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ABSTRACT

Data plane programmability is greatly improving network
monitoring. Most new proposals rely on controllers pulling
information (e.g., sketches or packets) from the data plane.
This architecture is not a good fit for tasks requiring high re-
activity, such as failure recovery, attack mitigation, and so on.
Focusing on these tasks, we argue for a different architecture,
where the data plane autonomously detects anomalies and
pushes alerts to the controller. As a first step, we demonstrate
that statistical checks can be implemented in P4 by revisiting
definition and online computation of statistical measures.
We collect our techniques in a P4 library, and showcase how
they enable in-switch anomaly detection.
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1 INTRODUCTION

Programmable data planes [1, 2] enable improvements in
network monitoring; traditional switches and routers only
expose a fixed set of monitoring functions (e.g., [5, 8]), which
forces the architecture displayed in Figure 1a to be adopted.
Programmability allow operators to decide what data to
monitor at every switch, potentially for every single packet.
Most prior work assumes the architecture shown in Fig-

ure 1b, where switches are instructed to store custom sketches
from which the controller extracts traffic data. We denote
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this architecture as sketch-only, since the data plane only
maintains sketches. This approach has been proved effective
for several tasks, including tracking heavy prefixes, number
and sizes of flows, super-spreaders, packet losses and net-
work performance [4, 10, 15, 16, 18, 19, 23, 24, 28]. QPipe [13]
also explores estimating quantiles in sketches.

While very flexible, the sketch-only architecture does not
achieve high reactivity. To quickly react to possibly rare
events, the controller would need to pull sketches from
switches every few milliseconds, which produces high over-
head throughout normal operation, and may simply not
be supported by the network (e.g., because of switch-to-
controller delays) or the devices (e.g., because reading thou-
sands of registers takes several milliseconds).
Fundamentally, for any sketch-only system, a delay is

inevitable between when a traffic change is theoretically
detectable and when the system is actually able to detect
the change: this delay is inversely proportional to the gener-
ated overhead, and constrained by network characteristics,
such as link delays and switches’ memory access speed. In-
band telemetry [20] and packet sampling [21] can be seen
as degenerate cases of sketch-only systems where minimal
sketches (e.g., packet headers) are sent to the controller for
every monitored packet: they incur the above limitation too.

Yet, for many tasks very fast reactivity matters! An exam-
ple is failure reaction, as also testified by the still ongoing
industrial efforts to minimize failures’ impact in traditional
networks (e.g., [3, 17]). Other examples include DDoS pro-
tection (especially given that attackers can generate Tbps of
traffic nowadays [6]), load balancing (e.g., to avoid servers
being overloaded), and even newer machine learning appli-
cations (e.g., to avoid traffic misclassification due to outdated
models in the switches [27]). Table 1 recaps those use cases.

For this class of very time-sensitive tasks, we argue for the
monitoring architecture shown in Figure 1c, where anomaly
detection is performed within programmable switches. This
enables switches to both locally react to anomalies (e.g., rate
limiting some flows or rerouting packets) and notify the
controller for longer-term reaction (e.g., triggering additional
traffic analysis and orchestrating network-wide reaction).
Supporting our envisioned approach is not straightfor-

ward though. Quickly detecting anomalies on large volumes
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Figure 1: We argue for an architectural shift of network anomaly-detection systems, where in-switch detection

algorithms are used to react to anomalies or trigger additional analyses in the controller.

of live traffic is hard per se. For data-plane-only techniques,
challenges are magnified by the scarce resources and fun-
damental limitations of programmable switches, including
lack of support for division and eliminating loops to bound
packet-processing time. This is probably why only a few
contributions rely on in-switch anomaly detection [12, 29],
and they use basic algorithms such as thresholding to detect
specific anomalies like packet loss.
We then ask ourselves if programmable switches can im-

plement generic anomaly detection algorithms. Namely, we
investigate if online statistical analyses can become a new
data plane primitive, instrumental to anomaly detection.

This paper represents a first step in this space; we find that
we can indeed support simple but generic statistical analysis
in P4. We present techniques to track mean, variance, stan-
dard deviation and percentiles of distributions of arbitrary
values (e.g., traffic volumes over time, packet rates per prefix,
frequency of SYN packets and so on). This for example en-
ables easy detection of outliers in normal distributions. We
address the challenges of limited resources and expressivity
of P4 switches by: (i) tweaking definitions of statistical mea-
sures and online algorithms to compute them, so as to avoid
operations not supported by P4 (Sec. 2); and (ii) carefully
engineering the use of match-action tables and registers, e.g.,
to avoid heavy operations such as recirculation (Sec. 3).

We pack our techniques in a P4 library, called Stat4, that
also supports tuning the tracked distributions at runtime,
without recompiling the P4 program. We test Stat4’s cor-
rectness in the P4 behavioral model (bmv2), implement an
anomaly detection application on top of our library, and eval-
uate the resource consumption of this application1 (Sec. 3-4).
Our library implementation is available at [9].

1we evaluate resource consumption on an application built on top of Stat4
because consumed resources depend both on the Stat4’s internals and on
how Stat4’s functions and tables are actually used.

use case motivation values of interest X

remote failure satisfy uptime SLAs stalled flows over time
volumetric DDoS protect network traffic rate over time
SYN flood protect servers SYN rate over time
load balancing avoid imbalances traffic rate across IPs
traffic classification correctness packets by type

Table 1: Example use cases of our approach.

Of course, the techniques we present do not support all
possible anomaly detection algorithms. Our main goal is to
show the feasibility of in-switch statistical analyses. We hope
that providing evidence of such statistical primitives can fuel
additional research into in-switch anomaly detection, and
unlock new network systems’ designs (e.g., see Figure 1). We
further discuss limitations and future directions in Sec. 5.

2 STATISTICS IN P4

We envision that switches autonomously analyze distribu-
tions of values of interest (e.g., traffic volume every 100ms,
SYNs per destination IP, number of TCP vs UDP vs QUIC
packets, etc.). Table 1 shows the values of interest pertain-
ing to different use cases. Suppose that at a time t , a switch
has extracted N values of interest X = {x1,x2, . . . ,xN } from
the received traffic. We aim to characterize X , and keep our
characterization updated for every packet received after t .

Approach.We keep one counter per value xi ∈ X : incoming
packets update counters and statistical measures of X . We
first focus on mean, variance and standard deviation.
To compute those measures, we cannot rely on prior on-

line algorithms (e.g., [26]), because P4 does not support divi-
sion and square root operations that are used in the defini-
tion of mean, variance and standard deviation. Given X =
{x1, . . . ,xN }, the mean is indeed defined as x̄ =

∑
i=1 xi
N , the

variance as σ 2
X = E[X 2] − E[X ] where E[f (X )] =

∑N
i=1 f (xi )
N

for any function f (.), and the standard deviation σX as the
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square root of the variance of X . We also avoid storing ap-
proximations in match-action tables (e.g., as done in [14])
because they require significant memory to be accurate.

For any distributionX of N values, we instead track NX =
{Nx1, . . . ,NxN }. In doing so, we leverage the insight that
network anomaly detection often relies on comparing relative
values of statistical measures. For example, if we want to
check that the average traffic rate matches a value T , we
can track packets per time interval as NX , and compare the
mean NX of NX with N ×T . Also, if traffic rates follow a
normal distribution, we can check if the rate x j at any time j
is an outlier by testing if Nx j > Nx + 2σNX .

Keeping one counter per value and trackingNX may seem
excessive from amemory perspective.We note, however, that
all the use cases in Table 1 require tracking distributions that
inherently have a limited number of possible values (i.e., a
low N ). For example, monitoring traffic rates over the most
recent time intervals (e.g., a few tens or hundreds of them)
enables the detection of most failures and attacks. In many
practical scenarios, we can further reduce memory consump-
tion by storing the order of magnitude of the values in the
tracked distributions, possibly relative to a baseline. For ex-
ample, if we keep 100ms-long counters and a switch forwards
10Gb of traffic in most of the 100ms intervals, we can track
values in Gb units: a counter with value 10 would then rep-
resent that the switch forwarded 10 Gb in the corresponding
100ms, and anomaly detection would not require to store
values much bigger than 100. Similarly, to detect failures,
we can keep the order of magnitude of stalled flows, as this
likely changes when a failure occurs. We acknowledge that
even the above approach has limitations. For example, it may
be impractical to monitor all the possible values of a 64-bit
header field. The investigation of use cases or applications
requiring this sort of monitoring is left for future work.

Revisited definitions. Given NX = {Nx1, . . . ,NxN }, we
define Xsum and Xsumsq as follows:

Xsum =

N∑
i=1

xi ; Xsumsq =

N∑
i=1

x2
i

By definition, the mean of NX is exactly Xsum . Addition-
ally, for the variance σ 2

NX , we have:

σ 2
NX = E[(NX )2] − E[NX ]2

=

∑N
i=1 (Nxi )

2

N
− *
,

∑N
i=1 Nxi

N
+
-

2

= N
N∑
i=1

x2
i −

*
,

N∑
i=1

xi+
-

2

= NXsumsq − X
2
sum

The standard deviation σNX remains equal to
√
σ 2
NX .
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Figure 2: Example of our approximated square root al-

gorithm: it approximates

√
106 to 10.

input number y 50th perc 90th perc max

1-10∗ 3% 10% 20%
10-100 0.4% 1.4% 3.8%
100-1000 <0.05% 0.14% 0.44%
1000-10000 <0.01% <0.01% 0.05%
∗ for small numbers, the percentage error is high but the
absolute error is low – e.g.,

√
3 approximated to 1

Table 2: Percentage error in square root estimation

with respect to the fractional square root value.

Online computation of mean, variance and standard

deviation. We instruct switches to update their counters
and the values of N , Xsum, Xsumsq and σ 2

NX according to the
received traffic. When we receive a new value of interest xk
(e.g., the traffic rate in a new 100ms sample), we increase N
by 1, and Xsum by xk . We also modify the value of Xsumsq by
adding the square of xk , and store xk in a new counter.
We can also monitor frequency distributions, where each

xi ∈ X represents the frequency of a value of interest (e.g.,
SYN vs data packets). In this case, when we receive a new
value k , we increase N only if xk is equal to 0. Before in-
crementing xk by 1, we also increase Xsum by 1, and update
Xsumsq by adding (xk + 1)2 and subtracting its old value x2

k :

Xsumsq ← Xsumsq + (xk + 1)2 − x2
k = Xsumsq + 2xk + 1

For both frequency and non-frequency distributions, we
then recompute σ 2

NX asNXsumsq−X
2
sum . Finally, to compute

σNX , we approximate the square root of the variance with
the following algorithm, exemplified in Figure 2.
Given the bit string b representing an integer y, we first

compute y’s floating point representation f : we set f ’s ex-
ponent to the position of b’s most significant bit (MSB), and
copy the bits after the MSB as f ’s mantissa. We then shift
f by one to the right, obtaining a bit string y1. Finally, we
translate back y1 into its integer representation b1, setting
b1’s most significant bit to the value of y1’s exponent, and
copying y1’s mantissa into b1’s least significant bits.
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Figure 3: Example of our approximated algorithm to

compute the median on a frequency distribution.

N
example before N /2 samples after N /2 samples
use case 50%tile 90%tile 50%tile 90%tile

100 packet types 4.5% 34.5% 0% 1%
1000 per-ms traffic 3.6% 29.6% 0% 0.1%
65536 16-bit field <1% 23% 0% 0.01%

Table 3: Median estimation error for distributions of

N elements, over 20 repetitions per value of N .

Intuitively, the shifting operation divides the exponent by
two, ensuring that the MSB of the computed square root is
correct. It also divides the mantissa by two, which is indeed
an approximation of the actual value of the square root. As
such, the algorithm essentially computes an interpolation
between subsequent squares of the form 22k . Table 2 shows
the accuracy of this algorithm as reported in our experiments.

We note that some hardware switches do not support the
squaring of values unknown at compile time. Similarly to our
square root approximation, we can approximate squaring by
using shifting operations, as also suggested in [7].

Online computation of percentiles. By monitoring fre-
quency distributions, we can track values and change rates
of percentiles, which may be indicative of anomalies.

Let’s first consider the online computation of the median
(i.e., the 50th percentile) of a distribution X . The median
is defined as a valuem such that half of the elements in X
are lower thanm and the other half are higher thanm. To
compute it online, we store the distribution F = { f1, . . . , fN }
where each fi is the frequency of xi in X . We also track
the combined frequency of all the values lower than the
current median, and all the values higher than it, in two
variables. This enables us to update the median for every
new value x j : if the combined frequency of values higher
(resp., smaller) than the current median becomes bigger than
the frequency of values lower (resp., higher) than the median

binding tables

match action
SYN == 1 reg1 += 1

populated 
by controller

…

co
u
n
ter n

u
m

b
er

counter  
size
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stats

match action
dst 1.0/16 reg2 += len(pkt)
dst 1.1/16 reg3 += len(pkt)

…

Figure 4: Switch resources for Stat4 computations.

plus the median itself, we move the median towards the
higher (resp., lower) values. An example is shown in Figure 3.

A challenge of implementing this algorithm in P4 consists
in skipping frequency counters with value equal to zero
(e.g., 5 in Figure 3) when updating the median, because P4
does not support iteration. Since we want to avoid packet
recirculation, our current approach is to move the median by
at most one unit per packet: in Figure 3, it would therefore
take us two packets to move the median from 4 to 6. This
approach leads to an estimation error which is proportional
to the size of F in the worst case – e.g., if the median moves
from the beginning to the end of a very sparse distribution.
Yet, our estimation error tends to be low for non-sparse

distributions. Table 3 shows the results of experiments where
we feed our median computation algorithm with values ex-
tracted from a range [1, . . . ,N ]. The estimation error is al-
ways ≤ 1%, except early in our simulations, when distri-
butions are sparse. The error would be even lower when
switches receive packets not carrying values of interest, as
those packets do contribute to moving the median.
We support the online computation of any percentile by

only adjusting the comparisons between the combined fre-
quencies of values lower and higher than the current per-
centile. For example, tracking the 90-th percentile p amounts
to ensuring that the frequency of values lower than p is nine
times bigger than the frequency of values higher than p.

3 TOWARDS PRACTICAL IN-SWITCH

ANOMALY DETECTION

Wehave implemented Stat4, a P4 library that bmv2 programs
can import to track distributions of values extracted from
packets, as described in Sec. 2. As illustrated in Figure 4,
Stat4 uses switches’ registers to store the distributions and
their statistical measures. The control plane decides which
distributions to track at any time by populating P4 tables that
we call binding tables. Main implementation details follow.

Lazy computation of standard deviation.Detection algo-
rithms typically perform read operations on statistical mea-
sures much less frequently than updates occur. For example,
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Figure 5: Experimental setup for Stat4 validation.

if we track traffic per second, every packet contributes to the
amount of the traffic in the current second, but anomalies
can only be detected at the end of each second. Following this
observation, our library updates the statistical measures only
when a new value is added to the corresponding distribution.

This lazy approach is especially relevant for standard de-
viation, since it amortizes the cost of identifying the most
significant bit (MSB) in binary strings – required by our
square root computation algorithm. For the library to be
self-contained, Stat4 currently identifies MSBs using a se-
quence of ifs, which is a costly operation. An alternative
for hardware implementations is to perform a longest prefix
match on an ad-hoc TCAM table populated by the controller
at switch startup.

Simultaneous tracking ofmultiple distributions. Stat4
stores each value of a monitored distribution in a distinct cell
of dedicated registers. The size and number of those registers
is controlled by two compiler macros whose values can be
tuned by P4 applications using the library: the maximum
number of distributions tracked simultaneously depends on
the macro STAT_COUNTER_NUM, and the number of values per
distribution on the macro STAT_COUNTER_SIZE.

Runtime tuning of values of interest. Monitoring sys-
tems generally need to track different distributions over time.
Suppose that a switch monitors both the traffic rate and the
number of SYN packets. During a SYN flood attack, acquiring
more information on the targets of the attack may be much
more important than monitoring the general traffic rate.

To support such scenarios within Stat4 applications, con-
trollers can adjust at runtime the tracked distributions with-
out recompiling the P4 application, by modifying the content
of Stat4’s binding tables. For each distribution, those tables’
entries indeed define (i) how to extract values of interest
from packets, and (ii) how to update which registers.

Validation We validate the correctness of our Stat4 imple-
mentation by building an echo application on top of it. For
each packet it receives, this application instructs the switch
to report the tracked statistical measures in a reply packet.
We simulate a minimal network with a single host con-

nected to a bmv2 switch running the echo application, as
illustrated in Figure 5. The host sends Ethernet frames whose

10.0.0.0/8
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P4 switchpacketsource

/24

10.0.5.1
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…

10.0.5.6

…

/24

10.0.1.1
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…

10.0.1.6

controller

alerts

drill down

Figure 6: Experimental setup for our case study.

payload only contains a randomly generated integer between
−255 and 255. The switch tracks the occurrences of the inte-
gers in the received frames. Every time the switch receives
a packet, it therefore updates the frequency distribution of
the integers’ values, and replies with a frame including the
updated statistical measures of the distribution. The host
compares the values in every received packet with the corre-
sponding statistical measures it computes in software.
In all our experiments (with up to 10,000 packets), the

values of N , Xsum , Xsumsq and σ 2
NX stored at the switch are

equal to those computed at the host, and the output of our
online algorithms is consistent with results in Sec. 2.

4 CASE STUDY

We now demonstrate how in-switch statistical primitives can
support prompt detection of anomalous traffic and identifica-
tion of the recipient of such traffic. The latter is achieved by
zooming in to progressively finer-grained traffic statistics.

Setup. We emulate the scenario shown in Figure 6: a net-
work monitoring system aims to quickly detect traffic spikes
for internal hosts called destinations, across which packets
are supposed to be load-balanced. By default, we set 36 desti-
nations in six /24 subnets of a /8 prefix. We abstract external
hosts as a single traffic source. The monitoring system in-
cludes a P4 switch and a custom controller. The switch pro-
vides connectivity and runs statistical checks on the crossing
traffic. The controller tunes such checks by managing entries
in the binding tables of the switch.

Detection anddrill downexperiment. Initially, the switch
only monitors the packets per time interval for the entire
/8 prefix, continuously checking if in any interval, the rate
is higher than the mean of the stored distribution plus two
standard deviations. The switch implements a circular buffer
that by default, stores 100 8ms-long time intervals.

After generating traffic uniformly across the destinations
for a randomized time, the source starts sending much more
traffic to a randomly selected destination. The switch is then
supposed to detect the traffic spike, and alert the controller.
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Our controller implements the logic to drill down into
traffic spikes. Upon receiving a traffic-spike alert, it adds an
entry to a binding table, requiring the switch to track the
traffic per /24 subnet in addition to the packet rate for the /8
over time. The switch should now detect that one /24 subnet
receives much more traffic than the others, and send a traffic-
imbalance alert to the controller. In response to this second
alert, the controller modifies the previously added entry so
that the switch tracks the traffic per destination within the
identified /24 instead of the traffic per subnet.

Results. We repeat the above experiment many times, with
time intervals ranging from 8 ms to 2 seconds, and num-
ber of intervals between 10 and 100. In all the experiments,
the switch detects the traffic spike in the first interval after
the start of the spike. It also generates alerts as expected,
and correctly identifies the destination of the traffic spike,
which varies between simulation runs. Pinpointing the des-
tination of each spike typically takes 2-3 seconds because of
the interaction between the control and data planes.

Resource Consumption. The case-study application occu-
pies 3.1KB. It entails at most one dependency between match-
action rules [11], since at most two rules with independent
actions match each packet. The longest dependency chain in
our code has 12 sequential steps, used to override the oldest
counter in distributions of traffic over time: this chain may be
shortened by refining our implementation. While the map-
ping between the above dependencies and pipeline stages
depends on both compilers and hardware targets, we expect
that our code be deployable in most commercial targets, as
they typically support more than 10 pipeline stages [22].

5 FUTURE DIRECTIONS

This work focuses on the feasibility of in-switch statistical
analyses. Anomaly detection applications can already be
built on the current Stat4 library, as exemplified in Sec. 4.
We acknowledge that our library code is not optimal.

Among future improvements, we plan to support a more par-
simonious use of memory. Stat4 currently allocates switch
resources for every possible value in the tracked distribu-
tions, even if some values are never observed.Wewill explore
techniques to avoid reserving memory for non-observed val-
ues (e.g., using hash-tables similarly to [23]) which would be
especially beneficial for sparse distributions.
From a broader perspective, we hope that our work can

inspire future research to fully support the architectural shift
visualized in Figure 1, including the following directions.

Larger exploration of in-switch statistical primitives.
This paper focuses on a few statistical measures that are
useful for many distributions. It is not rare, though, that
network systems have to deal with distributions that are

not straightforward to characterize with the measures we
currently support. For instance, the distribution of traffic per
prefix may be zipfian [25].

In our approach, the controller has access to all the values
of distributions tracked by switches, as they are stored in
switches’ registers. It can therefore learn about the distribu-
tion at runtime, and adapt the switch’s anomaly detection
approach accordingly. For example, if a distribution is bi-
modal, the controller can instruct switches to separately
track and check the two modes of the distribution.
A full exploration of how to analyze a wider range of

distributions, possibly performing statistical analyses across
multiple switches, is an interesting direction for future work.

Combining in-switch and in-controller monitoring. In
addition to supporting time-sensitive tasks, in-switch sta-
tistical analyses can unlock new network applications. For
example, they could enable the data plane to reroute packets
before congestion, when traffic starts to surge. Identifying
such new applications and quantifying the gains obtained by
a data-plane-only approach are promising research topics.

Obviously, in-switch computation has limitations too. For
example, its scalability is a primary concern: switches may
simply not have the resources required for some compu-
tations. In contrast, scalability is a strength of centralized
architectures, as it is cheap to distribute and scale controllers.

We envision that future monitoring systems will profitably
combine in-switch and controller-based techniques. For ex-
ample, they may use in-switch anomaly detection to decide
when a controller should extract sketches from switches, e.g.,
to properly process a received alert. We believe that the de-
sign, implementation, and evaluation of such systems should
be a relevant item in our community’s research agenda.

Extending data-plane programmability. We show that
in-switch statistical checks are feasible despite the limitations
of switches and P4. One natural question is whether future
hardware can better support our approach.
Most challenges that we faced derive from fundamental

performance constraints. For instance, supporting divisions
and iteration in hardware would degrade switches’ perfor-
mance (e.g., delaying packet forwarding). We thus imagine
that in the coming years, the elementary operations available
in hardware will not change drastically, and we will still have
to resort on approximations like those presented in Sec. 2.

Nevertheless, better support for network applications could
be provided in future. For example, allowing data planes
to autonomously modify match-action tables would avoid
latency-expensive interactionswith controllers, such aswhen
drilling down into anomalies. Similarly, equipping switches
with an extra parallel pipeline dedicated to control tasks,
such as in-switch statistics, may relax constraints (e.g., for
hardware stages) motivated by packet processing efficiency.
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