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Bioengineering the ameloblastoma 
tumour to study its effect on bone 
nodule formation
Deniz Bakkalci1, Amrita Jay2, Azadeh Rezaei3, Christopher A. Howard4, 
Håvard Jostein Haugen5, Judith Pape1, Shosei Kishida6, Michiko Kishida6, Gavin Jell3, 
Timothy R. Arnett7, Stefano Fedele8 & Umber Cheema1*

Ameloblastoma is a benign, epithelial cancer of the jawbone, which causes bone resorption and 
disfigurement to patients affected. The interaction of ameloblastoma with its tumour stroma drives 
invasion and progression. We used stiff collagen matrices to engineer active bone forming stroma, to 
probe the interaction of ameloblastoma with its native tumour bone microenvironment. This bone-
stroma was assessed by nano-CT, transmission electron microscopy (TEM), Raman spectroscopy 
and gene analysis. Furthermore, we investigated gene correlation between bone forming 3D bone 
stroma and ameloblastoma introduced 3D bone stroma. Ameloblastoma cells increased expression 
of MMP-2 and -9 and RANK temporally in 3D compared to 2D. Our 3D biomimetic model formed bone 
nodules of an average surface area of 0.1 mm2 and average height of 92.37 ± 7.96 μm over 21 days. 
We demonstrate a woven bone phenotype with distinct mineral and matrix components and increased 
expression of bone formation genes in our engineered bone. Introducing ameloblastoma to the bone 
stroma, completely inhibited bone formation, in a spatially specific manner. Multivariate gene analysis 
showed that ameloblastoma cells downregulate bone formation genes such as RUNX2. Through 
the development of a comprehensive bone stroma, we show that an ameloblastoma tumour mass 
prevents osteoblasts from forming new bone nodules and severely restricted the growth of existing 
bone nodules. We have identified potential pathways for this inhibition. More critically, we present 
novel findings on the interaction of stromal osteoblasts with ameloblastoma.

Ameloblastoma (AM) is a benign odontogenic epithelial tumour consisting of nests of neoplastic cells within 
the jawbones that resemble enamel-forming organs, but do not differentiate further to deposit enamel1,2. Amelo-
blastoma is an aggressive, locally invasive tumour causing bone resorption3. Ameloblastoma has a high potential 
for local recurrence with the rates dependant on the type of surgical procedure, resulting in multiple surgical 
interventions including loss of function, and psychological burden4,5. Difficulties in diagnosis and treatment can 
contribute to recurrence of ameloblastoma6,7. Histologically, most AMs display a follicular or plexiform pattern 
characterised by islands of epithelium with columnar, preameloblast-like, palisaded cells with reverse polarised 
nuclei lining the basement membrane and superficial layers of loosely arranged cells, resembling stellate reticu-
lum of the cap /bell stage of a developing tooth8,9.

A range of gene mutations and copy number alterations have been identified and suggested as potential driv-
ers of AM pathogenesis, mostly within the MAPK cascade pathway such as BRAF V600E, FGF2 and RAS10–12. 
Notably less research has been conducted concerning the mechanisms driving bone remodelling in the micro-
environment surrounding the neoplastic cells, even though AM growth typically causes bone resorption4,5.

Normal tooth development, including initiation, morphogenesis and eruption, involves bone remodelling, 
osteoclastogenesis and cross-talk between odontogenic epithelium and the surrounding bone cells13,14. Alveo-
lar bone resorption occurs during tooth eruption and osteoclastogenesis is driven via the receptor activator 
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of nuclear factor kappa B-ligand (RANKL) and bone morphogenic-protein (BMP-2)14. Parathyroid hormone 
related protein (PTHrP) regulates dental eruption by the activation of osteoclasts around the dental germ and 
causing osteolysis15.

Bone resorption occurring in tooth eruption has similarities with AM invasion into the surrounding bone. 
AM research has focused on how this tumour enhances the active recruitment of osteoclasts to degrade/break-
down bone16. The current theory is that AM increases RANKL, which then binds to its receptor RANK on the 
surface of osteoclasts and causes osteoclast activation and thereby, bone resorption17,18 Strong PTHrP expression 
in AM is also involved in the activation of osteoclasts19. The matrix metalloproteinases (MMPs) in particular 
MMP-2 and -9 found in AM epithelium cause further osteoclasts activation as well as degradation of fibrillar 
collagen (collagen type IV)20,21.

The above studies include immunohistochemistry on ex-vivo specimens and two-dimensional (2D) cell 
cultures with primary and immortalised AM cell lines22,23. However, three-dimensional (3D) models including 
spheroids24, hydrogels25, organoids26, and tumouroids27 are known to provide deeper insight into the relation-
ship between tumours and their native microenvironment28. There are only a few proposed 3D ameloblastoma 
models. Fuchigami and co-workers developed a 3D organotypic soft tissue model of fibroblasts and AM cells, 
and demonstrated that fibroblasts can potentiate collective cellular invasion form of AM cells29. Eriksson et al., 
reported higher RANKL expression by the AM cell line (AM-1 immortalised from plexiform type) when they 
were cultured with a human osteosarcoma (HOS) cell line and decellularised bone granules in a 3D organotypic 
model30. Recent work by Lee et al., showed a decrease in mineralisation by mouse osteoblast cells (ST2) when 
they were cultured with AM-1 in 3D, which in turn increased the proliferation of the AM-1 cells31.

Nevertheless, none of the above ameloblastoma 3D models included an active bone-forming stroma, which 
represents the native tumour microenvironment of AM and arguably the most appropriate and biomimetic 
organotypic model. Developing a biomimetic active-bone forming model is challenging, with current 3D bone 
tumour models being limited to features such as mineral deposition32 or deposition of bone nodules33.

In our study, we have developed an active bone-forming 3D model with detailed characterisation. We wanted 
to undertake extensive characterisation of 3D in vitro bone nodule formation in dense collagen matrices, to 
match, at a minimum, that done for 2D bone nodule formation, including mineralisation and gene markers. For 
confirmation of definitive in vitro bone nodule formation it was paramount to measure structure and composi-
tion as well as to investigate of specific gene panels for all stages of bone formation34–36.

We report our work on the development and utilisation of 3D tumouroids, which are composed of dense 
collagen27 to generate tumour-stroma models for AM where AM cell lines AM-1 (plexiform)37 and AM-3 (fol-
licular)21 are cultured within biomimetic bone stromal compartments containing osteoblasts, which actively form 
dense bone nodules. We investigated how the AM cells interfere with osteoblast-led bone formation in order to 
suggest novel mechanism of disruption of bone homeostasis associated with AM.

Materials and methods
Cell culture.  All cultures were maintained in 37 °C, 5% CO2, and 21% O2 atmospheric pressure at all times. 
AM-1 cells were immortalised from plexiform ameloblastoma and kindly provided by Prof H. Harada37. AM-1 
cells were cultured in keratinocyte serum free medium 1X (KSFM) supplemented with KSFM supplements 
(bovine pituitary extract (BPE) and EGF, human recombinant). AM-3 cells were immortalised from follicular 
ameloblastoma and kindly provided by Prof Kishida and colleagues from Kagoshima University, Japan29. AM-3 
cells were cultured in defined KSFM with DKSFM supplement. MG-63 osteosarcoma cells were obtained from 
European Collection of Authenticated Cell Cultures (ECACC). MG-63 cells were cultured in Dulbecco’s modi-
fied Eagle medium (DMEM). All media types were also supplemented with 10% Foetal bovine serum (FBS), 
100 units/mL penicillin and 100 μg/mL streptomycin (Gibco through Thermo Fisher Scientific, Loughborough, 
UK).

3D models.  Monomeric type 1 collagen (First Link, Birmingham, UK) was used to fabricate all 3D 
tumouroids. Collagen hydrogels were plastically compressed using the RAFT protocol (pages 3–10) (Lonza, 
Slough, UK) for collagen hydrogel preparation, which was kept on ice and sterile27. Initially, 10X Minimal Essen-
tial Medium (MEM) (Sigma-Aldrich, Dorset, UK) was mixed with collagen and neutralizing agent (N.A.). The 
N.A. was prepared by combining 17% 10 Molar (M) NaOH (Sigma-Aldrich, Dorset, UK) and 83% 10 M HEPES 
buffer (Gibco through Thermo Fisher Scientific, Loughborough). After adding the cell suspension to the mix, the 
final volumes were 80% collagen, 10X MEM, 6% N.A. and 4% cells.

Each tumour mass was generated by setting a 240 μl of cell/collagen mix (5 × 104 cells) into 96-well plates 
(Corning Costar, Sigma-Aldrich, Dorset, UK). The gel mix was set at 37 °C for 15 min and plastic compressed 
for 15 min to remove excess fluid using the RAFT absorbers at room temperature (Lonza, Slough, UK) (Fig. 1a).

The complex tumouroids were composed of a stromal compartment with tumour mass embedded within 
or placed on top. The stromal compartment was either acellular or contained primary rat calvarial osteoblasts. 
For embedded cultures, initially 650 μl of the gel mix was cast on 24-well plate (Corning Costar, Sigma-Aldrich, 
Dorset, UK) and let it sit for 5 min. tumour mass was placed in the middle of the first layer of the gel, which was 
followed by the application of the second stromal layer for a total of 1.3 ml. Tumouroids were left to undergo 
spontaneous fibrillogenesis for 15 min at 37 °C and then 24-well RAFT absorbers (Lonza, Slough, UK) were used 
for plastic compression for (15 min) at room temperature (Fig. 1b). 1 ml of media was applied per well with a 
50% media change in every 48 h. The cultures were maintained for 21 days.

3D osteoblast culture.  The calvarial rat osteoblasts were obtained and passaged as described in38,39. The 
cells were seeded either in 2D 24-well plates (control) or 3D hydrogels (uncompressed) or plastic-compressed 
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(PC) collagen in 24-well plates. 3D cultures were prepared as described in the previous Sect. 1.3 ml of either 
collagen only or collagen/cell mix containing 7 × 104 cells per well were left to polymerise for 15 min at 37 °C 
followed by 15 min plastic compression using 24-well absorbers RAFT absorbers (Lonza, Slough, UK) (Fig. 1c).

For the optimisation of 3D bone nodule formation, different culture conditions were prepared through 
using either uncompressed gels (soft hydrogel matrix, 0.2% collagen), or compressed gels (stiff matrix, 10% 
collagen)40. The osteoblasts were seeded either on top or mixed/embedded into different matrices (Fig. 1d) The 
culture medium was α-MEM (Gibco through Thermo Fisher Scientific, Loughborough, UK), supplemented with 
10% FBS, 2 mM L-glutamine (Life Technologies) 1% antibiotic/antimitotic (100 units/ml penicillin, 100 μg/ml 
streptomycin, 0.25 μg/ml amphotericin) (Sigma-Aldrich, Dorset, UK) with half a media change (500 μl) every 
48 h. Both 2D and 3D cultures were cultured for 3 days before the application of α-MEM with bone morphogenic 
agents (BMA). For BMA preparation, α-MEM was supplemented with 2 mM β-glycerophosphate, 10 nM dexa-
methasone, and 50 μg/ml ascorbate (Sigma-Aldrich, Dorset, UK). Depending on the experiment, the cultures 
were maintained for up to 21 days.

Figure 1.   Establishing 3D tumour models. (a) Fabrication of a tumour mass. (b) Complex tumouroids. (c) 3D 
bone stroma model. (d) Different set-ups and matrices used for the optimisation of 3D bone stroma model. (e) 
Introduction of tumour masses to the 3D bone stroma model. Diagram was created using Servier Medical Art.
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All methods were carried out in accordance with relevant guidelines and regulations. All experimental proto-
cols were approved by the University College London Biological Services Ethical Review Committee and licensed 
under the UK Home Office regulations and the Guidance for the Operation of Animals (Scientific Procedures) 
Act 1986 (Home Office, London, United Kingdom). The study was carried out in compliance with the ARRIVE 
guidelines (http://​www.​nc3rs.​org.​uk/​page.​asp?​id=​1357).

Introduction of tumour masses to the 3D bone stroma model.  Tumour masses with either 5 × 104 
AM-1 or AM-3 cells were placed on top of the 3D bone stroma model at days either 3, 6, 9, 12, 15, or 18. At each 
time point, fresh tumour masses were prepared and 900 μl of media was removed from 3D bone stroma model 
cultures. The tumour mass was gently placed on top the 3D bone culture through a tweezer and then incubated 
for 10 min at 37 °C for the attachment of tumour mass to the 3D bone stroma model (Fig. 1e). The migration of 
cells was observed from the tumour mass into the bone stroma and vice versa. 1 ml of α-MEM with BMA was 
added slowly from the side of the well and 50% media change was completed every 48 h.

Characterisation of bone nodules.  The experimental timeline for bone nodule formation and bone nod-
ule characterisation was described in (Fig. 2). Initial assessment was ‘the visibility by eye under the microscope’. 
Through brightfield filter, black dots were defined as mineralisation based on the classification of Orriss et al.41. 
To avoid confusion due to the high calcium phosphate deposition, only nodules with sharply defined margins 
were considered as bone nodules. The brightfield images were taken by either the EVOS XL Core Confocal 
Microscope (Life Technologies) or the Zeiss AxioObserver with Apotome.2 instrument and software (Zeiss, 
Oberkochen, Germany). For height measurement, day 21 3D bone stroma model samples were air-dried on a 
Petri dish for 24 h. The heights of the bone nodules were measured relative to the baseline measurement using 
the Keyence VHX-7000 Digital Microscope (Keyence, Osaka, Japan).

Alizarin red staining assay.  The Alizarin red staining (Sigma-Aldrich, Dorset, UK) was used to stain calcium 
at days 14 and 21. Upon formalin-fixation (Genta Medical, York, UK), the samples were incubated with 40 mM 
alizarin red stain for 20 min for 2D and 30 min for 3D. 3D samples require more ddH2O washes (minimum 5) 
than 2D samples. Images were captured via Nikon brightfield reflected light microscopy using a Nikon ‘Labo-
phot’ 2A microscope, with 100 W epi-illumination and metallurgical objectives.

Raman spectroscopy.  Raman spectroscopy was conducted on day 21 3D bone samples that were air-dried on 
15 mm diameter. 1 mm thick magnesium fluoride (MgF2) discs (Crystan) for 24 h. Raman spectra were collected 
using an inVia spectrometer (Renishaw, Gloucestershire, UK) interfaced using a Leica microscope fitted with a 
785 nm laser, laser spot size of ~ 2 μm and the integration time was 20 s. Raman measurements were taken from 
9 different nodules from 3 different bone cultures with 20 × lens objective over wavenumber range of 400 to 
1800 cm-1 and the instrumental resolution was ~ 2 cm-1. The top parts of bone nodules were chosen for the con-
sistency of measurement. The background signal from 3D collagen was captured by measuring 9 collagen-only 
spots (Supplementary Fig. 1). The Raman spectra analysis was conducted based on Gentleman et al.,’s protocol42. 
MATLAB ‘Raman Baseline Correction’ code (The Mathworks, MA, USA) was used to remove the average back-
ground signal from the 3D bone sample readings. The bone quality assessed by calculating degrees of mineral 
crystallinity from the full width of the sample at half maximum (FWHM) of the phosphate peak (PO4

3-ν 1). The 
mineral to matrix ratio was calculated by dividing the phosphate band area by the matrix band area (amide I).

Transmission electron microscopy (TEM).  Samples were fixed in 2.5% Glutaraldehyde overnight followed by 
2% EDTA for decalcification overnight. The first step was 100% ethanol dehydration of the samples and then 
infiltration procedure of 1-h Agar 100 epoxy resin mix, 1-h propylene oxide and 4 h pure epoxy resin. Medium 
sized bone nodules were chosen and cut trans sectionally for ~ 70 nm (nm) sections through a Reichert ultra-cut 
S microtome with a diamond knife (Leica, Milton Keynes, UK). A JEOL 1010 transition electron microscope 
(TEM; Tokyo, Japan), operated at 120 kV, was used for imaging of the section.

Nano‑computed tomography (Nano‑CT).  The 3D bone nodules were air-dried for 24 h, and the nodules were 
separated from collagen using tweezers (TAAB Laboratories Equipment Ltd, Aldermaston, UK). Each nod-

Figure 2.   Time points for each bone nodule characterisation method. Diagram was created using Servier 
Medical Art.

http://www.nc3rs.org.uk/page.asp?id=1357
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ule was cut into smaller pieces and placed inside a 1 mm Kapton tube (DuPont, Shanghai, China). All speci-
mens were scanned by a nano-CT (SkyScan 2211 Multiscale X-ray Nano-CT Sytem, Bruker micro-CT, Kon-
tich, Belgium) with a 20–190 kV tungsten X-ray source and a dual detection system: an 11- megapixel cooled 
4,032 × 2,670-pixel CCD-camera and a 3-megapixel 1,920 × 1,536 pixel CMOS flat panel. The specimens were 
scanned at 60 kV, 320 μA and 1000 ms over 360o with a rotation step of 0.31°, leading to a final voxel size of 
250 nm. The scan duration for samples was about two hours. Nano-CT projections were reconstructed using 
the system-provided software. NRecon (version 1.7.4.6) with smoothing kernel 2, ring artefact correction 9, and 
beam hardening correction of 20%. The 3D image sets were visualised with CTAn (Bruker micro-CT, Kontich, 
Belgium, version 1.18.4.0).

RNA extraction, cDNA synthesis, qPCR (quantitative polymerase chain reaction).  For RNA 
extraction TRI Reagent was used for phase separation followed by the chloroform method43. For each condition, 
a minimum of 3 replicates were extracted. Two 3D samples were pooled unlike individual 2D culture extrac-
tion in order to maximise RNA quality and quantity, which was tested via Nano-Drop. High-Capacity cDNA 
Reverse Transcription Kit (Applied Biosystems through Fisher Scientific, Loughborough, UK) was used to tran-
scribe RNA into cDNA using the T100 Thermal Cycler (Bio-Rad, Watford, UK). Minimum Information for 
Publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines was followed during designing of 
primer pairs44 Supplementary Table 1. The primer conditions were presented in the Supplementary Table 2. The 
annealing temperature was set to 60 °C and the primer pairs were obtained from Eurofins Genomics (Ebersberg, 
Germany). The iTaq Universal SYBR Green Supermix was used to amplify the target gene as in 10 µl reactions 
composed of 20 ng sample and 0.2 µM primer concentration. The reaction was run for 40 cycles on the CFX96 
Touch System (both from Bio-Rad, Watford, UK). The ∆CT and 2-∆∆CT method45 was used to analyse the relative 
gene expression normalised to the reference genes for rat osteoblasts Glyceraldehyde 3-phosphate dehydrogenase 
(GAPDH)46 and for ameloblastoma cell lines hypoxanthine–guanine phosphoribosyltransferase (HPRT1)47.

A Rat Osteogenesis RT2 Profiler PCR Array (96-well format) Rat Osteogenesis Cat. No. 330231 PARN-026ZA 
(Qiagen) was used to investigate the effect of the introduction of tumour mass of ameloblastoma on bone forma-
tion by osteoblasts in the 3D bone stroma Supplementary Table 3. Samples from day 8 of the 3D bone stroma 
model. 3D bone stroma + AM-1 tumour mass, or 3D bone stroma + AM-3 tumour mass was lysed as described 
above and 500 ng/μL of RNA was extracted per sample. For the array, AM tumour masses were cast on day 6, 
and RNA extraction was completed on day 8. For this step, tumour masses were removed from the 3D bone part 
to minimise contamination from AM cells. RNA was processed via RNeasy Kit (Qiagen) and RT2 first strand 
kit (Qiagen) was used for cDNA transcription. Real-time PCR was conducted upon manufacturer’s instructions 
for RT2 SYBR Green qPCR Mastermix (Qiagen) in a Bio-rad CFX96 PCR system (Biorad). With three plates 
per condition, a total of 9 plates were used. CT values were submitted to RT2 PCR array data analysis (Qiagen) 
(www.​qiagen.​com/​geneg​lobe). Fold changes were calculated using 2-∆∆CT method. Each test group was compared 
to the control group and fold changes > twofold with p-value < 0.05 was accepted as significant. Student’s t-test 
was used to determine p-values of the replicates of 2-∆∆CT values.

Imaging and measurement of invasion.  All 3D samples were imaged via either the Zeiss AxioOb-
server with Apotome.2 instrument and software (Zeiss, Oberkochen, Germany) or the EVOS XL Core Confocal 
Microscope (Life Technologies) based on a previously described method48. Cancer cells clustering as spheroids 
were defined as spheroids and outgrowth of cancer cells from tumour mass boundary towards the surrounding 
stroma was defined as ‘invasion’. Invasion distance was determined by the distance of the location of cancer cells 
from the tumour mass. All image analyses were completed by using ImageJ (NIH, USA) and data analyses by 
using GraphPad Prism 8 Software.

Histology.  3D samples were formalin fixed followed by processing of the samples in a processor (Thermo 
Fisher Scientific, Loughborough, UK), wax embedding and sectioning of samples using a microtome into 5 µm 
sections. The sections were placed on to glass slides for oven baking at 64 °C for 2 h. Manual haematoxylin and 
eosin (H&E) staining was then conducted following from cycles of xylene, alcohol and water washes before 
and after H&E staining. The mounting medium was applied before imaging via the Zeiss AxioObserver with 
Apotome.2 instrument and software (Zeiss, Oberkochen, Germany).

Metabolic activity assays.  The CellTiter-Glo 3D Viability-Assay (Promega, Southampton, UK) was 
mixed with media at a ratio of 1:1 and then incubated 5 min on a plate shaker and 25 min on the benchtop with 
light protection. Measurements were taken in triplicate using the Tecan Infinite Lumi plate reader (Männedorf, 
Switzerland). All values were normalised to media control readings.

Immunofluorescence.  10% neutrally buffered formalin (Genta Medical, York, UK) was applied for 30 min 
for formalin fixing of samples. This step was followed by 1-h permeabilization and blocking by 2% Triton-X 100 
and 1% bovine serum albumin (BSA) (Sigma-Aldrich, Dorset, UK) at room temperature. BSA diluted primary 
antibodies anti-MMP-2 (ab97779), anti-MMP-9 (ab38898), anti-RANK (ab222215), anti-RANKL (ab45039) 
and anti-osteocalcin (ab134418) were added to samples for 1 h at room temperature (Abcam, Cambridge, UK). 
Then, BSA was used to dilute the secondary antibodies Goat Anti-Rabbit IgG H&L (Alexa Fluor 594) (ab150080) 
and Goat Anti-Mouse IgG H&L (Alexa Fluor 594) (ab150116). The secondary antibody was applied for 2.5 h at 
room temperatures based on the manufacturer’s protocols (Abcam, Cambridge, UK). The Samples were stained 
with Alexa Fluor 568 Phalloidin and counterstained with NucBlue, both from Invitrogen through Fisher Scien-
tific, Loughborough, UK).

http://www.qiagen.com/geneglobe
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Enzyme‑linked immunoabsorbent assay (ELISA).  Cell culture supernatants were collected in tripli-
cates. Total MMP-2 Quantikine ELISA Kit (MMP200, R&D Systems, Abingdon, UK), Human MMP-9 Quan-
tikine ELISA Kit (DMP900, R&D Systems, Abingdon, UK) and Human TNFSF11/RANKL ELISA Kit PicoKine 
(EK0842, BosterBio, CA, USA) were used based on each of the manufacturer’s protocol. Measurements were 
conducted on the Tecan M200 PRO Microplate Reader (Männedorf, Switzerland).

Statistical analyses.  Statistical analyses were completed on GraphPad Software Inc., La Jolla, CA, USA. A 
minimum of 3 experimental repeats were considered for statistical analyses. Initially the normality of the data 
was tested by using a Shapiro–Wilk test (n ≥ 3) or D’Agostino test (n ≥ 8). Upon the normality test, appropriate 
statistical significance tests were used on the data, and the details are provided within the figure legends. The 
graphs are presented as mean  ±  standard error mean (SEM) and the text values as mean ± standard deviation 
(SD). Statistical significance was considered as p-value < 0.05.

Results
Characterisation of ameloblastoma cell lines in a 3D biomimetic model.  Both AM-1 (Fig. 3a) 
and AM-3 (Fig.  3b) cells formed clusters/spheroids in 3D tumouroids similar to other previously reported 
tumours48,49. By day 7, both cell lines started to invade into the surrounding stroma from the tumour mass 
boundary. AM-1 cells invaded as cell sheets (Fig. 3a, right), where AM-3 cells invaded as the invasive spheroid 
bodies (Fig. 3b, right). Patient samples from each subtype were analysed for direct comparison of histopathologi-
cal properties. Histology of AM tumouroids was similar to their corresponding ameloblastoma subtype. AM-1 
tumouroids mimicked the anastomosing cords50 formed in plexiform patient samples (Fig. 3c and d). (Fig. 3d). 
AM-1 cells were aligned and formed branches in tumouorids (Fig. 3d), which was also observed in plexiform 
patients (Fig. 3c). AM-3 cells in tumouroids (Fig. 3f) presented as odontogenic islands50, which are representa-
tive invasive morphologies seen in patients presenting with the follicular subtype of ameloblastoma (Fig. 3e). For 
metabolic activity and invasion in 3D, a well-established cell line in 3D, the MG-63 cells were used as control49. 
The metabolic activity of both AM-1 and AM-3 cells increased over time (Fig. 3g), with AM-3 exhibiting lower 
metabolic activity at all time points (p = 0.005). Differences in invasion distance was visible by day 14. By day 
21, AM-1 cells invaded to a distance of 402 ± 13 μm, significantly greater than AM-3 cells, 250 ± 14 μm. Both 
AM-1 cells (p = 0.0268) and control MG-3 cells (p-value < 0.0001) invaded longer distances compared to AM-3 
(Fig. 3g). Invasion distances of ameloblastoma did not change with a biomimetic stromal matrix of demineral-
ised bone, NuOss to the surrounding stroma, thus deviating from other tumour cell lines shown to be directly 
influenced by a bone matrix49 (Supplementary Fig. 2).

The invasive properties of ameloblastoma cells and their ability to resorb bone were investigated by assess-
ing the expression of MMP-2, MMP-9, RANK, and RANKL16 prior to initiation of invasion. Membrane-bound 
MMP-2, which is an invasive marker for ameloblastoma51 was identified in both AM-1 and in AM-3 tumouroids 
(Supplementary Fig. 3). MMP2 gene was found to be 2 times higher in AM-1 and AM-3 3D tumouroids (p = 0.03) 
compared to 2D (Fig. 3h). Pro- and active forms of MMP-2 were detected only in the culture medium of AM-3 
tumouroids (Fig. 3h). AM-3 cells released significantly higher levels of MMP-2 in 3D tumouroids 5 ng/ml 
compared to 2D, 1 ng/ml at day 3 (p-value < 0.0001) as well as days 5 and 7 (Fig. 3h). MMP9 gene was threefold 
upregulated in AM-1 3D tumouroids than 2D AM-1 cultures (Fig. 3i). The membrane-bound (Supplementary 
Fig. 3) and pro- and active- forms of MMP-9 were identified in both AM-1 and AM-3 tumouroids (Fig. 3i). As 
AM-1 cells did not release MMP-9 to the culture medium, protein levels for AM-1 were not included in the 
ELISA graph. AM-3 cells started releasing MMP-9 by day 3. MMP-9 levels were found to be 6 times higher in 
AM-3 3D tumouroids than 2D at days 5 and 7 (p < 0.0001). TNFRSF11A (RANK) expression was threefold 
higher in AM-3 cells in 3D tumouroids than in 2D at day 7 (p = 0.005) (Fig. 3j). Membrane-bound RANK was 
detected earlier in 3D than in 2D at day 3 in AM-3 cells (Supplementary Fig. 3). The amount of RANKL released 
to culture medium was lower in 3D cultures compared to 2D. AM-3 cells in had threefold higher RANKL in 2D, 
8.2 × 10–3 pg/ml than in 3D 2.8 × 10–3 (p-value < 0.0001) (Fig. 3j). Membrane-bound RANKL was identified in 
AM-3 3D tumouroids (Supplementary Fig. 3).

Bone nodules formed in 3D Stiff Matrix but not in 3D Soft Matrix.  We bio-engineered an active 
3D model of bone. This was the active bone-forming stromal compartment containing osteoblasts, to which we 
could add a tumour mass of ameloblastoma to study its progression. Primary calvarial osteoblasts were cultured 
in different matrices for 21 days and directly compared to 2D control cultures. Culturing osteoblasts in soft col-
lagen hydrogels resulted in osteoblasts mineralising the matrix, but no further bone nodule formation (Fig. 4a). 
We observed large nodule-like structures forming within the 3D stiff matrices where cells were embedded within 
the scaffold or cultured on top (Fig. 4a). Based on phase contrast images, 3D stiff matrix-embedded and 3D stiff 
matrix-on top formed bone nodules at day 9 compared to 2D culture on day 13. The scaffolds were transparent, 
and their thicknesses (approximately 200 μm) allowed for measurement of total nodules and nodule surface 
area using phase contrast microscopy. 3D stiff matrix-embedded cultures deposited the highest number of bone 
nodules per 10 mm2 at all time points and at day 21 significantly higher than that of 3D stiff- on top cultures 
(p = 0.05) (Fig. 4a). 3D stiff matrix-embedded cultures formed nodules 8 times bigger than 2D (p = 0.0005) and 4 
times bigger than 3D stiff matrix- on top (p = 0.005) bone nodules (Fig. 4a). Thereby, 3D stiff matrix-embedded 
cultures were deemed as the optimal condition for in vitro bone nodule formation in 3D and hitherto referred 
to as the ‘3D bone stroma’ for the rest of the study. Bone nodules in 3D stiff matrix were additionally found to be 
positive for a late bone formation marker osteocalcin52 (Fig. 4a).
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Characterisation of bone nodules in the 3D bone stroma model.  The bone nodules produced in 
the 3D bone stroma were verified by using well-established bone nodule characterisation methods. Alizarin red 
stain detected calcium within the bone nodules, including calcium dense areas (dark red) and less dense areas 
(light red) (Fig. 4b). The height of the bone nodules (z-axis) in the 3D bone stroma were measured. The average 
height was 92.37 ±4 7.96 μm with a maximum height of 121.81 μm (Fig. 4b), in line with previously defined sizes 
of bone nodule (70–100 μm)53,54 (details of the height measurement were provided in the Supplementary Fig. 4). 
TEM imaging of the bone nodules shows dense collagen fibrils around the mineralised bone nodules (Fig. 4b). 
The osteoblast and mineralisation marker ALPL55 was higher in 3D compared to 2D at day 7 and 8 (p = 0.05, 
p = 0.005 respectively). The osteocyte marker E1156, was detected in the 3D bone stroma (Fig. 4b). The bone 
nodules were scanned from top to bottom and images were captured at different Z-stack sections of the nodules. 

Figure 3.   Characterisation of ameloblastoma cells in 3D culture. Spheroid formation of (a) AM-1 cells and 
(b) AM-3 cells in 3D tumouroids at day 7, red = Phalloidin, blue = DAPI, 20 × Magnification Scale Bar = 50 μm. 
(c) Histology H&E staining of plexiform patient samples, (d) 3D AM-1 tumouroids, e follicular patient 
samples, and (f) 3D AM-3 tumouroids. Similar anastomosing cords and branches were highlighted (c, d) 
10 × Magnification Scale Bar = 100 μm. The formation of the odontogenic islands was highlighted (e,f). (g) 
CellTiter-Glo 3D Viability-Assay of AM-1, AM-3 and MG-63 cells in 3D tumouroids. Distance of invasion (μm) 
AM-1, AM-3 and MG-63 cells from the tumour mass to the surrounding stroma within the 3D tumouroids. (h) 
Human MMP-2 ELISA. Expression of MMP2. (i) Human MMP-9 ELISA. Expression of MMP9. (j) Expression 
of TNFRSF11A (RANK). Human RANKL ELISA. One-Way ANOVA, Dunnet’s Post Hoc; p-values 0.05 = *, 
0.005 = **, 0.0005 = *** and 0.00005 = ****.
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Figure 4.   Characterisation of bone nodules produced in 3D culture. (a) Bone formation in 3D bone stroma 
model. Day 14 images, 4 × Magnification, Scale bar = 400 μm. The surface area of the bone nodules and the 
number of bone nodules produced in 2D, 3D stiff matrix-embedded and 3D stiff matrix- on top. Osteocalcin 
immunofluorescence at day 9, red = Osteocalcin, blue = DAPI, 10 × Magnification, scale bar = 200 μm. (b) 
Characterisation of bone nodules in 3D bone stroma model. Alizarin red stained nodules in 3D bone stroma 
model at day 21, 6 × Magnification, scale bar = 50 μm. Height Measurement of bone nodules in 3D bone stroma 
model at day 21. TEM images of the bone nodules formed in 3D bone stroma model at day 21 showing collagen 
fibrils and mineralised bone nodules, 10 × Magnification, scale bar = 4 μm. Expression of ALPL and E11 by the 
osteoblasts in the 3D bone stroma model at days 7 and 8. Screenshot of nanoCT scan video (Supplementary 
Video   1) of a bone nodule in 3D bone stroma model at day 21, scale bar = 100 μm. Raman spectra of the bone 
nodules in 3D bone stroma model at day 21. Table of intensity ratios calculated from the Raman spectra; values 
were mean ± SEM (f). One-Way ANOVA, Dunnet’s Post Hoc; p-values 0.05 = *, 0.005 = **, 0.0005 = *** and 
0.00005 = ****.
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The Nano-CT images of the bone nodules verified active and rapid bone formation upon detection of a woven 
structure throughout the bone nodule (Fig. 4b). The Raman active phosphate band at 960 cm-1 was used to deter-
mine the composition of the bone nodules from their Raman spectra. The Raman analysis showed there were 
peaks of the carbonate-substituted apatite and protein peaks associated with collagen similar to bone42 (Fig. 4b).

Introduction of an ameloblastoma tumour mass inhibits or restricts bone nodule forma-
tion.  In order to understand the interaction between ameloblastoma and its surrounding bone stroma, we 
utilised the compartmentalised tumouroid model. Here ameloblastoma tumour masses were introduced on dif-
ferent days to active bone forming stromal compartments. We established that bone formation occurs day 9 in 
3D, tumour masses were cast on top of the 3D bone stroma before (day 6 of culture) and after bone nodules 
formation (day 9 of culture). Introduction of an ameloblastoma tumour mass at day 6 completely inhibited 
bone nodule formation and resulted in limited mineral deposition by osteoblasts compared to 3D bone control 
cultures (Fig. 5a). This finding was also verified by assessing ALPL expression. For each set-ups, the pH was 
measured continuously and all measurements were pH > 7.1, deemed critical for bone formation57. To prevent 
nutrient depletion, media with BMA was doubled for all cultures. Acellular tumour masses were also intro-
duced in control cultures to confirm that the inhibition of bone formation by osteoblasts was not induced by the 
tumour mass introduction method. Introduction of control acellular (empty) masses did not cause any decrease 
in ALPL levels. Introduction of AM-1 and AM-3 down-regulated ALPL fourfold by day 8 (p < 0.0001). Control 
osteosarcoma MG-63 tumour masses were introduced to the 3D bone stroma and ALPL levels were not down-
regulated as much as AM-1 tumour mass introduced and AM-3 tumour mass introduced 3D bone stroma mod-
els (p = 0.004 and p = 0.005 respectively). TNFSF11 expression by the osteoblasts in the 3D bone stroma model 
was upregulated by 6.3-fold by the introduction of AM-1 tumour mass compared to the control (3D bone stroma 
model) (p = 0.05) (Fig. 5a).

Both AM-1 and AM-3 tumour masses introduced on day 9 did not reduce the sizes of existing bone nodules, 
however significantly limited further bone formation in terms of number and size of nodules (p < 0.0001) com-
pared to the control 3D bone stroma, evident after day 11. At day 21, the engineered 3D bone stroma model had 
15.0 ± 1.5 bone nodules, where AM-1 tumour mass introduced cultures had 4.0 ± 0.6 and the AM-3 tumour 
mass introduced had 2.3 ± 0.9 bone nodules (p < 0.0001) (Fig. 5b). The bone nodule sizes were 3 times and 5 
times (respectively) smaller compared to control 3D bone stroma (p < 0.0001) (Fig. 5b).

AM‑3 cells inhibit osteoblast differentiation.  The RT2 Profiler PCR Array (Qiagen) was used to screen 
84 osteogenesis genes in osteoblasts from AM tumour mass introduced 3D bone stroma where AM tumour 
masses introduced (AM tumour mass + 3D bone) in comparison to ones in control 3D bone stroma (Fig. 5c).

Introduction of an AM-3 tumour mass downregulated 30 genes and upregulated 1 gene in the osteoblasts. 
ALPL and bone development COL2A158, were under-expressed by 5.5-fold (p = 0.003) and 4.2-fold (p = 0.01) 
respectively. A differentiation factor GDF10 was under-expressed by 17.8-fold (p = 0.0007), which indicated 
strong inhibition of osteoblast differentiation by AM-3 cells. AM-3 cells caused a significant reduction in osteo-
blast differentiation by downregulating differentiation markers including RUNX2 (p = 0.01), CD36 (p = 0.0007) 
and FGFR2 (p = 0.03). TGF β 3 (p = 0.02) was under-expressed by 4.03, which was associated with decreased 
ECM development and mineralisation59.

Similar to AM-3 cells, AM-1 cells also did not impact most osteogenesis genes but mostly downregulated 
ECM and bone development genes such as ALPL and COL2A1, as well as differentiation genes such as GDF10. 
However, no significant difference was found between the control group and AM-1 tumour mass + 3D bone 
group (Supplementary Fig. 5).

Discussion
This work provided three main novel findings. We successfully developed and cultured ameloblastoma cell lines 
within a biomimetic 3D tumouroid model, which accurately mimicked native subtype cell morphology. Then we 
established an active bone-forming stromal model in 3D, which formed extensive biomimetic bone nodules. By 
using the compartmentalised tumouroid model, we introduced the ameloblastoma tumour mass to the stroma 
and measured the direct effect on the bone forming capabilities of osteoblasts and studied the interaction between 
ameloblastoma and its native bone stroma. We showed direct inhibition of bone nodule formation by osteoblasts 
when ameloblastoma is present.

Our aim was to engineer a biomimetic tumour microenvironment by culturing an ameloblastoma tumouroids 
within dense, collagen I based extracellular matrix, representative of normal tumour tissue27. We tested whether 
existing ameloblastoma cell lines from the two most common histopathological types (AM-1 and AM-3) would 
represent the morphology and histopathological phenotype of subtypes in patients’ tumour. We were able to 
compare the growth and invasion pattern differences between the plexiform and follicular cell lines. AM-1 cells 
and MG-63 cells invaded far greater distances with a cell sheet morphology, in direct comparison to AM-3 cells, 
which invaded lesser distance and exclusively as invasive spheroid bodies. The spheroid bodies were also associ-
ated with lower metabolic activity, which might be due to cell apoptosis in the core of spheroids60 Additionally, 
we have previously shown that highly invasive colorectal cancer cell lines invaded as cell sheets, compared to 
less invasive cell lines, which retained spheroid bodies within tumouroids48. These invasion patterns matched 
the histopathological properties of each type. The follicular ameloblastoma type forms small islands, that can be 
cystic50, and we observed similar morphology in AM-3 tumouroid models. The plexiform ameloblastoma type 
branches to form anastomosing cords50 in double layer cells, which we observed in AM-1 tumouroid models. We 
observed biomimetic histopathological phenotype of the ameloblastoma tumouroids, representative of patient 
samples of both subtypes. Currently, histopathological subtypes are known to have no effect on prognosis and 
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plexiform and follicular types can be found together61. However, it might be important to investigate the link 
between subtypes and aggressiveness of the disease.

Figure 5.   Introduction of ameloblastoma tumour mass to the 3D bone stroma prior to day 9 completely 
inhibits bone nodule formation. (a) Introduction of AM-1 and AM-3 tumour masses to 3D bone at day 6 
inhibits bone nodule formation. Images taken at day 6, 9 and 21, 4 × Magnification, scale bar = 100 μm. ALPL 
expression. TNFSF11 (RANKL) Expression. (b) Introduction of AM-1 and AM-3 tumour masses to 3D bone at 
day 9 restricts bone formation by limiting bone nodule number and bone nodule surface area. (c) RT2 Profiler 
PCR Array was conducted to screen osteogenesis gene of osteoblasts in the 3D bone stroma model and in 
AM-3 tumour mass introduced 3D bone stroma model at day 8. The AM-3 tumour mass was introduced at day 
6 of 3D bone stroma model. Volcano plot shows under-expressed, unchanged and over-expressed genes. The 
table represents > 3.5-fold under-expressed gene. Horizontal line p-value threshold (0.05). One-Way ANOVA, 
Dunnet’s Post Hoc; p-values 0.05 = *, 0.005 = **, 0.0005 = *** and 0.00005 = ****.
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We showed that there was higher and earlier production of bone resorption proteins in 3D ameloblastoma 
tumouroids compared to 2D culture. AM-3 cells presented higher expression of MMP-2, MMP-9, RANK and 
RANKL compared to AM-1 cells. This observation may be explained by the distinctive spheroid bodies formed 
in the AM-3 subtype, generating an autocrine effect, which ultimately enhanced protein expression.

We bio-engineered an active bone-forming stroma with live osteoblasts, to study the interaction between 
ameloblastoma and native bone stroma. In vitro bone nodule formation by rat calvarial cells and human pro-
genitor cells is well-established in 2D and here we used similar osteodifferentiation methodology to form bone 
nodules in 3D38,62. Our novel active bone forming model depended on high collagen density and stiffness, which 
is a biomimetic for tissues in vivo63. Although extensively used, soft collagen hydrogen matrices have a high water 
content64 and they failed to mimic the native stiffness and density of collagen found within the bones. Resident 
osteoblasts potentially clustered quicker in the stiff matrix than soft matrix, due to increased cellular and matrix 
density. We characterised this 3D bone stroma extensively, and did not limit the study to mineralisation assess-
ments via ALP assay or alizarin red staining34. The alizarin red stain or von Kossa stain indicated mineralisation 
(dystrophic calcification)65. We used TEM to show mineral deposition within the dense collagen matrix. Raman 
spectroscopy verified the presence of mineral and matrix components66 From the Raman analysis, the mineral 
to matrix ratio was similar but higher than tissue engineered bone as reported by Gentleman et al.,42. This find-
ing is likely to be due to the methodologies used for background subtraction, where we subtracted the collagen 
background necessary for 3D culture. There may also be difference in structure of bone formed in 3D compared 
to 2D. Nano-CT analysis enabled tracking of rapid bone formation and detail around the bone structure. We 
confirmed the expression of early and late gene markers for bone formation. The extensive characterisation 
methods indicated mineralised ECM as well as normal bone structure. We utilised the 3D bone stroma model 
for ameloblastoma research but hope this model will be used a range of bone-associated diseases.

Due to the lack of an appropriate 3D model to date that would mimic the bone tumour microenvironment, 
the studies were limited to the action of AM to mineralisation rather than bone formation. For example, the 
mouse pre-osteoblastic cell line KUSA/1 had lower ALP activity when cultured in AM-1 conditioned media67. In 
this study, we introduced ameloblastoma tumour masses to 3D bone stroma and reported the direct inhibition 
of bone nodule formation. The model allowed for a temporal picture to be formed along the bone formation 
timeline. Furthermore, we tested the impact on the bone stroma of introduction of acellular collagen mass to test 
the impact on diffusion of nutrients and pH within the compartmentalised model. Ameloblastoma cells blocked 
bone nodule formation completely if they were added to the culture before day 9. After day 9, ameloblastoma 
cells did not stop the growth of nodules in the process of developing but limited their size and number. The gene 
work confirmed that ameloblastoma has specific osteogenesis targets mainly focused on stopping osteoblasts 
from differentiating, which is a critical step in bone formation.

Ameloblastoma cells caused osteoblasts to increase their TNFSF11 (RANKL) expression. This finding deepens 
our understanding of the mechanism by which ameloblastoma cells indirectly activate osteoclasts through osteo-
blasts, ultimately leading to bone resorption. Both cell lines expressed membrane-bound RANK, which could be 
one of the factors for the upregulation of TNFSF11 in osteoblasts. We report the expression of membrane-bound 
RANKL, however further investigation must see whether ameloblastoma cells can also release RANKL30, which 
would mean a direct activation of osteoclasts is also at play.

These findings will help in the development of patient-specific humanised models of ameloblastoma to test 
potential therapeutics with the aim of personalised healthcare. Future work should include the introduction of 
osteoclasts to this model to understand whether ameloblastoma-induced activation of osteoclasts can resorb 
bone.
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