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Abstract

Model misspecification can create significant challenges for the implementation
of probabilistic models, and this has led to development of a range of inference
methods which directly account for the issue. However, these method tend to
lose efficiency and should only be used when the model is really misspecified.
Unfortunately, there is a lack of generally applicable methods to test whether this is
the case or not. One set of tools which can help are goodness-of-fit tests, which can
test whether a dataset has been generated from a fixed distribution. Kernel-based
tests have been developed to for this problem, and these are popular due to their
flexibility, strong theoretical guarantees and ease of implementation in a wide range
of scenarios. In this paper, we extend this line of work to the more challenging
composite goodness-of-fit problem, where we are instead interested in whether the
data comes from any distribution in some parametric family.

1 Introduction

One approach to answering the question of whether a model is misspecified is goodness-of-fit testing
(Lehmann et al. 2005, Chapter 14). Given a fixed distribution P and observations x1, . . . , xn generated
from an unknown distribution Q, goodness-of-fit tests compare the null hypothesis H0 : P = Q
against the alternative hypothesis H1 : P 6= Q. Tests using the kernel Stein discrepancy (KSD) as test
statistic are popular for this task because they can be applied to a wide-range of data types and can
accommodate models with unnormalised densities (Liu et al. 2016; Chwialkowski et al. 2016).

Although these tests are very useful in practice, we will often be interested in answering the more
complex question of whether our data was generated by any element of some parametric family of
distributions {Pθ}θ∈Θ with parameter space Θ. Specifically, the null hypothesis (corresponding to a
well-specified model) is HC

0 : ∃θ∗ ∈ Θ such that Pθ∗ = Q, and the alternative (corresponding to a
misspecified model) is HC

1 : Q 6∈ {Pθ}θ∈Θ. This type of test is known as a composite goodness-of-fit
test, and can be much more challenging to construct since θ∗ is usually unknown.

Our paper fills an important gap in the literature by proposing the first set of kernel-based composite
hypothesis tests applicable to a wide range of parametric models. These are in contrast to previously
introduced composite tests which are limited to very specific parametric families (Kellner et al. 2019;
Fernandez et al. 2020). To devise these new tests, we make use of recently developed minimum
distance estimators based on the KSD (Barp et al. 2019). A key challenge is that the dataset is used
twice, both to estimate the parameter and the test statistic, and this is done without splitting it into
estimation and test sets. To achieve the correct level, the test must take account of this dependence,
both via a more in-depth theoretical analysis and by using a suitable method for approximating
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the threshold. In this initial version of the work, we only consider the second aspect by using the
parametric bootstrap (Stute et al. 1993) to achieve the correct level without data-splitting.

2 Background: Kernel Stein Discrepancies for Testing and Estimation

We will now briefly review the use of KSD for testing and estimation. Denote by X the data space
and P(X ) the set of all Borel distributions on X . For simplicity, we will focus on X = Rd, but note
that KSDs have been developed for other data types (Yang et al. 2018; Yang et al. 2019; Kanagawa
et al. 2020; Fernández et al. 2019; Fernandez et al. 2020; Xu et al. 2020; Xu et al. 2021). The
KSD is a function P(X )×P(X )→ R+ which measures the similarity between two distributions
P,Q ∈ P(X ). Although it is not a probability metric, it is closely connected to the class of integral
pseudo-probability metrics (IPMs) (Muller 1997), which measure similarity as follows:

DF (P,Q) = sup
f∈F
|EX∼P[f(X)]− EY∼Q[f(Y )]| (1)

LetHk be the reproducing kernel Hilbert space (RKHS) associated to the symmetric positive definite
kernel k : X ×X → R (Berlinet et al. 2004) and letHdk = Hk × . . .×Hk denote the d-dimensional
tensor product ofHk. The Langevin kernel Stein discrepancy (Oates et al. 2016; Chwialkowski et al.
2016; Liu et al. 2016; Gorham et al. 2015) is obtained by considering an IPM with

FKSD = {SP[f ] | ‖f‖Hd
k
≤ 1} where SP[f ](x) = f(x) · ∇ log p(x) +∇ · f(x).

The operator SP is called the Langevin Stein operator and p is the Lebesgue density of P. Using
FKSD, Equation (1) simplifies to:

KSD(P,Q) := sup
‖f‖Hd

k
≤1

|EX∼Q[SP[f ](X)]| =
√
EX,Y∼Q[h(X,Y )]

where h(x, y) = k(x, y)∇ log p(x) · ∇ log p(y) +∇x · ∇yk(x, y)

+∇ log p(x) · ∇yk(x, y) +∇ log p(y) · ∇xk(x, y).

Let Qn = 1
n

∑n
i=1 δ(xi) where δ(x) denotes a Dirac measure at x ∈ X . The KSD2 can be straight-

forwardly computed in this case using a single V-statistic KSD2(P,Qn) = 1
n2

∑n
i,j=1 h(xi, xj) at a

cost of O(n2d). Under mild regularity conditions, the KSD is a statistical divergence meaning that
KSD(P,Q) = 0 if and only if P = Q; see Chwialkowski et al. (2016, Theorem 2.1) & Barp et al.
(2019, Proposition 1). The KSD is convenient in the context of unnormalised models since it depends
on P only via ∇ log p, which can be evaluated without knowledge of the normalisation constant of p.
We now briefly recall how it can be used for goodness-of-fit testing and estimation.

Goodness-of-fit testing with KSD In goodness-of-fit testing, we would like to test H0 : P = Q
against H1 : P 6= Q. A natural approach is to compute KSD2(P,Q) and check whether this quantity
is zero (i.e. H0 holds) or not (i.e. H1 holds) (Liu et al. 2016; Chwialkowski et al. 2016). Of course,
since we only have access to x1, . . . , xn instead of Q, this idealised procedure is replaced by the
evaluation of KSD2(P,Qn). The question then becomes whether or not this quantity is further away
from zero than expected under H0 given the sampling error associated with a dataset of size n.

To determine whether H0 should be rejected, we need to select an appropriate threshold cα ∈ R,
which will depend on the level of the test α ∈ [0, 1]. More precisely, cα should be set to the (1− α)-
quantile of the distribution of KSD2(P,Qn) under H0. This distribution will usually be unknown
a-priori, but can be approximated using a bootstrap method. A common example is the wild bootstrap
(Shao 2010; Leucht et al. 2013), which was specialised for kernel tests by Chwialkowski et al. (2014).

Minimum distance estimation with KSD As shown by Barp et al. 2019, the KSD can also be
used for parameter estimation through minimum distance estimation (Wolfowitz 1957). Given a
parametric family {Pθ}θ∈Θ indexed by Θ ⊆ Rp. Given x1, . . . , xn ∼ Q, a natural estimator is

θ̂n := arg min
θ∈Θ

KSD2(Pθ,Qn).

Under regularity conditions, the estimator approaches θ∗ := arg minθ∈Θ KSD2(Pθ,Q) as n→∞.
The use of KSD was later extended by Grathwohl et al. (2020), Matsubara et al. (2021), and Gong
et al. (2021). These estimators are also closely related to score-matching estimators (Hyvärinen
2006); see Barp et al. (2019, Theorem 2) for details.
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Algorithm 1: Wild bootstrap test
Input: Pθ̂, Qn, α, b
for k ∈ {1, . . . , b} do

w(k) ∼ Rademacher(n);
∆(k) = 1

n

∑n
i,j=1 w

(k)
i w

(k)
j h(xi, xj)

cα = quantile({∆(1), . . . ,∆(b)}, 1− α);
∆ = nKSD2(Pθ̂,Qn);
if ∆ ≥ cα, reject the null, else do not reject.

Algorithm 2: Parametric bootstrap test

Input: Pθ, Qn, θ̂n, α, b
for k ∈ {1, . . . , b} do

Q(k)
n = 1

n

∑n
i=1 δy(k)

i
,
{
y

(k)
i

}n
i=1
∼ Pθ̂n ;

θ̂
(k)
n = arg minθ∈Θ KSD2(Pθ,Q(k)

n );
∆(k) = nKSD2(P

θ̂
(k)
n
,Q(k)

n );

cα = quantile({∆(1), . . . ,∆(b)}, 1− α);
∆ = nKSD2(Pθ̂n ,Qn);
if ∆ ≥ cα, reject the null, else do not reject.

3 Methodology

We now consider a novel composite goodness-of-fit test where both estimation and testing is based
on the KSD2 with some fixed kernel k. The new test contains the two following stages:

Stage 1 (Estimation): θ̂n = arg minθ∈Θ KSD2(Pθ,Qn).

Stage 2 (Testing): reject if nKSD2(Pθ̂n ,Qn) ≥ cα, using one of Algorithm 1 or Algorithm 2.

Note that we could possibly replace stage 1 with another estimator such as maximum likelihood
estimation, but this would require knowledge of any normalisation constant of the likelihood which
may not be possible in many cases. To implement Stage 2, we require a bootstrap algorithm to
estimate the threshold cα. A natural first approach is to use the wild bootstrap, since it is the
current gold-standard for kernel-based goodness-of-fit tests. Algorithm 1 gives the implemention of
a composite test using the wild bootstrap, where α is the desired test level and b is the number of
bootstrap samples. Note that in our implementation the choice of sampling w(k) from a Rademacher
distribution assumes that x1, . . . , xn are independent.

If we make the unrealistic assumption that θ̂n = θ∗, then we are back in the setting considered by
Chwialkowski et al. (2016) and Liu et al. (2016) and the wild bootstrap works as follows. Under
HC

0 , as n→∞, ∆(k) and ∆ converge to the same distribution, thus cα will converge to the (1− α)-
quantile of ∆ (Chwialkowski et al. 2014, Theorem 1, 2), and the test will reject HC

0 with probability
α, as desired. Under HC

1 , ∆ will diverge while ∆(k) will converge to some distribution, hence the
probability that ∆ > cα) goes to 1 as n→∞.

However, it is clear that we cannot assume that θ̂n = θ∗ in the finite data case. In fact, using
the wild bootstrap in this fashion for composite tests may result in an incorrect type I error rate
under HC

0 , and lost power under HC
1 . This is because the estimation stage of the composite test

introduces a second source of error which this approach does not take account of when computing cα.
The two sources of error that the test encounters are as follows. Recall that in an idealised setting
we would use KSD2(Pθ∗ ,Q) as the test statistic. The first source of error is introduced because
we must estimate this statistic with KSD2(Pθ∗ ,Qn), as we only have access to a sample from Q.
This source of error also occurs in non-composite tests, and is accounted for correctly by the wild
bootstrap. The second source of error is specific to composite tests, and occurs because we must
further estimate KSD2(Pθ∗ ,Qn) with KSD2(Pθ̂n ,Qn), as we do not have access to θ∗. Algorithm 1
fixes the parameter estimate θ̂n and then applies the bootstrap, thus failing to take account of the
error in in θ̂n and potentially computing an incorrect threshold. We can also view Algorithm 1 as a
non-composite goodness-of-fit test against the wrong null hypothesis. By estimating the parameter
and then applying the test, the test is not evaluating H0 : Pθ∗ = Q, but instead H ′0 : Pθ̂n = Q.

Figure 1 demonstrates the impact of ignoring this error. It shows the power of our test with HC
0 :

Pθ = N (µ, 1) for µ ∈ R and Q = N (1.3, σ2), as σ2 varies, see Appendix B for details. We can
see that the wild bootstrap test has lower power for most values of σ2, including when σ2 = 1, thus
HC

0 holds, and it corresponds to the type I error. It also demonstrates that the error depends on the
size of n. The estimator is consistent: as n becomes large we expect the estimate of the parameter

3
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Figure 1: Power of of the test when using the wild
and parametric bootstraps for n = 10 (solid) and
n = 200 (dashed). The dashed horizontal line
shows the test level, α = 0.05. The error bars
show one standard error over 4 random seeds.
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Figure 2: Goodness-of-fit of a kernel exponen-
tial family model with increasing p. The grey
histogram shows the dataset, and the lines the
modelled density. Dashed lines indicate that the
test rejected HC

0 , and solid that it did not.

to converge on the true value, thus minimizing the impact of the error. However, for smaller n it is
necessary to use an alternative approach which is able to take account of the additional error.

To take account of both types of error we apply the parametric bootstrap described in Algorithm 2.
This bootstrap approximates the distribution of the test statistic under HC

0 by repeatedly resampling
the observations and re-estimating the parameter, thus taking account of the error in the estimate of the
parameter. In comparison to the wild bootstrap, this is substantially more computationally intensive
because it requires repeatedly computing the kernel matrix on fresh data, whereas the wild bootstrap
only computes the kernel matrix once. However, when n is large and this extra computation is likely
to be an issue, the size of the estimation error should also be reduced as the estimator converges on
the true value of the parameter. Thus, under this high data regime, the wild and parametric bootstraps
may achieve comparable powers, and it may be reasonable to use the cheaper wild bootstrap. In the
setting considered in Figure 1 we find that this is the case, with the parametric bootstrap performing
substantially better than the wild bootstrap for n = 10, but comparably for n = 200.

4 Illustration: The Kernel Exponential Family Model

We apply our method to a density estimation task from Matsubara et al. (2021), to test whether a robust
method was really necessary. The model is in the kernel exponential family pθ(x) ∝ q(x) exp(f(x)),
where f is assumed to belong to some RKHS but approximated by a finite sum of basis functions, and
q(x) = N (0, 32) is a reference density. Specifically, we follow Steinwart et al. (2006) and consider
f(x) =

∑p
i=1 θiφi(x), with φi(x) = xi/

√
i! exp

(
−x2/2

)
, θ ∈ Rp. The dataset is comprised of the

velocities of 82 galaxies (Postman et al. 1986; Roeder 1990). An open question is how large p needs
to be for the model to have enough capacity to fit the data. Matsubara et al. (2021) set p = 25, and
we test this assumption. See Appendix B for the full experiment configuration. Figure 2 shows the fit
of the model for increasing values of p, and whether the test rejected the null hypothesis. We find that
the test rejects HC

0 for p = 1, 2, 3, but does not reject for p = 4, 5, 25. This suggests that p = 25 is a
suitable choice, though it would be reasonable to use a smaller value of p which would decrease the
computational cost of inference.

5 Conclusion

In this initial work, we introduced a flexible composite goodness-of-fit test which requires only
an unnormalized density. In the full version of this paper we will consider a general framework
for composite goodness-of-fit tests, which will also include a tests based on the maximum mean
discrepancy. This will allow us to tackle a much wider set of problems, including composite testing
for generative models with no computable density function. We will also include theoretical results
showing that the test statistic converges under HC

0 , the test is consistent under HC
1 , and that the wild

and parametric bootstraps behave appropriately.
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A Closed-form expression for KSD estimator

For exponential family models, such as the Gaussian and kernel exponential families considered in
this paper, there is a closed-form expression for the KSD estimator. Let the density of a model in the
exponential family be

pθ(x) = exp(η(θ) · t(x)− a(θ) + b(x)) ,

with η : Θ→ Rk an invertible map, t : Rd → Rk any sufficient statistic for some k ∈ N1, a : Θ→ R
and b : Rd → R. Then the KSD estimator of theta is given by

θ̂n : = arg min KSD2(Pθ ‖Qn) = η−1

(
−1

2
Λ−1
n vn

)
,

where Λn ∈ Rk×k and νn ∈ Rk are defined as Λn := 1
n2

∑n
i=1

∑n
j=1 Λ(xi, xj) and νn :=

1
n2

∑n
i=1

∑n
j=1 ν(xi, xj). These are based on functions Λ : Rd×Rd → Rk×k and ν : Rd×Rd → Rk

which depend on the specific model, defined as

Λ(x, x′) : = k(x, x′)∇t(x)∇t(x′)>

ν(x, x′) : = k(x, x′)∇b(x)∇t(x′)> +∇t(x)∇x′k(x, x′) + k(x, x′)∇b(x′)∇t(x)> +∇t(x′)∇xk(x′, x) .

The detailed derivation of this result can be found in Barp et al. (2019, Appendix D3) or Matsubara
et al. (2021).

B Experiment details

B.1 Figure 1

For each datapoint in the plot, the power is computed as follows:

1. For four random seeds:
(a) For 2000 repeats:

i. Sample n points from Q = N (1.3, σ2)
ii. Run the test

(b) Compute the power, the fraction of repeats during which the null hypothesis is rejected
2. Compute the mean and standard error over the seeds

We find the standard error to be sufficiently small that it is not visible in the figure.

Estimator We estimate only the mean, which we denote by θ. The variance, σ2, is known and
specified by the null hypothesis. We use the closed-form KSD estimator as defined above, with

η(θ) =
µ

σ2
, t(x) = x, b(x) = log

1√
2πσ2

− x2

2σ2
.

Kernel Gaussian kernel:

k(x1, x2) = exp

(
−
‖x1 − x2‖22

2l2

)
.

We choose l = 0.7.

Bootstrap and test The wild bootstrap (Algorithm 1) is configured with b = 500. The parametric
bootstrap (Algorithm 2) is configured with b = 300. We set α = 0.05 in both cases.

6



B.2 Figure 2

Data normalisation Following Matsubara et al. (2021), we normalize the dataset by

y′i =
yi −mean(y1, . . . , yn)

1
2 std(y1, . . . , yn)

∀i ∈ {1, . . . , n} .

Estimator We use the closed-form KSD estimator as defined above, with

η(θ) = θ, t(x) = (φ1(x), . . . , φp(x))>, b(x) = log q0(x) .

Kernel IMQ kernel:

k(x1, x2) =

(
1 +
‖x1 − x2‖22

l2

)− 1
2

.

We select l using the median heuristic,

lmed =
√

median(dij/2) with dij = ‖yi − yj‖22 for all i, j = 1, . . . , n ,

which in this case results in l ≈ 0.9.

Bootstrap and test Parametric bootstrap (Algorithm 2), with b = 400 and α = 0.05.
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