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ABSTRACT: In recent years, the electric grid has experienced increasing deployment, use, and integration of smart 

meters and energy monitors. These devices transmit big time-series load data representing consumed electrical energy 

for load monitoring. However, load monitoring presents reactive issues concerning efficient processing, transmission, 

and storage. To promote improved efficiency and sustainability of the smart grid, one approach to manage this 

challenge is applying data-compression techniques. The subject of compressing electrical energy data (EED) has 

received quite an active interest in the past decade to date. However, a quick grasp of the range of appropriate 

compression techniques remains somewhat a bottleneck to researchers and developers starting in this domain. In this 

context, this paper reviews the compression techniques and methods (lossy and lossless) adopted for load monitoring. 

Selected top-performing compression techniques metrics were discussed, such as compression efficiency, low 

reconstruction error, and encoding-decoding speed. Additionally reviewed is the relation between electrical energy, 

data, and sound compression. This review will motivate further interest in developing standard codecs for the 

compression of electrical energy data that matches that of other domains.  
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I.  INTRODUCTION 

In the past few years, there has been a surge in the 

deployment of smart meters, a central component in the 

advanced metering infrastructure (AMI) worldwide. As at 

2016, about 169 million smart meters were installed in the 

UK, US, and China (Wang, et al., 2019). These devices allow 

a considerable amount of load-consumed electrical energy 

data (EED) to be collected at the medium-low voltage levels 

of the electric grid, mainly for load forecasting, especially in 

residential buildings (Wee and Nayak, 2019). Logged massive 

data from these devices create a demand on the limits of 

computing resources needed for their processing and storage.  

Therefore, as this demand continues to grow, likewise its cost, 

the need for efficient and guaranteed real-time data 

compression systems for electrical energy data becomes more 

evident (Nithiyananthan and Ramachandran, 2014).  

Computing resources in terms of memory storage hardware 

and sizes, data transmission hardware, and bandwidths are 

limited and constrained. It is no wonder then that the most 

important motivation behind data compression in this domain 

is reduced congestion of communication channels used for 

data transmission, reduced storage overhead, and improved 

data mining efficiency (Lendák, 2019).  

Compression minimizes storage space and the effect of 

transmission bandwidth, thereby minimizing the impact of 

memory, processor, network, and time constraints. As this 

need for compression in the electrical energy load monitoring 

domain remains, the science and art of compression 

technology will continue to be an important and challenging 

problem.  

Load Monitoring (LM) analysis is of fundamental 

importance to effective energy management in the smart grid. 

LM is categorized into two major parts: intrusive and non-

intrusive categories (Haq, 2018). The latter is more attractive 

since it involves lower cost, easier installation, and promising 

potentials for scalability (Batra, Dutta, and Singh, 2013). 

Notwithstanding, a relatively recent survey in Zhuang et al. 

(2018) reported that non-intrusive LM for energy detection in 

buildings is still challenging because of its high complexity. 

One of these complexities is the big dataset involved. 

Therefore, in carrying out LM analysis, the concepts of data 

acquisition, feature extraction, and load identification all 

reduce to the end goal of reducing the size of the electrical 

energy dataset without affecting its usefulness for inference 

and prediction.  

In retrospect, the advantages of compression cannot be 

overemphasized. For instance, in the digital audio domain, the 

compression of music and speech data has helped to fit more 

songs into smartphones and user-centric computing devices 

and download these files faster. Consequently, for this to 

manifest, there needs to be a new wave of in-depth research 

into the design of novel compression techniques and easily 

accessible codec libraries targeted at electrical energy data. In 
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the past decade (Figure 1), considerable research has been 

conducted on the compression of electrical energy data 

(electric signal waveforms). 

 
Figure 1: List of relevant publications on the compression of electrical 

energy data by year. 

Only a few reviews were found on the compression of 

electrical energy data. To the best of current knowledge, 

Tcheou et al. (2014) is the first work to present this as a 

research challenge for the smart grid. In Ringwelski et al. 

(2012). Tiny and mixed forms representative of lossless 

compression methods were compared for resource-

constrained smart-meter hardware. More recently, Wen et al. 

(2018) presented a general big-data survey with far-fetched 

categorizations of compression methods for smart-meter data. 

Also, Jumar et al. (2018) compared selected off-the-shelf 

lossless compression codecs. The recent book by Wang et al. 

(2020) also contains a chapter dedicated to compressing 

aggregated smart-meter data for modelling and forecasting 

analysis. 

Therefore, this paper conducts a review from the year 2006 

-the year 2020 of relevant literature on the compression of 

electric energy data (EED) for LM analysis. The contributions 

of this paper are focused on the current state of compressing 

electrical energy data about LM analysis. Furthermore, this 

review aims to provide a concise introductory reference for 

early-researchers in the design, development, and application 

of compression techniques for electric-energy data aggregated 

from smart meters or energy monitors. In contrast to the other 

papers, here, a general review of the literature on lossless and 

lossy compression methods and codec libraries for electrical 

energy data aggregated from either smart-meters or energy 

monitor devices is provided, with the added Objective of 

increasing renewed interest in researchers in this domain into 

the need for standardized and readily available codec libraries 

targeted at compressing and decompressing electrical energy 

data. 

The structure of the remaining sections of this paper is as 

follows: Section II focuses on a general overview of state of 

the art regarding compression techniques adopted in literature 

for EED. Section III focuses on EED lossy compression 

methods, and Section IV focuses on EED lossless 

compression methods. Section V discusses the challenges and 

further issues concerning EED compression. The conclusion 

is discussed in Section VI. 

 

II. STATE OF THE ART 

First presented is a survey of current and relevant literature 

for compression of electrical energy data. EED has many 

application-specific use-cases in the smart grid, such as energy 

feedback, grid monitoring, and load forecasting (Wang, et al., 

2020). The most important arguments for compressing this 

dataset type are motivated by the data volume, communication 

bandwidth, and energy efficiency (Gerek and Ece, 2008; 

Unterweger and Engel, 2015). A taxonomy table for the major 

compression methods in the literature is presented in Table 1. 

Discussions on the characteristic components of electrical 

energy data for compression are presented in Tcheou et al. 

(2014) and Haq (2018).  

A. Electrical Energy Data Parameters 

The first interface for obtaining electrical energy data for 

measurement is an instrumentation and data acquisition device 

(DAQ) (Haq, 2018). To compute its main parameters (RMS 

voltage, current, real power, power factor), collected energy 

signals need to be converted to discrete-time signals. This is 

because raw electrical signals are continuous (analog). The 

uncertainty in the transformed signal is determined by the 

accuracy of the ADC (Analog-to-Digital Converter) utilized 

and it determines the resolution of the signal. 

Fundamentally, electric signals are quantified in the form 

of voltage and current waveforms. The absence of a frequency 

component determines their classification as alternating (AC) 

or direct (DC) waveforms. Generally, for a three-phase AC 

power-point, the sinusoidal 120-degree phase-shifted raw data 

stream from the sensing device comprises of three voltage 

measurement channels and four current measurement 

channels (including one for the neutral conductor). Such 

fundamental parameters of interest in the load monitoring of 

electrical energy are outlined and discussed.   

1) Voltage 

Electrical voltage waveform measurement is carried out 

using sensors known as voltage transformers (for example, 

AC–AC adaptors). They are used to measure the peak and 

root-mean-square (RMS) voltages from a terminating point. 

Voltage waveforms have a more stable form and are therefore 

easier to reconstruct digitally, unlike current waveforms.  

2) Current 

More practically, due to varying individual phase-loads 

that cause phase difference and distortions, electrical current 

waveforms are especially individually distorted. A core reason 

is that current waveforms change when power demand 

changes (Gerek and Ece, 2008). When few loads are 

connected in a monitored building, variations in the waveform 

rarely occur. Consequently, current waveforms are sine waves 

with unstable forms, varying considerably depending on the 
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operating load (resistive, inductive, or capacitive load) 

appliances and require increased sampling to reconstruct 

accurately (Haq, 2018). 

3) Power and Power Factor 

A central metric feature in almost all energy-metering 

devices is the real power (Zhuang, et al., 2018; Lendák, 2019). 

It is the measure of the actual rate at which electrical energy 

is consumed. Mathematically, it is calculated through the 

electric voltage and current measurements. Also, the power 

factor is a valuable metric for differentiating between different 

operating load appliances. It is a measure of the phase 

difference caused by both the inductive and capacitive 

components. A positive phase difference indicates a net 

inductive reactance, that is, electric current lag voltage. On the 

contrary, a negative phase difference indicates a net capacitive 

reactance, with electric current leading to voltage. 

4) Sampling Frequency 

One essential requirement in many LM analysis setups is 

to detect connected electrical load appliances accurately from 

their aggregated load data (Wang, et al., 2012). For energy 

monitoring through DAQs, a specific sampling rate or 

frequency depends on the desired amount of information to be 

obtained from the load data source. The sampling rate or 

frequency accounts for the resolution along the time-axis 

during analog to digital conversion. In general, since electrical 

appliances draw current, for finer observation of the 

harmonics and transient switching response of electrical 

appliances, it is a sensible decision to utilize a higher sampling 

frequency. It was noted that typical energy monitors used a 

one-second to one-minute sampling rate on 16-bit ADCs 

(Haq, 2018).  

5) Resolution 

Resolution of the digital electrical signal measured by any 

DAQ system is defined by the number of bits of the ADC in 

the DAQ system. This number of ADC bits represents the 

resolution and the measured data axis during analog to digital 

conversion (Haq, 2018). It defines the number of digital codes 

(symbols of 1s and 0s) that can be formed using these bits. 

Therefore, resolution influences the accuracy of load event 

detection from an aggregated data source amidst simultaneous 

load events. 

 

B. Electrical energy Data Acquisition Systems 

Computationally, data is simply a digital representation of 

information that can be organized, stored, and processed as a 

file (Pu, 2006). Although not exhaustive, data can be classified 

into text, binary, audio, image, and video formats. Text data 

are usually in American Standard Code for Information 

Interchange (ASCII) format, in files ending with specific 

extensions, for example: '.txt, .tex, .doc' extensions, or they are 

typically any programs in a high-level language file format. 

Examples of binary data are spreadsheet data, executable files, 

and so on. Examples of image data are represented by two-

dimensional arrays of pixels, vectors, or math equations. 

In contrast, audio (sound) data are wave (periodic) 

functions, and such as the '.wav' file format. Electrical signals 

(current and voltage) also wave functions. Depending on the 

data acquisition method, they have been obtained as audio 

formats or logged in text files. The size of the logged data is 

almost linearly proportional to the sampling frequency (Kelly 

and Knottenbelt, 2015). 

Consider a DAQ acquiring one-hour energy data from two 

sensor channels (electric voltage and current) 16-bit per value 

(2-bytes (B)) with: 1-Hz, 1-kHz, and 1-MHz sampling 

frequency. The estimated corresponding file sizes would be as 

follows: 

 1𝐻𝑧: (1𝐻𝑧 ∗ 3600𝑠 ∗ 2𝐵) ∗ 2 ≈  14.4 kB;  

1kHz: (1kHz ∗ 3600s ∗ 2B) ∗ 2 ≈  14.4 MB; and 

1MHz: (1MHz ∗ 3600s ∗ 2B) ∗ 2  ≈  14.4 GB 

Therefore, as the sampling rate increases, the transmission 

of such EED measurements becomes more demanding, 

especially at the receiving end of the communication link 

(Unterweger and Engel, 2016). Higher frequencies lead to 

larger file sizes. 

In contrast, load-appliance detection algorithms in 

literature (Unterweger and Engel, 2016) require sampling 

frequencies in the kHz to MHz or greater range to accurately 

perform load disaggregation in near-real-time (Haq, 2018). 

Higher frequencies enable more precise detection of transient 

appliance switching events and prediction of the power 

consumption. This can often be achieved by utilizing a single 

power meter per household; this ability is called scalability. 

Scalability can be considered as the ability of a DAQ system 

to detect newly added load appliances easily. 

Recently, there has been a growing interest in appliance-

level e-monitoring to help consumers view fine-detailed 

energy consumption information or high-resolution data for 

Table 1. Taxonomy table for major compression methods applied to electrical energy data. 

Class Category Representative 

Techniques 

General CR Selected References 

Lossy Transform and 

Parametric coding 

DWT, SAX, 

PAX,SVD, PCA, 
FLDC 

Relatively 

high 

(Wang, et al., 2020; Wang, et al., 2017; Wee and Nayak, 2019; Tariq, et al., 

2015; Sayood, 2018) 

Lossless Statistical-based 

Coding (Entropy 
methods) 

RLDC, Audio-based 

codecs,  

Relatively 

low 

(Abuadbba, et al., 2018; Haq, 2018; Sayood, 2018; Firmansah and Setiawan, 

2016; Unterweger and Engel, 2016; Kelly and Knottenbelt, 2015) 

Dictionary-based 

Coding 

LZMA codecs and 

variants 

Relatively 

low 

 CR – Compression Ratio 
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increased overall appliance detection accuracy (Wang, et al., 

2012; Kelly and Knottenbelt, 2015; Yan, et al., 2019). 

Therefore, the eventual choice of the sampling frequency is an 

essential consideration for accurate load disaggregation 

analysis. 

On the whole, the first and crucial stage for any LM system 

is data acquisition. Such DAQ devices are called smart meters 

or energy (e)-monitors (Haq, 2018). In Wang et al. (2020), a 

smart meter is described as a two-way data communication 

link between a building and a utility company. The purpose is 

to enable the feedback of EED to the utility company for load 

forecasting while also enabling remote billing. The utility 

often owns the smart meter and it comes with integral 

disadvantages related to data confidentiality and privacy 

(Wang, et al., 2015).  

On the other hand, an energy monitor is not utility 

controlled as it works independently with existing energy 

meters, without any direct effect on the billing. E-monitors 

also assist in observing energy consumption patterns in real-

time and, such devices can help users make informed 

decisions for conserving energy. E-monitors are preferred 

because they can be easily installed and minimize privacy 

concerns (Lendák and Horvath, 2019; Kelly and Knottenbelt, 

2015; Haq and Jacobsen, 2018). Sampling frequency divides 

DAQ e-monitors and smart meters into low frequency 

(typically less than 1Hz) and high frequency (kHz and above) 

(Basu, 2015). 

The resultant load or energy consumption profiles from 

these two electrical energy monitoring devices help determine 

the energy usage pattern concerning time (Basu, 2015; Le, 

2017). For consumers, these patterns or trends help find 

energy leaks or gaps, while for utility companies, these 

patterns are statistical tools for load forecasting (Zhuang, et 

al., 2018). Data from these smart devices are primarily used 

for monitoring and planning purposes that require coarse-

grained information. Further, Haq and Jacobsen (2018) 

provided a sound analysis of non-intrusive LM and 

highlighted critical requirements for such DAQs.  

The trend in the current literature is a preference for high-

frequency data to study load signatures such as electric current 

and voltage waveforms to identify appliances more correctly. 

However, this comes with increased cost and complexity. 

From the lower cost and complexity perspective, there is a 

higher deployment of low-frequency meters but with limited 

functionality. In the study by Zhuang et al. (2018), they 

concluded that a low-cost but high-frequency sampling LM 

framework is necessary to facilitate the scalability of LM. This 

reduced cost and improved scalability can be achieved and 

made sustainable through efficient compression of monitored 

(logged) electrical energy data quantifiable in its parameters. 

However, the availability of such standard compression 

codecs for general load monitoring analysis of electrical 

energy data is still far from mature and open to more research 

and development time. 

B. EED Compression 

Smart grid meters and energy monitoring devices 

continuously churn out a huge amount of data at a constant 

rate, bringing up specific challenges in their transmission and 

storage. In the context of computing, the compression of data 

implies representing information in a compact form by 

removing redundant information in the data (Sayood, 2018). 

The performance of applied compression techniques has also 

been interpreted using different indices in literature (Maher, 

2003). The main idea of compression is that if redundancy can 

be identified and removed in a given dataset or stream, it can 

reduce its effective size (Nithiyananthan and Ramachandran, 

2014). The essential criterion for compression is that the 

storage size of the source data is reduced. The apparent quality 

of the source data is not adversely affected by the compression 

method. This measure or index defining the degree of file size 

reduction is usually expressed in a compression ratio (CR). 

The compression ratio is a measure of compression efficiency. 

Since standard compression algorithms aim to optimise 

savings percentage, an energy-savings metric was used as the 

primary metric comparison of data compression algorithms 

(Sadler and Martonosi, 2006). The compression ratio can be 

understood as the size of the original data file (input) divided 

by the compressed data file (output). Compression ratio (CR) 

in percentage can also be expressed as the savings percentage 

(SP), where 𝑁𝑜 is the size of the uncompressed data, 𝑁𝑐 is the 

size of the compressed data. 

CR(%) =  100 ×
𝑁𝑐

𝑁𝑜

 (1) 

 𝑆𝑃(%) =  100 ×
(𝑁𝑜  –  𝑁𝑐)

𝑁𝑜

(2) 

In terms of real-time compression performance for 

transmission through a communications channel, another 

measure is the bandwidth of the transmission channel given in 

the bit rate (BR, bits per second). This is the number of bits 

required to represent the data, divided by the total playing 

(recording) transmission time. Other measures of a 

compression algorithm more relevant to engineers who 

develop compression algorithms are computational 

complexity, compression time, entropy, overhead, etc. In 

terms of reconstruction of the original load-profile data from 

smart-meters, a measure known as the mean-peak percent 

error (MPPE) was introduced in Wang et al. (2020), where 
|𝑒𝑡| is the absolute difference between the reconstructed and 

original data at time-instance 𝑡; the number of time-intervals 

is an integer 𝑇, and 𝐿𝑚𝑎𝑥 is the daily peak load. 

MPPE(%) =  100 ×  
1

𝑇
∑

|𝑒𝑡|

𝐿𝑚𝑎𝑥

 

𝑇

1

(3) 

The efficiency of a compression algorithm is more critical 

when data is recorded in real-time but limited by memory 

storage or transmission channel constraints. The efficiency of 

a decompression algorithm is of more importance at the 

receiving end, where the data quality is of concern. It is, 

however, important to note that there is no 'one-size-fits-all 

solution' for data compression (Pu, 2006), as it is subject to a 

space-time complexity trade-off both at the compression and 

decompression ends (Sari, et al., 2018).  

The method of data compression can either be lossy or 

lossless. The motivation for lossless data compression lies in 

the ability to compress while still maintaining the quality of 

the original data. However, because of much higher 

compression ratios, lossy compression methods have found 
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high application in situations where some loss in original data 

quality is not of concern. Lossy compression typically reduces 

bits in the data by identifying and removing all possible 

redundant (unnecessary) information. It can be mainly applied 

to accelerate similarity search, upon which many critical data-

mining applications like load profiling and customer 

segmentation are based (Wang, et al., 2020). Whereas lossless 

compression usually reduces bits by removing only statistical 

redundancy.  

In the smart grid literature, most compression works focus 

on lossy methods suited to smart meters since they are 

designed to use sampling rates that significantly relax the 

requirements for communication channels and storage space 

to measure aggregated electrical data. Wang et al. (2020) 

presented a comprehensive study on smart meter big data 

compression solutions. The smart power grid is projected to 

utilize waveform level monitoring with sampling rates in the 

kilohertz range for detailed grid status assessment (Jumar, et 

al., 2018). In some LM applications, it is vital to 

reconstructing data precisely similar to the original without 

losing information. Atif et al. (2019) suggested using a mix of 

Singular Value Decomposition (SVD), normalization, and 

value-index sparse matrix representation. More detailed 

information is required for better event detection for power 

quality (PQ), energy monitoring, and load disaggregation 

(Wang, et al., 2020). Tariq et al. (2015) observed that more 

than 70% of smart grid data consists of a repetitive timestamp 

pattern and current reading. They proposed a solution for 

saving the timestamp, such that the time interval is used to 

retrieve the timestamps back when the file is decompressed. 

This technique was then augmented with dictionary-based 

methods codecs for improved compression and 

decompression times. 

Fagiani et al. (2019) concluded that electrical data loses its 

quality at low sampling rates and thereby, affect the quality of 

the load monitoring. Wang et al. (2012) proposed a 

compressive sampling approach to measure steady-state 

current signatures using a random filter and analog to 

information converter to sub-sample the original current 

signature. More recently, Rodriguez-Silva and Makonin 

(2019) proposed another approach, termed "universal", using 

a complex filter, probabilistic, and partition pipelines. In Yan 

et al. (2019), a non-audio compression method, lossless 

coding precision (LCP) codec was used on the LIFTED 

dataset and compared with dictionary-based data compression 

methods. Basu (2015) highlighted the complex problem of 

detecting low energy consuming devices at low sampling 

rates. A System-on-Chip (SoC) compression encoder was 

developed in Bellasi et al. (2019) using a combined non-

uniform sampling (NUS) and random modulation techniques 

for automatic compression of electric current data.  

The same concept as compressing electrical data was 

investigated in Clark and Lampe (2015) on the BLUED 

dataset. Fagiani et al. (2019), working with the UK-DALE and 

REDD datasets, used NUS and uniform sampling (US) as a 

data-reduction policy to reduce the acquired electrical data 

size and ensure compliance with network bandwidth limits. In 

Kelly and Knottenbelt (2015) a popular lossless audio-based 

compression encoder, FLAC, was used to generate the UK-

DALE dataset. Following this approach, in Haq (2018), a 

comparison was made between popular audio-based and 

dictionary-based compression techniques or algorithms. It 

concluded that audio-based compression shows better 

performance concerning compression ratio and processing 

time for electrical energy data. Many general-purpose 

dictionary-based algorithms have also been widely and 

effectively used to compress both text and program files for 

storage and transmission over the communication network. 

However, they are inefficient, having a very low compression 

ratio when used on audio data (waveform data) with statistical 

properties. Conversely, it has been noted that many lossless 

audio compression algorithms are no longer actively 

maintained (Hans and Schafer, 2001). 

 
III. EED LOSSY COMPRESSION 

Currently, lossy compression methods dominate the data 

modelling (mining) and analysis of electric power big data. 

Wen et al. (2018) presented a survey on the characteristics of 

smart meters and the challenges with compressing smart meter 

data as big data. The authors highlighted some research issues 

in smart meter data compression methods. They noted that 

lossless methods are often less efficient than lossy 

compression methods that achieve far lower compression 

ratios. They also noted that, although there are many studies 

on the compression of smart meter data, there is no perfect 

fool-proof system available to evaluate the ideal compression 

effect of the algorithm(s) used in processing the big data 

churned out by smart meters.  

The roll-out trend of smart meters for capturing domestic 

loads in residential buildings cannot be understated as it keeps 

increasing. It can be argued that one reason for this is the ease 

of aggregated usage profile insight on appliance loads (Wang, 

et al., 2020). However, it has been noted that, even with this 

advantage, 'big data' problem in terms of data storage, 

transmission, and processing (due to limited memory storage 

size, bandwidth, and processing-time of the hardware), always 

arises (Chandak, et al., 2020). 

Therefore, compressing the load profile of smart meter 

data allows for a more efficient approach to this 'big data' 

problem. In this context, lossy compression is preferred in 

most smart-grid applications to lossless compression. The 

goal is to retain only essential information in the smart meter 

logged time-series data (Wang, et al., 2020; Wen, et al., 2018).  

Most lossy methods have a linear relationship with CR; 

that is, their information loss grows rapidly with the increasing 

CR (Wang, et al., 2016). A compact list of most commonly 

used lossy compression methods applied in this domain 

include Discrete Wavelet Transform (DWT), Discrete Fourier 

Transform (DFT), Singular Value Decomposition (SVD), 

Symbolic Aggregate Approximation (SAX), Principal 

Component Analysis (PCA), Wavelet Transform, Mixed 

Parametric and Transform Coding (Huang, et al., 2019; Wang, 
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et al., 2020). Another solution presented in (Huang, et al., 

2019) utilizes deep-stacked auto-encoders for electrical 

energy data (EED) load compression and classification. Lossy 

compression methods have also been proposed for feature 

identification. For instance, (Wang, et al., 2016) and (Wang, 

et al., 2017) used the K-SVD sparse representation technique. 

The authors showed that their solution outperforms discrete 

wavelet transform (DWT), principal component analysis 

(PCA), as well as a Piecewise Aggregate Approximation 

(PAA).  

Notably, the state-of-the-art feature-based load data 

compression method (FLDC) is suited to low granularity (or 

low frequency) EED in the lossy compression group. FLDC 

will be reviewed and compared to top-performing 

compression methods used on EED, from smart meters to 

smart-grid applications applied to load forecasting and 

analysis.  

A.  Feature-based Load Data Compression (FLDC) 

Tong, et al. (2016) stated that FLDC is an EED-specific 

lossy compression technique. It combines the desirable 

properties of high compression efficiency, low reconstruction 

error, and a simple data compression format. Some 

fundamental terminologies involved with this method are 

presented next (Wang, et al., 2016; Wang et al. 2020 and 

Tong, et al. 2016). 

1) Residential load profile characteristics 

The time interval of 30 minutes is a typical standard time 

instance for recording electric power consumption (kWh) as 

load profile data (Wang, et al., 2016). The other two main 

characteristics as listed in Wang et al. (2020) that allow for 

compression of this type of time-series data are Consecutive 

Value Difference (CVD) and Generalized Extreme Value 

(GEV). 

2) Consecutive value difference (CVD) 

For data compression, a small CVD or SCVD helps to 

improve both compression efficiency and error. The CVD 

shows that at low levels (reduction in load), the load profile is 

more stable, and hence, the CVD is smaller. In contrast, when 

the load increases, primarily due to switching on high-power 

consuming appliances (such as ovens, irons, cookers, washers, 

etc.), the load profile becomes more unstable, and hence the 

CVD is bigger. Cumulative probability analysis of the CVD 

reveals what percentage of consecutive load values exhibit 

slight differences compared to the rest. 

The CVD is described mathematically as:  

𝑟𝑛,𝑡 =
𝑃𝑛,𝑡 − 𝑃𝑛,𝑡−1

𝑃𝑚𝑎𝑥,𝑛

(4) 

where 𝑟𝑛,𝑡 is the CVD rate at time instance 𝑡 of day 𝑛; 𝑃𝑛,𝑡 

is the load at time-instance 𝑡 of day 𝑛; 𝑃𝑛,𝑡−1 is the load at 

time-instance 𝑡 − 1 of day 𝑛, and 𝑃𝑚𝑎𝑥,𝑛 is the peak load on 

day 𝑛. 

The load profile can be categorically divided into two 

states: a base-state and a stimulus-state. A base state in the 

load profile corresponds to a stable load, indicating smaller 

CVD. A stimulus-state corresponds to unstable load and 

higher CVD. The imaginary line separating both states with 

the base-state below and the stimulus-state above is called the 

state-boundary. At the state boundary, a load event is said to 

occur. Load events occur when the load profile deviates from 

base-states to several stimulus states before returning to the 

base state. This transition period at the imaginary state-

boundary marks the occurrence of a load event that can be 

exploited for compression using a maximum likelihood 

estimation. 

3) Generalized extreme value (GEV) 

The GEV distribution function through the maximum 

likelihood estimation (MLE) is used to model the probability 

of extreme events common in residential electric power-

consumption profile. It exploits the fact that the load-profile 

data for residential buildings are typically distributed denser 

at the base states and less dense at the stimulus states. The 

Frechet-type GEV function is the recommended best fit for 

residential or household smart meter data (Wang, et al., 2020). 

The GEV function is mathematically expressed as: 

𝐹(𝑥) = exp(−𝑎−𝑏) (5) 

𝑎 = 1 + 
𝑘(𝑥 − 𝜇)

𝜎
, 𝑏 =

1

𝑘
 (6) 

 

where 𝑥 is the input data; 𝑘 is the fitting parameter (𝑘 >

0). Also,  𝜇, 𝜎 represent the centre and scale (variance) 

parameter, respectively, and then 𝑎, 𝑏 are placeholders for 

simplifying the expression. 

The FLDC is based on the general extreme value 

characteristic of residential load data. The authors state that 

the CR for the FLDC is always close to 1.8% of the original 

data volume. This was validated on the Irish and Chinese 

smart-meter data. The FLDC, as illustrated in Figure 1, is a 

framework of 6 operations at the high-level view.  

4) Generalized extreme value (GEV) distribution fit 

This is the first operation. Given a time-series data 𝑥, with 

each load-profile data-point 𝑥𝑡, possibly characterized by 

seasons in a year. A distribution fitting is obtained by 

maximum likelihood estimation, which gives 𝐹(𝑥), a 

cumulative probability density function (PDF). The load-state 

boundary 𝐵 = 𝑥 is detected and computed at the point where 

𝐹(𝑥) = 𝛼, where 𝛼 is a confidence probability constant. 
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Figure 2. FLDC framework. 

5) Load state identification 

After 𝐵 is calculated, a load-state matrix 𝑆 =

[𝑆1, 𝑆2, … , 𝑆{𝑛−1}, 𝑆𝑛] is constructed. The element 𝑆𝑡 are 

either 0 (base-state) or 1 (stimulus-state). They are generated 

by checking if each load value at each time-instance in the 

uncompressed load-profile data is below 𝐵. 

𝑆𝑡 = {
0,   𝑖𝑓 𝑥𝑡 ≤ 𝐵
1,   𝑖𝑓 𝑥𝑡 > 𝐵.

(7) 

6) Base state discretization 

The next operation is to discretize the base-states, that is, 

elements of the state-matrix 0. This is done by dividing the 

area under the GEV PDF fit by 𝒄 = [𝑐0, 𝑐1, … , 𝑐𝑑], where the 

discretization interval number 𝑑 = 8 gives good resolution, 

𝑐0 = (𝜇 𝜎) 𝑘⁄ , 𝑐𝑑 = 𝐵. The area then becomes 𝛼/𝑑. 

Therefore, any load series that falls in the base-state whose 

average-value is in the interval 𝒄, the series is coded by what 

is called the sub-state ID, 𝐼𝐷(𝑥)  =  𝑖, and the expected value 

𝐸(𝑖) = ∫ 𝑥 𝐹(𝑥) 𝑑𝑥
𝑐𝑖

𝑐𝑖−1
, where 𝑖 = 1,2, … , 𝑑.  

7) Event-detection 

Further, the following operation is to detect load-event 

transitions in the load-state matrix 𝑆 through edge-detection. 

Then the number of stimulus states is coded by slicing the 

load-event data profile. 

This is achieved by iterative one-step scanning of the 

elements of 𝑆.  The start of the load-event 𝑡𝑠 = 𝑡 + 1, if 

𝑆𝑡+1 – 𝑆𝑡 = 1, this implies a change from 0 → 1. The end of 

the load event is 𝑡𝑒 = 𝑡 − 1, if 𝑆𝑡 − 𝑆𝑡−1 = −1, this implies a 

change from 1 → 0. Then, the load-event data profile is 

constructed by slicing the load data, that is, 𝐸𝐿𝑃 =

 [𝑥𝑡𝑠, 𝑥𝑡𝑠+1, … , 𝑥𝑡𝑒]. The length of the ELP, which is 𝑡𝑒 −

𝑡𝑠 + 1, represents the number of stimuli states. 

8) Event-clustering 

After all event states are detected, the sliced load-event 

data ELP profiles are used to construct a load-event segment 

pool for load-event clustering.  The ELP length now 

represents the operation time interval of higher-power-

consuming appliances. Thus, the ELPs are firstly classified 

according to their lengths, profile shapes, and load levels as 

metrics for the clustering. Wang et al. (2020) adopted the 

hierarchical clustering algorithm. The ELPs are divided into 

M groups with a group ID counted from 1 to M. ELPs with 

the same group ID are averaged to shape the representative 

profile data.  

9) Load-data compression format 

The last step in the coding stage is to store the 

representative data profile for one load event, and a data-

structure format was proposed for this purpose. This data-

coding format allows for effective data compression by 

reducing data storage and processing through a 16-bit (2 

bytes) binary structure, as shown in Figure 2. The most 

significant bit on the left is called the 'next-day bit, which 

indicates whether the load event occurs on the same day (0) or 

the next day (1), concerning the start of the load event. The 

following six bits encode the time that the load event started. 

The maximum value for this time interval is 26 = 64, and the 

minimum is 0. The following six bits represent the event group 

ID, which also supports a maximum of 64 event clusters 

before an overflow occurs. The last three bits, on the right, 

represent the sub-base state ID, which cannot be more than 

23 = 8 sub-base states.   

10) Data reconstruction 

The reconstruction of the original load profile can be 

carried out through a two-step process: The first is 'event 

reconstruction.' Here the representative load profile of the 

event group is used to reconstruct the original load-event 

profile using the start-time and the event group ID. The second 

and last step is 'base-state reconstruction.' Here, the base-load 

data before load events are generated from the expected values 

corresponding to the sub-base state IDs coded in the last three 

bits of the compressed data. 

B.  Performance Comparison 

State-of-the-art methods such as Piecewise Aggregate 

Approximation (PAA), Symbolic Aggregate Approximation 

(SAX), Discrete Wavelet Transform (DWT), and Resumable 

Load Data Compression (RLDC) have been compared in 

Wang et al. (2020). The metrics used for evaluation of their 

compression performance are the compression ratio and 

mean-peak per cent error. Figure 3-4 shows that the FLDC has  
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the best balance in performance in terms of compression 

efficiency and reconstruction error. The recommended choice 

of compression format in order is shown in pyramid form in 

Figure 5-6. The conclusion is that when compression 

efficiency and low reconstruction error are vital objectives, the 

best EED lossy compression method is the FLDC. The RLDC 

becomes a practical choice when reconstruction error cannot 

be tolerated (as it is a hybrid lossless compression method 

specifically developed for the smart grid). 

 

 
Figure 4. Coding performance comparison: compression ratio 

evaluation metric. 

 

IV. EED LOSSLESS COMPRESSION 

Data compression aims for the efficient removal of 

redundant information from a data stream. Lossless 

compression (coding) can be described as a compact term for 

compression methods that aim for perfect data 

reconstruction during decompression (decoding) (Maher, 

2003). In other words, lossless compression methods can 

perfectly reconstruct the original data that was compressed. 

Notwithstanding, it is believed that lossless compression 

technology has reached its limit (Sayood, 2018). This 

compression class can be further divided into two sub-

classes: statistical-based and dictionary-based methods. 

Statistical-based methods are also known as entropy-

based methods. Examples are arithmetic algorithms, such as 

the Huffman algorithms, which are based on a statistical 

model and the probability distribution of the source data. The 

Huffman coding algorithm is known as one of the best-

known variable-length coding algorithms for statistical 

coding methods. Others are the Golomb–Rice coding and the 

Tunstall coding (Pu, 2006; Sayood, 2018). 

 

 
Figure 5. Decoding performance comparison:  mean peak percentage 

error. 

 

 
Figure 6. Compression-ratio objective pyramid (strong (dark blue), 

balanced (light blue), weak (gray)). 
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                     Figure 3. FLDC data compression format. 
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Figure 7. Lossless objective pyramid (strong (dark blue), balanced (light 

blue), weak (gray)). 

 

In contrast, dictionary-based approaches use the 

identified repeated pattern structure in the data to eliminate 

redundancy using dictionary records as sliding windows. 

They process the source as the input of characters rather than 

as a stream of bits. This approach is focusing instead on the 

computer's memory ability to recall the strings already seen. 

Dictionary-based methods are faster than entropy-based 

methods. Popular in the fundamental form are LZ77 

(Lempel-Ziv 1977), LZ78 (Lempel-Ziv 1978), and LZW 

(Lempel-Ziv-Welch, 1984). These algorithms have many 

variants which can be accessed using the 7-Zip package in 

either Windows or Linux operating systems (Jumar, et al., 

2018). 

For lossless EED compression, the work of (Gerek & 

Ece, 2008) is seminal. The authors introduced lossless 

codecs originally developed for audio and image signals for 

power quality event data, such as LZP2, FLAC, TTAEnc, 

ZIP, JPEG-LS, and JPEG2000-lossless. Abuadbba et al. 

(2018), for smart meter readings, developed a lossless 

compression algorithm based on a gaussian approximation 

and arithmetic coding statistical perspective. Considering 

energy-constrained smart meter hardware, the work of 

Ringwelski et al. (2012) compared statistical (Adaptive 

Trimmed Huffman Coding and Adaptive Markov Chain 

Huffman Coding). They also compared dictionary (Tiny 

Lempel Ziv Markov Chain Algorithm) and mixed statistical-

dictionary (Lempel Ziv Markov Chain Huffman Coding) 

based lossless compression algorithms. The algorithms were 

designed with low computational complexity (a small 

footprint of program memory and therefore lesser processing 

time). Ringwelski et al. (2012) applied these algorithms to 

low-frequency smart meter electrical data. They concluded 

that the statistical methods were much faster but had a lower 

compression ratio than the dictionary-based methods. 

Unterweger and Engel (2015; 2016) proposed a 

Resumable Load Data Compression (RLDC) technique that 

allows for resumability on low-frequency electric-power 

load profile datasets. They also proposed this technique for 

the lossless compression of high-frequency EED from the 

smart grid. This technique is called differential exponential 

Golomb and arithmetic (DEGA) coding. Their method 

combines normalization, entropy coding, differential coding, 

variable-length encoding (adaptive Golomb (rice) coding), 

and binary arithmetic coding. This compression approach 

was proposed for data transmission, promising higher 

compression ratio performance compared to other lossless 

methods.  In Sarkar, et al., (2018), the differential binary 

arithmetic coding method was extended for power system 

operational (low frequency) EED when data storage was 

considered. The method had a slightly lower compression 

ratio with an advantage of low algorithmic complexity for 

low-frequency power-grid datasets. 

Efficient lossless compression algorithms exist for audio, 

video, and general-purpose text data. However, apart from 

the RLDC, no EED-specific lossless compression method 

can exploit the encountered EED waveform's strong, 

periodic behaviour and multichannel characteristics (Jumar, 

et al., 2018).  

A.  Sound and Sampling Frequency 

Sound waves are complicated phenomena. Nominally, a 

sound wave is caused by a moving object in air or any other 

medium, and the output of recording and reproducing sound 

is usually called audio. Sound can be viewed as the 

propagation of pressure waves by the vibrations of 

molecules. It is often described as a time-dependent 

function, instantaneously measuring the pressure of a 

medium which can be represented as a periodic electrical 

signal in the form of the sum of sine or cosine waves. 

An AC electrical signal inherently possesses a 

characteristic sound (Dukish, 2009). The typical sound is a 

digitized waveform, which essentially represents an 

electrical voltage data measurement through a sampling 

process. These numbers (binary, hex, or decimal) are saved 

in an audio file format. A significant advantage of digital 

audio is the high noise immunity capability it presents 

(Firmansah and Setiawan, 2016).  

Computers sense sounds using a sound card, which 

converts incoming sounds to electrical signals with numeric 

values through sampling into digital form. Computers 

sample the signal by measuring its amplitude at a fixed 

periodic interval, often 44,100 times (44.1 kHz). The 

sampling process is an integral part of analog-to-digital 

conversion (ADC). Each measurement is stored with a fixed 

precision, often 16 bits and in a predefined format. A 

microphone is another device that receives sound and 

converts it to an electrical voltage waveform in a form 

suitable for the sound card. Each audio sample is a digital 

number whose value is proportional to the instantaneous 

voltage amplitude at the current sampling time. Audio 

sampling in the communication and signal processing 

literature is most often a pulse-code-modulation (PCM) 

process.  

The choice of sampling frequency is critical for the 

reconstruction of an original signal. On the other hand, the 

bit rate can be viewed as the storage of bits required for each 

second of sound. For example, audio with 44,100 samples 

per second and 16 bits per sample, the bit rate is 

approximately 0.71 million bits per second. An audio with a 
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sample rate of 48kHz and 16-bit PCM data file will have 

about 0.768 million bits/seconds/channel. 

Like most digital data, audio data depends on two 

essential factors: the sampling frequency (how many times 

should a sound wave be sampled each second?) and the 

sample size (how large /how many bits) should each sample 

be?) It is stated that the optimum sampling rate should be at 

least twice the maximum frequency of the data or signal 

(Shannon and Weaver, 1998).  

B.  Analog to Digital Converters 

Modern computers, at the core have 8-bit storage units 

(bytes) (Dukish, 2009) . If each audio sample is a byte, there 

can be 28 = 256 sample sizes, 256 different amplitudes. For 

instance, if the highest voltage produced by a microphone is 

1 volt, then 8-bit audio samples can recognize voltages as 

low as 2-8 volts or four (4) millivolts. Any sound converted 

by the microphone to a lower voltage would result in audio 

samples of zero amplitude and then becomes played-back as 

silence. Most ADCs create 16-bit audio samples. Such a 

sample can have 216 = 65,536 values, so it can recognize 

sounds as low as approximately 15 microvolts. In this case, 

eight-bit samples correspond to a coarser quantization, while 

16-bit samples are finer quantization. Therefore, the better 

the quantization, the better the played-back sound quality. 

Therefore, with the information in the preceding sections, 

the sizes of sampled (audio) files can be estimated, thus 

revealing why compression is important. For example, a 3-

minute recorded mono audio results in 180 × 44,100 = 

7,938,000 samples. This translates to about 16 Mb, bigger 

than most still-images for 16-bit samples. A 30-minute 

recording would be a file size of about 160 Mb. 

C.  EED and Sound 

Because of the way the human auditory system works, 

lossy compression methods are popular in audio. The human 

ear can typically not recognize higher frequency sounds that 

animals like dogs hear. Therefore, lossy techniques use 

perceptual limitations in humans to discard irrelevant 

information. Large storage requirements limit the amount of 

data that can be stored, hence an interest in shrinking the 

storage requirements of sampled sound. While lossy 

methods are more established than lossless methods, it is 

clear that the higher the CR of a lossy method, the lower the 

original data quality. Unfortunately, because of the 

maximum limit that can be reached without losing 

information in data, there is a limit to lossless CRs. 

General-purpose Dictionary-based lossless compression 

methods (LZ77, Lempel-Ziv and its variants) that usually 

provide good compression performance are poorly matched 

to the statistical features of binary audio data streams. They 

generally lead to poor performance (Maher, 2003). In 

contrast, audio-specific methods can achieve as low as 30-

per cent of the original file size. Dictionary methods use the 

advantage of periodicity in a data stream. Although roughly 

periodic and consistent, audio waveforms are not repetitive 

in samples due to the asynchronous relationship between the 

waveform period and the sample rate and other disturbances. 

However, the degree of sample-to-sample correlation can be 

taken advantage of by linear predictive coding (typically FIR 

filters) methods (Pu, 2006). 

Lossless compression algorithms are statistical-based 

methods appropriate for oscillating high-frequency audio 

data or signals with low entropy characteristics. In 

applications requiring perfect lossless waveform 

compression, the advantage of statistical-based compression 

algorithms outweighs the general-purpose dictionary-based 

compression algorithms and lossy methods (Maher, 2003). 

High-frequency electrical energy data (EED) are also 

oscillating; therefore, audio-based compression techniques 

have had good performance on them (Haq (2018).      

Notwithstanding, certain factors can still affect the CR of 

oscillating high-frequency signals, such as signals with a 

high entropy value. This connotes high variance in the signal 

and the presence of much noise (Gray, 2011). In this case, 

the compression algorithm will have difficulty finding 

redundancies, thereby resulting in a poor CR performance of 

the algorithm.  

The encoding type and dataset size can also impact 

compression performance. Some compression algorithms 

show better CR performance on larger datasets, but others 

perform best on small datasets. In all, the performance of 

data compression varies largely with the data's 

characteristics, and the method applied. They showed that 

different lossless compression codecs (algorithms) perform 

similarly despite algorithm complexity and approach (Hans 

and Schafer, 2001). 

In audio samples, the primary redundancy is that adjacent 

audio samples tend to be correlated. Therefore, statistical 

compression techniques subtract each adjacent sample and 

encode the differences (errors or residuals) as mostly small 

integers with appropriate variable-length codes. The Rice 

codes are the choice for this task (Sayood, 2018). Practical 

methods often follow this procedure: (a) predict current 

sample using a weighted-sum of several neighbouring 

samples; (b) then subtract the current sample from this 

prediction. Smaller residuals of integer type ensure efficient 

encoding (for example, if the residual integer values are in 

the interval [−1, 4]. This implies that six (6) residual values 

and only six (6) variable-length codes would be needed. This 

improves the justification for the choice of very short codes 

for the coding process. The FLAC codec is an example of 

this approach (Salomon, 2008).  

The essential operation in lossless compression methods, 

given in Hans and Schafer (2001), is briefly highlighted 

below. It involves Framing, Intrachannel Decorrelation 

(which involves error calculation), and Entropy coding. 

The basic principle is first to remove redundancy from 

the signal and then code it by decorrelating and using an 

adaptive linear predictive model or a lossy coding model. 

Entropy coding removes redundancy from the residual error 

signal, and there are three adaptive (variable-length) 

methods used: Huffman, Run-length, and Rice coding. 

D.  Lossless Codecs and Performance Comparisons 

Jumar et al. (2018) investigated the challenges of 

handling large publicly available raw EEDs with quasi-

periodical characteristics via lossless compression through 
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audio-based and dictionary-based algorithms. The authors 

highlighted that the usual way to record EED logged as audio 

waveforms are to use the '.riff' or '.wav' format of 16-bit 

signed integer representations. The publicly available 'sox' 

library can then be used, which has utilities for post-

processing: separating the electric current channel and 

electric voltage channel and then compressing (Kelly and 

Knottenbelt, 2015). 

There are many audio compression software libraries 

available. Some are free, while some are commercial. Many 

lossless codecs, including FLAC (Free Lossless Audio 

Codec), Apple's ALAC or ALE, Shorten, Monkey's Audio, 

and MPEG-4 ALS algorithms, use fundamentally the same 

principle highlighted in the previous section. Also, selected 

lossless audio codecs used to compress EED in the literature 

will be discussed in the next section.  

Muin et al. (2017) compared different freely available 

lossless codecs using compression ratio and computation 

time to find the most suitable audio waveform compression 

strategy. Codecs such as MPEG-4 variants, CELP, and IEEE 

1857.2 were considered. They concluded that FLAC has 

superior compression ratio, encoding speed, and decoding 

speed for larger-sized files compared to MPEG-4, which, 

although not as popular but is generally faster in terms of 

encoding and decoding speed. Also, the newer IEEE 1857.2 

audio codec standard, which uses arithmetic coding, 

compared competitively to another lossless audio 

compression in terms of higher compression ratio with 

negligible additional encoding/decoding time and average 

computational complexity. Unfortunately, the IEEE 1857.2 

is not easily accessible in production-ready form for public 

use. 

Interestingly, lossless audio codecs have surfaced and 

have been refined so much that they possess comparable 

performance. Their only differentiating factors are the 

adoption rate by different groups (Muin, et al., 2017). In 

addition, the literature has claimed that lossless audio codecs 

have very comparable bit rate reduction performance. They 

indicate that extending the performance state of lossless 

compression techniques has hit its practical limit defined by 

Shannon's entropy law (Salomon, 2008). 

Further, Muin et al. (2017) also identified the gap or 

absence of a lossless audio compression algorithm having 

the characteristics of being high in compression ratio and fast 

encoding-decoding speed. Encoding-decoding speeds are of 

impact to data storage and transmission.  

In addition, the work of Haq (2018) compared some off-

the-shelf audio-based such as ALAC, ALS, APE, FLAC, 

TrueAudio, with dictionary-based lossless codecs such as 

LZMA, PPMd (prediction by partial matching), BZip2, and 

Gzip (a Deflate-variant). They investigated the EED 

measured at different sampling frequencies. The key 

findings of this thesis are as follows: One, for monitored 

energy data, if the Objective is real-time disaggregation, then 

the processing time is the defining factor. In contrast, for 

offline disaggregation, the CR is the defining factor.  There 

is a significant difference in the CRs of electric current 

waveforms (uneven and spiky) compared to voltage 

waveform data (usually smoother) which are traditionally 

better compressed. 

General-purpose dictionary codecs: Bzip2, PPMd-

variants, Deflate-variants, LZMA-variants are generally 

much faster but gave lesser compression ratios (Wen, et al, 

2018). Jumar et al. (2018) recommend TTA and MP4 ALS, 

APE as audio codecs exhibiting good performance for EED 

compression. FLAC can be used for fast decompression but 

large performance variations have to be expected. They also 

recommended that the LZMA is representative of an overall 

best-performing general-purpose codec.  Figure 9 shows the 

recommended off-the-shelf audio-based lossless codecs for 

EED lossless compression using the discussed literature.  

 
Figure 9. Top off-the-shelf lossless codecs recommended for EED 

lossless compression. 

 

E.  Resumable Load Data Compression (RLDC)  

Resumable Load Data Compression (RLDC) is an EED-

specific technique for lossless compression. It is also known 

as Differential Exponential Golomb and Arithmetic (DEGA) 

coding. RLDC's performance was compared in Section 3.2 

with the FLDC and it was inferred that a small consecutive 

value difference (CVD) in load profiles can be exploited to 

improve compression efficiency and error. Load profile data 

is time-series EED, primarily representing measured 

electrical power consumption. Using publicly available low-

frequency (1-second sampling) measured EED datasets, 

Unterweger and Engel (2015) conducted a detailed 

investigation of load profiles in residential consumer 

 
Figure 8: Fundamental statistical-based coding principle. 
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households. It was discovered that such data mostly exhibit 

small CVD. The authors then constructed a lossless 

compression technique using statistical-based coding 

methods to take advantage of this characteristic. The DEGA 

technique consists of five straight-forward processes 

(Unterweger and Engel, 2015). 

 

1)  Normalization 

Herein, this word entails converting floating-point data 

representation of the input load-profile data values 𝑣𝑖 to 

integer form 𝑛𝑖. The justification for this is that floating-

point operations are computationally expensive than integer 

operations, especially in low-cost embedded systems. The 

integer normalization formula, also known as A-XDR 

coding, is 

𝑛𝑖 = 𝑣𝑖 × 10𝑝max  (8) 

where, 𝑝max is the maximum number of decimal places 

among the 𝑣𝑖 data values of the load profile.  

2)  Differential Coding 

The small CVD can be exploited using differential 

coding, which involves storing only the consecutive 

difference 𝑑𝑖 between two consecutive values instead of the 

actual values. This method is also used in differential pulse 

code modulation (Unterweger & Engel, 2015).  Only the first 

𝑖th value is not replaced by a difference value, such that 𝑑0 =
𝑛0, 𝑑𝑖 = 𝑛𝑖 − 𝑛𝑖−1,  where 𝑖 = 1,2, … 𝑘. 

3)  Variable-length Coding 

Still exploiting the SCVD, a variable-length code in the 

form of the exponential-Golomb code, which is also used in 

many other techniques such as the FLAC codec and the 

H.264 standard, is then used to convert the signed integer 

values 𝑑𝑖 to signed exponential Golomb codeword (binary) 

𝑐𝑖. The 𝑐𝑖 values are then concatenated to form a single bit 

string 𝑏. 

4)  Adaptive Binary Arithmetic Coding 

Finally, an adaptive binary arithmetic coding scheme 

applies entropy coding on the concatenated bit string 𝑏, to 

remove the remaining information redundancy in 𝑏, and 

outputs the compressed bit representation 𝑒. 

As illustrated in Figure 10, the decoding process of the 

compressed bit string 𝑒 is just an inverse operation of the 

coding process in reverse order to obtain 𝑣, such that: 

𝑣𝑖 =  
𝑛𝑖

10𝑝max
(9) 

Unterweger and Engel (2015) also show that the 

technique has comparatively low memory requirements and 

computational complexity, with high CR. This was 

illustrated with the FLDC in Figure 4 and Figure 7. They also 

explain how the technique allows for resumability with low-

overhead of data loss in case of transmission interruption, 

which will enable it to be applicable in error-prone 

transmission lines in smart grids. 

This method gives attractive results for low-frequency 

EED. Unterweger and Engel (2016) applied this technique 

to high-frequency EED (16kHz and 50kHz). Some salient 

conclusions are as follows: First, due to the considerable 

noise (entropy) in electric-current data, such EED can be 

compressed better than electric-voltage data. DEGA gives 

poor CR performance concerning high-frequency data. 

Good CR performance was achieved for data sampled at 100 

Hz and below. Lossless codecs like FLAC and Bzip2 are 

suitable for lossless archival of EED for further processing.  

Admittedly, it is clear that the development of standard, 

high-quality compression techniques (lossy or lossless) for 

high-frequency sampled time-series EED remains an open 

question for intelligent energy networks known as smart-

grids (Unterweger and Engel, 2016). It will be beneficial to 

have a range of standard EED coding techniques even as 

audio, image, and video coding exists. 

V. CHALLENGES AND FUTURE WORK 

Research on smart-grid LM analysis has spanned three 

decades (Wang et al., 2020). Load-event classification and 

smart-grid analysis are essentially data-driven research 

processes. In this case, EED compression can ease the 

practical challenge encountered with storing and 

transmitting a large amount of EED-specific dataset files 

with minimal loss in data quality. In this context, the goal for 

EEDs is to achieve efficient use of the bandwidth of the 

communication channel and reduced storage space.  

To the best of the authors' knowledge, the work of 

Tcheou et al. (2014) is the first review to highlight the 

importance and challenges of the timely problem of 

compressing the growing data stream of electrical energy 

signals with the advent of smart grid networks and for the 

main contributions in the smart-grid literature. Still quite 

true currently is the authors concluding remark that: the 

compression of EED obtained from electric-power systems 

is far from being as mature compared to speech, audio, 

image, and video compression. In addition, comparing 

existing literature, varying accounts are sometimes 

presented on the performance of the lossy and especially 

lossless codecs. Consequently, for gains of compression to 

become manifestly profound, there needs to be a new wave 

or direction of more research into the design and 

development of production-ready compression techniques 

targeted at electric-energy data (EED). 

Although, practical compression issues revolve around 

concepts like numerical implementation and portability, 

segmentation or framing, variable bit rate, speed, and 

complexity (Maher, 2003). However, the main challenge 

with lossless compression techniques, especially for high-

frequency EED, is increasing compression-ratio 

performance. For lossy compression, it is to reduce loss in 

the quality of recovered data. Also, a caveat in compression 

codecs (algorithm implementations) is that there are no 

actual guarantees on compression performance. This implies 

that using a compression codec may lead to a larger file size 

than the original if the applied codec's input data stream is 

ill-posed. Most users may not notice this because, in 
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commercially-developed libraries, codecs have conditional 

flags to detect when compression is ill-posed and stop the 

compression process (Hans and Schafer, 2001). It was also 

underscored in Hans and Schafer (2001) that lossless codecs 

had hit the perceived limit concerning the amount of CR that 

can be realised. This limit is stated in Shannon's entropy, 

limiting the size of data that can be compressed without 

losing information (Gray, 2011).  

Shannon's entropy represents an absolute maximum 

theoretical limit on the possible compression of any data 

without losing any original information under certain 

constraints (Shannon and Weaver, 1963). Statistical 

techniques that use entropy treat data encoded as a sequence 

of independent and identically distributed (IID) random 

variables. Worth noting is that Shannon's source-coding 

theorem reveals that: in the limit, the average length of the 

shortest possible representation used to encode data streams 

in a given alphabet is the entropy divided by the logarithm 

of the number of symbols in the target alphabet. Therefore, 

because of this theoretical limit, the current CR performance 

level obtained from lossless codecs may never reach that of 

the lossy codecs.  

VI. CONCLUSION 

This work has covered a review of relevant literature on 

EED compression techniques in load monitoring analysis. 

Also highlighted are the challenges of selecting top-

performing EED compression techniques. This paper will 

contribute to motivating interest in the development of 

standard, high-performance EED compression techniques. 

Overall, this review attempted to provide a concise reference 

overview supporting researchers interested in designing and 

developing compression methods targeted at electric-energy 

data (EED) for smart-grid applications. The challenge of 

devising very efficient and high-performing compression 

methods and algorithms with very low loss, especially 

generalizing to low-frequency and high-frequency real-time 

EED, cannot be overstated regarding the future smart grid. 
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