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Abstract—Real-time blood glucose (BG) prediction can en-
hance decision support systems for insulin dosing such as bolus
calculators and closed-loop systems for insulin delivery. Deep
learning has been proven to achieve state-of-the-art performance
in BG prediction. However, it is usually seen as a very com-
putationally expensive approach, hence difficult to implement
in wearable medical devices such as transmitters in continuous
glucose monitoring (CGM) systems. In this work, we introduce
a novel deep learning framework to predict BG levels with the
edge inference on a microcontroller unit embedded in a low-
power system. By using glucose measurements from a CGM
sensor and a recurrent neural network that builds on long-short
term memory, the personalized models achieves state-of-the-art
performance on a clinical data set obtained from 12 subjects with
T1D. In particular, the proposed method achieves an average root
mean square error of 19.10 £+ 2.04 for a 30-minute prediction
horizon (PH) and 32.61 + 3.45 for a 60-minute PH with high
clinical accuracy. Notably, the framework has been optimized to
achieve a minimum use of hardware resources (34KB FLASH
and 1KB SRAM) as well as an execution time of 22 ms for low
power operations (8 pW). The presented system has the potential
to be implemented in wearable medical devices for diabetes care
(CGM and insulin pumps) and to be integrated within an Internet
of Things platform.

Index Terms—Diabetes, deep learning, artificial pancreas, In-
ternet of things, microcontroller, edge inference, LSTM.

I. INTRODUCTION

Diabetes is a global disease with an estimated prevalence of
over 400 million worldwide [1]. Due to the absolute deficiency
of endogenous insulin secretion, people living with type 1
diabetes (T1D) require long-term glucose management by
delivering exogenous insulin and monitoring blood glucose
(BG) levels. The aim of this therapy is to maintain BG levels
in a therapeutic range and minimize the risk of potentially
life-threaten events (e.g. hypo- and hyperglycemia). Accurate
BG prediction is highly desirable, since it enables proactive
actions and early interventions to mitigate potential adverse
glucose events, such as hyperglycemia and hypoglycemia.
However, due to high inter-subject variability, sensor errors.
and various external factors that affect glucose dynamics (e.g.,
meal ingestion, exercise), the challenge of personalized and
accurate BG prediction still remains.

In the era of embedded systems and Internet of things
(IoT), the rapid development of wearable medical devices
(e.g. glucose sensors and insulin pumps) and closed-loop

systems for automatic insulin delivery, i.e., artificial pancreas
(AP), has significantly improved the treatment of people with
T1D [2]. An AP system consists of, at least, a continuous
glucose monitoring (CGM) sensor, an insulin pump, and a
control algorithm that modulates insulin delivery [2]. CGM
measures BG levels in real-time at a fixed frequency (e.g. 5
minutes) and generates a large amount of rich clinical data.
Leveraging on these data, various data-driven algorithms for
BG prediction have been proposed in the literature, and feed-
forward neural networks are the most used approaches, as
indicated by a recent review [3]. Moreover, deep learning algo-
rithms have become new paradigms in BG prediction [4] and
achieved state-of-the-art performance in the Blood Glucose
Level Prediction Challenge in 2018 and 2020 [S]-[8]. Deep
neural networks (DNN5s), i.e. neural networks with a stack of
non-linear hidden layers, are powerful tools for representation
learning and feature extraction [9].

II. RELATED WORK

The architectures based on recurrent neural networks
(RNNs) have been widely used to model sequential CGM
data, especially with the recurrent cells of long short-term
memory (LSTM) [10]-[12]. Aiming at improving the accuracy
of BG prediction, numerous efforts continue to push the
boundaries of deep learning models using the latest techniques,
such as dilation [13], attention mechanism [14], and residual
connections [8]. It is noted that, although the models become
increasingly complex, there is a lack of research on the
implementation of these models to bring actual therapeutic
benefits to people with T1D. Pioneering works have deployed
deep learning algorithms on smartphones to provide real-
time glucose predictions for AP systems [13], [15]. How-
ever, owing to its power and data transmission capabilities,
smartphones cannot be considered as the edge of inference
in deep learning. In addition, the stringent data privacy and
security requirements in the medical device industry make
smartphones not the ideal platforms [16]. Therefore, pack-
ing the front-end sensors together with the back-end deep
learning algorithms [17] delivers an intuitive instruction on
the edge inference with microcontroller units (MCUs), which
stands out as a more resource-efficient solution within an IoT
network. Fig. 1 depicts the overall system and methodology.
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Fig. 1: System architecture of the proposed framework for BG
prediction by means of edge deep learning. A T1D subject uses
CGM, insulin pumps, wrist bands and other wearable devices
to collect real-time measurement data, which are upload to
servers for backup and model training. Then the well-trained
DNNs are embedded on an MCU, and the MCU can be further
implemented in the wearable devices to assist decision support.

Besides, being able to fetch data in real-time without wireless
transmission provides another main advantage, since it allows
faster decision support and more reliable communications. In
this work, we propose a new BG prediction framework based
on personalized LSTM models and a 32-bit MCU.

III. METHODS
A. BG Prediction by Deep Learning

In CGM, BG levels are constantly sampled with a resolution
r, (where r = 5 minutes in this work) forming a time series
G. Given a prediction horizon (PH) p, the aim at time step ¢
is to predict the future BG levels Gy, where 7 = p/r. After
pre-processing, the scaled sensor measurements form a time
series as the input data X. Here, we use a univariate input
to perform local inference without data fusion, which only
contains the scaled BG values with a normalization function
f,ie, X = f(G). A sliding window is employed to slice the
input data with sequence length w for input batches X;_,,.: =
[Xt—w+1,- - - » X¢]. To mitigate the bias and trend, we used the
signed BG change as the target labels, which is defined as:

Yr = f(Giyr) — f(Gh). (1)

Using the previous output as an input at the current time
step, RNNs can model the temporal dynamics. However, it is
difficult for vanilla RNNs to learn long-term dependencies,

due to gradient vanishing. LSTM solves this problem by
introducing gated operations, i.e, forget gate (f;), input gate
(i;) and output gate (0;), to control the information flow and
enable the memory of cell states (C;) [18]. It is noted that the
number of parameters and operations in an LSTM-based RNN
is much larger than that of a vanilla RNN or a dense layer,
which rapidly increases with the dimension of input features
and hidden units [5]. Considering the limited resource on
MCUs, we instantiate a single light-weight LSTM layer with
32 hidden units to extract temporal dependencies of the input
BG sequences. Then the output of the final state is processed
by two dense layers with 64 and 32 hidden units and ReLU
activation [19], which is denoted as:

h{ = ReLU(W, * h; + by), 2)

where h; is the hidden state of the LSTM, and hf is the output
of the dense layer. Finally, the model output ¢ is computed
with the linear transformation

Y = Wy xhe + by, (3)

The BG prediction ét+7 is obtained by the inverse transform
of label encoder and normalization, which is written as

Grrr =G+ 71 (50). “)
B. Model Training and Validation

The weights and bias in DNN models are trainable param-
eters, which are iteratively updated by the back-propagation
during training. To this end, the mean square error (MSE)
is employed as the loss function, as a reliable estimator
that measures average errors in regression tasks. The mini-
batches of input data with the batch size of 64 are fed
into the model to compute the MSE between a group of
y; and y;. Adam optimizer [20] is applied with a learning
rate of 0.001. Considering the temporal dependencies of the
CGM sequences and the limited size of clinical datasets, we
split the last 20% training data as the validation set. We
set the total epochs to 500 and introduce the early stopping
technique with the patience of 50. This setting allows for the
automatic termination of experiments when validation MSE is
not improved for 50 consecutive epochs, in order not to over-
fit the training data. All the hyper-parameters are determined
by the MSE scores of the grid search during validation.

The model is constructed with the framework of TensorFlow
2.0.0 with Keras 2.2.4 and Python 3.7.7. The training is
accelerated by a GPU (NVIDIA GTX 1080 Ti).

C. Embedded System Implementation

With the models trained and validated, we then load the
personalized models onto embedded systems for validation.
As we aim to deliver a low power solution, the model size
has been constrained to less than 50 KB while the dimension
of the hidden units on each layer is chosen to be minimum,
without loosing much accuracy. Regarding data transmission,
we simulated the front-end sensor on the PC with the general
serial port data transmission protocol (UART) and provide the
latest clinical data from our local/cloud servers.



In this work, considering the requirements and specifi-
cations of healthcare platforms, we have implemented the
models on a well established development board (Nucleo-
F303RE) based on a mainstream MCU with float-point unit
(STM32F303RE, an ARM Cortex-M4 processor running at
72MHz clock frequency, integrated with 80KB SRAM and
512KB Flash) [21]. The amount of resources in STM32 can
be further chosen for resource-optimization, however, our main
focus in this work is the validation of the proposed approach.
An expansion package of STM32CubeMX, namely X-CUBE-
Al, is utilized to deploy the floating-point (32-bit) and fixed-
point (8-bit) deep learning models onto the target MCU [22].
With the STM32 optimizer and C-code generator, it is capable
to convert the pre-trained Keras h5 models into executable
STM32 C models. Specifically, we use the STM32CubelDE
1.3.0 and X-CUBE-AI 5.1.2 to construct the local network,
validate the converted model, and run real-time experiments.

Table I summarizes the technical details of the layer im-
plementations on the MCU, including the output shape, the
number of multiply-and-accumulate (MACC) operations, the
percentage of FLASH storage, the number of layer parameters,
and the duration time, which are provided by X-CUBE-AL In
order to imitate real-life situation, only one testing input is
sent at one timestamp, i.e., the batch size equals to one.

TABLE I: Implementation of the network layers on the MCU.

Layer Shape | MACC | Flash (%) | Param | Time (ms)
LSTM | (1, 32) | 52,608 51.3 4,352 21.359
Dense | (1, 64) 2,048 24.4 2,112 0.410
ReLU (1, 64) 64 0 0 0.027
Dense | (1, 32) 2,048 24.0 2,080 0.390
ReLU (1, 32) 32 0 0 0.017
Dense 1, 1) 32 0.4 33 0.016

It is noted that the LSTM layer contributes to the largest
portion of the FLASH memory and computational time. Thus,
for optimized power/resource efficiency, it is recommended
not to stack too many LSTM layers as it is likely to result
in occupying a significant portion of memory as well as
introducing a considerable delay comparing to the rest. In this
implementation, 34.69KB out of 512KB is used. On the other
hand, STM32 AI engine has a built-in function which enables
minimum usage of working memory (SRAM). The principle of
optimising SRAM relies on reusing temporal memory chunks.
Therefore, operations of different layers under one signal
pipeline can claim the same area within the SRAM, where
the maximum size of the activation buffer is bound to the
maximum memory requirements of two consecutive layers
which could be trade-off with its computation accuracy if
required. In this case, 1KB out of 80KB of SRAM is used.

IV. EXPERIMENTS AND RESULTS

A. Experimental Configuration

1) Clinical Dataset: To allow reproducibility, we use the
OhioT1DM dataset to develop the proposed model, which is
publicly available in the research community [23]. It contains
the data from 12 anonymous subjects with TID over an

eight-week clinical trial. The subjects were equipped with
various wearables, including Medtronic Enlite CGM sensors
that measure BG levels every 5 minutes. The training (~ 40
days) and testing sets (~ 10 days) are provided separately.
There are some missing gaps in the CGM data, due to
many reasons, such as sensor calibration and signal loss. To
avoid current predictions using future information, we perform
extrapolation to estimate the missing values.

2) Evaluation Metrics: As a regression problem, the most
common statistical metrics in BG prediction are the root mean
square error (RMSE) and mean absolute error (MAE). Besides,
to analyze the outcomes with the clinical significance, we also
use glucose-specified RMSE (gRMSE) [24] based on the Clark
error grid (CEG) [25]. This metric penalizes the predictions
that would lead to clinical issues, such as underestimations in
hyperglycemia and overestimations in hypoglycemia.

B. Prediction Results

In the experiments, we validated the proposed model with
30-minute and 60-minute prediction horizons (PHs). Three tra-
ditional BG prediction algorithms based on machine learning
are employed as baseline methods, including support vector
regression (SVR) [26], random forests (RF) regression [27],
and the artificial neural network (ANN) [28]. For the ANN
model, it contains two dense layers with 64 and 32 hidden
units and an output layer. All the baseline methods were tested
in the local server.

Table II and III shows the prediction performance of the
considered methods for 30-minute and 60-minute PHs, respec-
tively. The results are presented as mean values and standard
deviation. A a paired ¢-test is used to compute the P values
when comparing the baseline methods with respect to the
edge-LSTM, where the statistical significance is indicated as
t for P < 0.005 and * for P < 0.05. Notably, compared to
the RF, SVR, and ANN baseline methods, the edge-LSTM
model achieved the best prediction accuracy with a significant
improvement for both the two PHs, in terms of RMSE, MAE,
and gRMSE. In particular, it obtained the mean RMSE of
19.10 with the MAE of 13.59 and the gRMSE of 22.08 for
the 30-minute PH and the RMSE of 32.61 with the MAE of
24.25 and the gRMSE of 38.04 for the 60-minute PH.

TABLE II: Prediction performance of the considered methods
with 30-minute PH on 12 T1D subjects.

Method RMSE (mg/dL) | MAE (mg/dL) | gRMSE (mg/dL)
RF 21.23 +2.17F 15.35 + 1.567 24.64 £ 2.73F
SVR 19.99 + 2.217 14.11 + 1.467 22.86 + 2.67T
ANN 19.81 +2.137 | 14.06 £ 1.43T 22.99 £ 2.63F
Edge-LSTM | 19.10 £2.04 | 1359 £1.47 | 22.08 £2.41

Fig. 2a and 2b show the prediction curves together with the
actual CGM measurements. Note that the dates in the dataset
have been shifted for a random number of months to protect
the privacy of the data contributors. The peaks on the plots
indicate the increase of BG levels caused by meal intake,
where minor delays can be observed between the prediction



TABLE III: Prediction performance of the considered methods

with 60-minute PH on 12 T1D subjects.

Method RMSE (mg/dL) | MAE (mg/dL) | gRMSE (mg/dL)
RF 35.36 £ 3.637 | 26.47 &+ 2.92F 41.45 + 4.71F
SVR 33.75 £ 3.52T | 24.75 + 2.78F 38.56 & 4.38*
ANN 33.58 £3.61T | 25.07 + 2.90F 39.31 £ 4.53F
Edge-LSTM | 32.61 £3.45 | 2425 +2.84 | 38.04+4.17
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Fig. 2: One-day prediction performance of the considered
methods and the CEG plots of edge-LSTM for subject 570.

algorithms and the actual BG levels. The dashed ellipse in
each subplot highlights the postprandial hyperglycemia region
at 16:00, where the edge-LSTM model achieved the smallest
overestimation, compared to the baseline methods. To illustrate
the clinical performance, we employ the CEG plot (Fig. 2¢c and
2d), where each data point represents a pair of prediction and
ground truth. For the chosen subject (#570), we observe that
most of the points concentrate on A and B zones (99.67% for
30-minute PH and 99.49% for 60-minute PH). The treatment
decisions based on the predictions in these zones are clinically
acceptable for people with T1D, which indicates high clinical
accuracy of the edge-LSTM model.

Table IV shows the overall inference performance on the
embedded system. It is worth noting that the optimized edge-
LSTM model consumed only 34.69 KB FLASH and 1.00
KB SRAM, accounting for 6.78% and 1.19% of the total
memory of the MCU, respectively. It implies that the proposed
framework can use lower-end MCUs with smaller volume or
DNN models with higher complexity. The tiny RMSE, MAE,
and relative error in Lo norm demonstrate that differences
between the inference on the edge and the local server are
well below consideration. Note that the power is measured
by averaging based on CGM resolution, i.e, the model would
only be executed when there is a new CGM measurement data
and stays asleep otherwise. An execution time of 22.219 ms as
well as the 8 yW consumed power proves that the edge-LSTM
model is feasible for real-time inference on the wearables with
small-scale batteries.

TABLE IV: Performance of the edge inference.

Parameter Value Inference Error Result
FLASH 34.69 KB RMSE 0.0029
SRAM 1.00 KB MAE 0.0025
Execution Time 22.219 ms Lo Relative Error | 1.46 x 10~ 9
CPU Cycles 1.60 x 107

MACC 56,832

CyclessMACC 28.2

Average Power 8 uW

V. DISCUSSION AND CONCLUSION

To the best of our knowledge, this is the first work im-
plementing an edge deep learning algorithm on an MCU
for BG prediction. We have validated the outcomes of the
edge-LSTM model by means of standard performance metrics
(RMSE and MAE) and clinical metrics (gRMSE and CEG).
Empowered by the LSTM in the embedded system to extract
the temporal dependencies of BG trajectories, the proposed
model outperforms the selected machine learning baseline
algorithms in terms of all the metrics and shows good BG
prediction performance. Future work includes integrating with
other useful modules, such as WiFi and Bluetooth, into the
embedded system, designing a printed circuit board for proto-
typing, and evaluating the system in an actual clinical setting.
The proposed framework is agnostic to the types of neural
network employed and learning targets. Therefore, it can be
applied to realize a variety of tasks on the wearables, such as
the detection of events (e.g. meals, exercise, illness, faults) and
glucose regulation via deep reinforcement learning [29], [30].
We envision that the edge intelligence on IoT platforms will
have profound implications for the next generation of decision
support systems and AP systems and will significantly relieve
the daily burden of the self-management for people with T1D.
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