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Abstract
In studies on probabilistic cuing of visual search, participants search for a target among several distractors and report some feature
of the target. In a biased stage the target appears more frequently in one specific area of the search display. Eventually,
participants become faster at finding the target in that rich region compared to the sparse region. In some experiments, this stage
is followed by an unbiased stage, where the target is evenly located across all regions of the display. Despite this change in the
spatial distribution of targets, search speed usually remains faster when the target is located in the previously rich region. The
persistence of the bias even when it is no longer advantageous has been taken as evidence that this phenomenon is an attentional
habit. The aim of this meta-analysis was to test whether the magnitude of probabilistic cuing decreases from the biased to the
unbiased stage. A meta-analysis of 42 studies confirmed that probabilistic cuing during the unbiased stage was roughly half the
size of cuing during the biased stage, and this decrease persisted even after correcting for publication bias. Thus, the evidence
supporting the claim that probabilistic cuing is an attentional habit might not be as compelling as previously thought.
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Introduction

The allocation of attentional resources to objects in the envi-
ronment is influenced by previous experience (Gaspelin &
Luck, 2018; Theeuwes, 2018; Vecera et al., 2014). One way
in which previous experience shapes attention is by inducing a
bias toward the probable location of the item we are searching
for. For example, when we want to turn on the lights in a
room, we look for the switch at locations around half the
height of the door, next to it and inside the room, because
based on our previous experience we know that this is where
switches usually are. This phenomenon, known as probabilis-
tic cuing or location probability learning, improves the effi-
ciency of visual search (e.g., Geng & Behrmann, 2005). In a

typical experiment exploring this form of attentional bias (e.g.,
Druker & Anderson, 2010), participants search for a visual
target among several distractors and report some feature of
the target, such as its identity. Unknown to participants, the
target is more frequently located in one specific area of the
search display (i.e., the rich region) than in the remaining areas
of the display (i.e., the sparse region). As the task progresses,
participants become faster at finding the target in the rich
compared to the sparse region.

Some authors have claimed that this phenomenon may be
due to repetition priming. It is often easier to find a visual
target if it appears in the same location as in the previous trial.
In probabilistic cuing experiments, these repetitions are more
likely to take place in the rich region, because that is the area
of the display where the target appears most frequently. This,
on its own, could explain why search times are faster in this
region (Walthew & Gilchrist, 2006). To minimize the possi-
bility that probabilistic cuing is driven by fleeting inter-trial
priming processes, most studies include two stages (e.g.,
Addleman et al., 2019; Hong et al., 2020). In the biased learn-
ing stage, participants carry out the probabilistic cuing task as
described above for several hundreds of trials. This stage is
followed by an unbiased testing stage, where the target is
evenly located across the different regions of the display.
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Figure 1 shows a schematic illustration of the displays and
design in a typical experiment. Despite this change in the
spatial distribution of targets, participants usually continue to
respond faster in the unbiased stage when the target is located
in the previously rich quadrant (e.g., Ferrante et al., 2018; Lee
et al., 2020). This result can no longer be explained in terms of
repetition priming, because during the unbiased stage repeti-
tions are equally likely to appear in all regions.

Once repetition priming was discounted as the explanation
for the probabilistic cuing effect (Jiang, Swallow, Rosenbaum,
& Herzig, 2013c), it was proposed that it was better under-
stood as an enduring attentional habit (Jiang & Sisk, 2019).
An attentional habit is conceptualized as being “gradually
learned, occurring repeatedly and remarkably fixed, automatic
and unconscious, and typically involving a structured action
sequence elicited by particular contexts” (Jiang & Sisk, 2019,
p. 65). This interpretation was supported not only by the evi-
dence that the bias persisted during the unbiased stage but also
by the fact that it did not decline at all (Addleman et al., 2019,
Experiment 1; Jiang et al., 2015a, 2016; Jiang & Swallow
2013a, 2013b; Jiang, Swallow, & Sun, 2014a; Jiang,
Swallow, Rosenbaum, & Herzig, 2013c; Sisk et al., 2018).
This result resembles habitual processes as studied in other
areas of research, where habit learning seems to be slow and
highly persistent (Bayley et al., 2005; Dickinson, 1985).

However, the evidence supporting the inflexibility of proba-
bilistic cuing is nuanced. Other studies have consistently found
evidence of a decrease of the size of probabilistic cuing during
the unbiased stage (Addleman et al., 2021, Experiment 1;
Giménez-Fernández et al., 2020; Jiang, Won, & Swallow,
2014b; Sha et al., 2018). In particular, in a high-powered (N =
160) previous study conducted in our laboratory (Giménez-
Fernández et al., 2020) we found robust evidence of this

reduction, confirming that the bias becomes attenuated as partic-
ipants accumulate more and more evidence that the target is
evenly distributed.We suspect that these discrepancies regarding
the inflexibility of probabilistic cuing are probably due to low
statistical power in some experiments. Many of the studies that
have failed to find a significant decline in the attentional bias
during the unbiased stagemight have simply been underpowered
to detect such a decrease. Of course, it is also possible that the
contrast between the results observed in Giménez-Fernández
et al. (2020) and those of previous studies reporting no decrease
of cuing during the unbiased stage is not due to the higher statis-
tical power of the former, but to some other unknown but crucial
difference in the experimental procedure.

In sum, many studies have obtained null results regarding
bias attenuation, consistent with the habit interpretation (we
discuss in more detail what the concept of an attentional “hab-
it” means in the Discussion). The main goal of the present
study was to test whether the decrease of probabilistic cuing
during the unbiased stage is an (unreliable) peculiarity of just a
handful of studies or, alternatively, is a general feature of the
body of evidence collected with this task that might not al-
ways reach statistical significance due to the small samples
used inmany of these studies.Meta-analytic methods are ideal
to put these hypotheses to the test, as the conclusions reached
by collating evidence from all previous studies are necessarily
more reliable than the individual results from any single study.
A second reason why the attentional bias might not always
decrease significantly is that the unbiased testing stage is often
much shorter than the biased learning stage, possibly provid-
ing little opportunity for adapting visual search to the new
contingencies. The present meta-analysis also explores this
issue by testing the moderating role of the number of trials
in each stage.

Fig. 1 Schematic illustration of the biased and unbiased stages of a
probabilistic cuing task. In both stages the participant’s task is to report,
pressing a key, the left or right orientation of the tilted T. In the biased

stage the T appears in one of the quadrants of the display (lower left in this
example) on half of the trials. In the unbiased stage, it appears evenly
distributed across quadrants
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Method

Inclusion and exclusion criteria

We selected studies meeting the following criteria:

1. Only studies using a probabilistic cuing task were includ-
ed. By probabilistic cuing we refer to any task in which
participants have to find a target that appears more fre-
quently in one area of the display and report some char-
acteristic of this target or whether the target is present or
not.

2. The study had to include an unbiased stage (i.e., in which
the target’s spatial distribution is even) after the biased
stage (i.e., in which the target’s spatial distribution is bi-
ased) in which both the task and the stimuli were the same
as in the biased stage.

3. The report included a contrast between the condition in
which the target appeared in the rich region compared to
when it appeared in the sparse region both in the biased
and in the unbiased stage. If the study did not report these
contrasts but it was possible to calculate them with the
data collected in the experiment, we emailed the authors
of the study to request this information. If 15 days later we
had obtained no response, we sent a reminder. Fifteen
days after that, if we still had not received a response,
we excluded the study.

4. Participants had to be naïve about the spatial distribution
of the target throughout the whole experiment and their
attentionmust not have been explicitly drawn towards any
region in particular.

5. We excluded studies conducted under conditions that
could potentially reduce or abolish probabilistic cuing.
For instance, most research has shown that the attentional
bias learned in these experiments is viewer-centered.
Therefore, we excluded studies in which the rich target
location did not remain constant from the participants'
perspective during the first stage of the experiment
(Jiang & Swallow, 2014, Experiments 1A, 1B, 2 and 3;
Jiang, Swallow, & Capistrano, 2013a, Experiments 1, 2
and 4). For the same reason, we also excluded studies or
experimental conditions where participants performed the
task under abnormal viewing conditions (e.g., a simulated
scotoma; Addleman et al., 2021, Experiment 2).

6. Experiments carried out in a three-dimensional (3D) vir-
tual reality environment or in an outdoors setting were
excluded to reduce heterogeneity in experimental settings.

Literature search strategy

The probabilistic cuing task has been given different names in
the literature, and it is difficult to find a small set of search

keywords that would ensure the retrieval of all relevant stud-
ies. Thus, the starting point of our literature search was a
recent meta-analysis conducted by Vadillo et al. (2020) that
gathered all the studies using the probabilistic cuing task that
had been published until 10 November 2017. Given that our
eligibility criteria were different from those of Vadillo et al.
(2020), we inspected the method section of the 44 included
and excluded papers in that meta-analysis. Thirteen papers
were selected for inclusion. These 13 papers contained 23
studies that met the inclusion criteria explained above and
which were included in the present meta-analysis.

To update Vadillo et al.’s (2020) literature search we
adopted the same strategy. On 1 October 2020 we accessed
the Web of Science to find new published studies on probabi-
listic cuing authored by Y. Jiang (the most prolific author
regarding probabilistic cuing). Reading the titles and the ab-
stracts of the 46 papers authored by this researcher between
November 2017 and October 2020 we discarded 44. Two
reports were further assessed for inclusion. Both were finally
included in the meta-analysis. Then, we searched for addition-
al papers inspecting their reference sections, and found one
more article. These three additional papers contained six valid
studies that were included.

Additionally, to retrieve unpublished data (e.g., theses or
preprints), we contacted all corresponding authors of the se-
lected studies to ask them if they had unpublished data that
fitted our inclusion criteria. Also, we entered each selected
article into Google Scholar and examined all the references
that cited these papers. Based on the titles and abstracts of 58
papers, we discarded all of them except for six, which were
further assessed and included in the meta-analysis. These six
articles contained 12 additional studies that were included.

Finally, we conducted an updated search via the Web of
Science in April 2021, which allowed us to identify two more
articles authored by Y. Jiang. Only one of these papers
contained a study meeting the inclusion criteria. We also
inspected the reference list of both papers, but this did not
yield any additional reports with eligible studies. Thus, 42
studies pertaining to 23 articles were included in total. These
articles are marked with an asterisk in the Reference list.

Computation of effect size

As explained above, we were interested in comparing the bias
towards the rich versus sparse region in the biased and unbi-
ased stages. Most of the selected studies report the results of
one ANOVA for the biased stage and another for the unbiased
stage. Usually, these ANOVAs include a factor (e.g., quad-
rant) coding whether the target was presented in the rich or the
sparse region. Sometimes, the authors report the results of a t-
test comparing the dependent variable (search times) in the
two different regions. Since all of these entail within-subject
contrasts, we computed Cohen’s dz for each study for these
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comparisons, that is, the standardized mean difference from
two related measures (Lakens, 2013). This effect size estimate
can be calculated by dividing the t-value of the test comparing
the rich and sparse regions by the square root of the sample
size. Since F = t2 when the numerator degrees of freedom is 1,
dz can also be calculated from the F-value of a within-subjects
comparison (Rosenthal, 1991). The variance of dz for each
study was estimated as

Vi ¼ 1

Ni
þ di

2Ni

where Ni and di represent the sample size and the dz score of
each individual study (Cumming, 2012).

All included studies contained a behavioral measure of
performance. When reported, we chose reaction time as the
preferred measure. Accuracy data and other dependent vari-
ables were considered instead when reaction time was not
available or was not a suitable measure of performance (e.g.,
when presentation times of the search displays were very
brief).

As explained above, in some studies, the displays were
presented on a monitor placed flat on a stand and participants
changed their standing position from the biased to the unbi-
ased stage. For these studies two rich quadrants can be de-
fined, one viewer-centered and one environment-centered.
The evidence available so far suggests that probabilistic cuing
is viewer-centered (Jiang & Swallow, 2013b; Jiang, Swallow,
& Capistrano, 2013a). Therefore, for these studies we com-
puted the effect size comparing the performance in the viewer-
centered rich and sparse quadrants.

Coding of moderators and study characteristics

As explained in the Introduction, one of the methodological
factors that could explain the maintenance of the bias during
the unbiased stage is that in most studies, the unbiased stage
includes many fewer trials than the biased stage. We hypoth-
esized that a short unbiased stage would provide less oppor-
tunity to learn the new spatial distribution of the target and
therefore update the attentional bias. Thus, we coded the
length (i.e., number of trials) of both stages to explore whether
this might moderate the results.

Additionally, in some studies, the experimental setting
changed from the biased to the unbiased stage in one way or
another (e.g., the position of the participants with respect to
the display, the characteristics of the display, or the session in
which each stage was carried out). It is possible that these
changes in experimental settings drew participants’ attention
to potential changes in the spatial distribution of the target. To
control for the possibility that the results of the meta-analysis
were biased by the inclusion of these studies, we coded wheth-
er the experimental settings remained unchanged across stages

and we repeated the analysis including only those studies
where experimental setting did not change across stages and
there was no time interval between them either. The first and
last author examined all studies and coded them independent-
ly. There were no disagreements in the coding of moderators.

Meta-analytic methods

Our main aim was to test whether the magnitude of probabi-
listic cuing decreases from the biased to the unbiased stage.
Firstly, we estimated the average effect size in the biased and
in the unbiased stages, separately, fitting random-effects
models with restricted maximum likelihood estimation, as im-
plemented in the rma function of the ‘metafor’ R package
(Viechtbauer, 2010). To determine whether the effect sizes
in the biased and unbiased stages were significantly different,
we then ran a multi-level meta-analysis collating the effect
sizes from both stages, adding a random intercept at the study
level with the rma.mv ‘metafor’ function. All studies included
in the meta-analysis along with the data gathered for each of
them are publicly available at https://osf.io/yr3mx/.

One potential problem for meta-analytic methods is that
they rely on data that could be biased by the selective publi-
cation of significant findings (Carter et al., 2019). This prob-
lem is particularly concerning in the present meta-analysis
because publication bias might have different effects on the
results of the biased and unbiased stages. If, as seems plausi-
ble, there is more incentive to publish significant results in the
biased stage than in the unbiased stage, the effects in the bi-
ased stage would almost inevitably be larger. To address this
possibility, we employed several methods to detect the poten-
tial presence of publication bias and to correct for it.

First, we visually inspected the distribution of effect sizes
using funnel plots. A funnel plot is a scatterplot representing
the relationship between each effect size and its standard error
(or other precision measure; Sterne et al., 2005, 2011). If the
literature does not suffer from publication biases, one would
expect effect sizes to be independent of their precision. That
is, studies with many participants (i.e., high precision) should
yield highly consistent results and studies with smaller sam-
ples should yield more variable results. But, in principle, the
mean effect size should be roughly similar for all studies,
regardless of their sample sizes. The visual representation of
the relationship between effect sizes and precision should take
the form of an inverted funnel, with a narrow distribution of
effect sizes among the studies with the largest samples and
increasingly variable effect sizes as sample sizes decrease.
However, if the literature is biased against non-significant
results, this plot will often reveal an asymmetrical distribution
of effect sizes, because in studies with smaller samples only
large effects reach statistical significance, while studies with
larger samples can yield significant results even for small ef-
fect sizes. In other words, if non-significant results are less
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likely to appear in the published record, this will impose an
artificial relationship between study precision (i.e., sample
size) and effect sizes. To assess the asymmetry of the funnel
plot we used Egger’s regression test (Egger et al., 1997).

There are several methods to correct for publication bias,
although unfortunately there is no consensus about which of
them achieves the best estimation. Following Carter et al.
(2019), we applied several. Specifically, we used trim-and-
fill (Duval & Tweedie, 2000), two regression-based methods
(PET and PEESE; Stanley&Doucouliagos, 2014), and Vevea
and Hedges’ (1995) selection model (for a detailed technical
description of these methods, see Carter et al., 2019). In all
cases, our goal in using these methods was to confirm that any
difference between the effect sizes observed in the two stages
was not driven by differences in publication bias. In other
words, we expected that the numerical difference between
the stages would survive any bias-correction method.

Results

Does probabilistic cuing decline from the biased to
the unbiased stage?

The average size of the probabilistic cuing effect (i.e., the
difference in performance between the rich and sparse re-
gions) for the biased stage across all studies (k = 42) was large,
dz = 1.19, 95% CI [1.07, 1.32], z = 18.16, p < .001. For this
stage, the meta-analysis also revealed considerable heteroge-
neity across studies, Q(41) = 102.71, p < .001, I2 = 59.69%.
The average effect size in the unbiased stage was numerically
lower, dz = 0.69, 95% CI [0.60, 0.78], z = 14.91, p < .001, and
heterogeneity was slightly smaller but still significant,Q(41) =
70.35, p = .003, I2 = 40.42%. A multi-level meta-analysis
combining data from both stages and including stage (biased
vs. unbiased) as a moderator found that the average effect size
was significantly smaller for the unbiased than for the biased
stage, b1 = -0.49, 95% CI [-0.59, -0.39], z = -9.44, p < .001.
Figure 2 shows the effect size for each study during the biased
and unbiased stages. Figure S1 in the Online Supplementary
Material shows the forest plots for the biased and unbiased
stages.

Moderator analyses

Number of trials in the biased and unbiased stages

As explained above, one of the factors that could explain the
apparent persistence of the bias is that the unbiased stage
usually comprises relatively few trials, too few perhaps to
reveal clear evidence of unlearning. A t-test confirmed that,
as expected, the number of trials in the biased stage (M =
377.43, SD = 144.75) was significantly larger than in the

unbiased stage (M = 202.00, SD = 128.26), t(41) = 7.01, p <
.001. To test whether the number of trials moderates the re-
sults, we carried out separate meta-analyses for each stage
adding the number of trials as a moderator. The number of
trials did not significantly affect the effect size for either the
biased or the unbiased stage, although as expected, the slope
of the meta-regression was positive for the biased stage, b1 =
.0002, 95% CI [-.0007, .0012], p = .63, and negative for the
unbiased stage, b1 = -.0004, 95% CI [-.0011, .0003], p = .25.
Figure S2 in the Online Supplementary Material shows the
relationship between the number of trials and the effect size
of each study.

Change in experimental setting

To test whether the difference between stages was mainly
driven by studies in which the experimental setting changed
between the biased and unbiased stages, we repeated the
multi-level meta-analysis but including only those studies
where nothing changed from one stage to the next and the
transition was not marked in any manner (k = 25). This anal-
ysis replicated the results of the meta-analysis including all the
studies: The average effect size in the unbiased stage was
statistically smaller than in the biased stage, b1 = -0.48, 95%
CI [-0.60, -0.36], z = -7.65, p < .001. Figure S3 in the Online
Supplementary Material shows the effect sizes for the biased
and unbiased stages separately for studies in which the transi-
tion between stages was perceptible and those in which it was
not.

Analyses of publication bias

Figure 3 shows funnel plots for the effect sizes in both stages.
Egger’s regression test (Egger et al., 1997) showed that the
distribution of effect sizes was asymmetric for both the biased,
b1= 2.77, 95% CI [1.59, 3.95], p < .001, and unbiased stages,
b1 = 2.35, 95% CI [1.28, 3.41], p < .001. Table 1 shows the
bias-corrected effect sizes returned by PET, PEESE, trim-and-
fill, and the selection model separately for each stage. All
methods suggest that probabilistic cuing remains significant
in both stages after correcting for bias (except for the unbiased
stage with the PET method). In all cases, the effect sizes for
the unbiased stage remain smaller than for the biased stage.

Discussion

A meta-analysis of 42 studies confirmed that probabilistic
cuing is significantly reduced from the biased to the unbiased
stage. Overall, probabilistic cuing during the unbiased stage
was roughly half the size of cuing during the biased stage. In
our previous empirical study on this issue (Giménez-
Fernández et al., 2020), the standard deviation of the
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probabilistic cuing effect (in the Unbiased-first groups from
Experiments 1 and 2) in both stages was approximately 115
ms. Taking this estimate as a yardstick, the average size of the
meta-analytic probabilistic cuing effect during the biased
stage, dz = 1.19, translates to a search advantage of 136 ms
for targets in the rich region, while the effect size for the
unbiased stage, dz = 0.69, corresponds to a search advantage
of 79 ms. The decrease in the size of probabilistic cuing oc-
curred when taking into account only studies without any
perceptible change between stages. Additionally, the decrease
was evident even after correcting for publication bias using
several methods.

This is the first meta-analytic evidence that the bias in
probabilistic cuing is effectively reduced when the spatial dis-
tribution of the target becomes unbiased. These results are
consistent with some individual studies reporting the same
pattern (e.g., Chua & Gauthier, 2016; Giménez-Fernández
et al., 2020; Jiang & Won, 2015). We hypothesized that one

of the reasons why some empirical studies might have failed
to detect a decrease in probabilistic cuing during the unbiased
stage is that most experiments do not include enough unbiased
trials. Although most studies include a relatively long biased
learning stage, few studies include more than 200 trials in the
unbiased stage. Thus, it is difficult to know whether the bias
would diminish after sufficient experience with the unbiased
spatial distribution of the target. Although we found that the
average number of trials was significantly lower in the unbi-
ased than in the biased stage, the number of trials did not
significantly moderate the magnitude of probabilistic cuing
during the unbiased stage. This non-significant result must
be interpreted with caution, though, as among the studies pub-
lished so far there is little variability in the number of trials in
the unbiased stage.

It could be argued that our results actually confirm that
probabilistic cuing is an inflexible attentional bias, since the
effect remained significant during the unbiased stage and this
is unequivocal evidence that the bias persists. Indeed, one of
the findings that has been put forward to defend the claim that
probabilistic cuing is an inflexible process is that it is still
present during the unbiased stage (Jiang, 2018; Jiang &
Sisk, 2019; Seger, 2018). That is, response times remain faster
when the target appears at the previously rich quadrant than
when it appears at the other quadrants, even with this atten-
tional bias is no longer advantageous. However, it is important
to note that some persistence of the bias during the unbiased
stage makes perfect sense if a viewer is employing goal-driven
attention voluntarily: Even in studies where both stages are of
the same length, once the unbiased stage is finished, it is
undeniably true that the target has appeared more frequently

Fig. 2 Comparison of effect sizes for the biased and unbiased stages of
each study. Effect size (dz) of the probabilistic cuing effect in visual
search in the biased (where targets appear more frequently in one
quadrant of the display) and unbiased (where targets appear evenly

distributed across the display) stages of each of the studies included in
the meta-analysis. The size of each point indicates the sample size of the
study

Table 1 Publication bias correction

Method Biased stage Unbiased stage

Random effects 1.19 [1.07, 1.32] 0.69 [0.60, 0.78]

PET 0.44 [0.10, 0.77] 0.16 [-0.09, 0.41]

PEESE 0.83 [0.65, 1.00] 0.42 [0.29, 0.55]

Trim-and-fill 1.02 [0.87, 1.16] 0.58 [0.48, 0.68]

Selection model 1.07 [0.95, 1.19] 0.57 [0.41, 0.72]

Note. Meta-analytic effect size and 95% confidence interval for each
stage and bias-correction method
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in the rich quadrant. Given that participants are not instructed
explicitly about the new spatial distribution of the target (i.e.,
they have to discover it), and that the cost of maintaining the
bias during the unbiased stage is relatively low, it is perfectly
reasonable to maintain the bias from a goal-driven point of
view. In other words, the persistence of the attentional bias
does not necessarily imply that it is driven by an automatic and
inflexible habit.

Ultimately, whether or not probabilistic cuing qualifies as
an attention habit depends on what is meant by a habit – a
longstanding matter of debate and controversy itself (De
Houwer, 2019; Luque &Molinero, 2021). One of the defining
features of habits is that they are independent from goals and,
thus, insensitive to changes in the value or the contingency of
rewards (Dickinson, 1985; Wood & Rünger, 2016).
Sometimes, in contrast with this definition, in the attention
field, authors seem to adopt a “weak” definition of habit, by
which an “attentional habit” would be a bias produced by
experience that lasts longer than a priming effect. For instance,
Jiang and Sisk (2019) state that “researchers have begun to use
the term ‘habit’ to describe enduring attentional biases, con-
trasting them with short-term changes such as inter-trial repe-
tition priming” (p. 65). If the term is used, as in these cases, as
a simile or heuristic, without implying that the same mecha-
nisms underlie the habits studied in reward-learning protocols
and attentional habits such as probabilistic cuing, then our
results are consistent with the conclusion that probabilistic
cuing is a habit, because it does remain significant over the
unbiased stage. However, if we adopt a “strong” use of the
term “attentional habit” (see Anderson, 2016; Jiang & Sisk,
2019), then we believe that there is insufficient evidence for
claiming that probabilistic cuing matches this definition. On

this conception, attentional biases are similar to habits ob-
served in the reward learning literature: these are behaviors
acquired through reward learning that are maintained fixed
despite change in their consequences, even across hundreds
of trials (e.g., Bouton, 2019; Hardwick et al., 2019).

Beyond the inflexibility argument, it has been claimed that
probabilistic cuing shares other features with habits: that it is
egocentric (Jiang, Swallow, & Sun, 2014a), robust to in-
creases in working memory load (Won & Jiang, 2015), ex-
hibits task-specificity (Addleman et al., 2018), and is uncon-
scious (Jiang, Sha, & Sisk, 2018). All these questions deserve
further study, but we would like to point out that at least the
argument that probabilistic cuing is unconscious has also been
challenged. Contrary to the popular view that probabilistic
cuing is an unconscious learning effect, meta-analyses and
high-powered empirical studies (Giménez-Fernández et al.,
2020; Vadillo et al., 2020) reveal that (a) participants con-
sciously detect the biased distribution of the targets during
the initial learning stage, (b) they also consciously detect the
change in contingencies during the unbiased stage, and (c)
even after the unbiased stage they still know that, over the
experiment, the target appeared more frequently in the rich
quadrant. Taken collectively, these results suggest that partic-
ipants’ performance in the visual search task is highly consis-
tent with their conscious knowledge of the spatial distribution
of targets. Given that conscious knowledge and performance
in the task seem to change in tandem over the course of the
experiment, it is premature to discard the possibility that prob-
abilistic cuing is actually a goal-driven attentional bias.

In any case, the theoretical debate about the underlying
mechanisms of probabilistic cuing and related phenomena is
unlikely to make real progress unless future studies include

Fig. 3 Funnel plots for the biased and unbiased stages of the studies
included in the meta-analysis. Effect size plotted against the standard
error for the biased and unbiased stages. The red line represents the
best-fitting meta-regression of effect sizes on standard errors (Egger’s

regression test). The triangle defines the approximate area where effect
sizes are non-significant in a two-tailedt-test for repeated measures with
alpha = .05
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much larger sample sizes. In this specific case, although many
individual studies failed to detect a decline of probabilistic
cuing during the unbiased stage, our results suggest that this
is most likely due to the lack of statistical power. Crucially, the
argument that probabilistic cuing is a habit because it is per-
sistent loses its force if the experiments supporting this claim
are designed in such a way that changes in behavior cannot be
detected reliably. In general, low statistical power is a recur-
rent problem in the area of unconscious learning that obscures
the interpretation of non-significant results and that needs to
be addressed in future research (Vadillo et al., 2016).

In conclusion, our results challenge the claim that probabi-
listic cuing is inflexible, and suggest instead that participants
tend to reduce their bias to the previously rich quadrant as they
accumulate more and more evidence that the target is evenly
distributed. We propose that, with the data at hand, we cannot
discount the possibility that probabilistic cuing is the outcome
of a goal-driven attentional process.

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.3758/s13423-021-02025-5.

Funding Open Access funding provided thanks to the CRUE-CSIC
agreement with Springer Nature. This study was supported by grants
2016-T1/SOC-1395, 2017-T1/SOC-5147, and 2020-5A/SOC-19723
from Comunidad de Madrid, Spain (Programa de Atracción de Talento
Investigador), grants PSI2017-85159-P, PGC2018-094694-B-I00, and
PID2020-118583GB-I00 from Agencia Estatal de Investigación, Spain,
and FEDER, EU, and grant ES/S014616/1 from the Economic and Social
Research Council, United Kingdom.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included
in the article's Creative Commons licence, unless indicated otherwise in a
credit line to the material. If material is not included in the article's
Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

References

*Addleman, D. A., Tao, J., Remington, R. W., & Jiang, Y. V. (2018).
Explicit goal-driven attention, unlike implicitly learned attention,
spreads to secondary tasks. Journal of Experimental Psychology:
Human Perception and Performance, 44(3), 356-366. https://doi.
org/10.1037/xhp0000457

*Addleman, D. A., Schmidt, A., Remington, R.W, & Jiang, Y. V. (2019).
Implicit location probability learning does not induce baseline shifts
of visuospatial attention. Psychonomic Bulletin & Review, 26(2),
552-558. https://doi.org/10.3758/s13423-019-01588-8

*Addleman, D. A., Legge, G. E., & Jiang, Y. V. (2021). Simulated central
vision loss impairs implicit location probability learning. Cortex,
138, 241-252. https://doi.org/10.1016/j.cortex.2021.02.009

Anderson, B. A. (2016). The attention habit: How reward learning shapes
attentional selection. Annals of the New York Academy of Sciences,
1369(1), 24-39. https://doi.org/10.1111/nyas.12957

Bayley, P. J., Frascino, J. C., & Squire, L. R. (2005). Robust habit learn-
ing in the absence of awareness and independent of the medial
temporal lobe. Nature, 436, 550-553. https://doi.org/10.1038/
nature03857

Bouton, M. E. (2019). Extinction of instrumental (operant) learning:
Interference, varieties of context, and mechanisms of contextual
control. Psychopharmacology, 236(1), 7–19. https://doi.org/10.
1007/s00213-018-5076-4

Carter, E. C., Schönbrodt, F. D., Gervais, W. M., & Hilgard, J. (2019)
Correcting for bias in Psychology: A comparison of meta-analytic
methods. Advances in Methods and Practices in Psychological
Science, 2(2), 115-144. https://doi.org/10.1177/2515245919847196

*Chua, K., & Gauthier, I. (2016). Category-specific learned attentional
bias to object parts. Attention, Perception, & Psychophysics, 78(1),
44-51. https://doi.org/10.3758/s13414-015-1040-0

Cumming, G. (2012).Understanding the new statistics: Effect sizes, con-
fidence intervals, and meta-analysis.Routledge/Taylor & Francis
Group. https://doi.org/10.4324/9780203807002

De Houwer, J. (2019). On how definitions of habits can complicate habit
research. Frontiers in Psychology, 10, 2642.

Dickinson, A. (1985). Actions and habits: the development of behaviour-
al autonomy. Philosophical Transactions of the Royal Society of
London. B, Biological Sciences, 308(1135), 67-78. https://doi.org/
10.1098/rstb.1985.0010

Druker, M., & Anderson, B. (2010). Spatial probability aids visual stim-
ulus discrimination. Frontiers in Human Neuroscience, 4, 63.
https://doi.org/10.3389/fnhum.2010.00063

Duval, S., & Tweedie, R. (2000). Trim and fill: A simple funnel-plot–
based method of testing and adjusting for publication bias in meta-
analysis. Biometrics, 56(2), 455-463. https://doi.org/10.1111/j.
0006-341X.2000.00455.x

Egger, M., Smith, G. D., Schneider, M., & Minder, C. (1997). Bias in
meta-analysis detected by a simple, graphical test. BMJ, 315, 629-
34. https://doi.org/10.1136/bmj.315.7109.629

*Ferrante, O., Patacca, A., Di Caro, V., Della Libera, C., Santandrea, E.,
& Chelazzi, L. (2018). Altering spatial priority maps via statistical
learning of target selection and distractor filtering. Cortex, 102, 67-
95. https://doi.org/10.1016/j.cortex.2017.09.027

Gaspelin, N., & Luck, S. J. (2018). “Top-down” does not mean “volun-
tary”. Journal of Cognition, 1(1), 25. https://doi.org/10.5334/joc.28

Geng, J. J., & Behrmann, M. (2005). Spatial probability as an attentional
cue in visual search. Perception & Psychophysics, 67(7), 1252-
1268. https://doi.org/10.3758/BF03193557

*Giménez-Fernández, T., Luque, D., Shanks, D. R., & Vadillo, M. A.
(2020). Probabilistic cuing of visual search: Neither implicit nor
inflexible. Journal of Experimental Psychology: Human
Perception and Performance, 46(10), 1222-1234. https://doi.org/
10.1037/xhp0000852

Hardwick, R. M., Forrence, A. D., Krakauer, J. W., & Haith, A. M.
(2019). Time-dependent competition between goal-directed and ha-
bitual response preparation.Nature Human Behaviour, 3(12), 1252-
1262.

*Hong, I., Jeong, S. K., & Kim, M. (2020). Context affects implicit
learning of spatial bias depending on task relevance. Attention,
Perception & Psychophysics, 82(4), 1728-1743. https://doi.org/10.
3758/s13414-019-01919-w

Jiang, Y. V. (2018). Habitual versus goal-driven attention. Cortex, 102,
107-120. https://doi.org/10.1016/j.cortex.2017.06.018

*Jiang, Y. V., Koutstaal, W., & Twedell, E. L. (2016). Habitual attention
in older and young adults. Psychology and Aging, 31(8), 970-980.
https://doi.org/10.1037/pag0000139

*Jiang, Y. V., Sha, L. Z., & Remington, R. W. (2015a). Modulation of
spatial attention by goals, statistical learning, and monetary reward.

Psychon Bull Rev

https://doi.org/10.3758/s13423-021-02025-5
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1037/xhp0000457
https://doi.org/10.1037/xhp0000457
https://doi.org/10.3758/s13423-019-01588-8
https://doi.org/10.1016/j.cortex.2021.02.009
https://doi.org/10.1111/nyas.12957
https://doi.org/10.1038/nature03857
https://doi.org/10.1038/nature03857
https://doi.org/10.1007/s00213-018-5076-4
https://doi.org/10.1007/s00213-018-5076-4
https://doi.org/10.1177/2515245919847196
https://doi.org/10.3758/s13414-015-1040-0
https://doi.org/10.4324/9780203807002
https://doi.org/10.1098/rstb.1985.0010
https://doi.org/10.1098/rstb.1985.0010
https://doi.org/10.3389/fnhum.2010.00063
https://doi.org/10.1111/j.0006-341X.2000.00455.x
https://doi.org/10.1111/j.0006-341X.2000.00455.x
https://doi.org/10.1136/bmj.315.7109.629
https://doi.org/10.1016/j.cortex.2017.09.027
https://doi.org/10.5334/joc.28
https://doi.org/10.3758/BF03193557
https://doi.org/10.1037/xhp0000852
https://doi.org/10.1037/xhp0000852
https://doi.org/10.3758/s13414-019-01919-w
https://doi.org/10.3758/s13414-019-01919-w
https://doi.org/10.1016/j.cortex.2017.06.018
https://doi.org/10.1037/pag0000139


Attention, Perception, & Psychophysics, 77(7), 2189-2206. https://
doi.org/10.3758/s13414-015-0952-z

Jiang, Y. V., Sha, L. Z., & Sisk, C. A. (2018). Experience-guided atten-
tion: Uniform and implicit. Attention, Perception, & Psychophysics,
80, 1647-1653. https://doi.org/10.3758/s13414-018-1585-9

Jiang, Y. V., & Sisk, C. A. (2019). Habit-like attention. Current Opinion
in Psychology, 29, 65-70.https://doi.org/10.1016/j.copsyc.2018.11.
014

*Jiang, Y. V., & Swallow, K. M. (2013a). Body and head tilt reveals
multiple frames of reference for spatial attention. Journal of
Vision, 13(13), 9, 1-11. https://doi.org/10.1167/13.13.9

*Jiang, Y. V., & Swallow, K. M. (2013b). Spatial reference frame of
incidentally learned attention. Cognition, 126(3), 378-390. https://
doi.org/10.1016/j.cognition.2012.10.011

*Jiang, Y. V., & Swallow, K. M. (2014). Changing viewer perspectives
reveals constraints to implicit visual statistical learning. Journal of
Vision, 14(12), 3. https://doi.org/10.1167/14.12.3

*Jiang, Y. V., Swallow, K. M., & Capistrano, C. G. (2013a). Visual
search and location probability learning from variable perspectives.
Journal of Vision, 13(6), 13. https://doi.org/10.1167/13.6.13

*Jiang, Y. V., Swallow, K. M., & Rosenbaum, G. M. (2013b). Guidance
of spatial attention by incidental learning and endogenous cuing.
Journal of Experimental Psychology: Human Perception and
Performance, 39(1), 285-297. https://doi.org/10.1037/a0028022

*Jiang, Y. V., Swallow, K.M., Rosenbaum, G. M., & Herzig, C. (2013c).
Rapid acquisition but slow extinction of an attentional bias in space.
Journal of Experimental Psychology: Human Perception and
Performance, 39(1), 87-99. https://doi.org/10.1037/a0027611

*Jiang, Y. V., Swallow, K. M., & Sun, L. (2014a). Egocentric coding of
space for incidentally learned attention: Effects of scene context and
task instructions, Journal of Experimental Psychology: Learning,
Memory, and Cognition, 40(1), 233-50.https://doi.org/10.1037/
aO033870

*Jiang, Y. V., Swallow, K., Won, B., Cistera, & Rosenbaum, G. (2015b).
Task specificity of attention training: The case of probability cuing.
Attention, Perception, & Psychophysics, 77(1), 50-66. https://doi.
org/10.3758/s13414-014-0747-7

*Jiang, Y. V., & Won, B. (2015). Spatial scale, rather than nature of task
or locomotion, modulates the spatial reference frame of attention.
Journal of Experimental Psychology: Human Perception and
Performance, 41(3), 866-878. https://doi.org/10.1037/xhp0000056

*Jiang, Y. V., Won, B., & Swallow, K. M. (2014b). First saccadic eye
movement reveals persistent attentional guidance by implicit learn-
ing. Journal of Experimental Psychology: Human Perception and
Performance, 40(3), 1161-1173. https://doi.org/10.1037/a0035961

Lakens, D. (2013). Calculating and reporting effect sizes to facilitate
cumulative science: A practical primer for t-tests and ANOVAs.
Frontiers in Psychology, 4, 1-12. https://doi.org/10.3389/fpsyg.
2013.00863

*Lee, S., Jeong, S.K., & Hong, I. (2020). Statistical learning of target
locationprobability in children and adults. PsyArXiv. https://doi.
org/10.31234/osf.io/wxbse

Luque, D. & Molinero, S. (2021). A critical assessment of the goal re-
placement hypothesis for habitual behaviour. Psicológica Journal,
42, 53-56. https://doi.org/10.2478/psicolj-2021-0003

Rosenthal, R. (1991). Meta-analytic procedures for social research.
Applied Social Research Methods Series 6. Sage Publications.
https://doi.org/10.4135/9781412984997

Seger, C. A. (2018). Corticostriatal foundations of habits. Current
Opinion in Behavioral Sciences, 20, 153-160. https://doi.org/10.
1016/j.cobeha.2018.01.006

*Sha, L. Z., Remington, R.W., & Jiang, Y. V. (2018). Statistical learning
of anomalous regions in complex faux X-ray images does not trans-
fer between detection and discrimination. Cognitive Research:
Principles and Implications, 3, 1-16. https://doi.org/10.1186/
s41235-018-0144-1

*Sisk, C. A., Twedell, E. L., Koutstaal, W., Cooper, S. E., & Jiang, Y. V.
(2018). Implicitly-learned spatial attention is unimpaired in patients
with Parkinson's disease. Neuropsychologia, 119, 34-44. https://doi.
org/10.1016/j.neuropsychologia.2018.07.030

Stanley, T. D., & Doucouliagos, H. (2014). Meta-regression approxima-
tions to reduce publication selection bias. Research Synthesis
Methods, 5, 60-78. https://doi.org/10.1002/jrsm.1095

Sterne, J. A. C., Becker, B. J., & Egger, M. (2005). The funnel plot. In H.
R. Rothstein, A. J. Sutton, &M. Borenstein (Eds.), Publication bias
andmeta-analysis: Prevention, assessment and adjustments (pp. 75-
98). John Wiley & Sons.

Sterne, J. A. C., Sutton, A. J., Ioannidis, J. P. A., Terrrin, N., Jones, D. R.,
Lau, J., Carpenter, J., Rücker, G., Harbord, R. M., Schmid, C. H.,
Tetzlaff, J., Deeks, J., Peters, J., Macaskill, P., Schwarzer, G., Duval,
S., Altman, D. G., Moher, D., Higgins, J. P. T. (2011).
Recommendations for examining and interpreting funnel plot asym-
metry inmeta-analyses of randomised controlled trials.BMJ, 342, 1-
8.

Theeuwes, J. (2018). Visual selection: Usually fast and automatic; seldom
slow and volitional. Journal of Cognition, 1(1), 29. https://doi.org/
10.5334/joc.13

Vadillo, M. A., Konstantinidis, E., & Shanks, D. R. (2016).
Underpowered samples, false negatives, and unconscious learning.
Psychonomic Bulletin & Review, 23, 87-102. https://doi.org/10.
3758/s13423-015-0892-6

Vadillo, M. A., Linssen, D., Orgaz, C., Parsons, S., & Shanks, D. R.
(2020). Unconscious or underpowered? Probabilistic cuing of visual
attention. Journal of Experimental Psychology: General, 149, 160-
181. https://doi.org/10.1037/xge0000632

Vecera, S. P., Cosman, J. D., Vatterott, D. B., & Roper, Z. J. J. (2014).
The control of visual attention: Toward a unified account. In B. H.
Ross (Ed.), The psychology of learning and motivation: Vol. 60 (pp.
303–347). Elsevier Academic Press.

Vevea, J. L., & Hedges, L. V. (1995). A general linear model for estimat-
ing effect size in the presence of publication bias. Psychometrika,
60, 419-435. https://doi.org/10.1007/bf02294384

Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor
package. Journal of Statistical Software, 36(3), 1-48. https://doi.org/
10.18637/jss.v036.i03

Walthew, C., & Gilchrist, I. D. (2006). Target location probability effects
in visual search: An effect of sequential dependencies. Journal of
Experimental Psychology: Human Perception and Performance,
32, 1294-1301. https://doi.org/10.1037/0096-1523.32.5.1294

*Won, B. (2014). Visual statistical learning and its impact on spatial
attention [Unpublished doctoral dissertation]. University of
Minnesota

Won, B.-Y., & Jiang, Y. V. (2015). Spatial working memory interferes
with explicit, but not probabilistic cuing of spatial attention. Journal
of Experimental Psychology: Learning, Memory, and Cognition, 41,
787-806. https://doi.org/10.1037/xlm0000040

Wood, W., & Rünger, D. (2016). Psychology of habit. Annual Review of
Psychology, 67(1), 289-314. https://doi.org/10.1146/annurev-
psych-122414-033417

Publisher’s note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

Psychon Bull Rev

https://doi.org/10.3758/s13414-015-0952-z
https://doi.org/10.3758/s13414-015-0952-z
https://doi.org/10.3758/s13414-018-1585-9
https://doi.org/10.1016/j.copsyc.2018.11.014
https://doi.org/10.1016/j.copsyc.2018.11.014
https://doi.org/10.1167/13.13.9
https://doi.org/10.1016/j.cognition.2012.10.011
https://doi.org/10.1016/j.cognition.2012.10.011
https://doi.org/10.1167/14.12.3
https://doi.org/10.1167/13.6.13
https://doi.org/10.1037/a0028022
https://doi.org/10.1037/a0027611
https://doi.org/10.1037/aO033870
https://doi.org/10.1037/aO033870
https://doi.org/10.3758/s13414-014-0747-7
https://doi.org/10.3758/s13414-014-0747-7
https://doi.org/10.1037/xhp0000056
https://doi.org/10.1037/a0035961
https://doi.org/10.3389/fpsyg.2013.00863
https://doi.org/10.3389/fpsyg.2013.00863
https://doi.org/10.31234/osf.io/wxbse
https://doi.org/10.31234/osf.io/wxbse
https://doi.org/10.2478/psicolj-2021-0003
https://doi.org/10.4135/9781412984997
https://doi.org/10.1016/j.cobeha.2018.01.006
https://doi.org/10.1016/j.cobeha.2018.01.006
https://doi.org/10.1186/s41235-018-0144-1
https://doi.org/10.1186/s41235-018-0144-1
https://doi.org/10.1016/j.neuropsychologia.2018.07.030
https://doi.org/10.1016/j.neuropsychologia.2018.07.030
https://doi.org/10.1002/jrsm.1095
https://doi.org/10.5334/joc.13
https://doi.org/10.5334/joc.13
https://doi.org/10.3758/s13423-015-0892-6
https://doi.org/10.3758/s13423-015-0892-6
https://doi.org/10.1037/xge0000632
https://doi.org/10.1007/bf02294384
https://doi.org/10.18637/jss.v036.i03
https://doi.org/10.18637/jss.v036.i03
https://doi.org/10.1037/0096-1523.32.5.1294
https://doi.org/10.1037/xlm0000040
https://doi.org/10.1146/annurev-psych-122414-033417
https://doi.org/10.1146/annurev-psych-122414-033417

	Is probabilistic cuing of visual search an inflexible attentional habit? A meta-analytic review
	Abstract
	Introduction
	Method
	Inclusion and exclusion criteria
	Literature search strategy
	Computation of effect size
	Coding of moderators and study characteristics
	Meta-analytic methods

	Results
	Does probabilistic cuing decline from the biased to the unbiased stage?
	Moderator analyses
	Number of trials in the biased and unbiased stages
	Change in experimental setting

	Analyses of publication bias

	Discussion
	References


