (m,u) = (m—u—b)* and the decoder cost
function ¢ (m,u) = (m — u)” where m is any scalar ran-
dom source and b # 0.

Proof: Let there be an equilibrium in the game (with
possibly uncountably infinitely many bins, countably many
bins or finitely many bins). Let two bins be B~ and B”. Also
let m® indicate any point in B<; i.e., m® € B“. Similarly,
let m? indicate any point in B?; i.e., m? € B®. The decoder
chooses the action u® = E[m|m € B*] when the encoder
sends m® € B and action u’ = E[m|m € B”] when the
encoder sends m? € B? in order to minimize its total cost.
Without loss of generality, we can assume that m® < m?,
hence u® < u”. Because of the equilibrium definitions from
the view of the encoder; (m® — u® — b)? < (m® — u® —
b)2 and (m? —u® — b)? < (mP — u® — b)2. Hence, 3
m that satisfies (i — u® — b)?> = (M — v® — b)? which
reduces to m = “W%"ﬁ+b:> (m —u®) = (uf —m) + 2b.
Recall that m® < 7 < m” due to the continuity of the cost
functions and this implies u® < m < u®. It then follows
that u® — u® = (v —m) + (M — u®) > 2/b|. Thus, there
must be at least 2|b| distance between the equilibrium points
(decoder’s actions, centroids of the bins), which guarantees
that the equilibrium policy must be discrete. [ ]

Recall again that for the case when the source is uniform,
Crawford and Sobel established the discrete nature of the
equilibrium policies. For the case when the source is ex-
ponential, [19] established the discrete-nature, and obtained
the equilibrium bins with finite upper bounds on the number
of bins in any equilibrium. For the Gaussian source case,
obtaining an analytical solution appears to be difficult due
to the complicated integrations involved, but the quantized
nature can easily be established: The Gaussian case is im-
portant because if the costs are aligned, optimal encoder and
decoder policies are always linear in a team-theoretic setup:
When b is non-zero, this may not be true. We will revisit
this topic later.

III. MULTI-DIMENSIONAL CHEAP TALK

Let the source be uniform on [0, 1] x [0, 1] and the cost
function of the encoder be defined by ¢¢(n, @) = ||m —ud—
b||2 where the length of the vectors is defined in Ly norm.

Theorem 3.1: An equilibrium policy, unlike the scalar
case, can be non-discrete and in fact linear.

e
0 01 02 03 04 05 06 07 08 03 1
x

o
0 02 04 05 08 1

o
0 02 04 05 08 1

(a) There are 2 quantization levels
on the x-dimension and 200 quan-
tization levels on the y-dimension.
The number of quantization levels
on the y-dimension can be arbi-
trarily chosen (since b is orthog-
onal to that dimension). As the
number of levels goes to infinity,
this construction converges to the
structure of a linear equilibrium.

(b) Sample finite equilibria in
2D with b, = 0.1 and by =
0.2 where the crosses indicate
the centroids of the bins, the
star indicates the middle point
and the square indicates the
shifted middle point.

Fig. 1: Sample equilibria in 2D

Proof: 1t suffices to provide an example. Consider
b = [0.2 0]. Then, as a limit case of the equilibrium in
Fig. 1a, the following encoder and decoder policies form an
equilibrium:

. B [ (CYma)  if my €[0.0,0.9]
7 (i ma) = (21,2) = { (C2,my) if my € (0.9,1.0]
0.45,m if z; =C!
7 a2) = (ur, ) = { 50.95 ng if 2y = C?

where C' and C? are any two constants. Here, the scalar
setup is applied on the z-dimension with two quantization
bins (recall that u; = E[mq|z; = C] or uy = E[mq|x; =
C?]), and a fully-informative equilibrium exists on the y-
dimension since there is no bias on that dimension. It is
observed that the encoder and decoder have linear policies
due to the unbiased property of the y-dimension. [ ]

Besides linear equilibria, there may be multiple (hence,
non-unique) quantized equilibria with finite regions in the
multi-dimensional case as illustrated in Fig. 1b.

Remark 3.1: If b is orthogonal to the basis vectors or
satisfies certain symmetry conditions, then linear equilibria
exist; namely, the presence of linear equilibria is a rare
occurrence. This argument applies also to an n-dimensional
setup for any n € N.

IV. QUADRATIC SIGNALING GAME: SCALAR CASE

The noisy game setup is similar to the noiseless case
except that there exists an additive Gaussian noise channel
between the encoder and decoder, as shown in Fig. 2, and
the encoder has a soft power constraint.

M—»{ ¢

Fig. 2: General system model.
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The encoder (DM 1) encodes a zero-mean Gaussian ran-
dom variable M and sends the real-valued random variable
X. During the transmission, the zero mean Gaussian noise
with a variance of o2 is added to X; hence, the decoder
(DM 2) receives Y = X 4 W. The policy space of DM 1,
I'¢, is similarly defined as the policy space in the noiseless
case: the set of stochastic kernels from R to R (this can be
viewed as the measurable subset of the space of all product
measures involving M, X with a fixed input marginal, under
the weak topology). The policy space of DM 2, I'?, is the
set of stochastic kernels from Y to U. The cost functions
of the encoder and the decoder are also slightly modified as
follows: DM 1 aims to minimize

J) = /ce(mu)ve(dﬂsIm)vd(du\y)P(dylx)P(dmL
whereas DM 2 aims to minimize
7) = [ lom e (defm)y(duly) P(dsla) P(dm),

where 7 = (v¢,7%) and P(dy|z) = P(W € dy — z) with
W ~ N(0,0?). The cost functions are modified as follows:

¢ (m,z,u) = (m —u—b)> + Ae?, ¢ (m,u) = (m — u)?
Note that a power constraint with an associated multiplier
is appended to the cost function of the encoder, which cor-
responds to power limitation for transmitters in practice.
If A = 0, this corresponds to the setup with no power
constraint at the encoder.

A. A Supporting Result

Suppose that there is an equilibrium with an arbitrary
policy leading to finite (at least two), countably infinite or
uncountably infinite equilibrium bins. Let two of these bins
be B and B?. Also let m® indicate any point in B<; i.e.,
m® € B%; and the encoder encodes m® to x® and sends
to the decoder. Similarly, let m? indicate any point in B7;
ie., m? € BP; and the encoder encodes m® to 2 and
sends to the decoder. Without any loss of generality, we
can assume that m® < m?. The decoder chooses the action
u = E[ml|y] (MMSE rule). Let F(m,z) be the encoder
cost when message m is encoded as z; i.e.,

Flm,z) = [ (0 (4) = ul (m) = ) (m —u = b)?

+ )\x2> dy 4)

Then the equilibrium definitions from the view of the en-
coder requires F'(m®,z%) < F(m®,2%) and F(m?,2%) <
F(m?,z). Now let G(m) = F(m,z%) — F(m,z?). Since
G(m) is a continuous function of m on the interval [m®, m?],
3m € [m®, mP] such that G(m) = 0 by the Mean Value
Theorem, which implies F(7,2%) = F(m,«?). Then by
writing the integrals as expectations, the following is ob-
tained:

E[(+* () [2" 1= E[(v*()* [« 142 ((«”)* = (=%)?)

2EHT()[eP - B ()[+o]) tb

(&)

m =

Recall that the arguments in Theorem 2.2 cannot be ap-
plied here because of the presence of noise. However, when
there is noise in a communication channel, the relation be-
tween E[u|z], E[u?|z] and m can be constructed as in (5).

B. Existence and Uniqueness of Informative Equilibria and
Affine Equilibria

We first note that Proposition 2.1 is valid also in the
noisy formulation; i.e. a non-informative equilibrium is an
equilibrium for the noisy signaling game, since the appended
power constraint is always positive. The gollowing holds:
Theorem 4.1: 1) Let0 < A < % For any b € R,
there exists a unique informative affine equilibrium.
2) If A > %, there does not exist an informative
(affine or non-linear) equilibrium. The only equilib-
rium is the non-informative one.

3) If A =0, there exists no informative equilibrium with
affine policies.

Sketch of Proof:

1) If the encoder is linear (affine), the decoder, as an
MMSE decoder for a Gaussian source over a Gaussian
channel, is linear (affine); this follows from the prop-
erty of the conditional expectation for jointly Gaussian
random variables; i.e., with the given affine encoding
policy x = v¢(m) = Am + C, the optimal decoder
policy would be

AE[m?]
A2E[m?] + E[w?]

Y(y)=Ky+L= (y-C) ©
Further, if the decoder is affine so that u = 4 (y) =
Ky + L, it can be shown that the optimal encoder is
also affine:

(m—L-—1b)
K+ NK

By combining (6) and (7), we obtain (K2+\)2E[w?] =
AE[m?] by assuming A # 0; which implies K? =

’\g[[;'é?] — A. If we combine the equations above by

using A and define the resulting mapping as T'(A),
we obtain

~¢(m)=Am+C = @)

A
AZTE[w?]/E[m?]

(?¢ﬂ£WW?OQ+A‘

can be viewed as a continuous function mapping the
compact convex set [0, max(E[m?]/E[w?],1)/\] to
itself. Therefore, by Brouwer’s fixed point theorem
[22], there exists A = T(A). Indeed, we can find

nonzero A, K, C and L for every 0 < A < ?Z}L;]
from the equilibrium equations in (6) and (7). For the
uniqueness of an informative fixed point, suppose that
there are two different nonzero fixed points A; and
Ay such that Ay = T(A;) and Ay = T(Ajy). Then
Al/T(Al) = AQ/T(AQ) 1mphes |A1| = |A2|, and
since the mapping is defined from [0, max(E[m?]/
E[w?],1) /)] to itself, the nonzero fixed point is unique.

A=T(A) =

®)
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Then the encoder may choose the nonzero fixed point
for the informative equilibrium if it results in a lower
cost than the non-informative equilibrium (due to the
cost of communication, an informative equilibrium is
not always beneficial to the encoder compared to the
non-informative one).

2) Let A > E[m?]/E[w?] and suppose that we are in an
equilibrium. Then, the encoder cost J¢ = E[(m —
u — b)? + A\z?] reduces to J¢ = E[(m — u)?] +
AE[z%] 4 b?, and since the decoder in an equilibrium
always chooses u = E[m|y], through P = E[z2?],
the following analysis leads to a lower bound on the
encoder cost:

J¢ = b2 + AE[2%] + E[(m — u)?]

> % + AP + E[m?Je” s 1(X3Y) ©)
=07+ AP+ E[mﬂeﬂé g (H%)
E[m?]
=P AP —— 1
AT PR (19)

Here, (9) follows from a rate-distortion theoretic bound
through the data-processing inequality (see for exam-
ple p. 96 of [21]). However, it follows that when
A > E[m?/E[w?], (10) is minimized at P = 0;
that is, the encoder does not signal any output. Hence,
the encoder engages in an non-informative equilibrium
and the minimum cost becomes E[m?] + b? at this
non-informative equilibrium.

3) Itis proved that an optimal encoder is affine such that
x = v%(m) = Am + C when the decoder is affine,
that is, v = y%(y) = Ky + L. Then, by inserting
A =0 to (5), m is obtained as

a B
m=gam M)

+KC+L+b.

The above holds for all m® and m?® with m® <m <
mP. Thus, if the distance between m® and m? is made
arbitrarily small, then it must be that KA = 1 and
KC + L+ b = 0. By combining these and (6), it
follows that a real solution does not exist for any given
affine coding parameter. ]

Remark 4.1: If either A\ or E[w?] is 0, an informative
affine equilibrium exists only if A, E[w?] and b are all 0.

C. Price of Anarchy and Comparison with Socially Optimal
Cost

In this part, it will be shown that the game theoretic cost
is higher than the socially optimal cost as expected, and the
information theoretic lower bounds on the costs and their
achievability will be discussed.

Theorem 4.2: There always exists a price of anarchy in
the game setup in the sense that the sum of the costs under
any equilibria is always larger than the socially optimal cost.

In the following, we discuss information theoretic lower
bounds on the performance of equilibria and socially optimal

strategies. The theorem below is based on the approach
outlined in (10).

Theorem 4.3: 1) For the game setup, if \ > g[[ﬁ;]]
(i.e., non-informative equilibria), the information the-
oretic lower bounds on the costs are achievable.

2) For the game setup, if A < % and b = 0, then the
information theoretic lower bounds on the costs are
achievable by linear policies. ,

3) For the game setup, if A < % and b # 0, the
information theoretic lower bounds on the costs are
not achievable by affine policies.

4) For the team setup, the information theoretic lower
bounds on the costs are always (both in the infor-
mative and non-informative equilibria) achievable by
affine policies.

V. QUADRATIC SIGNALING GAME:
MULTI-DIMENSIONAL GAUSSIAN NOISY CASE

The scalar setup considered in Section IV can be ex-
tended to the multi-dimensional Gaussian noisy signaling
game problem setup as follows. The encoder (DM 1) en-
codes an n-dimensional zero-mean Gaussian random vari-
able M and sends the real-valued n-dimensional random
variable X . During the transmission, the n-dimensional zero-
mean Gaussian noise with the covariance matrix X3 is
added to X and the decoder (DM 2) receives Y=X+W.
The policy space of DM 1, I'®, is the set of stochastic kernels
from R™ to R™. The policy space of DM 2, I'?, is the set
of stochastic kernels from Y to U. The cost functions of
the encoder and the decoder are as follows: DM 1 aims to
minimize

Je(3) = / ¢ (7, iy (d|i7)y* (dd]7) P(dg|7) P(dih),

whereas DM 2 aims to minimize

= (v¢,7%) and P(dj|Z) = P(W € df — %) with
W ~ N(0,%}). The cost functions are

¢ (i, @, @) = ||m—a—b|*+ M|, ¢ (1, @) = ||mi—a|*.

Note that we have appended a power constraint and an
associated multiplier. If A = 0, this corresponds to the setup
with no power constraint at the encoder.

A. Affine Equilibria

Theorem 5.1: 1) If the encoder is linear (affine), then
an optimal decoder policy is linear (affine).
2) If the decoder is linear (affine), then an optimal en-
coder policy is an affine policy.
3) For A > 0, there exists an affine equilibrium in the
multi dimensional Gaussian noisy signaling game.
Sketch of Proof:
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1) Let the affine encoding policy be ~¢(171) = Ami + C.
Then the optimal decoder, as an MMSE decoder for
a Gaussian source over a Gaussian channel, is affine:

) = K+ L =S AT (AN g AT +5,)
G-C) an
2) Let the affine decoding policy be @ = v4(¢) = K¢/ +

L. It can be shown that the optimal encoder is affine:
- -1
Ve () = A+ O = (KTK n M) KT
(m _I- E) (12)

-1
3) From (11) and (12), we have A = (KTK—i—/\I) KT

and K = £ ;AT (AS ;AT +553)
these, we obtain the following:

A=T(A) = (FFT+AI) ' F

where F' = (AX ;AT + EW)A AX ;. (13) implies
a mapping and this mapping is denoted by T(A).
Recall that the one-dimensional equivalent of (13) is
(8); hence, the results are consistent. Since FF7T is
a real and symmetric matrix, then it is diagonalizable
and can be written as FFT = QYQ~!. Now consider

1A

' By combining

(13)

n

lz Ul—l-)\

1

|T(A)||p = tr(AAT) = (14)

where v;,i = 1,...,n are the eigenvalues of FFT
and since F'F'T" is positive semi-definite, all these eigen-
values are nonnegative. Assuming the nonzero power
constraint (A > 0), v;/(v; +A)? < max(1,1/\?)
always holds. Then, by (14), we have | T(A)||r <
nmax(1,1/A?), which implies that T(A) can be
viewed as a continuous function mapping the com-
pact convex set ||A r € [0,nmax(1,1/A\?)] to itself.
Therefore, by Brouwer’s fixed point theorem [22], there
exists A = T'(A). [ |
We note, however, that there always exist a non-informative
equilibrium (see Proposition 2.1, which also applies to the
signaling game discussed in this section). However, there
exist games with informative affine equilibria as we state in
the following (see Theorem 5.2).

Proposition 5.1: If either A or X is zero, an informa-
tive affine equilibrium exists only 1f A, X5 and b are all
zero.

Remark 5.1: In the multi-dimensional case, fixed points
may not be unique.

Theorem 5.2: Let source M be an n-dimensional Gaus-
sian zero-mean random variable with covariance matrix ¥ ;

= diag{o2, ,---,02, } where diag indicates a diagonal
matrix, and noise W be a zero-mean n-dimensional Gaus-
sian random variable with covariance matrix X3, = diag
{02 ,--+,02 }. Then an informative affine equilibrium ex-

2 2
ists i e

wp,

VI. CONCLUDING REMARKS

It has been shown that the equilibrium policies may be
non-discrete and even linear for a multi-dimensional cheap
talk problem which is different from the scalar case. Fur-
thermore, for a quadratic Gaussian signaling game problem,
conditions for the existence of affine equilibrium policies
as well as general informative equilibria are presented for
both the scalar and multi-dimensional setups. Our findings
provide further conditions on when affine policies may be
optimal in decentralized multi-criteria control problems and
lead to conditions for the presence of active information
transmission in strategic environments.
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