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22 Abstract
23 The Earth system and the human system are intrinsically linked. Anthropogenic greenhouse 
24 gas emissions have led to the climate crisis, which is causing unprecedented extreme 
25 events and could trigger Earth system tipping elements. Physical and social forces can lead 
26 to tipping points and cascading effects via feedbacks and telecoupling, but the current 
27 generation of climate-economy models do not generally take account of these interactions 
28 and feedbacks. Here, we show the importance of the interplay between human societies and 
29 Earth systems in creating tipping points and cascading effects and the way they in turn affect 
30 sustainability and security. The lack of modeling of these links can lead to an 
31 underestimation of climate and societal risks as well as how societal tipping points can be 
32 harnessed to moderate physical impacts. This calls for the systematic development of 
33 models for a better integration and understanding of Earth and human systems at different 
34 spatial and temporal scales, specifically those that enable decision-making to reduce the 
35 likelihood of crossing local or global tipping points.
36
37 Key words: Tipping Points, Cascading Effects, Coupling of Natural and Human Earth 
38 Systems, Telecoupling, Extreme Events

39 1 Introduction
40 Tipping points (Lenton et al. 2008) - ecological, climatological and social - are fundamental 
41 concepts within the Intergovernmental Panel on Climate Change (IPCC) reports (Masson-
42 Delmotte et al. 2018, IPCC 2021) and the Planetary Boundaries framework (Rockström et al. 
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43 2009; Steffen et al. 2015). It is frequently highlighted that crossing identified tipping points 
44 presents severe risks and would result in widespread and irreversible impacts (Steffen et al. 
45 2018, Otto et al. 2020). 
46
47 The concept of tipping points, however, has a longer history. Tipping points were applied 
48 earlier in other sciences to describe processes of how communities become racially 
49 segregated (Grodzins 1957, Schelling 1971). This conceptualization suggested that even a 
50 relatively small fraction of non-whites could “tip” a neighborhood to a racially completely 
51 different setting (Schelling 1971), with the tipping point being the threshold at which this 
52 happens. Although the results of this model are not fully supported by empirical evidence 
53 (Easterly 2009), Schelling’s framing remains popular in both academic and public 
54 discourses. Gladwell (2000) elaborated the concept for a general audience to explain the 
55 concept of tipping points and how individual behavior may lead to a “critical mass, threshold 
56 or boiling point” that results in large changes in society.
57
58 Natural and human systems, from large-scale climate systems to local ecosystems and 
59 communities, can behave in complex ways, including abrupt changes and threshold 
60 behavior. This neutral and relatively value-free definition can be contrasted with the use of 
61 tipping point by the climate science community. Within the climate change discourse, James 
62 Hansen’s use of the phrase “climate tipping point” in 1988 in a statement to the US 
63 Congress was understood as suggesting an imminent threat through which gradual changes 
64 in radiative forcing could trigger abrupt and large-scale changes in the climate system 
65 (Hansen 2008). Thus, a tipping point in the climate change discourse has been largely used 
66 to invoke changes that are ”abrupt, non-linear, irreversible, and dangerous to humans and 
67 other species” (Russill 2015) and has been used to focus attention and foster support for 
68 urgent action. In this sense, climate tipping points have become a metaphor (van der Hel et 
69 al. 2018) for translating climate science into policy discourse, especially to draw attention to 
70 large risks due to crossing thresholds leading to abrupt shifts that cannot be well bounded by 
71 the existing climatic record such that we may want to avoid them or dedicate resources and 
72 planning to manage those that cannot be mitigated (Russill 2015). This shift to a risk 
73 management, rather than a cost-benefit approach that has dominated the policy discussion, 
74 has gained widespread support in recognition of the potential for large-scale disruptions that 
75 may be poorly captured in existing models (Stoerk et al. 2018). Thus, to some extent, the 
76 “tipping point” metaphor has been effective. However, using tipping points in a more 
77 actionable sense to support “never to exceed” targets, however, shows less promise 
78 (Dudney and Suding 2020), suggesting that the link between tipping points and action will 
79 remain a more complex interplay between science and societal values of risk.
80
81 In Earth system science tipping points largely have a negative connotation, indicating a 
82 change which will negatively impact on society and ecosystems. In social science, they can 
83 also have a positive meaning, where societal tipping points can prompt transformations that 
84 can drive climate action (Tàbara et al. 2018).  In the context of climate change policy, 
85 positive social tipping points leading to sustainable transformation have been referred to as 
86 beneficial and increase societal resilience by reducing climate change loss and damage 
87 through mitigation and adaptation (Kopp et al. 2016). Positive social tipping points, therefore, 
88 stand to benefit from early intervention and spreading processes in complex social networks, 
89 such as arresting contagious dynamics observed in epidemiology that lead to irreversible 
90 and uncontainable positive behavior (Otto et al. 2020). 
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91
92 This makes a transdisciplinary approach necessary to evaluate the interplay between human 
93 society and environmental systems that may lead to the crossing of tipping points, the types 
94 of outcomes that include cascading effects and compound extremes which in turn may affect 
95 sustainability and security that are related to tipping points, and models and approaches to 
96 identify and moderate these outcomes. Here we critically discuss these issues by focusing 
97 on understanding interlinkages and interactions in tipping point settings. First, we review the 
98 use of tipping points across disciplines and elaborate on an example of these interlinkages 
99 of physical tipping points with cascading effects into socioeconomic systems in the Lake 

100 Chad region. We then discuss the current state of climate-economy models and their 
101 treatment of tipping points and the need for integrated models which can capture tipping 
102 points and cascading effects in the coupled natural and human Earth system. Finally, we 
103 consider how early warning systems and governance approaches can moderate the risks 
104 from tipping points. We conclude with an outlook for next steps for our understanding and 
105 modeling of tipping points.  

106 2 Tipping Points from a Mathematical and Social 
107 Science Perspective
108 From a mathematical perspective, tipping points are most easily understood as bifurcations. 
109 A bifurcation is a qualitative change for a smooth change in a control parameter in the 
110 structure of fixed points, periodic orbits or limit cycles of a dynamical system which can be 
111 either attracting or repelling; Dijkstra (2013) provides a basic introduction. If a system is 
112 stable, then despite a perturbation it would return or remain close to its original state. If it is 
113 unstable then even small perturbations can lead the system to move to another attracting 
114 state. Hence, a small change in the control parameter can lead to a major qualitative change 
115 (Scheffer et al. 2009, Lenton 2011). Furthermore, in dynamical systems theory tipping points 
116 can be seen as “any situation where accelerating change caused by positive feedback drives 
117 the system to a new state” (van Nes et al. 2016). Various tipping indicators for early warning 
118 have been developed and validated mainly on paleoclimate data or for ecosystems (Lenton 
119 2011, 2013; Scheffer et al. 2009, 2012, Milkoreit et al. 2018). In physics, this phenomenon is 
120 called a phase transition, or critical phenomenon, whereby crossing a threshold of a tipping 
121 point leads the state of the system to change its properties, e.g. going from a solid to a liquid 
122 state (e.g. Sornette 2006). This definition is neutral and value-free and reflects the fact that 
123 the Earth system can behave in complex ways including abrupt changes and threshold 
124 behavior.
125
126 From a social science perspective, tipping points are defined as a form of “social change 
127 whereby a small change can shift a sensitive social system into a qualitatively different state 
128 due to strongly self-amplifying feedback mechanisms” (Winkelmann et al. 2021). These self-
129 amplifying feedback mechanisms make the system unstable so that it can tip to a new stable 
130 state. This definition is on a conceptual level similar to the mathematical one. However, 
131 social tipping point as a term is a boundary object that has taken on multiple meanings; it 
132 could have a negative connotation such as financial market crashes, economic crisis or anti-
133 democratic political revolutions or it could also have a positive connotation such as 
134 contagious processes of rapidly spreading climate-friendly technologies and social norms 
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135 (Milkoreit et al. 2018; Otto et al. 2020, Tàbara et al. 2018, Fisher 2019). Furthermore, it 
136 needs to be seen how useful the mathematical definition is for social systems. 
137
138 Centola et al. (2018) show evidence for tipping behavior in social systems to change a 
139 majority opinion in the presence of a determined minority. If the minority reaches about 25%, 
140 a tipping point can be crossed. On the other hand, O’Brien (2020) discusses the psychology 
141 of tipping. Humans behave asymmetrically; we tip easier into a negative than a positive 
142 direction (“good luck runs out, while bad luck stays”). How this could be used in crisis 
143 situations and can be implemented in models needs to be better understood, especially how 
144 societal tipping points can be harnessed and induced to generate transformations for climate 
145 action.

146 3 Tipping Points, Cascading Effects and 
147 Telecoupling
148 While climate action may be supported by generating positive feedbacks in societal systems, 
149 the physical impacts of climate change may undermine socioeconomic conditions. Tipping 
150 points can emerge from “risk multiplier” mechanisms, such as the one associated with 
151 climate change triggering economic and social losses which cascade across regions and 
152 amplify other societal problems. Indeed, climate-related hazards (such as storms, floods, 
153 and droughts) cause local disasters and endanger the health of affected people, both in 
154 developing countries and industrialized countries (Eckstein et al. 2021, NOAA 2021, Franzke 
155 and Torello i Sentelles 2020). These local areas, however, often act as hot-spots, and local 
156 impacts propagate to other areas and societies causing among others supply-chain 
157 interruptions (e.g. Haraguchi and Lall 2015, Franzke 2017) and food insecurity (Gaupp et al. 
158 2019, Naqvi et al. 2020). Furthermore, local impacts can act as a trigger and amplifier of 
159 other social problems via telecoupling (Liu et al. 2013, 2019, Kapsar et al. 2019). This latter 
160 effect includes poverty and political instability (Helbing 2013; World Economic Forum 2021, 
161 Kelman 2020), and likely occurs where economies are climate-sensitive (e.g. agriculture) 
162 and where the infrastructure is exposed to climate change (e.g. coastal areas, river basins).
163
164 To make things concrete, we now discuss one hot-spot and how it is affected by tipping 
165 points and cascading effects, and which is representative of the complexity of the Earth 
166 system and human system interactions and cascading effects we are concerned about here. 
167 The Sahel region and, in particular, the Lake Chad Basin has been a research and 
168 development puzzle (Nagabhatla et al. 2021). The Lake Chad Basin constitutes not only a 
169 complex environmental system but also has challenging socio-economic and socio-cultural 
170 settings that have a significant impact on regional security and sustainability, as the Lake 
171 Chad Basin provides livelihood for more than 30 million people (Leblanc et al. 2007). The 
172 Lake Chad Basin has undergone significant changes over the last few decades (Pham-Duc 
173 et al. 2020; Nagabhatla and Brahmbhatt 2020) (Fig. 1). These changes have had an impact 
174 on water availability and quality due to increased salinity. Furthermore, the regional 
175 geopolitical dynamics, socio-economic structures and political stability is threatened by 
176 multiple crises and conflicts, which can be partly attributed to resource scarcity (Nagabhatla 
177 et al. 2021). Overall, this hydrological disaster triggered a massive humanitarian response 
178 worldwide and provides a storyline on tipping points (Skah and Lyammouri 2020). In 
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179 particular, the cross-border arrangement to water sharing is a mix of customary norms and 
180 state-negotiated policy mechanisms. In such complicated settings, a small trigger can lead to 
181 big consequences. For instance, the decrease in surface area of Lake Chad for nearly 50 
182 years is a classic case of threshold-crossing that has not only influenced the regional 
183 dynamics of water sharing, but also influenced the socio-economic and security situation. 
184 Many studies have linked the rise of Boko Haram, a terrorist group, to the Lake Chad crisis 
185 (e.g. Piesse 2017, Connor 2017, Nagarajan et al. 2018). A recent synthesis by Magrin and 
186 De Montclos (2018) discusses the environmental, economic, and political interactions and 
187 their cascading effects. Building on the concept of tipping points, examination of Lake Chad 
188 reflects the difficulty to explain or forecast the multifaceted impacts of abrupt and sometimes 
189 irreversible change, and how they pose considerable challenges to policy makers, 
190 communities and institutions trying to balance the needs and priorities of human well-being 
191 and ecological sustainability. In the case of the Lake Chad region the tipping point narrative 
192 also opens the opportunity for the discussion of the regional integration of the sustainability 
193 agenda wherein interventions like inter-basin water transfer are placed as a solution to 
194 mitigate the water crisis (Sayan et al. 2020).
195
196 As the example shows, climate change and unsustainable resource management can affect 
197 the sustainability of natural resources, which can increase vulnerability. If people cannot 
198 cope with the consequences and limit the risks, generally through robust institutions, 
199 instability and conflict is more likely (e.g. IMCCS 2021, Buhaug and Uexkull 2021). In these 
200 cases, there may be further adverse impacts, including additional overexploitation of 
201 resources, low agency migration (McLeman et al. 2021) or the prolongation of violence or 
202 conflict in areas that are already experiencing conflict (Kamta et al. 2021). Furthermore, land 
203 scarcity can affect the availability of water and lead to crop losses. An example of 
204 telecoupling is that major droughts in crop producing areas can lead to a rise in food prices 
205 elsewhere due to the global food marketplace. This shows that local disasters can have 
206 significant impacts elsewhere by cascading through globally linked networks. This needs to 
207 be considered, as expressed in the nexus of water, energy, and food, the complex 
208 relationship between climate and migration, the compounding effect of conflict in areas that 
209 are especially vulnerable to climate change, scale linkages and conflict-cooperation 
210 transitions, tipping points, compound effects and cascading events. A possible set of 
211 interactions, tipping points, cascading effects and telecoupling are schematically represented 
212 in Fig. 2 (Note that these interactions are indicative only). Examples of vulnerable regional 
213 crisis hot-spots are in the Mediterranean region, Sahel Zone, Middle East and South Asia 
214 (e.g. Brauch et al. 2016, Fitton et al. 2019, Rodriguez Lopez et al. 2019).

215 4 Modeling the Socio-Economic Impact of Tipping 
216 Points
217 Given the importance of these interactions for climate risk and climate action, it motivates 
218 the development of enhanced models to better quantify these effects. Modeling climate 
219 impacts and damages in large-scale Integrated Assessment Models (IAM), that were 
220 designed primarily to evaluate climate mitigation pathways and costs, is challenging. 
221 Currently, many Integrated Assessment Models (IAM), such as DICE (Nordhaus 2018), 
222 FUND (Waldhof et al. 2014) and REMIND (Leimbach et al. 2010), represent the impact of 
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223 economic activities on climate in the form of greenhouse gas emissions and the impact of 
224 climate change on the economy in the form of economic damage functions. These functions 
225 do not generally incorporate these non-linearities or feedbacks which could result in 
226 substantial damages if properly accounted for (Dietz et al. 2021). 
227
228 Such damage functions broadly fall into two categories: economic and biophysical damage 
229 functions. The former ones are derived from econometric models, which empirically estimate 
230 the causal effects between changes in climate variables (e.g., temperature and precipitation) 
231 and economic outcomes, e.g., Gross Domestic Product (GDP) (Burke et al. 2018; Pretis et 
232 al. 2018). Econometric models are rooted in empirical evidence based on observations, but 
233 do not explicitly reveal the transmission channels of climate impacts. Biophysical damage 
234 functions (e.g. Piontek et al. 2021) estimate the relationship between climate and biophysical 
235 variables (e.g., effects of temperature changes on crop yields, worker productivity, and 
236 health). This type of damage function is used in process-based IAMs, Input-Output (IO) and 
237 Computable General Equilibrium (CGE) models to provide an economic valuation of climate 
238 impacts. Compared to econometric models, multi-region multi-sector IAMs, IO, and CGE 
239 models can explicitly incorporate the transmission channels of climate impacts and reveal 
240 cross-regional and cross-sectoral interactions. In large-scale IAMs, economic impact 
241 assessments are typically based on damage functions that are calibrated using global or 
242 regional mean temperatures and global mean sea level rise (Diaz and Moore 2017). There 
243 are economic impact studies, where biophysical impacts are derived from climate projections 
244 with a high spatio-temporal resolution, but the impacts are typically averaged and smoothed 
245 out to capture the long-term trends, thereby leaving out the impacts of variability (Orlov et al. 
246 2019). Thus, global economic models estimate primarily the economic responses to long-
247 term effects of climate change, while the effects of climate extremes remain poorly 
248 represented. However, a growing body of research reveals that the frequency and intensity 
249 of climate extremes will likely increase with global warming (Perkins-Kirkpatrick and Lewis 
250 2020; Brown 2020, IPCC 2021) with a related risk of potential compound events and multiple 
251 breadbasket failures (Zscheischler et al. 2018, 2020; Gaupp et al. 2019, Wang et al. 2021a, 
252 2021b). In this context, the risk of tipping points is of huge concern (Lenton et al. 2019).
253
254 Although growing scientific evidence predicts more severe and frequent climate extremes, 
255 the estimates of the regional changes in their magnitude and frequency are highly uncertain  
256 (van der Wiel and Bintanja 2021). Economic and biophysical damage functions, which are 
257 derived using historical observations and extrapolated using future climate projections, might 
258 fall short in accurately estimating potential climate damages. An impact assessment of 
259 potential tipping points is even more challenging due to a lack of observations. Therefore, 
260 the estimates of economic damages from catastrophic events are typically based on expert 
261 judgement (Cai et al. 2015). In that regard, a lack of data and uncertainties associated with 
262 climate extremes poses a big challenge to economic and societal impact assessments.
263
264 Furthermore, incorporating biophysical shocks into economic modelling is associated with 
265 several other challenges. The curse of dimensionality implies a trade-off between the spatio-
266 temporal scale and coherence of economic models. The treatment of space and time are 
267 two challenging aspects for economic modelling of climate extremes and tipping points 
268 (Okuyama 2007). Climate extremes could be very localized and occur in a short period of 
269 time. Even though socio-economic consequences of climate extremes might be moderate 
270 from a large-scale perspective, they could impose an existential threat to the livelihood of 
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271 local communities and individuals. For example, many smallholder farms in poor countries 
272 are subsistence-oriented, disconnected from food markets, and receive little or no financial 
273 support, and therefore, might be especially vulnerable to adverse changes in weather 
274 conditions. Impacts on such groups cannot be directly derived from large-scale economic 
275 models (Aaheim et al. 2021). To provide more insights into climate-induced changes in 
276 behavior and interactions among individuals and institutions, Agent Based Models (ABMs) 
277 are used (Naqvi et al. 2020; Czupryna et al. 2020). 
278
279 Moreover, political and social responses and interactions to climate and environmental 
280 changes are currently not fully represented in most economic models. The human sphere 
281 typically consists of the energy sector and land-use in order to compute optimal mitigation 
282 pathways. Promising approaches to model political and social responses, include social 
283 dynamics (Castellano et al. 2009), Earth system economics (Galbraith 2021) and big data 
284 approaches applied to social data.

285 5 Early Warning Systems: Vital for Decision 
286 Support and Beyond
287 When developing plans and policies, it is crucial that negative tipping points are not crossed 
288 and that the implemented plan adapts to changes in a way that it continuous to perform 
289 satisfactorily under changing conditions. This is accomplished by implementing monitoring 
290 and early warning systems (EWS) which indicate and signal when tipping points are being 
291 reached (van Ginkel et al. 2020). For example, adaptive planning approaches, such as the 
292 Dynamic Adaptation Policy Pathways (DAAP) (Haasnoot et al., 2013), support the 
293 development of adaptive plans which allows taking actions and changing measures before 
294 crossing a tipping point. As such, DAAP is a proactive decision support method, where 
295 decisions are taken to prevent, and not to respond to, critical changes. DAAP accomplishes 
296 this by employing an EWS with the goal of detecting signals of future changes before these 
297 occur.
298
299 While EWS have been developed to predict tipping points of natural phenomena, it has so 
300 far been challenging to implement them in the context of social tipping points (Grimm and 
301 Schneider 2011). For example, it has been argued that EWS in time series provide testable 
302 predictions for natural or mechanistic systems but not for social systems (Bentley et al. 
303 2014). Instead, Bentley et al. (2014) suggest focusing more attention on probabilistic insights 
304 from collective social dynamics such as heterogeneity, connectivity, and individual-based 
305 thresholds. 
306
307 The challenges of using EWS to prevent social tipping points can be elaborated through the 
308 conflict in Syria. Before the Syrian uprising, that began in 2011, the greater Fertile Crescent 
309 region (of which Syria is part of) experienced the most severe drought in the instrumental 
310 record (Kelley et al. 2015). The role of this drought on the subsequent political unrest which 
311 precipitated the ongoing violent conflict in Syria, however, remains contested (Gleick 2014, 
312 Selby et al. 2017, Ide 2018). In one interpretation, the drought is attributed to the political 
313 uprising by an influx of farmers into the capital who had lost their livelihoods which 
314 aggravated existing tensions related to economic conditions and services. Reviewing the 

Page 7 of 19 AUTHOR SUBMITTED MANUSCRIPT - ERL-112695.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



8

315 evidence for each of these links, Ide (2018) concludes that that large economic losses to the 
316 agricultural sector and the resulting rural to urban migration are supported but still contested. 
317 Whether the economic losses or the migration played a role in the observed urban unrest, 
318 however, is poorly understood (Ide 2018). By contrast, political factors such as the ongoing 
319 repression and the severity of the response by the regime are more clearly associated with 
320 the protests and the escalation (Selby, 2017). The competing claims are an indicator that 
321 compounding effects and tipping points in both natural and social processes preclude simple 
322 statements on the dominant or even single causal mechanisms in the Syrian case. In such 
323 cases, an EWS would need to recognize these multi-dimensional drivers that underpin the 
324 complex interaction of conflict risks and climate risks (Hegre et al. 2019, Mach et al. 2019). 
325 Creating an EWS that is equally sensitive to both social and natural tipping points is, 
326 therefore, necessary for decision support in complex situations.
327
328 Grimm and Schneider (2011) enumerate four conditions for successful EWS of social tipping 
329 points: 
330 1. the systematic collection of event data and expert assessments.
331 2. the analysis of data based on advanced social science techniques.
332 3. development of strategic response scenarios and consequence assessments.
333 4. unbiased, impartial, and independent presentation of policy and implementation 
334 options to policymakers.
335
336 Generally, EWS is considered within the context of identifying and avoiding negative 
337 physical and social tipping points. However, there may also be benefits to identifying early 
338 warning signals along pathways that aim for positive change to avert inequitable outcomes 
339 or traps that may forestall future progress such as lock-in effects (e.g. Hassnoot et al., 2019).   

340 6 Governance in the Presence of Tipping Points
341 While physical tipping points have become more widely used in the literature, there is a
342 long-standing and growing critique of the concept especially when considering the Planetary
343 Boundaries framework from a social construction perspective. Planetary Boundaries, when
344 initially conceived, ignored global inequality and social justice (Biermann and Kim 2020), in-
345 stead framed tipping points as the extent to which the global human society could impact 
346 natural processes (Rockström et al. 2009). Society faces immediate, persistent and 
347 pervasive choices about how to reduce the risks and vulnerabilities associated not only with 
348 intractable challenges to our resilience, such as climate change, but also potential tipping’s 
349 in societal functioning that could lock-in inequalities and inequities (Adger et al. 2018; 
350 Thomas et al. 2019).
351
352 The usability of frameworks such as Planetary Boundaries therefore become implausible 
353 from a societal and policy perspective unless translated through a governance lens (van 
354 Ginkel et al. 2020). This reality identifies a very real need for political processes and 
355 institutions that properly detect, analyze, and debate continual change to existing biophysical 
356 and social landscapes and then mitigate and adapt in the face of this change.
357
358 The implementation of policy action is driven by the values and priorities of society. 
359 Collective action, at all scales, in the face of change is strongly dependent on interactions 
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360 and information flows between individuals and groups due to reciprocity and exchange. The 
361 mechanism and degree of knowledge transfer is equally, if not more, paramount for 
362 sustainability efforts since that engagement process will determine the degree of knowledge 
363 and information available for transfer. This centers the reality of social tipping points around 
364 both governance and social justice, a reality that acknowledges uncertainties associated with 
365 the response capabilities and adaptive capacities of both social and natural systems (Adger 
366 et al. 2017; Patterson et al. 2018; Thomas et al. 2019).
367
368 Tipping points becoming synonymous with climate risks may also pose challenges
369 for describing social systems and may promote misunderstanding about the impact of 
370 physical climatic changes on social systems. There is no reason to believe that an abrupt 
371 change in a physical or environmental condition would correspond to a similar abrupt change 
372 in a human system – or that a gradual environmental change may not lead to a more sudden 
373 change in a human system (Bentley et al. 2014). For example, Kopp et al. (2016) draw 
374 critical distinctions between shocks that are experienced in economic systems and threshold 
375 behavior that may be observed in climate or societal interactions, recognizing that economic 
376 shocks may arise due to tipping elements, gradual change as well as non-climatic triggers. 
377 Human systems can also exhibit behaviors that are much more complex than suggested by 
378 the physical tipping point model. This type of more complex relationship was recently shown 
379 in Bell et al. (2021), where contrary to expectations, individuals would continue to populate 
380 coastal areas due to their economic, social, and cultural capital even as the climate risks 
381 increase due to future sea-level rise (Bell et al. 2021). 
382
383 To prevent destabilizing tipping points, adequate governance is needed which anticipates
384 and avoids hazardous pathways so that we can stay within the planetary boundaries. To 
385 contain systemic risks, a challenge is to develop adaptive governance approaches at 
386 multiple institutional levels that assess the underlying complex mechanisms and induce 
387 positive social tipping points, facilitating a transformation to more resilience, sustainability 
388 and peacebuilding (Brauch et al. 2016). The stability of cooperation or conflict is unclear 
389 when escalation occurs, especially in the presence of climate change. Whether climate 
390 stress facilitates a cycle of cooperation, or a cycle of conflict, or other shifts between 
391 cooperation and conflict, depends ultimately on the societal response.

392 7 Outlook
393 Our discussion reveals an urgent need for the development of integrated Human-Earth 
394 System models which contain or can reasonably well represent tipping points and cascading 
395 effects and for more interdisciplinary research in this area. The Lake Chad Basin situation 
396 demonstrates how hydro-meteorological variability and climate change dynamics play in 
397 tandem to generate manifold tipping points and potential cascading effect settings acting 
398 along with social, cultural, and political elements and, thus, creating cascading effects 
399 between the environment and society which cannot be separately dealt with. There is also 
400 paleodata evidence for cascading effects propagating from the climate system to 
401 ecosystems and societies leading to societal collapses or transformations (Brovkin et al. 
402 2021). This calls for more rigorous interdisciplinary and transdisciplinary research on 
403 integrated natural and human Earth System tipping points and cascading effects and more 
404 causal link studies. Integrated natural and human Earth system models will be better able to 
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405 support decision making (Lempert et al., 2009; Kasprzyk et al., 2013, Haasnoot et al., 2013). 
406 However, the complexity of Integrated natural and human Earth System modelling might 
407 come at a cost of their interpretability and practical usefulness. Therefore, a stronger 
408 stakeholder engagement might be needed when designing modelling interfaces and 
409 scenarios.
410
411 Such integrated models should also include social equity and social justice mechanisms. 
412 This seems to be a pressing issue since inequality is currently fixed in Integrated 
413 Assessment Models in the form of Negishi welfare weights (Stanton 2011; Rao et al. 2017). 
414 The emerging scholarship on policies addressing tipping point settings is promising. For 
415 instance, the work of Moser and Rodgers (2002) in urban landscapes and urban conflicts 
416 integrates the dimensions of political economy, power dynamics and distribution within a 
417 society as underlying factors of urban tipping points.
418
419 Tipping points in social systems also need to be better understood in order to detect their 
420 presence and allow early interventions. In physical climate science and ecology, tipping 
421 points are nowadays a rigorous mathematical concept with potentially predictive skills. In 
422 social climate science, tipping points may at times seem to be still more like a metaphor (van 
423 der Hel et al. 2018). For example, Lenton (2020) discusses cascading tipping points and 
424 how to use tipping points to start positive change. This requires process understanding, 
425 which might be difficult for social systems to achieve, but attitude change might be possible. 
426
427 Sustainable and adaptive governance approaches include mitigation, adaptation, the 
428 building of social networks, disaster management, and conflict resolution. To meet the 
429 temperature limit of 1.5°C or 2°C according to the 2015 Paris agreement, an anticipative 
430 policy framework will be necessary to avoid perilous pathways, and which allows for a 
431 systemic transformation towards self-organized stabilization. Early warning systems can 
432 build on measuring sensitivity, including criteria for instability, thresholds for transitions, 
433 factors of criticality and control mechanisms to facilitate transformation across tipping points. 
434 These can be incorporated into integrated modeling of human-environment interaction and 
435 dynamic social tipping processes, using agent-based modeling (behavioral rules) and social 
436 network analysis (spread of cascading events). Improving the cross-scale modelling 
437 integration (i.e., global vs. local) is needed to better represent the impacts of cascading 
438 effects on most vulnerable groups. This might be achieved by coupled climate models, 
439 global large-scale economic models, which capture cross-sectoral and cross-regional 
440 dependencies and micro-economic ABM modelling, which better depict heterogeneity and 
441 interactions in the human system at a local scale. 
442
443 Tipping points as an organizing concept, as a way of bringing the potential for large, 
444 potentially catastrophic risks from climate change to the attention of policymakers, have 
445 shown some success. Continuing improvements in the assessment and communication of 
446 these risks to both physical and human systems are very much needed (Simpson et al. 
447 2021) together with interdisciplinary research and knowledge exchange.
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786
787 Fig. 2: Schematic of some possible interactions and cascading effects between the Earth 
788 system and the Human system. In the world map, major large scale tipping elements are 
789 indicated. More localized tipping points, once they tip, have biophysical impacts on 
790 ecosystems, water and food security. Via this pathway they can cascade further into the 
791 human system inducing economic and social responses and potentially tip some social 
792 subsystems into a different state; though not all social subsystems have tipping points and 
793 the interactions in the social system are more complex than shown here. The responses of 
794 the Human system then can increase or mitigate global warming and, thus, potentially affect 
795 further tipping elements via positive or negative feedbacks. Only some possible responses 
796 are displayed; however, many more responses and interactions are likely. The far-reaching 
797 implications of tipping points are further highlighted through the Sustainable Development 
798 Goals (SDGs). 
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