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Voltage-controlled Hubbard spin transistor
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Transistors are key elements for enabling computational hardware in both classical and quantum domains.
Here we propose a voltage-gated spin transistor using itinerant electrons in the Hubbard model which acts at
the level of single electron spins. Going beyond classical spintronics, it enables the controlling of the flow of
quantum information between distant spin qubits. The transistor has two modes of operation, open and closed,
which are realized by two different charge configurations in the gate of the transistor. In the closed mode, the
spin information between source and drain is blocked while in the open mode we have free spin information
exchange. The switching between the modes takes place within a fraction of the operation time which allows
for several subsequent operations within the coherence time of the transistor. The system shows good resilience
against several imperfections and opens up a practical application for quantum dot arrays.
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I. INTRODUCTION

Transistors are the building blocks of our electronic tech-
nologies. They are used as fast electric current switches in
every digital electronic device [1,2]. The application of tran-
sistors has been extended to atomic systems [3–6], photon
circuits [7,8], and spintronics [9–11]. In spintronics, spin
transistors have been developed as a controllable switch for
transferring classical information encoded in spin degrees
of freedom [12,13]. For miniaturizing spintronics as well as
for going beyond classical computation, a new generation of
transistors capable of acting at the single electron level would
be highly desirable. Can the newly developed spin quantum
simulators [14,15], such as the quantum dot arrays [16–22],
dopants in silicon [23–29], and molecular magnets [30–33],
be the arena to develop such transistors?

So far, quantum spin transistors (QSTs) have been pro-
posed for Heisenberg spin chains [34,35], superconducting
devices [36–39], bosonic quantum oscillators [40], and
symmetry protected many-body systems with adiabatic pas-
sage [41–43]. In these proposals, the switching of the
information flow in QSTs is controlled by either a mag-
netic [34,36,40–42,44] or a periodic driving [35] field. This
makes the operation very slow and hard to realize. An open
question is whether one can design a QST that is controlled
simply by external voltages, but still enables operations at the
level of single electron spins.
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Quantum state transfer in spin chains has been the subject
of extensive research in the last decade [45–48]. Engineered
chains [49–55], quantum state routers [56,57], arbitrary
perfect state transfer methods [58,59], induced direct inter-
action with perturbative methods [60–63], many-qubit state
transfer [64–66], and simultaneous quantum communication
between multiple users [67,68] are just a few among many
proposals for achieving high fidelity quantum state transfer in
spin chains. The spin-only nature of these proposals implies
that any QST based on these ideas will inevitably require a
magnetic field for switching [34–43]. In order to avoid this
obstacle, one solution is to use charged particles which can be
controlled by fast electric fields.

Here we put forward a proposal for QSTs for itinerant
electrons in a Fermi-Hubbard lattice [69–77]. The charged
configuration of the electrons, controlled by electric voltages
in the gate port, can switch the information flow between the
electrons trapped in the source and the drain of the transistor.
While the transistor operates at the single electron level, its
operation time is fast and switching can even happen within
a fraction of this time. This allows for several subsequent
operations of the transistor within the coherence time of the
device. The robustness of the proposed QST against different
types of noise is investigated and the obtained results based
on realistic parameters demonstrate the capability of the QST
to operate with high fidelity in a realistic noisy setting. There-
fore, it provides a new utilization for quantum dot arrays.

II. MODEL

We consider two extremely localized electrons as the
source (i.e., input) and the drain (i.e., output) ports and
n electrons hopping among L sites of a one-dimensional
(1D) lattice as the gate (i.e., channel). The transistor is
shown schematically in Fig. 1(a). The dynamics of the over-
all system is ruled by an extended Fermi-Hubbard model
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FIG. 1. (a) Schematic of the QST. In a 1D lattice, two electrons
are extremely localized at source and drain sites and n electrons
hopping among L sites of a central gate as a quantum channel.
(b) and (c) Diagrams show how setting voltages can control the
configurations of electrons for opening and closing the gate in the
shortest possible transistor with size L = 3 filled by n = 1 electron.

Htot = Hgate + Hs + Hd + HI , in which we define

Hgate = −
L−1∑
k=1

∑
σ=↑,↓

tk,k+1(c†
k,σ

ck+1,σ + H.c.)

+
L−1∑
k=1

Vk,k+1nknk+1 +
L∑

k=1

(Ukn↑
k n↓

k − εknk ),

Hs = Usn
↑
s n↓

s − εsns, Hd = Ud n↑
d n↓

d − εd nd ,

HI = −
∑

σ=↑,↓
(ts,1c†

s,σ c1,σ + tL,d c†
L,σ cd,σ + H.c.)

+Vs,1nsn1 + VL,d nLnd , (1)

where the subscript s (d) represents the source (drain) qubit,
and HI describes the interactions of the electrons in the source
and the drain with the electrons in the gate. In Eq. (1), ck,σ

(c†
k,σ

) is the annihilation (creation) fermionic operator for
an electron at site k ∈ {s, 1, . . . , L, d} with spin σ , number
operator nk = ∑

σ=↑,↓ nσ
k with nσ

k = c†
k,σ

ck,σ counts the total
number of electrons at this site, tk,k+1 is the tunneling between
neighboring sites, Uk is the on-site repulsion energy, Vk,k+1

is the Coulomb interaction between adjacent sites, and εk

is the local chemical potential at site k, which can be elec-
trostatically controlled. We impose mirror symmetry (MS)
on the chemical potential landscape �ε = [εs, ε1, . . . , εL, εd ]
such that εs = εd and εk = εL−k+1 for k ∈ {1, 2, . . . , �L/2�}.
In the following sections we first take all the Hamiltonian
parameters uniform, i.e., tk,k+1 = t , Uk = U , and Vk,k+1 = V
for all k ∈ {s, 1, . . . , L, d} and also consider U/t = 50 and
V/t = 1 which are matched with experimental realizations in
quantum dot platforms [16,71]. Next we investigate the role
of nonuniformity of the parameters in the performance of our
protocol. All the dynamics are restricted to be within the time
interval τ ∈ [0, 500]/t .

Note that for electron spin qubits in Si/SiGe quantum
dots, one of the main concerns has been the valley degree
of freedom, i.e., the degeneracy in the Si conduction band
minima, with focus on the valley-orbit coupling induced by

the interface disorder in material and its associated effect.
Generally, valley orbit coupling � and the variations of valley
phase across neighboring quantum dots can affect both the
speed and the quality of coherent transport of electrons [78].
Nevertheless, by setting the tunnel coupling t and valley orbit
coupling � more than Zeeman energies, the valley mixing can
be completely suppressed [79]. By performing in this regime,
the ground state manifold of the system is a spin doublet state
with the same valley which does not overlap with the different
valley (excited) states. In our protocol, thanks to the absence
of magnetic field, this condition is satisfied and the valley
degree of freedom is conserved for the ground state of the
system.

III. TRANSISTOR MODES

The spin transistor has two modes of operations determined
entirely by the gate charge configuration. (i) Open mode in
which the gate allows for the flow of information between the
source and the drain; and (ii) closed mode in which the charge
configuration of the gate blocks the exchange of information
between the source and the drain. For these modes the states of
the gate are denoted by ρopen and ρclosed, respectively. There-
fore, the operation of the spin transistor can be interpreted as a
quantum Fredkin gate [38,80–82], which is a controlled-swap
gate and performs the state swapping between the source and
the drain qubits, if the gate is open.

Initially, the electron in the source site has a specific spin
state |ψs〉 = α|↑s〉 + β|↓s〉, where |↑s〉 (|↓s〉) represents one
electron with spin up (down) at site s. The localized electron
at the drain site is assumed to be in the maximally mixed
state Id = (|↓d〉〈↓d | + |↑d〉〈↑d |)/2 which indicates no con-
trol over the spin state of the electron. The gate is initialized
in the ground state of Hgate, denoted by ρmode ∈ {ρopen, ρclosed}.
The initial state of the whole system is thus described
by ρ(0) = |ψs〉〈ψs| ⊗ ρmode ⊗ Id . Then, the system evolves
under the action of the total Hamiltonian Htot as ρ(τ ) =
Uτ ρ(0)U †

τ , where Uτ = e−iHtotτ . Ideally, in the open mode
the target state is ρ

target
open = Is ⊗ ρopen ⊗ |ψd〉〈ψd |, which is

obtained by swapping the quantum states of the source and
the drain in the initial state. On the other hand, in the closed
mode, the system should remain unchanged and thus the target
state is ρ

target
closed = |ψs〉〈ψs| ⊗ ρclosed ⊗ Id . To quantify the per-

formance of the transistor at each mode (i.e., either open or
closed), we compute the fidelity Fmode(τ ) = F [ρ(τ ), ρ target

mode ].
By taking the average over all possible input states, one gets
the input-independent quantity F mode(τ ) = ∫

Fmode(τ )d
, in
which d
 is the Haar measure over the Bloch sphere. While
F open(τ ) takes its maximum at time τ = τ opt, which will be
the operation time of the transistor, F closed(τ ) should remain
closed to 1 at all times.

The key point in the performance of the transistor is to
tune the chemical potential �ε to: (i) keep the electrons in the
source and the drain sites localized at all times; and (ii) get
proper quantum states of the gate, namely ρopen and ρclosed,
in order to maximize the fidelity F mode(τ opt) for both modes.
For the open mode we push the electron inside the gate to
be delocalized at the edges by choosing the electron configu-
ration as εk = |�L/2� − k|εopen, see Fig. 1(b). For the closed
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FIG. 2. (a) Dynamics of the average fidelity and logarithmic
negativity χ in the shortest (L = 3 and n = 1) transistor with an open
gate. The inset shows the performance of the transistor with a closed
gate. The charge occupancy diagrams in the shortest transistor with
an open (b) and closed (c) gate. In all plots, the potential landscape
are tuned in optimal values ε

opt
open = 10t , ε

opt
closed = 20t , and ε

opt
s,d = 39t

for both modes.

mode, the electron is localized at the middle site by setting
εk = (k − 1)εclosed, see Fig. 1(c). Hence, εopen and εclosed con-
trol the entire chemical potentials inside the gate. This is in
particular useful for dopant-based systems in which single site
control may not be available. At each mode, εmode together
with the parameter εs = εd should be optimized so that the
above two conditions are satisfied for an optimal operation
time τ opt ∈ [0, 500]/t .

For the sake of simplicity, we start with the shortest pos-
sible gate consisting of L = 3 sites and n = 1 electron, for
which we can provide analytic solution. Longer gates and
larger filling factors will be discussed later. In general, due
to the absence of magnetic field, the ground state of the gate
is spin degenerate with the same charge configurations. There-
fore, we consider the state of the gate to be an equal mixture
of all those spin-degenerate ground states. By choosing εopen

and εclosed � 2
√

2t (see the Appendix for details), the ground
state of Hgate in both open (i.e., |Oσ 〉) and closed (i.e., |Cσ 〉)
modes is doubly degenerate and is given by

|Oσ 〉= (|σ, 0, 0〉 + |0, 0, σ 〉)/
√

2 and |Cσ 〉= |0, σ, 0〉, (2)

where |0〉 represents an empty site and |σ 〉 stands
for a site containing one electron with spin σ =↑,↓.
Therefore, one gets ρopen = 1/2

∑
σ |Oσ 〉〈Oσ | and ρclosed =

1/2
∑

σ |Cσ 〉〈Cσ |. By exploiting the brute force optimization,
we obtain ε

opt
open = 10t and ε

opt
s,d = 39t for the open mode. For

the closed mode, we keep ε
opt
s,d fixed as in the open mode and

optimize the average fidelity with respect to εclosed which re-
sults in ε

opt
closed = 20t . Using these optimal parameters, we plot

F open as a function of time in Fig. 2(a) which shows that the
fidelity gradually increases and at a specific time τ opt = 64/t
peaks to its highest value F open(τ opt) = 0.983, resulting in
nearly perfect information transmission. The inset of Fig. 2(a)
depicts F closed versus time and shows that, in closed mode, the
fidelity remains very close to 1 throughout the evolution. To
fully understand the underlying mechanism of our QST, one
has to discriminate the charge and spin degrees of freedom.
As shown in Fig. 2(b), for both operational modes of the
transistor, the charge occupancy n̄k = Tr[nkρ(τ )] of each site
k ∈ {s, 1, . . . , L, d} presents very stable behavior during the

evolution. By tuning εs = εd to be off-resonant with the other
chemical potentials in the gate, one can trap the electrons in
the source and the drain. However, thanks to the uniformity
of the tunneling t , the spin flow from the source to gate is not
energetically costly and thus spin information flows directly
through the gate. This can be illustrated by the entanglement
dynamics of the gate with the rest of the system, quantified
by the logarithmic negativity χ (τ ) = log2 |ρTg (τ )| and plotted
in Fig. 2(a). Here Tg stands for partial transpose and | · |
represents the trace norm. The generated entanglement during
the dynamical evolution is a clear witness for the spin flow
of information between the source and the drain through the
electrons inside the gate. Obviously this mechanism is very
distinct from perturbative methods for quantum state trans-
fer [60–62] in which very few (usually two) eigenstates with
bilocalized charges at the edges participate in the transmission
dynamic.

In the same spirit, one can construct the QSTs with longer
gates containing only one electron. From the practical point
of view, increasing the distance between the source and the
drain qubits helps to avoid crosstalk and achieve better local
addressability and isolation. In addition, the Hubbard model
can be an approximation for a gate made of a large quantum
dot with multiple electrons. By optimizing the chemical po-
tential landscape �ε (presented in Table I) one can induce a
high quality spin flow of information. In Table I, for different
gate length L = 3, . . . , 8 with n = 1 electron, the obtainable
average fidelity in the open mode, the operation time τ opt ∈
[0, 500]/t , and optimal values of the chemical potentials for
both modes are reported. Note that throughout this paper, the
chemical potentials are obtained by exploiting the brute force
optimization over the interval [0,100] and result in high fi-
delity operations of the transistors within the operational time
interval τ ∈ [0, 500]/t . In the case of n = 1, by increasing
L, the charge density in the gate leaks from the edges to the
internal sites. This results in slow decay of the average fidelity
from F open(τ opt) = 0.983 for L = 3 to F open(τ opt) = 0.921
for L = 8. At the same time, the operation time τ opt increases
almost linearly by L.

IV. SWITCHING THE TRANSISTOR

In order to be practically useful, one has to be able to
rapidly switch between the open and the closed modes. In
fact, since the gate in both modes operates in its ground
state, the transition can be implemented by adiabatically
sweeping the bias chemical potentials to the desired val-
ues over a switching time τsw. For transmission from the
open to the closed mode, in the first half of the switch-
ing time, 0 � τ � τsw/2, the local chemical potential on the
gate is swept to zero through εk (τ ) = (1 − 2τ/τsw)|�L/2� −
k|εopen. Then the sweeping is followed by εk (τ ) = (2τ/τsw −
1)(k − 1)εclosed in the second half of the switching time,
τsw/2 < τ � τsw. The evolution of the gate is thus given by
Vτ = T e−i

∫ τ

0 Hgate (τ ′ )dτ ′
with T being the time-ordering oper-

ator. The state of the gate evolves as ρgate(τ ) = Vτ ρopenV †
τ .

For evaluating this transition, one can consider the fidelity
Fopen→closed(τsw) = F [ρclosed, ρgate(τsw )]. Similarly, the transi-
tion from the closed to the open mode can be carried out
by adiabatically sweeping the chemical potentials from the
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TABLE I. The achievable F open(τ opt ) at different size L = 3, . . . , 8 with various number of electrons 1 � n � L which is obtained at
optimal time τ opt and optimal potential εopt

s and ε
opt
open [83].

L 3 4 5 6 7 8

n 1 2 1 2 3 4 1 2 3 4 5 1 2 3 4 5 6 1 1

F open(τ opt ) 0.983 0.974 0.972 0.871 0.970 0.982 0.959 0.651 0.961 0.723 0.821 0.969 0.414 0.930 0.764 0.791 0.887 0.925 0.921

tτ opt 64 459 81 286 107 255 129 484 409 270 434 153 492 493 346 455 424 184 270

ε
opt
s,d/t 39 74 30 25 85 23 37 36 93 31 99 37 39 85 32 75 49 35 39

ε
opt
open/t 10 1 4 1 55 35 3 1 39 5 1 2 1 4 1 1 23 1 1

ε
opt
close/t� 20 54 14 10 54 64 3 6 9 50 40 2 3 8 9 31 3 1 2

closed to the open mode. The quality can be quantified via
transition fidelity Fclosed→open(τsw) = F [ρopen, ρgate(τsw)]. We
search for the lowest τsw so that these transmission fidelities
remain very high. In Fig. 3(a) we plot Fopen→closed(τsw) as a
function of switching time τsw for gate of sizes L = 3, 5, 8
filled by n = 1 electron. Interestingly, for a gate of size L = 3
by choosing τsw/τ opt � 0.18 one can achieve a transmission
fidelity of Fopen→closed(τsw) > 0.98. This means that one can
switch between the modes of the transistor within a fraction
of its operation time. The inset of Fig. 3(a) shows the charge
movements between different sites of the gate. The initially
delocalized electron between the edge sites becomes localized
at the middle site after the switching time τsw. The larger
gates operate in the same way. For instance, for the gate
size L = 8 and n = 1 the switching time can be as small as
τsw/τ opt = 0.05 to reach the fidelity Fopen→closed(τsw) > 0.98.
Interestingly, the switching from the closed to the open mode
can be achieved within the same switching time τsw. It is
desirable to see how the quality of the transistor operation
is affected by M subsequent opening and closing the gate
without resetting the transistor. For a transistor of gate size
L = 3 filled by n = 1 electron, we plot the obtainable fidelity
F open as a function of M in Fig. 3(b). Although the quality
of the transmission decays with subsequent uses, even after
M = 10 switching the fidelity still remains above the classical
threshold 2/3.

FIG. 3. (a) Fidelity of transition ρopen into ρclosed at the end of
the bias sweeping as a function of τsw which is a percentage of
τ

opt
L for different gate length L = 3, 5, 8 and n = 1. Inset shows the

transmission of the electron from the barriers to the middle of the
gate by bias sweeping from εk = |�L/2� − k|εopen into the opposite
bias εk = (k − 1)εclosed as a function of time in the shortest transistor
with n = 1. (b) Functionality of the shortest transistor with L = 3
and n = 1 for M subsequent opening and closing the gate without
resetting.

V. FILLING FACTOR EFFECT

Here we investigate the role of increasing the number of
electrons in the gate (namely n) on the performance of the
open mode. Table I presents the obtainable average fidelity
F open(τ opt), the optimal time τ opt, and corresponding optimal
chemical potentials for various choices of 3 � L � 8 and 1 �
n � L. While the gates with odd n have twofold degenerate
ground state with total spin Stot = 1/2, the ground state for
even n electrons is a global spin singlet with Stot = 0. This
results in different outcomes for even and odd n.

Let us first focus on filling factors less than half, n < L. In
the case of odd n, the n − 1 electrons localize at the corner
sites of the gate with n̄k ∼ 1. Due to the mirror symmetry,
the last electron becomes delocalized between the two sites
adjacent to the occupied ones with n̄k ∼ 0.5. The rest of
the inner sites have small charge occupancy (i.e., n̄k � 1).
This can be seen from Fig. 4(a), which illustrates the charge
occupancies in the evolution of a transistor of length L = 6
which is filled by n = 3 electrons. Obviously the sites with
lowest energies, i.e., the corners, are fully occupied by 2
electrons (one electron per site) and the remained electron
tends to be delocalized on adjacent empty sites with upper
energies, i.e., sites 2 and 5. Based on Table I, for a fixed L,
increasing two electrons (keeping n odd) keeps the average
fidelity almost the same and increases the operation time. One
can explain this as the localized electrons at the corner sites
create an effective barrier for information flow which slows
the dynamics. In the case of even n, while n − 2 electrons are
localized in the corner sites (with n̄k ∼ 1), the two remaining
electrons become highly delocalized among all the internal
sites [see Fig. 4(b) for the dynamics of the charge occupancies
in transistor of L = 6 and n = 4]. For a fixed L, increasing two

FIG. 4. Charge occupancies of a gate of length L = 6 filled by
n = 3 (a) and n = 4 (b) electrons versus time. In all plots the chemi-
cal potential are tuned into their optimal values presented in Table I.
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electrons (keeping n even), enhances the average fidelity and
shrinks the operation time significantly. In fact, by increasing
n, the two delocalized electrons disperse over inner sites, thus
the wave function overlap between internal sites increases.
This results in faster dynamics. Note that, in Table I, some
of the cases of even n show very low fidelity which is due to
slow dynamics and the insufficiency of the considered time
interval.

In the half-filling scenario, n = L, the dynamics of the
system in the open mode can be reduced to the extensively
studied quantum state transfer in spin chains [45–48]. For this
case, in comparison to lower filling factors, the dynamics is
slower and the average fidelity may take lower values. This
shows the advantage of the itinerant electrons over spin chain
state transfer.

Note that, for all considered 3 � L � 8 and 1 � n � L,
the closed mode can be perfectly obtained merely by tuning
the chemical potential �ε and localizing the electrons in the
central sites of the gate. In Table I the corresponding optimal
chemical potential ε

opt
closed for closed mode is presented for

various 3 � L � 8 and 1 � n � L. In the case of L = 3 and
n = 3, there is no configuration that keeps all of the electrons
far away from the source and the drain qubits, so the closed
mode cannot be faithfully captured and is omitted.

VI. OPERATION UNDER REALISTIC CONDITIONS

In order to capture all relevant effects of implementing our
proposal based on different types of quantum platforms, we
first consider the effects of temperature, disorder in Hamil-
tonian parameters, and electric charge noise, as common
concerns in all physical platforms. Next we devote the largest
attention to gate-controlled quantum dot arrays [16,17,84,85]
as the most suitable physical platforms to realize our proposed
QST. Quantum dots naturally realize the Hubbard Hamilto-
nian [71,72,74,75] and the coherence time of such systems
has reached to T2 ∼ 100 μs [20,22,86–89], which can be
further enhanced through environmental charge noise sup-
pression [90,91] or material engineering [92]. Quantum dots
take a variety of forms with specific mechanisms that lead
to spin flip. In GaAs quantum dots this mechanism is the
spin-orbit coupling (SOC) and in the following the effect of
this source of noise on the performance of the transistor is
considered.

A. Thermal effect

In the case of nonzero temperature, the gate is initialized
in a thermal state ρgate = e−Hgate/T KB/tr[e−Hgate/T KB ] rather than
a mixture of spin degenerate ground states, where T and KB

are the temperature and Boltzmann constant, respectively. If
the thermalization time is longer than the performance of the
transistor, then the dynamics remain unitary. In Fig. 5(a) the
effect of the temperature on the functionality of the open
and closed gates with L = 3 and n = 1 is reported. While
by increasing the temperature F open(τ opt) decays slowly, the
closed transistor demonstrates very robust behavior as long as
T KB/t � |ε1 − ε2|. In a typical quantum dot platform with
t = 0.02 meV, one can get F open(τ opt) > 0.9 for temperature
close to 60 mK.

FIG. 5. Functionality of the shortest transistor filled by n = 1
electron with open and closed gates as a function of the temperature
T KB (a), disorder strength λ (b), decoherence rate γ (c), and SOC
strength α (d). In these plots the parameters are tuned as τ opt = 64t ,
ε

opt
s,d = 39t , ε

opt
open = 10t , and ε

opt
closed = 20t .

B. Disorders

The key assumptions in the performance of the tran-
sistor are the homogeneity of the Hamiltonian parameters
and mirror symmetry (MS) on the applied chemical po-
tentials. However, fabrication disorder in any experimental
setup is inevitable. As a consequence, the Hamiltonian pa-
rameters may be subject to random variations and stay
nonuniform. For analyzing the effects related to random-
ness of tunneling, one-site repulsion energy, and Coulomb
interaction we consider the parameters in the Hamiltoni-
ans of Eq. (1) as tk,k+1 = t (1 + �t ), Uk = U (1 + �U ), and
Vk,k+1 = V (1 + �V ) for k ∈ {s, 1, . . . , L, d}. Moreover, to
investigate the effect of disorder in applied chemical poten-
tials we first replace εs,d with ε

opt
s,d (1 + �s) and also εk with

ε
opt
k (1 + �k ) in a way that ε

opt
k (1 + �k ) = ε

opt
L−k+1(1 + �k ) for

k ∈ {1, 2, . . . , �L/2�}. By this assumption the MS condition
is preserved. Next we relax this assumption and consider
ε

opt
k (1 + �k ) as the local chemical potential on all sites k ∈

{s, 1, . . . , L, d} to break down the MS. Although, in real
experiments, the strength of disorder for each parameter is
different, here, for the sake of simplicity, we assume that all �i

for i ∈ {t,U,V, s, k} are sampled from a uniform distribution
with �i ∈ [−λ, λ]. The advantage of this choice is that with
controlling λ one can investigate the effect of disorder in all
the parameters. By generating 500 different random Hamilto-
nians H , according to this distribution, for each value of λ, we
calculate F open(τ opt) and F closed(2τ opt) for open and closed
modes. Averaging over all these random realizations one gets
〈F open(τ opt)〉 and 〈F closed(2τ opt)〉 to quantify the quality of
the transistor’s modes. The performance of shortest transis-
tor with L = 3 and n = 1 as a function of λ at both modes
while MS is preserved (PMS) and broken (BMS) is plotted in
Fig. 5(b). While by increasing the strength of the disorder λ

the quality of the transmission in open mode decreases, closed
mode remains totally stable. Regarding the configuration of
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the electron inside the gate in the closed mode, this robust
behavior is expected. In this case, the strength of the disorder
is not enough for delocalizing electron in the middle of the
gate and, hence, transferring the information. In the presence
of MS, the protocol shows more robust behavior and even for a
disorder with strength λ < 0.08, one gets 〈F open(τ opt)〉 > 0.9.
Clearly, breaking the SM results in sharp reduction of the
transmission’s quality and 〈F open(τ opt)〉 > 0.9 can be only
obtained for λ < 0.018.

C. Electric charge noise

Another source of imperfections which can be more seri-
ous is electric charge noise. As this noise imposes a challenge
for most operations in electron spin qubits, a thorough char-
acterization of it is essential. A possible explanation for this
noise is that each eigenstate of the system, i.e., {|Ei〉}, expe-
riences different interaction with the environment resulting
in a Markovian dynamics described by a Linbladian master
equation

ρ̇(τ ) = −i[H, ρ(τ )] + γ
∑

i

[
�iρ(τ )�†

i − 1

2
{�†

i �i, ρ(τ )}
]
,

(3)
where γ is the strength of the noise and the Lindblad operators
are given as �i = |Ei〉〈Ei|. The functionality of the shortest
transistor with L = 3 filled by one electron as a function of γ

for both operational modes is presented in Fig. 5(c). As the
noise strength enhances the fidelities decays to lower values.
Nonetheless, for γ < 0.002t , both average fidelities exceed
0.9 showing that our transistor can tolerate resonantly strong
charge fluctuations.

D. Spin-orbit coupling

In some of the quantum dot platforms (e.g., GaAs and
InAs) one of the main concerns has been SOC, a mechanism
that leads to spin flipping. For the 1D Fermi-Hubbard model
that we have here, the SOC Hamiltonian accounting for the
well known Rashba and Dresselhaus effects is given by [93]

Hsoc = −tζ

(
c†

s,↑c1,↓ +
L−1∑
k=1

c†
k,↑ck+1,↓ + c†

L,↑cd,↓

)
+ H.c.,

(4)
where ζ = α − iβ and α and β are the Rashba and the Dres-
selhaus parameters for typical quantum dots and depends on
the internal properties and spatial gaps between the quan-
tum dots. In this case the extended Hubbard model H ′

tot =
Htot + Hsoc rules the dynamics of the system. Clearly Hsoc

does not conserve spin and, although it does not induce a pure
dephasing, it influences spin coherence through relaxation
and energy exchange with the environment. For gate-defined
neighbor quantum dots consisting of AlGaAs/GaAs het-
erostructure, introduced in [93], these parameters are given
as β � 4α. In Fig. 5(d) the impact of SOC on the dynamics of
the average fidelity in two operational modes of the transistor,
in terms of coupling strength α, is presented. Although both
operational modes are suppressed, the obtainable average fi-
delities remain over 0.9 for α � 0.01t .

VII. EXPERIMENTAL PROPOSAL

In typical quantum dot systems, on-site repulsion energy
U is on the order of 1 meV, while interdot tunnel cou-
pling t and site-specific electrochemical potential εk can be
controlled precisely by metallic gate voltages [90,91,93]. In
a realistic quantum dot arrays with L = 3 and n = 1 elec-
tron, one can tune the parameters to have t = 0.02 meV,
U = 1 meV (U/t = 50), V = 0.1 meV (V/t = 5), ε

opt
s =

0.7 meV (εopt
s /t = 35), ε

opt
open = 0.3 meV (εopt

open/t = 15) for
open and ε

opt
closed � 0.22 meV (εopt

closed/t � 11) for closed tran-
sistors. These parameters result in F open(τ opt) > 0.98 and
F closed(2τ opt) > 0.99 at optimal time τ opt ∼= 14.68 ns (tτ opt =
71). The operation of the transistor is much faster than deco-
herence time ∼100 μs which allows for ∼10–100 subsequent
operations.

VIII. CONCLUSION

We have proposed a low control QST for itinerant electrons
to operate at the single electron level and control the flow of
quantum information between distant qubits. The transistor
can simply be controlled by external voltages which tune the
charge configuration of electrons in the gate port. While the
charge movement between the different ports of the transistor
is suppressed by keeping them off-resonant, the spin informa-
tion can freely propagate between the source and the drain
in the open mode. The performance shows higher fidelities
and faster dynamics in comparison with the well-studied spin
chain based state transfer scenarios. The switching between
the open and the closed modes is fast which allows for sev-
eral subsequent operations. The performance which is robust
against several types of imperfections, makes this as potential
practical application for quantum dot arrays.
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APPENDIX

In this Appendix we first describe our methodology for
constructing the Hamiltonian matrices, then derive the ground
states of Hgate for both modes of operation, i.e., open and
closed, analytically. In the next step we analyze the mech-
anism of the transistor for rebuilding the initial state of the
source on the drain qubit. For a transistor consisting of the
source, drain, and a gate with L = 3 sites, the basis specifying
by the occupations of the electrons on the lattice and their spin
projections is

|{nkσ }〉 = |ns↑, n1↑, n2↑, n3↑, nd↑, ns↓, n1↓, n2↓, n3↓, nd↓〉,
(A1)

with nkσ = 0 or 1 and subscript s and d for source and drain
sites. For a gate with n = 1 electron, Hgate is a 9×9 matrix. Be-
cause of the conservation of the number and spin polarization,
the gate Hamiltonian can be divided into two independent
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blocks with different spins ↑ and ↓ as

Hgate =
[

H↑
gate 0
0 H↓

gate

]
,

with Hσ
gate =

⎡
⎣−ε1 −t 0

−t −ε2 −t
0 −t −ε1

⎤
⎦. (A2)

Here the imposed mirror symmetry on the local potentials are
considered. The eigensystem of each Hσ

gate is obtained as

λ0,2 = 1
2 [−ε1 − ε2 ∓

√
8t2 + (ε1 − ε2)2], λ1 = −ε1,

|E0〉 = (|Oσ 〉 − x0|Cσ 〉)/
√

1 + x2
0,

|E1〉 = (−|σg, 0, 0〉 + |0, 0, σg〉)/
√

2,

|E2〉 = (|Oσ 〉 − x2|Cσ 〉)/
√

1 + x2
2, (A3)

where

|Oσ 〉 = (|σ, 0, 0〉 + |0, 0, σ 〉)/
√

2, |Cσ 〉 = |0, σ, 0〉, (A4)

and x j = 1
t (ε1 + λ j ) with j = 0, 2. Assuming (ε1 − ε2)2 �

8t2, for |ε1| > |ε2| straightforward calculations lead to λ0 �
(−ε1 − 2t2

ε1−ε2
) and λ2 � (−ε2 + 2t2

ε1−ε2
) which in turn result

in λ0 � λ1 � λ2 and |E0〉 � |Oσ 〉. Therefore, by setting the
potential configuration as |ε1| > |ε2|, the ground state of Hgate

almost collapses on |Oσ 〉. Tuning the chemical potential as
|ε1| < |ε2|, analog calculations provide λ0 � (−ε2 − 2t2

ε2−ε1
)

and λ2 � (−ε1 + 2t2

ε2−ε1
). Still λ0 � λ1 � λ2, and the ground

state of Hσ
gate can be simplified to |E0〉 � |Cσ 〉. These results

show that how setting the potential landscape results in differ-
ent Hgate with different ground states that provides two desired
open and closed operational modes of our transistor.

[1] V. V. Togatov and D. S. Ternovskii, Metal-oxide-semiconductor
field-effect transistor (MOSFET) ultrafast switching research
and its applications, Instrum. Exp. Tech. 56, 59 (2013).

[2] A. Samal, S. L. Tripathi, and S. K. Mohapatra, A journey from
bulk MOSFET to 3 nm and beyond, Trans. Electr. Electron.
Mater. 21, 443 (2020).

[3] M. Fuechsle, J. A. Miwa, S. Mahapatra, H. Ryu, S. Lee,
O. Warschkow, L. C. L. Hollenberg, G. Klimeck, and M. Y.
Simmons, A single-atom transistor, Nat. Nanotechnol. 7, 242
(2012).

[4] A. Micheli, A. J. Daley, D. Jaksch, and P. Zoller, Single Atom
Transistor in a 1D Optical Lattice, Phys. Rev. Lett. 93, 140408
(2004).

[5] M. Gajdacz, T. Opatrný, and K. K. Das, An atomtronics transis-
tor for quantum gates, Phys. Lett. A 378, 1919 (2014).

[6] K. W. Wilsmann, L. H. Ymai, A. P. Tonel, J. Links, and A.
Foerster, Control of tunneling in an atomtronic switching de-
vice, Commun. Phys. 1, 91 (2018).

[7] S. Sun, H. Kim, Z. Luo, G. S. Solomon, and E. Waks, A single-
photon switch and transistor enabled by a solid-state quantum
memory, Science 361, 57 (2018).

[8] H. Li, H. Cai, J. Xu, V. Yakovlev, Y. Yang, and D.-W. Wang,
Quantum photonic transistor controlled by an atom in a Floquet
cavity-QED system, Opt. Express 27, 6946 (2019).

[9] A. Hirohata, K. Yamada, Y. Nakatani, L. Prejbeanu, B. Diény,
P. Pirro, and B. Hillebrands, Review on spintronics: Principles
and device applications, J. Magn. Magn. Mater. 509, 166711
(2020).

[10] F. Pulizzi, Spintronics, Nat. Mater. 11, 367 (2012).
[11] A. Chumak, A. Serga, and B. Hillebrands, Magnon transistor

for all-magnon data processing, Nat. Commun. 5, 4700 (2014).
[12] S. Datta and B. Das, Electronic analog of the electro-optic

modulator, Appl. Phys. Lett. 56, 665 (1990).
[13] S. Datta, How we proposed the spin transistor, Nat. Electron 1,

604 (2018).
[14] M. N. Leuenberger and D. Loss, Quantum computing in molec-

ular magnets, Nature (London) 410, 789 (2001).

[15] D. Loss and D. P. DiVincenzo, Quantum computation with
quantum dots, Phys. Rev. A 57, 120 (1998).

[16] P. Barthelemy and L. M. Vandersypen, Quantum dot systems:
A versatile platform for quantum simulations, Ann. Phys. 525,
808 (2013).

[17] K. W. Chan, H. Sahasrabudhe, W. Huang, Y. Wang, H. C.
Yang, M. Veldhorst, J. C. C. Hwang, F. A. Mohiyaddin, F. E.
Hudson, K. M. Itoh, A. Saraiva, A. Morello, A. Laucht, R.
Rahman, and A. S. Dzurak, Exchange coupling in a linear chain
of three quantum-dot spin qubits in silicon, Nano Lett. 21, 1517
(2021).

[18] M. Veldhorst, C. H. Yang, J. C. Hwang, W. Huang, J. P.
Dehollain, J. T. Muhonen, S. Simmons, A. Laucht, F. E.
Hudson, K. M. Itoh, A. Morello, and A. S. Dzurak, A two-qubit
logic gate in silicon, Nature (London) 526, 410 (2015).

[19] D. M. Zajac, A. J. Sigillito, M. Russ, F. Borjans, J. M. Taylor,
G. Burkard, and J. R. Petta, Resonantly driven cnot gate for
electron spins, Science 359, 439 (2018).

[20] L. M. K. Vandersypen and M. A. Eriksson, Quantum computing
with semiconductor spins, Phys. Today 72(8), 38 (2019).

[21] W. Huang, C. H. Yang, K. W. Chan, T. Tanttu, B. Hensen, R. C.
Leon, M. A. Fogarty, J. C. Hwang, F. E. Hudson, K. M. Itoh, A.
Morello, A. Laucht, and A. S. Dzurak, Fidelity benchmarks for
two-qubit gates in silicon, Nature (London) 569, 532 (2019).

[22] A. Chatterjee, P. Stevenson, S. De Franceschi, A. Morello, N. P.
de Leon, and F. Kuemmeth, Semiconductor qubits in practice,
Nat. Rev. Phys. 3, 157 (2021).

[23] M. T. Madzik, A. Laucht, F. E. Hudson, A. M. Jakob, B. C.
Johnson, D. N. Jamieson, K. M. Itoh, A. S. Dzurak, and A.
Morello, Conditional quantum operation of two exchangecou-
pled single-donor spin qubits in a MOS-compatible silicon
device, Nat. Commun. 12, 181 (2021).

[24] T. F. Watson, S. G. Philips, E. Kawakami, D. R. Ward, P.
Scarlino, M. Veldhorst, D. E. Savage, M. G. Lagally, M.
Friesen, S. N. Coppersmith, M. A. Eriksson, and L. M.
Vandersypen, A programmable two-qubit quantum processor in
silicon, Nature (London) 555, 633 (2018).

043142-7

https://doi.org/10.1134/S0020441213010120
https://doi.org/10.1007/s42341-020-00222-y
https://doi.org/10.1038/nnano.2012.21
https://doi.org/10.1103/PhysRevLett.93.140408
https://doi.org/10.1016/j.physleta.2014.04.043
https://doi.org/10.1038/s42005-018-0089-1
https://doi.org/10.1126/science.aat3581
https://doi.org/10.1364/OE.27.006946
https://doi.org/10.1016/j.jmmm.2020.166711
https://doi.org/10.1038/nmat3327
https://doi.org/10.1038/ncomms5700
https://doi.org/10.1063/1.102730
https://doi.org/10.1038/s41928-018-0163-4
https://doi.org/10.1038/35071024
https://doi.org/10.1103/PhysRevA.57.120
https://doi.org/10.1002/andp.201300124
https://doi.org/10.1021/acs.nanolett.0c04771
https://doi.org/10.1038/nature15263
https://doi.org/10.1126/science.aao5965
https://doi.org/10.1063/PT.3.4270
https://doi.org/10.1038/s41586-019-1197-0
https://doi.org/10.1038/s42254-021-00283-9
https://doi.org/10.1038/s41467-020-20424-5
https://doi.org/10.1038/nature25766


YOUSEFJANI, BOSE, AND BAYAT PHYSICAL REVIEW RESEARCH 3, 043142 (2021)

[25] Y. He, S. K. Gorman, D. Keith, L. Kranz, J. G. Keizer, and
M. Y. Simmons, A two-qubit gate between phosphorus donor
electrons in silicon, Nature (London) 571, 371 (2019).

[26] A. Morello, G. Tosi, F. Mohiyaddin, V. Schmitt, V. Mourik,
T. Botzem, A. Laucht, J. Pla, S. Tenberg, R. Savytskyy, M.
Madzik, F. Hudson, A. Dzurak, K. Itoh, A. Jakob, B. Johnson, J.
McCallum, and D. Jamieson, Scalable quantum computing with
ion-implanted dopant atoms in silicon, in Proceedings of the
IEEE International Electron Devices Meeting (IEDM) (IEEE,
Piscataway, NJ, 2018), pp. 6.2.1–6.2.4.

[27] A. Morello, J. J. Pla, P. Bertet, and D. N. Jamieson, Donor spins
in silicon for quantum technologies, Adv. Quantum Technol. 3,
2000005 (2020).

[28] J. O’Sullivan, O. W. Kennedy, C. W. Zollitsch, M. Šimėnas,
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