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Abstract

We present the first deep learning model for the analysis of intracytoplasmic sperm
injection (ICSI) procedures. Using a dataset of ICSI procedure videos, we train a
deep neural network to segment key objects in the videos achieving a mean IoU of
0.962, and to localize the needle tip achieving a mean pixel error of 3.793 pixels at
14 FPS on a single GPU. We further analyze the variation between the dataset’s
human annotators and find the model’s performance to be comparable to human
experts.

1 Introduction

Intracytoplasmic sperm injection (ICSI) is an assisted reproductive technology (ART) involving the
injection of a single spermatozoon directly into the cytoplasm of a mature oocyte under a microscope.
Though used in 70-80% of in-vitro fertilization (IVF) cycles, some technical aspects of the procedure
remain controversial or inconclusive [1]. Moreover, despite increasing standardization [1], the success
rate of the procedure can vary from operator to operator [2, 3, 4] with clinic success rates in North
America ranging from 50-80% [5].

A number of studies attribute these variations (at least in part) to operator technique [2, 3, 4, 6]. A
prospective study in [6] found that a modified injection technique led to "adequate" fertilization
and pregnancy rates in patients with previous ICSI failures using the conventional technique. A
retrospective study of 535 manually-analyzed videos of ICSI procedures in [3] found that a certain
type of intracellular needle movement can significantly reduce the likelihood of fertilization, providing
a measurable technical performance indicator that could be implemented as part of an ICSI quality
control process.

In this study, we propose and implement the first deep neural network model for the segmentation
of key objects in ICSI procedure videos. The model has applications in not only accelerating the
hitherto slow and manual task of analyzing ICSI videos for research, but also in implementing quality
control processes in the IVF laboratory and providing trainee embryologists with real-time feedback
on their technique.
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Figure 1: Model Architecture

2 Method

2.1 Data Preparation

Videos of 156 ICSI procedures were obtained from a private clinic across four embryologists on
three different ICSI kits. The videos were recorded at 15 FPS and were split between training (130),
validation (3) and testing (23) sets. Frames were extracted from each trimmed video once every
three frames yielding a dataset of 7983 frames. The frames were labelled with polygons being drawn
around the suction pipette and oolemma and a point being placed at the needle tip. Each frame was
labelled by one of a team of five operators and validated by a sixth. The frames were then converted
to grayscale, resized to 512× 512 pixels and processed with contrasted limited adaptive histogram
equalization.

2.2 Model Architecture

We propose a modified nested U-Net architecture based on [7] with multiple heads (as detailed in
Figure 1). The encoder takes some 512×512 input and downsamples it to a 64×64×256 bottleneck
through successive layers of two 3 × 3 convolutions followed by batch normalization and 2 × 2
max-pooling. From the bottleneck, the network splits to a decoder branch and a needle localization
branch. Each layer of the decoder branch comprises of bilinear upsampling followed by two 3× 3
convolutions, concatenation with nested skip pathways, a further two 3× 3 convolutions and batch
normalization. A final 3× 3 convolution attached to the end of the decoder generates segmentation
masks yseg ∈ [0, 1]512×512×2. The needle localization module comprises of a 1 × 1 convolution
followed by a softmax layer which generates a normalized heatmap Z ∈ [0, 1]64×64 for the needle tip
position. The normalized heatmap is passed through a differentiable spatial to numerical transform
[8] to produce a corresponding pair of coordinates ycoords ∈ [−1, 1]2.

2.3 Model Training

The model is trained with the multi-objective loss:

Ltotal = Lseg + λ1Leuc + λ2Ljs

where λ1, λ2 ∈ R are constant weightings; Lseg is the Dice loss between yseg and the ground truth
segmentation masks; Leuc is the Euclidean distance between the ycoords and the ground truth needle
tip coordinates; and Ljs is a the Jensen-Shannon divergence between Z and a normal distribution
around the ground truth needle tip coordinates as described in [8].
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Figure 2: Examples of predicted segmentation
masks. The oolemma is highlighted purple; the
suction pipette is highlighted grey; the back-
ground is highlighted blue; and the predicted
needle tip is shown with a yellow dot.

Figure 3: Histogram of distances from needle tip
predictions to ground truth.

Table 1: Mean Operator Performance (with stan-
dard deviations in square brackets).

Interoperator Intraoperator

Oolemma (IoU) 0.960 [0.016] 0.959 [0.015]
Pipette (IoU) 0.964 [0.021] 0.965 [0.013]
Needle (pixels) 3.731 [3.043] 3.503 [3.230]

The parameters of the model were learnt using the diffGrad optimizer [9] with batches of size 4 and
an initial learning rate of 1× 10−3. The training data was augmented with random cropping, rotation,
flips, elastic and optical distortion, Gaussian noise and erasing.

3 Experiments

3.1 Intra & Interoperator Variation

In order to understand the variation in labels between labelling operators, each operator was asked
to label a smaller dataset of 14 frames randomly selected from the training set. The IoU between
segmentation masks as well as the Euclidean distance between the needle tip annotations were
calculated for each pairing of operators.

Moreover, the variation in labels from a single operator was quantified: the operators were asked to
relabel the same dataset of 14 frames an additional four times. Successive rounds of labelling were
spaced at least two hours apart and annotations from previous rounds were hidden. The IoU between
segmentation masks and the Euclidean distance between the needle tip annotations were calculated
for each operator over each pairing of rounds.

The results for both experiments are summarized in Table 1. It was determined that there was no
statistically significant difference between intra and interoperator performance (p > .05).

3.2 Model Evaluation

The model was trained for 31 epochs (26 hours) on a single RTX 2080Ti GPU and evaluated on 1000
frames extracted from 23 ICSI videos. The model achieved IoU scores of 0.961 (σ = 0.021) and
0.963 (σ = 0.064) for the oolemma and pipette classes respectively. The average Euclidean distance
from the predicted needle tip to the ground truth location was 3.793 (σ = 6.981). A histogram of
these distances can be seen in Figure 3. It was determined that there was no significant difference
between human interoperator and our model’s performance on any of the classes (p > .05). The
model is relatively small at 2.6 M parameters and inference time was 70.2 ms per frame (~14 FPS).
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4 Conclusion & Future Work

In this paper, we introduce the first deep neural network model for the segmentation of ICSI videos.
The model achieves roughly human-level performance with speed and consistency on a single GPU
setting a strong baseline for future research in the area.

There is much scope for further work on the model itself. Temporal consistency between predictions
for consecutive frames may be improved by conditioning predictions on previous frames or through
post-processing techniques (though the latter may not always be possible in real-time settings).
Though already suitable for the analysis of ICSI technique, the model may prove useful to a wider
audience by recognizing other structures present in the videos. Moreover, in order to increase
robustness with respect to different laboratory setups, the training dataset should be expanded to
encompass a wider range of equipment across multiple clinics. At a more applied level, the model
may be combined with unsupervised techniques to analyze ICSI technique at scale and aid in the
discovery of "best practices" in ICSI.

Broader Impact

This work has the potential to positively impact infertile people and others unable to conceive without
medical assistance by enabling further research into ICSI which may help them in fulfilling their
dreams of having children. However, the research may also generate a negative impact by perhaps
enabling further work into automated ICSI procedures which, while obviously having applications in
improving efficiency and standardization in IVF laboratories, may be misused in the long run (for
example, for eugenics or the raising of an army of clones). Moreover, in the shorter term, errors made
by the system when used for processing videos for research may lead to incorrect conclusions being
drawn. It is thus important that predictions are validated by a human-in-the-loop and not blindly
trusted.
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