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1 Introduction 1 
Probabilistic seismic hazard analysis (PSHA) for a specific site provides the rate at which an earthquake-2 
induced ground-motion intensity measure (IM) (e.g., peak accelerations) exceeds a pre-defined threshold 3 
during a specified time window (McGuire 2004). PSHA includes two main subcomponents (Field et al. 4 
2003): (1) an earthquake rupture forecast (ERF), which specifies the probability of occurrence of different 5 
earthquake ruptures (i.e., different magnitudes, locations, and faulting types) for each seismic source in a 6 
region, over a given period; and (2) a ground-motion model (GMM), which determines the probability 7 
distribution of various IMs at the site, given the occurrence of a specified earthquake rupture (i.e., an 8 
earthquake of a certain magnitude occurring at a nearby location). PSHA uncertainties are categorized as 9 
either aleatoric or epistemic (McGuire 2004). Aleatoric variability is the inherent (irreducible) variability in a 10 
phenomenon that is captured by modeling the relevant variables in the problem as random variables. 11 
Epistemic uncertainty is the modeling uncertainty due to limited data and knowledge. Epistemic 12 
uncertainties in PSHA are typically accounted for using logic trees (e.g., Bommer and Scherbaum 2008, 13 
Kulkarni et al. 1984). In a logic-tree approach, a single hazard analysis, corresponding to an individual 14 
branch of the logic tree, quantifies all aleatoric aspects of the corresponding model. In contrast, the spread of 15 
hazard curves for different branches describes the epistemic uncertainty (Bommer and Scherbaum 2008). An 16 
expert or an expert group devises a weighted sampling scheme to represent the degree-of-belief in each 17 
branch. 18 

An ERF can be developed by (1) identifying all earthquake sources capable of producing damaging ground-19 
motions; (2) defining the characteristics of the sources (e.g., geometry and focal mechanisms) associated 20 
with potential earthquakes; and (3) characterizing the distribution of rupture magnitudes and their probability 21 
of occurrence for each source (Field et al. 2003, Baker 2015). This study primarily focuses on the ERF 22 
component of fault-based PSHA, i.e., fault-based ERF (e.g., Stirling et al. 2012, Demircioğlu et al. 2018).  23 

The general approaches to assemble a fault-based ERF (e.g., Stirling et al. 2012, Field et al. 2009) found in 24 
the literature usually comprise the following steps: 25 

1. Identify the fault structures and the corresponding segment boundaries (based on geologic evidence), 26 
where each segment potentially represents the extent of a single rupture (i.e., assumed fault 27 
segmentation); 28 

2. Identify the long-term rate for every single fault or possible multi-segment rupture (i.e., ruptures, 29 
including several fault segments) using geologic slip rate data and paleoseismic studies. Fault slip 30 
rates can be derived from measured geologic offsets or estimated by modeling geodetic 31 
measurements. Paleoseismic studies usually apply geologic, structural, and chronologic methods to 32 
trench-scale deformations and discontinuities to determine probabilistic distributions of the date of 33 
past events in a single location (i.e., the trench) and corresponding estimates of fault slip (i.e., 34 
displacement);  35 

3. Calibrate the earthquake occurrence model of the faults.  36 

This general approach has several shortcomings. The segmentation hypothesis (point 1) may be inaccurate if 37 
physical/geological barriers between fault segments are assumed where they do not exist. Recent events 38 
(e.g., 2002 moment magnitude, 𝑀!, 7.9 Denali, USA; 2008 𝑀! 8.0 Wenchuan, China; 2016 𝑀! 7.8 39 
Kaikōura earthquake, New Zealand) show that large earthquakes often involve other fault segments in 40 
combination with major faults. There is no robust and standardized methodology for defining the long-term 41 
occurrence rates (points 2), especially for multi-segment ruptures. This leads to subjectively assigned rate 42 
values that are not always reproducible. 43 

The earthquake occurrence model of seismic sources (point 3) is typically represented as a homogeneous 44 
Poisson (time-independent) process, which assumes that inter-arrival times between events are independent, 45 
identically distributed exponential random variables (i.e., there is no memory of past earthquakes). However, 46 
time-independent approaches do not adequately model: 47 
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• the long-term time-dependency of mainshocks on specific fault segments, i.e., some evidence 1 
suggests that soon after a segment-rupturing earthquake, the probability of having a similar 2 
magnitude earthquake might be lower than average (Cornell and Winterstein, 1988); 3 

• the interaction between adjacent faults, i.e., the fact that an earthquake on one fault can result in a 4 
tectonic loading change in the surrounding faults, which may delay or promote (i.e., “trigger”) the 5 
rupture occurrence of other events on those faults (Stein et al. 1997); 6 

• the spatial and temporal clustering of foreshocks and aftershocks (i.e. smaller earthquakes preceding 7 
and following the mainshock, respectively), which can have a significant effect on the short-term 8 
hazard (Papadopoulos et al. 2020). 9 

The first limitation emphasizes the need to consider time-dependent occurrence models in seismic hazard 10 
and loss assessments (Field et al. 2015; Mitchell-Wallace 2017). Besides, there is considerable evidence of 11 
interaction between adjacent faults (Stein et al. 1997); this phenomenon is responsible for the occurrence of 12 
the Duzce (Turkey) North Anatolian earthquake after the 1999 𝑀! 7.4 Izmit event, as well all triggered 13 
events on the North Anatolian fault in the previous century (Stein et al. 1997, Parsons et al. 2000). Thus, not 14 
including fault interaction may produce biased hazard estimates. In addition, most PSHA studies account 15 
only for mainshock events. However, recent disasters (e.g., 2010–2011 Christchurch sequence, New 16 
Zealand) have highlighted the potential pitfalls of neglecting the effects of aftershocks on the short-term 17 
hazard and the need for more advanced tools to overcome the homogeneous Poisson (time-independent) 18 
assumption (Papadopoulos et al. 2020). 19 

Recent studies and advances in each of the limitations discussed above tend to focus on one specific aspect 20 
in isolation (e.g., Abaimov et al. 2008) and have not investigated how different modeling choices (e.g., 21 
segmented vs. unsegmented fault model, time-independent vs. time-dependent occurrence model) interact 22 
with each other and affect the PSHA outputs. 23 

The study presented in this paper has two main aims. The first is to review the current literature on fault 24 
segmentation and multi-segment ruptures, time-dependent occurrence models and their implementation, and 25 
fault interaction effects between subsequent events. In particular, the relation between these three topics will 26 
be investigated and critically discussed. The study’s second and foremost aim is to develop an advanced, 27 
harmonized framework for state-of-the-art fault-based seismic hazard modeling, attempting to address the 28 
shortcomings of fault-based ERF for mainshocks (i.e., the first and second limitations mentioned above). 29 

The paper is organized as follows. Section 2 presents a literature review on fault segmentation and multi-30 
segment ruptures, fault interaction effects between subsequent events, time-dependent occurrence models, 31 
and their implementation. Section 3 presents the proposed harmonized methodology. Section 4 demonstrates 32 
a case study application of the methodology to Wellington city (New Zealand). Section 5 and 6 provide 33 
discussion and conclusions, respectively. 34 

 35 

2 Literature Review 36 

This section presents a literature review of three main ERF-related aspects of fault-based PSHA, namely 37 
fault segmentation and multi-segment rupture, rupture occurrence modeling, and fault interaction. 38 

 39 

2.1 Fault segmentation and multi-segment ruptures 40 
One of the first steps of fault-based PSHA is the collection of geologic information to identify potentially 41 
active faults and possibly infer the magnitude range of the earthquakes (or ruptures) those faults can 42 
generate. The typical segmentation process starts by identifying major fault structures (as opposed to minor 43 
fault structures, which are often neglected) that are reasonably continuous at depth for several kilometers. 44 
The segment boundaries (i.e., persistent barriers to ruptures) of the fault structures are usually identified 45 
according to some geologic criteria such as gaps, sharp bends, or stepovers between faults (Boncio et al. 46 
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2004). Note that for the purposes of this study, a “fault” represents a geological feature that poses a potential 1 
hazard for the considered study area and “fault segments” represent individual seismic sources within a fault 2 
that collectively contribute to the hazard. The geometry of fault segments is usually simplified with respect 3 
to the mapped geometry. However, it maintains reasonable consistency with observable features (e.g., the 4 
rake of the fault, along-strike length at the surface) of the original fault. These simplified fault segments are 5 
directly used for PSHA studies at a regional scale, assuming that the true source inclination and geometry do 6 
not significantly affect the ground-shaking response (Boncio et al. 2004, Faure Walker et al 2019). 7 

The fault source model resulting from the segmentation process is typically included in PSHA using the 8 
seismic moment balancing approach (e.g., Stirling et al. 2012, Demircioğlu et al. 2018, Field et al. 2009), 9 
which assumes that the seismic moment released by an earthquake is related to the strain accumulation along 10 
a fault segment during a recurrence interval. The seismic moment calculated for each fault segment can be 11 
used to compute the magnitude (or area) of the possible ruptures based on a selected magnitude-frequency 12 
distribution (MFD) and the assumptions regarding possible connections between fault segments (e.g., Murru 13 
et al. 2016). The choice of MFD affects the type of ruptures considered in fault-based ERF. Assuming a 14 
characteristic magnitude model for each fault segment (e.g., Stirling et al. 2012) implies that (1) fault 15 
segments are treated as independent seismic sources (Boncio et al. 2004, Pace et al. 2016); and (2) 16 
approximately the entire segment surface ruptures for every earthquake (Stirling et al. 2012, Schwartz and 17 
Coppersmith, 1984, Boncio et al. 2004). Considering a Gutenberg-Richter MFD (e.g., Demircioğlu et al. 18 
2018) or a mixture of MFD models (e.g., Field et al. 2014) facilitates the occurrence of rupture areas that are 19 
smaller than the whole segment surface. These ruptures are often referred to as “floating ruptures” (Visini et 20 
al. 2020, Parsons and Geist 2009). Note that assuming a Gutenberg-Richter MFD still results in the treatment 21 
of fault segments as independent seismic sources.  22 

Strict fault segmentation models (i.e., where fault segments are independent) may not be adequate for 23 
evaluating the potential hazard from medium-to-large magnitude events (dePolo et al. 1991, Schwartz et al. 24 
2012). In fact, geologic evidence shows that historical barriers to rupture may not be persistent (Iezzi et al. 25 
2019), and that earthquakes can “jump” from one fault to another within the fault system. Figure 1 shows the 26 
approximate geometry of the 2016 𝑀! 7.8 Kaikōura (New Zealand) earthquake (Hamling et al. 2017), 27 
which involves more than one fault segment (i.e., a multi-segment rupture, also referred to in the literature as 28 
“multi-fault” rupture or “multi rupture”). This type of multi-segment rupture would not be captured by a 29 
fault-based PSHA that limits ruptures to independent segments. Other examples of multi-segment ruptures 30 
are the 1932 𝑀! 7.2 Cedar Mountain (USA) earthquake (Bell et al. 1999), the 1980 𝑀! 6.9 Irpinia (Italy) 31 
earthquake (Bernard and Zollo, 1989), the 2002 𝑀! 7.9 Denali fault (USA) earthquake (Eberhart-Phillips et 32 
al. 2003, Schwartz et al. 2012), and the 2016 𝑀! 6.5 Norcia (Italy) earthquake (Villani et al. 2018). 33 
However, multi-segment ruptures are typically excluded from fault models (e.g., Stirling et al. 2012, 34 
Demircioğlu et al. 2018). Multi-segment ruptures occur when dynamic/static stress changes caused by 35 
coseismic slip on one fault segment (or small portions of it) lead to additional rupture propagation on more 36 
segments (Harris and Day 1993, Mignan et al. 2015). This process is (almost) instantaneous and leads to 37 
larger magnitude earthquakes (i.e., “inter-fault multi-rupture” mentioned in Section 2.3). A simple approach 38 
to generate multi-segment ruptures is to assume that some long neighboring segments may rupture together 39 
during an earthquake (e.g., Murru et al. 2016, Parsons and Geist 2009). However, it is often impossible to 40 
identify all the rupture patterns for a given fault system because of difficulties with the 41 
availability/interpretation of paleoseismic/geologic records. Calibration of the occurrence rates for multi-42 
segment ruptures (discussed in Section 2.2.1) is also a challenge. For these reasons, the choice of which 43 
types of ruptures to consider and the use of fault segmentation models in fault-based PSHAs are not 44 
standardized (see Stirling et al. 2012, Demircioğlu et al. 2018, Field et al. 2009).  45 
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 1 
Figure 1. Approximate geometry of the multi-segment rupture that defined the 2016 MW 7.8 Kaikōura 2 
earthquake (New Zealand). 3 

Methods to model/generate a complete set of multi-fault ruptures have been proposed by Milner et al. (2013) 4 
and Mignan et al. (2015). Both methods are based on historical data of past events (Wesnousky 2006) and 5 
numerical analysis (Harris and Day 1993). The algorithms proposed by Milner et al. (2013) and Mignan et 6 
al. (2015) both apply fault segment geometry constraints, maximum jump distance limit, and faulting 7 
mechanism compatibility (Milner et al. 2013, Mignan et al. 2015) to assess whether two (or more) individual 8 
fault segments might create a multi-segment rupture. Mignan et al. (2015)’s algorithm does not consider 9 
floating ruptures explicitly but can account for them if the characteristic earthquake model is not used 10 
(Mignan et al. 2015). The Milner et al. (2013) methodology divides each fault segment into a large number 11 
of subsections. It generates ruptures (both floating and multi-segment) as unique sets of these subsections 12 
that pass “plausibility filters” (which comprise of geometric constraints, maximum jump distance, and 13 
Coulomb stress compatibility criteria). Since the method described by Mignan et al. (2015) was developed in 14 
a strike-slip-dominated environment, the Milner et al. (2013) method is deemed to be more general. 15 
However, the Milner et al. (2013) method is more complicated than that of Mignan et al. (2015) as it relies 16 
on static stress changes as a proxy for the dynamic stress changes (that contributes to the propagation of 17 
ruptures between faults) and uses a larger number of criteria to define the ruptures (discussed in Section 3.1). 18 
The Milner et al. (2013) method can also be considered slightly more subjective than the Mignan et al. 19 
(2015) method because it facilitates a larger number of exceptions (e.g., ruptures involving portions of left-20 
lateral and right-lateral faults) to the rupture criteria mentioned above, which make it more adaptable to any 21 
tectonic environment.  22 

The importance of a refined understanding of fault segmentation is yet to be fully explored in the literature. 23 
A case study developed by Valentini et al. (2020) investigated the sensitivity of seismic hazard results to 24 
segmentation variability, using a simplified version of the method used for the Uniform California 25 
Earthquake Rupture Forecast, Version 3 or UCERF3 (Field et al. 2014). The authors generated different 26 
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possible multi-segment ruptures on the Wasatch fault (Utah, USA). They used a logic tree approach to 1 
account for (epistemic) uncertainties in the segmentation constraints, the slip rate model, the slip model, and 2 
the magnitude-area scaling relations (Kulkarni et al. 1984). Their analysis revealed that the segmentation 3 
procedure uncertainties are comparable or higher than epistemic uncertainties that are commonly accounted 4 
for in PSHA (e.g., slip rate model, slip model, magnitude-area scaling relations). As a result, failure to 5 
account for different segmentation procedures (or relaxing the segmentation) while developing the logic tree 6 
branches and the corresponding sensitivity analyses (Bommer and Scherbaum 2008) can significantly 7 
underestimate a seismic hazard assessment's epistemic uncertainty. 8 

 9 

2.2 Rupture occurrence model 10 
The rupture occurrence model most commonly used in PSHA applications is based on the Poisson process 11 
and assumes that the occurrence of events in a specific observation time window (∆𝑇) is not dependent on 12 
the time elapsed since the last event, 𝑇" (i.e., there is no memory of past earthquakes). The popularity of the 13 
homogeneous Poisson model is due to (Cornell and Winterstein, 1988): (1) the fact that the sum of non-14 
Poissonian processes may be approximated by a Poissonian one (i.e., the ability to give relatively good 15 
predictions when large areas are used as seismic sources); (2) the model only requires one parameter, termed 16 
the mean recurrence rate. This parameter is related to the coefficient 𝑎 (i.e., the rate of earthquakes with 17 
magnitudes greater than the minimum magnitude of the source) in the familiar Gutenberg-Richter 18 
(Gutenberg and Richter 1944) model, which is the most commonly used MFD for PSHA studies (McGuire 19 
2004); (3) the fact that the Poissonian assumptions result in simple and computationally efficient 20 
mathematical equations to solve for seismic hazard analysis; (4) the lack of an alternative, physically-21 
motivated model. 22 

Although suitable for modeling the recurrence of earthquakes on several (independent) sources (Zhuang et 23 
al. 2011), the homogeneous Poisson process is not considered appropriate for fault-based hazard assessments 24 
(Akinci et al. 2010). This may be explained by the elastic rebound theory (Reid 1910), which states that 25 
faults cyclically accumulate elastic strain energy and release it when the fault rocks' internal strength is 26 
reached. After an earthquake, the accumulated/stored energy is assumed to be at or near zero. This process is 27 
often referred to as a “renewal” process, which implies some sort of time-dependency between events, 28 
therefore violating the Poissonian assumption. Academic debates over the validity of the elastic-rebound 29 
hypothesis (and time-dependent occurrence models) have been ongoing since they were first proposed (Field 30 
et al. 2015, Mulargia et al. 2017). Lack of confidence in the elastic rebound theory can mainly be attributed 31 
to a lack of historical catalogs on large earthquakes that have ruptured the same fault segment (Stein et al. 32 
2013). However, recent studies on time-dependent occurrence models have revealed that excluding elastic 33 
rebound leads to unrealistic aftershock statistics (e.g., Field et al. 2017). Although this result might be due to 34 
the specific aftershock simulation model examined, it represents some validation of the elastic-rebound 35 
theory (Field et al. 2017). 36 

Time-dependent occurrence models have been used to model the recurrence of medium-to-large magnitude 37 
earthquakes on fault segments in a large number of studies, both at regional (e.g., Stirling et al. 2012, 38 
Demircioğlu et al. 2018) and more local scales (e.g., Akinci et al. 2010). They are becoming more popular 39 
than time-independent models in risk assessments for setting earthquake-insurance rates (Field et al. 2015, 40 
Mitchell-Wallace 2017). Since insurance policies are typically renewed annually (as opposed to building 41 
codes, which are generally updated every decade or so), insurance stakeholders usually apply time-dependent 42 
hazard models, where available. 43 

Several types of time-dependent occurrence models have been proposed for PSHA. The Weibull-distributed 44 
model (Hagiwara 1974), the lognormal-distributed model (Nishenko and Buland 1987), and Brownian 45 
Passage Time (BPT) model (Ellsworth et al. 1999, Matthews et al. 2002) are amongst the most popular ones. 46 
The probability distribution functions (PDFs) of these models have two parameters, which capture the mean 47 
recurrence time (µ) and its coefficient of variation (CoV), sometimes referred to as “aperiodicity” 48 
(Convertito and Faenza 2014). Figure 2 (left panel) compares the Weibull, the lognormal, and the BPT PDFs 49 
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with the same µ = 250𝑦𝑟 and 𝐶𝑜𝑉 = 0.5, as well as the exponential (Poisson, time-independent) 1 
distribution for a mean recurrence interval of 250 years.  2 

 3 
Figure 2. PDF of the interarrival time between events for some earthquake occurrence models. Left panel: 4 
comparison between the Weibull, the lognormal, and the BPT PDFs with a mean recurrence interval (µ) of 5 
250 years and a CoV of 0.5. Right panel: comparison between three BPT distributions with a mean 6 
recurrence interval (µ) of 250 years and CoV of 0.3, 0.5, and 0.7. The exponential PDF (Poisson model) for a 7 
mean recurrence interval of 250 years is included for comparison. 8 

Unlike the time-independent model, the expected time before the next event in a renewal process depends on 9 
the time elapsed since the last event, and the probability of occurrence of an event becomes a “conditional 10 
probability of occurrence” (conditional on the time elapsed since the last event). Consequently, all time-11 
dependent occurrence models produce a zero (conditional) probability of event occurrence for a short time 12 
after an earthquake occurs on a given fault segment. In contrast, the Poisson process produces a constant 13 
non-zero earthquake occurrence probability (Convertito and Faenza 2014).  14 

There is no empirical evidence that supports the use of one type of time-dependent occurrence model over 15 
another. However, amongst the several time-dependent occurrence models proposed in the literature, the 16 
BPT model has gained consensus as the preferred model for mainshock long-term time-dependency (Field et 17 
al. 2009, Field et al. 2015). This model builds upon the so-called Brownian relaxation oscillator (BRO, i.e., a 18 
superposition of a constant tectonic loading and a Brownian perturbation), and it is often preferred over 19 
Weibull or lognormal distributions for the following reasons: 20 

• Unlike the Weibull and the lognormal, it is a physically-motivated model. In particular, the BPT 21 
model is a conceptual depiction of failure cycles in which the stress state steadily increases until 22 
reaching a chosen threshold; 23 

• For high values of the time elapsed since the last event, the BPT probability of occurrence tends to a 24 
constant (i.e., it turns into a time-independent occurrence model), which solely depends on the fault 25 
characteristics. On the other hand, the Weibull distribution tends to infinity (i.e., ever-increasing 26 
probability of occurrence). In contrast, the lognormal distribution tends to zero, which disqualifies 27 
these distributions as reliable models according to some researchers (Convertito and Faenza 2014). 28 
This is especially the case if the mechanism of earthquake occurrence is contextualized within the 29 
process of steadily increasing load on fault. 30 

Epistemic uncertainty in the time-dependent rupture occurrence behavior, which is due to a lack of 31 
knowledge on the underlying (unproven) elastic rebound theory, should always be accounted for in seismic 32 
hazard calculations (Field et al. 2015). This uncertainty captures one or more of the following issues: (1) the 33 
choice of a time-dependent versus a time-independent occurrence model; (2) the choice of a probability 34 
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model for rupture occurrences (if a time-dependent occurrence model is chosen); and (3) the choice of the 1 
parameter values for the time-dependent occurrence model (particularly that of the CoV, which is often 2 
poorly constrained; Verdecchia et al. 2019). Figure 2 (right panel) shows example BPT distributions with 3 
different values of CoV. Uncertainties in time-dependent occurrence model parameter values are mainly due 4 
to difficulties with interpreting the geologic and paleoseismic data available for each fault, which increase 5 
the confidence interval of the calibrated CoV (e.g., Biasi et al. 2015). For instance, UCERF3 includes a logic 6 
tree with three different BPT models (with different CoVs) and a Poisson model to compute the conditional 7 
probability of rupture occurrence. Other approaches combine different time-dependent occurrence models 8 
and evaluate the conditional probability of rupture occurrence with Bayesian methods (e.g., Stirling et al. 9 
2012, Fitzenz and Nyst 2015, Rhoades et al. 2011, Fitzenz 2018). 10 

 11 

2.2.1 Implementation of time-independent models 12 
The implementation of time-independent rupture occurrence models in a strictly segmented fault-based ERF 13 
involves the calibration of the occurrence rate of earthquakes on each fault (i.e., the coefficient 𝑎 of the 14 
Gutenberg-Richter MFD). This rate is either inferred from geologic fault data and/or historical past event 15 
dates. The “segment total seismic moment rate conservation“ criterion (e.g., Field et al. 1999, Stirling et al. 16 
2012, Pace et al. 2016) is usually used to calibrate the rate of occurrence if geological and geomorphology 17 
data (e.g., long-term average slip rate, fault segment geometry, seismic moment budget) are available. The 18 
seismic moment rate conservation should account for the chosen MFD (e.g., Demircioğlu et al. 2018, Pace et 19 
al. 2016).  20 

Without the segmentation hypothesis, the calibration of time-independent occurrence rates requires more 21 
advanced approaches. The 2008 Uniform California Earthquake Rupture Forecast Version 2 or UCERF2 22 
(Petersen et al. 2007, Field et al. 2009) and previous related studies generated the ruptures coupling large 23 
segments (Section 2.1) and proceeded on a fault-by-fault basis (with expert judgment) to calibrate the time-24 
independent occurrence rates of multi-segment ruptures. UCERF3 (Field et al. 2014, Field and Page 2011, 25 
Page et al. 2014) proposed a more objective and system-wide approach to relax the strict segmentation 26 
hypothesis and calibrate these rates. This approach utilizes the Milner et al. (2013) method to generate both 27 
floating and multi-segment ruptures (described in Section 2.1). It leverages an inversion methodology 28 
(Andrews and Schwerer 2000, Field and Page 2011, Page et al. 2014) for calibration, which involves solving 29 
an optimization problem. Each input dataset or modeling assumption (e.g., the fault segment MFD) is 30 
represented as a set of constraint equations (more details in Section 3.2). The inversion methodology can 31 
incorporate both slip rates of each single fault segment and information from paleoseismic studies. It can 32 
include every modeling assumption that can be translated into a constraint equation-set.  33 

Three other methods to calibrate the time-independent occurrence rate of many overlapping ruptures have 34 
been proposed in the literature (SUbsectioNs of Fault in Seismic Hazard, SUNFiSH, and floating-rupture for 35 
seismic hazard, FRESH, Visini et al. 2020; Seismic Hazard and Earthquake Rate In Fault Systems, 36 
SHERIFS, Chartier et al. 2017). These three methods compute rupture rates based on the magnitude-37 
frequency distribution (MFD) of the fault system and the available slip (or moment) rate budget to be 38 
distributed amongst the ruptures. They adopt different approaches for modeling slip rates on the fault 39 
segments, building the MFD of the earthquake ruptures, and quantifying epistemic uncertainties on the input 40 
variables. SHERIFS computes the long-term time-independent rupture occurrence rates on fault segments 41 
following an iterative process, with two constraints: the MFD of the entire fault system must follow an 42 
imposed shape, and the rate of earthquakes is calculated from the specific slip rate of each fault segment 43 
depending on all possible ruptures. Unlike UCERF3, the SHERIFS methodology does not impose an MFD 44 
shape for each fault segment and cannot account for paleoseismic data in the rupture-occurrence calibration 45 
process. Both UCERF3 and SHERIFS treat all possible combinations of multi-segment ruptures as an 46 
aleatoric uncertainty and explore the epistemic uncertainty (e.g., associated with the slip rate model, the 47 
magnitude-area scaling relation, and the slip model) using a logic tree approach (Field et al. 2014, Chartier et 48 
al. 2017). 49 
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 1 

2.2.2 Implementation of time-dependent models 2 
Although much of the literature around time-dependent occurrence models focuses on choosing the most 3 
suitable distribution to use (BPT, lognormal, or Weibull, e.g., Abaimov et al. 2008), fewer studies have 4 
focused on their implementation within the PSHA framework. The characteristic earthquake MFD for 5 
mainshocks is often used as part of time-dependent occurrence modeling. This MFD assumes strict fault 6 
segmentation and is based on the idea that fault segments tend to periodically generate earthquakes of a 7 
characteristic size that is a function of fault length and slip rate. Its use has been justified with elastic 8 
rebound theory. The characteristic earthquake model was first proposed by Wesnousky et al. (1983) and 9 
Schwartz and Coppersmith (1984), and it has increased in popularity over the years. In fact, it has been used 10 
in many fault-based PSHA studies (e.g., Stirling et al. 2012). However, the model’s rationality has been 11 
questioned in debates over the validity of the elastic-rebound hypothesis (Field et al. 2015, Mulargia et al. 12 
2017, Kagan et al. 2012, and Geller et al. 2015). In recent years, characteristic earthquake MFDs have more 13 
commonly been used in conjunction with Gutenberg-Richter MFDs (Field et al. 2009, Field et al. 2014, 14 
Demircioğlu et al. 2018). 15 

For strictly segmented fault models, it is straightforward to use a renewal model to compute elastic-rebound-16 
based probabilities (e.g., Lindh 1983). The two parameters characterizing the time-dependent occurrence 17 
models (namely, µ and CoV) can be estimated in several ways depending on the available data. If a 18 
significant number of historical past event dates is available (e.g., Parkfield fault, Gonzalez et al. 2006), the 19 
adjusted maximum likelihood estimation (MLE) method can be used for model calibration (e.g., Pace et al. 20 
2016, Ellsworth et al. 1999). Otherwise, the use of the “segment total seismic moment rate conservation“ 21 
(Section 2.2.1) is now considered standard practice for calibrating the mean recurrence interval of the time-22 
dependent occurrence model (e.g., Field et al. 1999, Stirling et al. 2012, Pace et al. 2016). In this case, a set 23 
of commonly used values (e.g., 0.3, 0.5, and 0.7; Field et al. 2009) is assumed for the CoV. More advanced 24 
calibration methods are needed when only paleoseismic studies are available and dates of past events must 25 
be estimated using probability distributions. Several of these methods use a combination of Monte Carlo 26 
sampling and MLE (e.g. Parsons 2008, Biasi et al. 2015, Pace et al. 2016), while other methods are based on 27 
Bayesian approaches (Rhoades et al. 2011, Fitzenz and Nyst 2015, Fitzenz 2018). Under the characteristic 28 
earthquake model hypothesis (i.e., the same earthquake occurrence model is valid for each point of a fault 29 
segment, Parsons 2012) one paleoseismic site along a fault segment is assumed to represent that segment’s 30 
behavior in the past. It is also common to aggregate several sites’ paleoseismic data along the faults (often 31 
several tens of kilometers apart) to form a unique dataset valid for the entire fault segment (Rhoades et al. 32 
2011, Van Dissen et al. 2013). 33 

Time-dependent probability calibration and calculations are not straightforward when strict fault 34 
segmentation and characteristic earthquake assumptions are relaxed (Field et al. 2009). This is because 35 
classic time-dependent occurrence models cannot be applied to specific fault points, as demonstrated by 36 
advanced physics-based earthquake generation simulators based on the elastic rebound theory (Tullis et al. 37 
2012) and the simulations presented by Field (2015). Besides, paleoseismic data at a single location cannot 38 
be used to calibrate time-dependent occurrence models for an entire fault segment and aggregating 39 
paleoseismic data of several sites along a specific fault segment can lead to biased model calibration, since 40 
the ruptures could have occurred on any length of the segment (Field 2015, Parsons 2012). Thus, 41 
paleoseismic sites are essentially a point process that often cannot reveal much information about rupture 42 
dimensions or variability if fault segmentation assumptions are relaxed. However, paleoseismic data provide 43 
mean empirical earthquake rates for the specific location at which they were collected (e.g., Biasi et al. 44 
2015), which are crucial to seismic hazard assessments (Field et al. 2014, Parsons 2012). Relaxing the 45 
segmentation assumptions also introduces the need for complex methods to compute the conditional time-46 
dependent probabilities of rupture occurrence. The method proposed for UCERF3 (Field et al. 2015) 47 
computes the mean recurrence interval (µ) from the long-term time-independent occurrence rates and applies 48 
a magnitude-dependent set of CoVs to calculate the conditional probability of occurrence of all possible 49 
ruptures. 50 
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The challenges discussed above in quantifying rupture occurrences highlight the need for a standardized 1 
method of incorporating time-dependent occurrence models in unsegmented fault-based PSHA. This method 2 
should adequately handle all the datasets useful to calibrate the time-dependent occurrence model and avoid 3 
inconsistent results with physics-based rupture generation simulations. 4 

 5 

2.3 Fault interaction 6 
The term “fault interaction” often has different meanings in the literature. There are two distinct types of 7 
interaction: “inter-fault multi-rupture” and “triggering interaction”. Inter-fault multi-rupture, which causes 8 
the sudden (almost instantaneous) propagation of a rupture between faults, has already been discussed in 9 
Section 2.1. Triggering interaction is the main focus of this section. This type of interaction is a later 10 
consequence of a large magnitude earthquake on neighboring faults (Stein et al. 1997) and is thought to have 11 
promoted progressive failure for some of the most recent events: the 2004–2005 𝑀! 9.1–8.7 Sunda 12 
megathrust (Indian Ocean) events (Mignan et al. 2006), the 1999 𝑀! 7.4–7.1 Izmit and Duzce (Turkey) 13 
North Anatolian earthquakes (Parsons et al. 2000, Stein et al. 1997) and the 2019 𝑀! 6.4–7.1 Ridgecrest 14 
(USA) sequence (Toda and Stein 2020, Wang et al. 2020). The effects of triggering fault interaction include 15 
“transient effects” and “permanent effects” (Stein et al. 1997). 16 

Permanent effects are long-term and are usually quantified using the static coseismic Coulomb stress change 17 
(King et al. 1994) caused by a rupture on nearby faults or surrounding areas. Increasing (or decreasing) the 18 
Coulomb stress on a fault segment permanently decreases (or increases) the time required for tectonic 19 
stressing to bring a segment to failure (Stein et al. 1997), and therefore (based on the elastic rebound theory) 20 
the conditional probability of earthquake occurrence. This permanent effect is often referred to as “time 21 
advance/delay” or “clock change” (Stein 1999, Field 2007). Permanent effects of triggering interaction are 22 
usually accounted for in the PSHA framework by changing the time-dependent conditional probabilities of 23 
event occurrence on the same fault segment. Several authors estimated the coseismic Coulomb static stress 24 
changes caused by past (known) events on the North Anatolian Fault in Turkey (Parsons 2004, Murru et al. 25 
2016). The approach used is hard to replicate in other areas of the world due to a lack of detailed information 26 
on previous events in the area of interest (e.g., the exact year of occurrence, approximate surfaces involved in 27 
the ruptures).  28 

Transient effects are short-term increases in the probability of additional earthquakes in the area where a 29 
rupture occurs, which decay with time and distance from the first event (Toda et al. 1998). Several 30 
methodologies to include the transient effect have been proposed and evaluated in the literature (e.g., Parsons 31 
2005 and references therein). The most common of these (e.g., Toda et al. 1998, Mignan et al. 2016) is based 32 
on the state-dependent constitutive model proposed by Dieterich (1994), which argues that several types of 33 
widely observed earthquake phenomena (e.g., aftershocks, triggered events on nearby fault segments) are 34 
short-term perturbations of the seismicity caused by stress changes from a previous shock or set of shocks 35 
(Toda et al. 1998).  36 

Toda et al. (1998) included the fault interaction process (both transient and permanent effects) in the 37 
calculation of conditional probabilities of event occurrences on fault segments close to the 1995 𝑀! 6.9 38 
Kobe earthquake (Japan). The 2002 Working Group on California Earthquake Probabilities (WGCEP) 39 
introduced a modified renewal time-dependent occurrence model called “BPT-step” (WGCEP 2002), which 40 
accounted for a change in stress caused by rupture on a nearby fault. Because the exact proximity to failure 41 
(or “state” of the system) is unknown at the time of the stress-changing event, applications of this model 42 
require an integral over all possible states of the system (Matthews et al. 2002). The WGCEP 2002 43 
accounted for up to one stress-changing event on each segment (Field 2007). This model was not used for 44 
subsequent versions of the California earthquake rupture forecast (UCERF2) as it did not significantly 45 
impact the mean earthquake probabilities (for the specific case of California). 46 

None of the aforementioned applications of fault interaction can capture the temporal evolution in the 47 
conditional probabilities of additional earthquake occurrence. They only evaluate the effects of the stress 48 
change at one point in time and assume that the resulting probabilities are constant throughout the forecast 49 
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window. A significant step forward in incorporating fault interaction in risk assessments was presented by 1 
Mignan et al. (2016), where stochastic event sets were generated by accounting for both permanent and 2 
transient effects of fault interaction between simulated events. 3 

In recent years, researchers have also explored the consequences of post-seismic effects on earthquake 4 
probabilities (e.g., Verdecchia et al. 2018, Verdecchia et al. 2019, Pino et al. 2019). These effects include the 5 
redistribution of Coulomb stress due to viscoelastic relaxation of the lower crust and upper mantle, which is 6 
thought to play an important role at long timescales (Verdecchia et al. 2018). Investigations of post-seismic 7 
effects after the Central Italy sequence (e.g., Verdecchia et al. 2018, Pino et al. 2019) suggest that the 8 
viscoelastic stress transfer plays a more significant role than coseismic Coulomb stress transfer in the long-9 
term triggering of events. However, further examination and discussion of viscoelastic methods are outside 10 
the scope of this work. 11 

 12 

2.4 Discussion 13 
The previous three sections offer a current literature review on fault segmentation and multi-segment 14 
ruptures, time-dependent occurrence models and their implementation, and fault interaction effects between 15 
subsequent events. Table 1 provides a schematic comparison between the most recent fault-based seismic 16 
source models, based on these features. 17 

The work carried out by Field et al. (2014), Field and Page (2011), Field et al. (2015), Milner et al. (2013), 18 
Field (2015), Field and Jordan (2015), and Page et al. (2014) for UCERF3 (California) resulted in one of the 19 
most comprehensive frameworks for fault-based seismic source modeling. Its features include (1) the 20 
relaxation of fault segmentation; (2) the inclusion of floating and multi-segment ruptures in a standardized 21 
way; (3) the consistent interpretation of available fault data (e.g., slip rates and paleoseismic data); and (4) 22 
the inclusion of time-dependent conditional probabilities of earthquake occurrence (i.e., conditional on the 23 
time elapsed since the last event).  24 

UCERF3 was extensively tested and represented a step forward with respect to common approaches for 25 
establishing and calibrating fault-based earthquake source models (Stirling et al. 2012, Demircioğlu et al. 26 
2018). However, some of its methods (e.g., for computing occurrence probabilities of given ruptures in a 27 
paleoseismic trench) and scaling relations rely on California-specific data. In addition, UCERF3 does not 28 
explicitly account for triggering fault interaction between major known fault segments. The UCERF3 authors 29 
assume that the aftershock model calibrated based on the UCERF3 time-dependent occurrence model (Field 30 
et al. 2015) can capture any static or dynamic triggering effects (Field et al. 2017). A procedure to explicitly 31 
incorporate both fault interaction and mainshock earthquake triggering within the PSHA framework has been 32 
proposed by Mignan et al. (2016), which builds upon the work of Dieterich (1988), Dieterich (1994), Toda et 33 
al. (1998) and Stein et al. (1997). This methodology generates the earthquake catalogs (i.e., simulated 34 
events), accounting for fault interaction with Coulomb stress changes (Section 2.3). 35 

 36 

Table 1. Comparison between different fault-based seismic source models. MSR: Multi-segment ruptures; 37 
FR: Floating ruptures; TD: Time-dependent; MFD: Magnitude-frequency distribution. 38 

Reference Region MSR? Floating 
ruptures?  

Inclusion of TD 
occurrence 
model? 

TD model 
calibration 

MFD Fault 
Interaction? 

Stirling et 
al. 2012 

New 
Zealand 

No No Three fault 
segments (around 
1% of all the 
fault segments) 

Bayesian 
methods 
(Rhoades et 
al., 2011) 

Characterist
ic 

No 

Demircioğl
u et al. 
2018 

Turkey No With MFD No N/A Gutenberg-
Richter 

No 
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Field et al. 
2009 

UCERF2 
Californi
a 

Some With MFD 36 fault segments 
(around 10% of 
all the fault 
segments) 

Monte Carlo 
sampling with 
MLE for the 
mean 
recurrence 
time. Logic 
tree approach 
for the 
aperiodicity  

Combined 
characteristi
c and 
Gutenberg-
Richter 

No 

Field et al. 
2015 

UCERF3 
Californi
a 

Yes Explicitly All faults Field (2015) 
method for 
the mean 
recurrence 
time. Logic 
tree approach 
for the 
aperiodicity 

Combined 
characteristi
c and 
Gutenberg-
Richter 

No 

 1 

3 Proposed framework 2 
The proposed framework introduced in this section aims to combine a simplified version of the UCERF3 3 
methodology with a simulation-based procedure to generate stochastic catalogs that accounts for triggering 4 
fault interaction. It consists of the following steps (shown schematically in the flowchart in Figure 3 and 5 
discussed in detail in the next sub-sections): 6 

• Step 1 – Rupture generation: based upon the geometrical and geological characteristics of the 7 
considered fault system, this step produces a set of physically possible ruptures, accounting for 8 
floating and multi-segment rupture earthquakes (Milner et al. 2013); 9 

• Step 2 – Inversion: combining all the available information for the considered faults (slip rates, 10 
paleoseismic data, etc.), this step solves the long term-time independent rates of all the possible 11 
ruptures, based on an objective methodology (e.g., Field and Page 2011, Field et al. 2014, Page et al. 12 
2014); 13 

• Step 3 – Time-dependent probabilities: based upon the results of the previous step, this step 14 
calculates time-dependent occurrence probabilities of the ruptures (Field 2015, Field and Jordan 15 
2015, Field et al. 2015); 16 

• Step 4 – Stochastic event generation: in this step, the stochastic event set (i.e., synthetic catalogs of 17 
earthquake ruptures) is generated 18 

o Step 4a – Fault interaction: this step incorporates a fault interaction proxy (i.e., Coulomb 19 
stress changes) in Step 4, which updates the time-dependent occurrence probabilities 20 
computed in Step 3 (Mignan et al. 2016, Toda et al. 1998). 21 

• Step 5 – Hazard calculations: in this step, a GMM is applied to each event in the stochastic event set, 22 
and the hazard curves are calculated. 23 

The main advancement of the proposed framework over the original UCERF3 methodology is its explicit 24 
incorporation of fault interaction triggering, using a procedure similar to Mignan et al. (2016) and Toda et al. 25 
(1998). This overcomes UCERF3’s inconsistencies with physics-based simulators (Field 2015). The 26 
inclusion of triggering fault interaction can promote triggered events including adjacent fault segments that 27 
increase the short-interval re-rupturing probabilities in line with physics-based simulators (Field 2015). 28 
Another improvement of the proposed framework over UCERF3 is the lower number of constraints (i.e., a 29 
lower amount of input data is needed) required for the inversion procedure (Section 2.2.1 and Section 3.2), 30 
which makes it more applicable to other areas of the world. Unlike UCERF3, the proposed framework also 31 
includes the inversion constraint developed by Valentini et al. (2020) for excluding multi-segment ruptures. 32 

 33 
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 1 
Figure 3. Schematic representation of the proposed framework. 2 

 3 

3.1 Step 1 – Rupture generation 4 
An ensemble of viable (i.e., physically possible) ruptures is generated, including both multi-segment and 5 
floating ruptures. The Milner et al. (2013) procedure (see Section 2.1) is used in this case. The main inputs of 6 
the rupture generation step are geometric parameters of the considered fault segments (e.g., dip angle, down-7 
dip width, rake, latitudes and longitudes of the fault trace). Each fault segment is divided into many 8 
subsections; all subsections have approximately equal length, which is about half the seismogenic thickness. 9 
Ruptures are defined as unique sets of these subsections. They are created by iterating through all possible 10 
combinations of subsections and applying a set of filters, called “plausibility filters” to exclude non-11 
physically sensible ruptures (Milner et al. 2013). The filters are: 12 

• All fault segments connect within 5 km or less. 13 
• Ruptures contain at least two subsections of any main fault segment. 14 
• The maximum azimuth change between neighboring subsections is 60°. 15 
• The maximum azimuth change between the first and last subsections is 60°. 16 
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• The maximum cumulative rake change is 180°. 1 
• The maximum cumulative azimuth change, computed by summing absolute values over each 2 

neighboring subsection pair, is less than 560°. 3 
• The potential connections between main fault segments must pass a Coulomb criterion that 4 

earthquake triggering between the two fault segments is physically reasonable. This filter is based on 5 
the concept of Coulomb linking stresses (Parsons et al. 2012), where static stress transmission is 6 
used as a proxy for dynamic rupture propagation. 7 

The set of ruptures resulting from Milner et al. (2013) methodology represents only an approximation of the 8 
actual earthquake system (Field et al. 2014). The plausibility filters above may discard possible ruptures and 9 
include some that are less likely to occur. However, according to the findings of Field et al. (2014) and 10 
Valentini et al. (2020), this approach is a better approximation than largely ignoring multi-segment and 11 
floating ruptures, and the seismic hazard is more sensitive to the combined MFD of nearby faults, rather than 12 
the details of individual ruptures. 13 

 14 

3.2 Step 2 – Inversion 15 
The inversion methodology for calibrating the long-term rates of all possible ruptures was first proposed by 16 
Andrews and Schwerer (2000) and later expanded and improved by Field and Page (2011) and Page et al. 17 
(2014). The Page et al. (2014) methodology was used for UCERF3 (Field et al. 2014) and made use of a 18 
large number of relatively detailed datasets for California that included information on 31 paleoseismic sites 19 
and various slip rates estimates. The amount of inversion data used in UCERF3 are rarely available in other 20 
areas of the world. However, a simplified version of the inversion method is included in the proposed 21 
framework as most seismically-active areas of the globe generally have information on fault geometries, slip 22 
rates, and maximum magnitudes, and some paleoseismic data (New Zealand, Stirling et al. 2012; Italy, 23 
Valentini et al. 2019; Turkey, Demircioğlu et al. 2018). 24 

The minimum input required to perform the inversion is a slip rate model providing the mean and the 25 
standard deviation of the slip rate for each subsection. Paleoseismic data (in the form of mean event rates 26 
calculated from the paleoseismic records) can also be included in the inversion process if they can be 27 
interpreted for each available investigation site (or aggregated across only nearby sites) and are associated 28 
with the closest subsection of the considered fault. The inversion method estimates the vector of long-term 29 
rates 𝒇𝒓 of the 𝑅 viable ruptures by solving an optimization problem, which comprises several systems of 30 
equations, each describing a particular constraint (i.e., equality constraint equations). The constraints of the 31 
optimization problem can be formulated as one single system of equations (Field and Page 2011): 32 

 𝑨 × 𝒇𝒓 = 𝒅 (1) 

in which 𝒇𝒓 is a vector of rupture rates (𝑓$) to be solved for, 𝒅 is a vector of data constraints, and 𝑨 is the 33 
constraint matrix. These constraints can be weighted by the uncertainties (e.g., standard deviations) in the 34 
data and/or by the subjective degree of belief in the importance of a particular constraint. This framework is 35 
flexible since the constraints can be easily added or removed. 36 

The proposed methodology uses several constraints from UCERF3 (Page et al. 2014 and Field and Page 37 
2011):  38 

1. There must be slip rate balancing of all the subsections that form the ruptures (computed from 39 
subsection geometries); 40 

2. Paleoseismic event rates must match the available trench data; 41 
3. The rate of each magnitude bin must vary smoothly along a fault segment (section smoothness 42 

constraint); 43 
4. Subsections must have specific MFDs, which are combinations of the characteristic and the 44 

Gutenberg-Richter models (fault-segment MFD constraint). 45 
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The proposed methodology also uses so-called “improbability constraints”, which can impose a lower rate 1 
for any designated event or event type and can be used to change the segmentation methodology. The first 2 
improbability constraint used in this study has been proposed by Valentini et al. (2020), which prevents the 3 
occurrence of multi-segment ruptures. The second proposed improbability constraint penalizes floating 4 
ruptures. Details on the constraints used in this study are provided in Appendix A. 5 

Field and Page (2011) used standard linear inverse theory to solve the (relatively small) optimization 6 
problem in the least-square sense. This study uses the more efficient simulated annealing method 7 
(Kirkpatrick et al. 1983) employed by Page et al. (2014), which is a probabilistic technique for 8 
approximating the global optimum of a given function (i.e., minimize the summed squared misfit between 9 
the data and synthetics, also called energy). The simulated annealing method requires a “starting model” with 10 
a set of initial rupture rates, which can be set to null (Page et al. 2014). The specific approach adopted for the 11 
simulated annealing in the proposed framework is outlined in Page et al. (2014), which also presents 12 
extensive tests on the best settings to be used (e.g., simulated annealing perturbation functions and cooling 13 
functions). However, the solution convergence, the minimum number of iterations to achieve a sufficiently 14 
good fit, and the solution's stability must be evaluated on a case-by-case basis. It is beyond the scope of this 15 
work to investigate possible alternatives to the simulated annealing approach. 16 

 17 

3.3 Step 3 – Time-dependent probabilities 18 
The methodology proposed by Field (2015) and Field and Jordan (2015) and extended for UCERF3 (Field et 19 
al. 2015) is used herein to compute the conditional time-dependent probabilities of occurrence of the 𝑟%& 20 
rupture, 𝑃$, which overcomes the challenges associated with time-dependent modeling for unsegmented fault 21 
assumptions (see Section 2.2). Appendix B provides the implementation details of the time-dependent 22 
probability calculations based on a BPT model and the work published by Field (2015), Field and Jordan 23 
(2015), and Field et al. (2015). One of the advantages of this methodology is the ability to apply magnitude-24 
dependent CoV (or aperiodicity). The need for magnitude-dependent aperiodicity is proven by physics-based 25 
simulators (Field 2015, Visini and Pace 2014), and it has an intuitive explanation: evolving stress 26 
heterogeneities presumably influence more smaller events, less likely to be stress resetting events, than larger 27 
earthquakes. Table B 1 lists three sets of magnitude-dependent aperiodicity values inferred from physics-28 
based simulations by Field (2015). Lower aperiodicity values lead to more regular (i.e., periodic) event 29 
occurrences. In contrast, higher aperiodicities have the opposite effect, causing a greater resemblance to a 30 
Poissonian process. 31 

The inputs required to calculate the conditional probabilities are (1) the geometry of each rupture; (2) the 32 
long-term rates 𝒇𝒓 of the ruptures (solved with the inversion process discussed in Section 3.2, or any other 33 
relevant method); (3) the date of the last event on each subsection (if available). Input (3) can be computed 34 
from historical events (i.e., the earthquake catalog) that are associated with a specific fault subsection (e.g., 35 
Field et al. 2015), or from a well-constrained paleoseismic study (e.g., Van Dissen et al. 2013). If input (3) is 36 
not available, the procedure proposed by Field and Jordan (2015) and Field et al. (2015) – for the case in 37 
which no event has occurred on the considered subsection during the open historic interval 𝑇' (details are 38 
provided in Appendix B) – can be implemented. 39 

 40 

3.4 Step 4 – Stochastic event generation 41 
Figure 4 contains a flowchart of the stochastic event generation process used in the proposed methodology. 42 
The framework generates the time of the events 𝑡( (in decimal years) on a yearly basis, starting from the 43 
annual conditional probability of occurrence 𝑃$ of the 𝑟%& rupture. This rate can be transformed into an 44 
equivalent time-dependent rate 𝜆"),$ through a non-homogeneous Poisson process (Convertito and Faenza 45 
2014): 46 

 𝜆"),$ = −log	(1 − 𝑃$)/𝑤 (2) 
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where the observation window 𝑤 is either one year (if no event is simulated within the considered year) or 1 
1 − 𝑡( (if an event is simulated within the considered year). For a time-independent occurrence model, each 2 
rupture’s equivalent rate is directly equal to the corresponding long-term (Poissonian) rate from the inversion 3 
results (Section 3.2). Summing up all the equivalent rates of all the ruptures, it is possible to simulate the 4 
next event time 𝑡( from an equivalent Poissonian distribution. This simulation procedure is similar to that 5 
proposed in Field (2015), but incorporates three additional features: (1) the annual updating of rupture 6 
occurrence probabilities; (2) the facility to generate multiple events in a year (adjusting the remaining time 𝑤 7 
as 1 − 𝑡( whenever an event occurs); and (3) the inclusion of Coulomb stress interaction (Step 4a, Section 8 
4.5). 9 
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 1 
Figure 4. Flowchart of the stochastic event generation process of the complete framework (including fault 2 
interaction). 3 

 4 
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3.4.1 Step 4a – Simulate fault interaction with Coulomb stress change 1 
Fault interaction is quantified in this study using the theory of Coulomb stress transfer (King et al. 1994; 2 
Parsons 2005), which states that the failure of a fault subsegment is promoted if the Coulomb stress increases 3 
and inhibited if the Coulomb stress decreases (Parsons 2005; Toda and Stein 2020). The stress change affects 4 
the conditional probability of rupture occurrence (Dieterich 1988; Toda et al. 1998; Murru et al. 2016) by 5 
altering the time elapsed since the last event (i.e., the permanent effect of Section 2.3) and the number of 6 
expected events in a specific time window (i.e., the transient effect of Section 2.3). Details and equations of 7 
the theory’s implementation in this study are provided in Appendix C.  8 

It could be argued that the geological slip rate and paleoseismic data may already include interaction effects 9 
from the seismic activity on nearby ruptures, which would eliminate the need to account for stress transfer. It 10 
is firstly important to note that, regardless of whether stress transfer effects are included in these data, long-11 
term rates represent the mean (long-term) rupture behaviour and should not be affected by fluctuations due to 12 
stress transfer (e.g., Verdecchia et al. 2019). Two methods have been proposed to account for the permanent 13 
effect of a stress change (∆𝐶𝐹𝐹) in the conditional probability calculations. The first method advances the 14 
elapsed time (𝑇"): 𝑇"+ = 𝑇" + ∆𝐶𝐹𝐹 �̇�⁄  (i.e., clock change, Equation C 2 of Appendix C), where �̇� is the 15 
tectonic stressing rate. The second approach reduces the mean recurrence time (𝜇): 𝜇+ = 𝜇 − ∆𝐶𝐹𝐹 �̇�⁄  16 
(Equation C 3 of Appendix C). Modifying the mean recurrence time changes the earthquake occurrence 17 
distribution permanently while changing the time elapsed since the last event does not affect the interarrival 18 
time distribution (Parsons 2005). The assumption that stress transfer is already included in the geological slip 19 
rate data implies that every event occurring in the vicinity of a considered fault segment can change its slip 20 
rate (and hence the long-term mean recurrence interval of possible ruptures). This is conceptually identical to 21 
modifying the mean recurrence time in Equation (C 3) of Appendix C. For this reason, changing mean 22 
recurrence times could double count the permanent effects of Coulomb stress changes. It can be argued that 23 
this problem is avoided by instead incorporating a clock change to account for fault interaction, as done in 24 
the proposed framework. 25 

The stochastic event generation flowchart in Figure 4 incorporates the fault interaction phenomenon with a 26 
procedure similar to Mignan et al. (2016) and Toda et al. (1998). Every time an event is generated, the clock 27 
change on the neighboring (non-rupturing) subsections is evaluated using the procedure outlined in 28 
Appendix C. If known, the time elapsed since the last event is then updated and the conditional probabilities 29 
of rupture occurrence are re-evaluated. If the time since the last event is unknown, the open historic interval 30 
𝑇' is instead increased to emulate a positive clock change (promoting failure) or decreased to emulate a 31 
negative clock change (inhibiting failure). Illustrative examples of how the conditional probability of rupture 32 
occurrence changes when an event (i.e., a rupture) is simulated with the framework illustrated in Figure 4 are 33 
provided in Appendix D. 34 

 35 

3.5 Step 5 – Hazard calculations 36 
3.5.1 Ground-motion field 37 
Ground-motion models (GMMs) provide a probabilistic distribution of ground-motion 𝐼𝑀 at a target site for 38 
a specific rupture (i.e., magnitude, site-source distance, faulting mechanism). They generally take the 39 
following functional form: 40 

 𝑙𝑛(𝐼𝑀) = ln(𝐼𝑀)MMMMMMMMM (𝑀,𝐷, 𝜃) + 𝑧,𝜎, + 𝑧-𝜎- (3) 

where 𝑙𝑛(𝐼𝑀) represents the natural logarithm of the ground-motion IM (e.g., peak ground acceleration, 41 
PGA, or spectral acceleration, SA, at specific structural periods), which is considered to be a normally 42 
distributed random variable; 𝑙𝑛(𝐼𝑀)MMMMMMMMM is the logarithm of the median estimate of 𝐼𝑀 given certain predictor 43 
variables (earthquake magnitude, 𝑀, source-site distance, 𝐷 and all the other parameters affecting the 44 
prediction, 𝜃, such as the effect of style-of-faulting and soil conditions). The standard deviation of the 45 
logarithm of 𝐼𝑀 is generally partitioned into independent inter-event (𝜎,) and intra-event (𝜎-) standard 46 
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deviations (Stafford et al. 2008). The inter-event (𝑧,𝜎,) component of the equation captures earthquake-to-1 
earthquake differences at the same site and the intra-event (𝑧-𝜎-) component of the equation captures site-to-2 
site differences for the same earthquake. The variables 𝑧, and 𝑧- are (independent) standard normal 3 
variables. Different GMMs are available for different tectonic settings, such as stable continental regions or 4 
subduction interfaces, as well as specific local contexts (Douglas et al. 2020). The process of selecting 5 
appropriate region-specific GMMs is beyond this study’s scope, but a comprehensive review of procedures 6 
for facilitating this process can be found in Cremen et al. (2020). More details on the main variables that are 7 
typically used in GMMs (including different distance metrics and how different fault mechanisms are 8 
accounted for) can be found in Pagani et al. (2014). 9 

For each stochastic rupture in a generated synthetic earthquake catalog, the resulting ground-motion is 10 
simulated by sampling the probability distribution defined by the GMM. The sampling process involves 11 
drawing one value of 𝑧, and separate values of 𝑧- at each location of interest. Spatial correlation between the 12 
ground-motions sampled at different locations and cross-correlation between the values obtained for 13 
different IM should also be considered, particularly when assessing earthquake-induced losses of building 14 
portfolios and other distributed systems (e.g., Weatherill et al. 2015, Huang and Galasso 2019). These 15 
correlations are neglected here because this study focuses on an individual target site and individual IMs. 16 

3.5.2 Hazard curves 17 

The 𝑛%& synthetic earthquake catalog contains 𝐾. ruptures, and for each rupture, one ground-motion field is 18 
simulated as described in Section 3.5. The full set of ground-motions simulated for each rupture of synthetic 19 
earthquake catalogs can be used to derive hazard curves. Ebel and Kafka (1999) proposed a methodology for 20 
a simulation-based computation of the hazard curves, which is expressed in terms of rates of exceedance and 21 
catalog duration. An analyst can increase the accuracy and the numerical stability of the hazard curve by 22 
extending the catalog duration. However, the Ebel and Kafka (1999) method is only valid for the Poissonian 23 
(time-independent) assumption, as it does not account for the simulated events’ order. A modified version of 24 
the Ebel and Kafka (1999) method is developed for this study, which produces the probability of exceeding 25 
prescribed ground-motion levels across a number of generated catalogs 𝑁 with a certain duration 𝑊 (e.g., 𝑁 26 
realizations of the possible earthquake catalogs of duration 𝑊 years). The probability of exceeding a ground-27 
motion level 𝑖𝑚𝑙 at a given site can be computed as: 28 

 𝑃(𝐼𝑀 > 𝑖𝑚𝑙) =
1
𝑁
Y 𝐼(𝑖𝑚, 𝑖𝑚𝑙)
/

.01

 (4) 

where 𝑖𝑚 is the ground-motion at the considered site associated with a generic rupture and 𝐼(𝑖𝑚, 𝑖𝑚𝑙) is an 29 
indicator function which returns a value of one if 𝑖𝑚 > 𝑖𝑚𝑙 for at least one rupture in the 𝑛%& catalog, zero 30 
otherwise. As the number of synthetic catalogs 𝑁 increases, Equation (4) provides an increasingly more 31 
stable estimate of the probability of exceedance. 32 

 33 

3.6 Treatment of the epistemic uncertainties 34 

The proposed framework incorporates several sources of epistemic uncertainty: (1) fault segment geometries 35 
(e.g., dip angle); (2) the slip rate model; (3) the rupture slip model; (4) the magnitude-area scaling relation; 36 
(5) the initial setup (i.e., the hyperparameters) of the inversion algorithm (e.g., a set of initial long-term 37 
rupture rates); (6) the rupture occurrence model (e.g., time-dependent vs. time-independent, and/or the 38 
choice of time-dependent occurrence model); (7) the value of the CoV (or aperiodicity) of the time-39 
dependent occurrence model (if used); (8) the segmentation assumptions; (9) the fault interaction process 40 
(e.g., Section 3.4.1), along with the parameters for calculating the Coulomb stress (see Appendix C); and 41 
(10) the GMM. 42 

Uncertainty source 10 is outside the scope of this work. Field et al. (2015) included a thorough investigation 43 
of uncertainty sources 1 to 7, concluding that alternative slip rate models (source 2) produced the largest 44 
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range of rupture occurrence probabilities (the highest epistemic uncertainty). The scaling relationships 1 
(source 4) were the second-largest source of epistemic uncertainty; and the considered rupture occurrence 2 
models/model parameters (sources 6 and 7) ranked third. Valentini et al. (2020) used a case study based on 3 
the Wasatch fault (Utah, USA) to investigate epistemic uncertainty sources 2 to 5, and 8. They found that the 4 
segmentation assumptions were the highest source of epistemic uncertainty, suggesting that they should be 5 
considered in a fault-based PSHA. They also concluded that the magnitude-area scaling relations and the 6 
initial setup (i.e., the hyperparameters) of the inversion algorithm have limited influence on the hazard 7 
uncertainty (differences in ground shaking for a return period are almost always within 5%). In comparison, 8 
the rupture slip models and the slip rate models in some cases show hazard differences larger than 10%. The 9 
uncertainties associated with fault interaction involve every parameter or dataset used in Coulomb stress 10 
calculations. However, some parameters like the effective coefficient of friction or the aftershock duration 11 
(see Appendix C) are often fixed to common values found in the literature (e.g., Murru et al. 2016, Stein et 12 
al. 1997, Toda et al. 1998, Parsons 2005, Mignan et al. 2016). Coulomb stress is also greatly influenced by 13 
the rupture slip model and fault segment geometries. 14 

Preliminary sensitivity analyses have been carried out to investigate the influence of epistemic uncertainty 15 
sources 6-9 on hazard estimates obtained using the framework. A variance-based approach was adopted 16 
(e.g., Saltelli et al. 2010, Cremen and Baker 2020), which accounts for the whole probabilistic input space 17 
and measures sensitivity for an input variable in terms of its contribution to the variance of the output. The 18 
results of these sensitivity analyses reveal that the ground-motion (for several return periods and several 19 
SAs) is most sensitive to epistemic uncertainties introduced by the rupture occurrence model, followed by 20 
those of the segmentation assumptions. Future work will more thoroughly investigate all sources of 21 
epistemic uncertainty. 22 

 23 

4 Case study 24 

The purpose of this case study is to showcase the capabilities of the proposed framework, providing 25 
illustrative applications of time-dependent occurrence models and fault interaction in the context of 26 
unsegmented fault systems and synthetic earthquake catalog generation. The city of Wellington (New 27 
Zealand; Longitude: 174.78°, Latitude = -41.29°, shown in the left panel of Figure 5) is chosen for this case 28 
study because of the high seismicity caused by nearby faults (Stirling et al. 2012). 29 

 30 

4.1 Available data 31 
The Wellington-Hutt Valley segment of the Wellington fault (WellWHV), the Wairarapa (WairarapaNich) 32 
fault, and the Ohariu fault (OhariuC and OhariuS) are the principal sources of hazard for the city of 33 
Wellington (Van Dissen et al. 2013) and are considered in this study. The WellWHV fault is a right-lateral 34 
strike-slip fault. According to Rhoades et al. (2011), this fault last ruptured between 1640 and 1840 A.D; for 35 
simplicity, it is assumed to have occurred in 1740 A.D. here. A 5.80±0.74 mm/yr slip rate is used for this 36 
fault (Rhoades et al. 2011). The rupture of the entire Wellington Hutt Valley segment of the Wellington fault 37 
can produce a 𝑀! 7.2 event (calculated with Wells and Coppersmith, 1994 relations). 38 

The Ohariu fault segments are right-lateral strike-slip faults with different dip angles. The last event is dated 39 
between 900 and 950 A.D. (Van Dissen et al. 2013; Litchfield et al. 2010, Litchfield et al. 2004); 925 A.D. is 40 
used herein (Litchfield et al. 2010 documented the occurrence of a more recent small magnitude rupture of a 41 
limited along-strike length of the Ohariu fault in 1650 A.D., which is excluded here in line with Van Dissen 42 
et al. 2013). Rhoades et al. (2004) suggest using a uniform 1-2 mm/yr slip rate for this fault; a value of 43 
1.5±0.5 mm/yr is therefore used herein. The rupture of both Ohariu fault segments can produce a 𝑀! 7.3 44 
event (calculated with Wells and Coppersmith, 1994 relations). 45 

The WairarapaNich fault is a major active right-lateral strike-slip fault in the North Island of New Zealand. 46 
Its most recent event was a 𝑀! 8.1 earthquake that occurred on 23 January 1855, which is presumed to have 47 
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ruptured the entire (120-150 km) fault (Rodgers and Little 2006; Van Dissen et al. 2013, Carne et al. 2011; 1 
Manighetti et al. 2020). Several estimates of the slip rates along this fault segment are available, but a 2 
uniform value of 10.8±1.0 mm/yr is used for this study (Van Dissen et al. 2013; Carne et al. 2011). 3 

Seven other nearby faults are also considered, for which rupture distances (𝑅234, i.e., the closest distance 4 
between the site and the rupture) are less than 20km. Table 2 shows the names and characteristics of the fault 5 
segments used in this study, and Figure 5 (left panel) shows the geometry (fault segment surface and trace) 6 
of the considered faults and their position relative to Wellington. The characteristics (Table 2) and 7 
geometries (Figure 5) of the considered fault segments are taken from Stirling et al. (2012, New Zealand 8 
Seismic Hazard Model) and other published files (https://github.com/GNS-Science/nshm-2010, last accessed 9 
14th July 2020). Figure 5 (right panel) also reports the average long-term slip rate on the fault segment 10 
traces. 11 

Table 2. Fault segments and characteristics used for the case study. The closest distance between Wellington 12 
city and the fault plane is less than 20km for all fault segments. Note that reported values are extracted 13 
directly from the relevant sources (column Refs) in identical format. (*) Max SD: Max seismogenic depth; 14 
(~) Char-Mw: Characteristic Mw; (/) SR: Average Long-Term Slip Rate; (^) Std SR: Standard Deviation 15 
Long-Term Slip Rate; (#) Refs: References ([1] Stirling et al. 2012 and updates, [2] Van Dissen et al. 2013, 16 
[3] Litchfield et al. 2010, [4] Litchfield et al. 2004, [5] Rodgers and Little 2006, [6] Carne et al. 2011, [7] 17 
Manighetti et al. 2020, [8] Rhoades et al. 2011).  18 

Short Fault 
Name 
(full fault 
name) 

Stirling 
et al. 
2012 ID 

Subsect
ion IDs 

Length 
(km) 

Max SD 
(*) (km) 

Char-
Mw 
(~) 

Faulting 
Mechanism 

SR (/) 
(mm/yr)  

Std SR 
(^) 
(mm/yr) 

Last 
Event 
Date 
(years 
AD) 

Refs 
(#) 

Manaota 
(Mana – 
Otaheke) 

336 0-11 91 15 7.6 Reverse 0.3 0.1 Unknown [1] 

Moonshine 
(Moonshine) 

355 12-15 36 20 7.1 Right-lateral 0.2 0.1 Unknown [1] 

OhariuC 
(Ohariu 
Central) 

362 16-19 44 20 7.2 Right-lateral 1.5 0.5 925 
(900, 950) 

[1], 
[2], 
[3], 
[4] 

OhariuS 
(Ohariu 
South) 

346 20-24 52 20 7.4 Right-lateral 1.5 0.5 925 
(900, 950) 

[1], 
[2], 
[3], 
[4] 

Okupe 
(Okupe) 

344 25-32 62 15 7.4 Reverse 0.8 0.2 Unknown [1] 

PukeShep 
(Pukerua-
Shepherds 
Gully) 

349 33-37 50 20 7.3 Right-lateral 0.5 0.15 Unknown [1] 

WairarapNich 
(Wairarapa-
Nicholson) 

345 38-46 153 35 8.2 Right-lateral 10.70 1 1855 [1], 
[2], 
[5] 
[6], 
[7] 

WellWHV 
(Wellington 
Hutt Valley) 

359 47-53 72 20 7.5 Right-lateral 5.8 0.74 1740 
(1640, 
1840) 

[1], 
[8] 

Wharekauhau 
(Wharekauha
u Thrust) 

367 54-60 50 15 7.3 Reverse 2.5 1 Unknown [1] 

Whitemans 
(Whitemans) 

365 61-63 28 20 7.0 Reverse 0.1 0.05 Unknown [1] 

 19 
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 1 
Figure 5. Left: the ten fault segments considered for the case study, divided into 64 smaller subsections. 2 
Fault traces are highlighted with a thicker line, and Wellington is marked with a red triangle. Right: slip rate 3 
and paleoseismic sites of the 64 subsections used for the inversion process. The slip rate (mm/yr) is shown 4 
on the fault trace. 3D fault subsections for which paleoseismic data are available are highlighted in a darker 5 
color.  6 

Site-specific paleoseismic data are available for the WellWHV fault, the WairarapaNich fault, and the 7 
Ohariu fault (Rhoades et al. 2011; Van Dissen et al. 2013) at five locations. The approximate latitude and 8 
longitude of these five sites are reported in Table 3, and Figure 5 (right panel) displays the corresponding 9 
fault subsections. As explained in Section 2.2.2 and 3.2, the paleoseismic data have to be interpreted for each 10 
location (or aggregating only nearby sites) in order to be incorporated into the framework. For each site, 11 
paleoseismic event dates are uncertain and have empirically shaped probability density functions (PDFs), 12 
which are also reported in Table 3. The method proposed by Biasi et al. (2015) is used to interpret the PDFs 13 
of past event dates (Section of A.2 Appendix A) and compute the paleoseismic mean recurrence interval, 14 
along with the corresponding 2.5th, 16th, 84th, and 97.5th percentiles (Table 3). 15 

Table 3. Paleoseismic mean rates using Biasi et al. (2015) method, including the corresponding 2.5th, 16th, 16 
84th and 97.5th percentiles, along with the PDF of past event dates for each site. 17 

Fault WairarapNich WairarapNich OhariuC WellWHV WellWHV 
Lat -41.14 -41.43 -40.97 -41.34 -41.09 
Lon 175.28 174.92 174.98 174.7 175.11 
Mean rate 0.00082 0.0006 0.00051 0.00052 0.00105 
2.5th Percentile rate 0.0006 0.00049 0.00028 0.00022 0.00055 
16th Percentile rate 0.00067 0.00053 0.00036 0.0003 0.0007 
84th Percentile rate 0.00099 0.00068 0.0007 0.00092 0.00156 
97.5th Percentile rate 0.00112 0.00074 0.00085 0.00128 0.00198 
Num events 5 5 3 4 4 

Sites 

Riverslea, Cross 
Creek and 
Pigeon Bush 

Lake 
Kohangapiripiri 
and Turakirae 
Head  

MacKays 
Crossing  

Te Kopahou Te Marua and 
Kaitoke 

References 

Van Dissen et 
al. 2013, Little 
et al. 2009 

Van Dissen et al. 
2013, Little et al. 
2009 

Van Dissen et 
al. 2013, 
Litchfield et 
al. 2006 

Rhoades et al. 
2011, 
Langridge et 
al. 2011 

Rhoades et al. 
2011, 
Langridge et 
al. 2011 

PDF of Event 1 

Uniform 
distribution 
[3260 B.C., 
2890 B.C.] 

Uniform 
distribution [4970 
B.C., 4660 B.C.] 

Trapezoidal 
distribution 
[3320 B.C., 
3100 B.C., 
2860 B.C, 
2460 B.C.] 

Trapezoidal 
distribution 
[2890 B.C., 
2277 B.C., 
650 B.C, 510 
B.C.] 

Uniform 
distribution 
[2280 B.C., 
550 B.C.] 
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PDF of Event 2 

Uniform 
distribution 
[1740 B.C., 
1350 B.C.] 

Uniform 
distribution [3260 
B.C., 2890 B.C.] 

Trapezoidal 
distribution 
[2860 B.C., 
2460 B.C., 
1415 B.C, 
1310 B.C.] 

Triangular 
distribution 
[390 B.C., 
285 B.C., 115 
A.D.] 

Uniform 
distribution 
[255 A.D., 
530 A.D.] 

PDF of Event 3 

Uniform 
distribution 
[350 B.C., 160 
B.C] 

Uniform 
distribution [1740 
B.C., 1350 B.C.] 

Uniform 
distribution 
[900 A.D., 
950 A.D.] 

Uniform 
distribution 
[1020 A.D., 
1160 A.D.] 

Uniform 
distribution 
[1055 A.D., 
1220 A.D.] 

PDF of Event 4 

Uniform 
distribution 
[1030 A.D., 
1150 A.D.] 

Uniform 
distribution [350 
B.C., 160 B.C] 

 Uniform 
distribution 
[1500 A.D., 
1840 A.D.] 

Uniform 
distribution 
[1640 A.D., 
1840 A.D.] 

PDF of Event 5 Historical event 
1855 A.D. 

Historical event 
1855 A.D. 

   

 1 

4.2 Step 1 – Rupture generation 2 
Following the procedure described in Section 3.1, the ten considered fault segments result in 64 subsections, 3 
(shown in Figure 5), leading to 408 plausible and feasible ruptures. Figure 6 shows an example 𝑀! 7.5 4 
rupture (id 213), involving the entire Ohariu Central fault (OhariuC) and approximately 40km of the Ohariu 5 
South fault (OhariuS), and a smaller 𝑀! 6.4 rupture (id 367), involving the Wharekauhau fault. 6 

 7 
Figure 6. Left panel: example of an Mw 7.5 multi-segment rupture (id 213), involving the entire Ohariu 8 
Central fault (OhariuC) and approximately 40km of the Ohariu South fault (OhariuS). Right panel: example 9 
of an Mw 6.4 floating rupture (id 367), involving approximately 18km of the Wharekauhau fault. Wellington 10 
is marked with a red triangle. 11 

 12 

4.3 Step 2 – Inversion 13 
The long-term rates of the plausible ruptures are calibrated using the inversion method outlined in Section 14 
3.2 and Appendix A. The slip rates reported in Table 2 are considered uniform along the fault segment for 15 
simplicity (consistent with Stirling et al. 2012). This implies that each subsection of the fault segments has 16 
the same slip rate as the fault segment. The paleoseismic mean rates used here are those reported in Table 3. 17 

Three different rupture models are solved with the inversion process: 18 

• Fully segmented rupture model (SRM), utilizing the characteristic earthquake magnitude 19 
assumption; 20 
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• No multi-segment ruptures (NMSRM), which requires that ruptures are limited to geological 1 
boundaries and cannot “jump” from one fault segment to another. However, floating ruptures are 2 
still allowed to occur; 3 

• Unsegmented rupture model (URM), where both multi-segment ruptures and floating ruptures can 4 
occur. 5 

The input weights of the inversion problem should be reviewed and agreed on by a panel of experts (Field et 6 
al. 2014, Page et al. 2014). The ratio between weights governs the relative importance of the associated 7 
equation-sets. The misfit of the single constraints could be used to quantitatively assess the appropriateness 8 
of the input weights (Page et al. 2014). A thorough investigation of a suitable set of input weights for the 9 
Wellington area is outside the scope of this work. A more qualitative check is performed instead (similar to 10 
Valentini et al. 2020). The following weights are used for the purpose of this study: 11 

• Unnormalized slip rate equation-set: 100 12 
• Normalized slip rate equation-set: 1 13 
• Paleo event rates equation-set: 0.12 14 
• MFD Nucleation equation-set: 0.1 15 
• MFD Smoothness equation-set: 1000 16 
• Multi-segment rupture segmentation equation-set: 109 (NMSRM and SRM) 17 
• Floating rupture segmentation equation-set: 109 (only SRM) 18 

All weights are taken from Page et al. (2014), except for those associated with paleo event rates, multi-19 
segment rupture segmentation, and floating rupture segmentation. The paleoseismic and slip rate data are not 20 
consistent, which implies that the solver cannot lower the total energy (or the summed squared misfit) unless 21 
one of the two associated equation-sets is assigned a lower weight. Since slip rate data are considered very 22 
reliable for the faults where paleoseismic data are available (Litchfield et al. 2013), the paleoseismic event 23 
rates constraint weight is decreased by a factor of 10 with respect to the coefficient suggested by Page et al. 24 
(2014). The multi-segment rupture segmentation equation-set has been proposed by Valentini et al. (2020), 25 
and it is used here for both NMSRM and SRM. The floating rupture segmentation weight is applied in SRM. 26 
Note that assigning a weight of 109, compared to the other weights (of the order of 0.1 or 1), forces the 27 
solving algorithm to provide a solution (i.e., a vector of rates) that fully satisfies the corresponding equation-28 
set (Valentini et al., 2020), i.e., results in zero total energy for that equation-set. 29 

Once the long-term rates of all ruptures 𝑓$ are known, the long-term rates 𝑓5 of each of the 64 subsections can 30 
be computed using Equation (B 2). Figure 7 shows the comparison between the long-term (annual) rate of 31 
occurrence and the input paleoseismic rates, 𝑓5

467"8 in Equation (A 4). It can be observed that the inversion 32 
procedure generally produces larger occurrence rates than those of the paleoseismic data, which is reasonable 33 
given that the selected inputs weights place more importance on the slip rate equation-set. It is worth noting 34 
here that the URM and the NMSRM can better match the paleoseismic inputs because of their higher 35 
flexibility with respect to the SRM. The slip rate for the subsection can be calculated by summing up all the 36 
single-event slips (or displacements) of the ruptures (𝐷5$ in Section A.1) multiplied by the corresponding 37 
long-term rates 𝑓$, Equation (A 1). The comparison of the resulting slip rates and the input geological rates, 38 
𝑣5 in Equation (A 1), is shown in Figure 7. It is seen that the inversion procedure produces comparable rates 39 
to those of the input data, for all three rupture models.  40 

Figure 8 displays the implied MFD of all three rupture models. The URM MFD produces lower frequencies 41 
than that of the NMSRM, for magnitudes lower than about 𝑀! 7.3, while the opposite is generally true for 42 
larger values. The SRM cannot produce any rupture with 𝑀! < 7.0 (due to strict segmentation) which 43 
explains its constant frequency at the lowest magnitudes. Table 4 reports the total seismic moment release 44 
rate (�̇�9,%8%) implied by the New Zealand seismic hazard model (NZSHM) for a 1yr-window forecast, 45 
calculated as: 46 
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 �̇�9,%8% =Y𝑓$ ∙ 101.;<!,#=>.9;
2

$01

 (5) 

where 𝑅 is the number of ruptures, 𝑓$ is defined above and 𝑀!,$ is the corresponding moment magnitude. 1 
The published NZSHM (https://github.com/GNS-Science/nshm-2010, Stirling et al. 2012) is built with time-2 
dependent rates for three faults. Substituting the time-dependent rates for time-independent rates (Rhoades et 3 
al. 2011, Van Dissen et al. 2013) leads to a seismic moment release rate of 2.21e18 Nm/yr. The total seismic 4 
moment release rates implied by SRM, NMSRM, and URM are between 1.87e18/yr and 1.98e18 Nm/yr 5 
(Figure 8), which is in line with the time-independent seismic moment obtained for the NZSHM. 6 
Discrepancies between the values obtained for both approaches may be due to differences between the area-7 
magnitude conversions used or variations in the procedures adopted to calibrate the time-independent rates 8 
(Rhoades et al. 2011; Van Dissen et al. 2013). 9 
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 1 
Figure 7. Top panel: slip rate of all the subsections and comparison with the input geological rates (with 95% 2 
confidence interval); mid panel: annual rate of occurrence of all the subsections and comparison with the 3 
input paleoseismic rates (with 95% confidence interval); bottom panel: graphic representation of the original 4 
fault segments and the corresponding smaller subsections ID. 5 

 6 
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 1 
Figure 8. Magnitude-frequency distributions corresponding to the inversion solutions. 2 

Table 4. Magnitude, annual rate, and seismic moment release rate of the considered fault segments for the 3 
original New Zealand seismic hazard model (Stirling et al. 2012). 𝑓$ (long-term annual rate), 𝑀9 (seismic 4 
moment), �̇�9 (seismic moment release rate). 5 

 
TI model NZSHM 

Fault name 𝑴𝑾 𝒇𝒓 (1/yr) 𝑴𝟎 (Nm) �̇�𝟎 (Nm/yr) 

Manaota 7.6 4.76E-05 2.82E+20 1.34E+16 
Moonshine 7.1 7.69E-05 5.01E+19 3.86E+15 
OhariuC 7.2 0.00044 7.08E+19 3.11E+16 

OhariuS 7.4 0.00044 1.41E+20 6.22E+16 
Okupe 7.4 0.000185 1.41E+20 2.62E+16 
PukeShep 7.3 0.000143 1.00E+20 1.43E+16 
WairarapNich 8.2 0.0008 2.24E+21 1.79E+18 
WellWHV 7.5 0.001 2.00E+20 2.00E+17 
Wharekauhau 7.3 0.000714 1.00E+20 7.14E+16 
Whitemans 7 5.00E-05 3.55E+19 1.77E+15 

Sum (�̇�',()()  2.21e+18 

 6 

4.4 Step 3 – Time-dependent probabilities 7 
Time-dependent probabilities are calculated according to the approach outlined in Section 3.3 and Appendix 8 
B, using the aperiodicity values associated with “medium uncertainty” in Table B 1 (i.e., 0.5 for 𝑀! ≤ 6.7, 9 
0.4 for 6.7 < 𝑀! ≤ 7.2, 0.3 for 7.2 < 𝑀! ≤ 7.7, 0.2 for 𝑀! > 7.7). The corresponding equivalent time-10 
dependent rates 𝜆"),$ are calculated using Equation (2). Setting 2010 as starting year (consistent with the 11 
NZSHM, Stirling et al. 2012) and a one-year time window (i.e., 𝑤 = 1), Figure 9 (left panel) compares the 12 
annual (equivalent) Poissonian rates for (1) TI-URM (time-independent occurrence model with unsegmented 13 
rupture model) and (2) TD-URM (time-dependent occurrence model with unsegmented rupture model). TI-14 
URM and TD-URM provide different results: the highest rates for TD-URM are associated with ruptures 15 
id367 and id379 (which involve small portions of the Wharekauhau thrust fault and the OhariuS fault, 16 
respectively), while the highest rates for TI-URM involve other fault segments. In particular, the highest 17 
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occurrence rates for TI-URM involve the WairarapNich, WellWHV, Wharekauhau, and OhariuC/OhariuS 1 
faults. This is expected since these faults have the highest long-term average slip rates (see Table 2 and 2 
Figure 7). In TD-URM however, ruptures involving the Wellington fault (WellWHV) and the Wairarapa 3 
fault (WairarapNich) are heavily penalized with respect to TI-URM, because they are all at a relatively early 4 
stage of the earthquake cycle (last event 1740 and 1855 A.D., respectively). 5 

Figure 9 (right panel) compares the annual (equivalent) Poissonian rates for (1) TD-URM (time-dependent 6 
occurrence model with unsegmented rupture model), (2) TD-NMSRM (time-dependent occurrence model 7 
with no multi-segment ruptures), and (3) TD-SRM (time-dependent occurrence model with a fully 8 
segmented rupture model). Unlike TD-URM and TD-NMSRM, TD-SRM rates only incorporate ruptures of 9 
entire single fault segments (consistent with the characteristic earthquake model). TD-NMSRM rates are 10 
higher than those of TD-URM on average, which is consistent with the findings of Valentini et al. (2020). 11 
This is mainly because TD-NMSRM inversion process distributes the slip rate (and the seismic moment) 12 
budget across fewer ruptures. 13 

 14 
Figure 9. Left panel: comparison between TI-URM (time-independent unsegmented rupture model) and TD-15 
URM (time-dependent unsegmented rupture model) in terms of equivalent annual Poissonian rates of the 16 
ruptures for the year 2010-2011. Right panel: comparison between TD-URM (time-dependent unsegmented 17 
rupture model), TD-NMSRM (time-dependent no multi-segment ruptures), and TD-SRM (time-dependent 18 
segmented rupture model), in terms of equivalent annual Poissonian rupture rates for the year 2010-2011. 19 

 20 

4.5 Step 4a – Fault interaction 21 
TD-FI-URM is the complete implementation of the proposed framework, including a time-dependent 22 
occurrence model with fault interaction (see Section 3.4.1) and an unsegmented rupture model. Figure 10 23 
shows the clock change (in years) of the time elapsed since the last event for an example rupture (id 206). 24 
This rupture, which involves two subsections of the OhariuC fault, leads to a 200-year positive clock change 25 
of the subsection immediately adjacent to the rupture. Hence, another rupture on the OhariuC fault is 26 
promoted, meaning that there is an increased probability of any rupture that includes the red subsection in 27 
Figure 10. Conversely, the most northern subsection of the Moonshine fault experiences a negative clock 28 
change of nearly 300 years, which means that the probability of any rupture involving this subsection 29 
decreases.  30 
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 1 
Figure 10. Clock change (in years) on fault subsections due to rupture id 206 (in black). 2 

A total time-dependent rate is calculated for each iteration of the simulation process described in Section 3.4, 3 
representing the rate of occurrence of an earthquake generated from one of the considered faults. Figure 11 4 
demonstrates how the total annual equivalent Poissonian rate changes over time. If no event occurs 5 
(unchanged TD-URM, grey line), the total annual equivalent rate steadily increases. The left panel displays a 6 
𝑀! 7.5 event (id 214, involving OhariuC and OhariuS) that occurs in the middle of 2011, and the right panel 7 
shows a 𝑀! 6.4 event (id 367) that occurs in the middle of 2011. Following the 𝑀! 7.5 event in the middle 8 
of 2011, TD-URM (red line) rate drops by more than 30% with respect to that of TD-URM. This is because 9 
the rate contribution of all the subsections involved in the 𝑀! 7.5 rupture drops to zero, in line with the 10 
elastic rebound theory (Reid 1910). However, the TD-FI-URM (cyan line) rate increases in the years 11 
following the 𝑀! 7.5 rupture due to the transient effect of the positive Coulomb stress change imposed on 12 
nearby faults (see Section C.1 Appendix C). The transient effect decreases with passing years, and this rate is 13 
eventually only influenced by the permanent effects of the Coulomb stress change (Section C.2 Appendix C). 14 
The initial increase in the TD-FI-URM rate is smaller in the right panel (𝑀! 6.4) for the following possible 15 
reasons: 16 

• The nearby subsections may be too far from the rupture and/or the fault orientation may not be 17 
suitable for significant Coulomb stress changes to occur; 18 

• The magnitude of the rupture, which is used to calculate the slip of the event (see Section C.1 of 19 
Appendix C), might be too low to produce significant Coulomb stress changes; 20 

• The net effect of the TD-FI-URM Coulomb stress change on the nearby subsections can be low. 21 
Some subsections experience a positive Coulomb stress change, while others experience a negative 22 
one. In this case, the relative occurrence probabilities of the different ruptures will change (some 23 
ruptures are promoted while others are inhibited). However, the net effect on the total occurrence 24 
probability (or rate) of all the ruptures may remain almost unchanged. The result is a relatively small 25 
difference between the TD-FI-URM and TD-URM rates. 26 
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 1 
Figure 11. Change in total annual equivalent Poissonian rate due to a Mw 7.5 event (left panel) and Mw 6.4 2 
event (right panel) for TD-FI-URM and TD-URM. TI-URM is shown for comparison. 3 

Figure 12 shows the total rate percentage change for each of the individual ruptures occurring in the middle 4 
of 2011. The rate percentage change is calculated considering the rates of the year 2011 (before the rupture 5 
occurrence) and 2012 (after the rupture occurrence). The maximum percentage change for TD-URM (red 6 
data) is just below zero. TD-FI-URM change is generally larger than that of TD-URM (similar to Figure 11). 7 
In particular, most percentage changes for TD-FI-URM are positive, which implies that the total rate of event 8 
occurrence tends to be higher after an earthquake occurs. 9 

 10 
Figure 12. Change in total annual equivalent rate vs. the moment magnitude of each rupture, for both TD-FI-11 
URM and TD-URM. The equivalent rates are calculated assuming each rupture to occur in the middle of 12 
2011. The rate percentage change is calculated considering the rates of the year 2011 (before the rupture 13 
occurrence) and 2012 (after the rupture occurrence). 14 

 15 
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4.6 Step 5 – Stochastic event generation and hazard curves 1 
A stochastic event set is generated for each year of a 10yr-period (2010-2019). The result is a total of 2 
100,000 stochastic catalogs, as reported in Table 5. TI-URM does not account for the fact that the 3 
WairarapaNich fault is at a very early stage of the earthquake cycle (last rupture 1855 A.D.), which explains 4 
why the maximum magnitude for this set of models is higher than those of the other analyses. Event 5 
occurrence probabilities for TD-FI-URM are higher than those of TD-URM because of the transient increase 6 
in TD-FI-URM annual equivalent Poissonian rates (Section 4.5) after the occurrence of a rupture. The rates 7 
of TD-NMSRM are generally higher than those of TD-URM (Section 4.3), which leads to larger TD-8 
NMSRM probabilities of event occurrence within the stochastic event set. However, the inclusion of multi-9 
segment ruptures for TD-URM results in a higher maximum magnitude than that associated with TD-10 
NMSRM (Section 2.1). The total annual rate of all ruptures for TD-SRM is lower than that for TD-URM, 11 
which explains the lower probabilities of occurrence for TD-SRM. 12 

Table 5. Maximum magnitude registered in 100,000 10yr-long simulations and the occurrence probability of 13 
one, two, three, four and five events, for different analyses. 14 

Analysis 
name 

Max Mw 
registered 

Probability of 1 
event in 10yr 

Probability of 2 
events in 10yr 

Probability of 3 
events in 10yr 

Probability of 4 
events in 10yr 

Probability of 4 
events in 10yr 

TI-URM 8.0 14.752% 1.343% 0.061% 0.001% 0.000% 

TD-SRM 7.4 6.574% 0.214% 0.002% 0.000% 0.000% 
TD-NMSRM 7.4 21.887% 2.819% 0.212% 0.007% 0.000% 
TD-URM 7.6 17.654% 1.694% 0.076% 0.003% 0.000% 
TD-FI-URM 7.6 15.810% 3.010% 0.500% 0.094% 0.013% 

 15 

Ground-motion for the city of Wellington is computed using the GMM developed by Bradley (2013). The 16 
magnitude, faulting characteristics (e.g., dip, rake angles), and source-to-site distance measures are evaluated 17 
on a rupture-by-rupture case. For simplicity, a shear wave velocity in the upper 30m 𝑉?@9 of 800m/s is used 18 
and the basin effects are accounted for as suggested by Bradley (2013). The hazard curves are computed as 19 
outlined in Section 3.5.2 and are shown in Figure 13 (for TD-URM, TD-NMSRM, TD-SRM) and Figure 14 20 
(for TD-FI-URM, TD-URM, and TI-URM). It is worth noting that the annual probability of exceedance of 21 
low levels of ground-motion (i.e., 10AB g) shown in Figure 13 and Figure 14 does not equal 1; it equates to 22 
the annual probability of occurrence of at least one rupture from the considered faults. 23 
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1 

 2 
Figure 13. Comparison of the PGA and SA(1.0s) hazard curves (at the Wellington site) for TD-URM, TD-3 
NMSRM and TD-SRM. Also shown for comparison is the corresponding hazard curve from the New 4 
Zealand seismic hazard model for a 1yr-window (TD-NZSHM). The panels on the right show the ratios of 5 
the hazard curves – with respect to TD-URM – for TD-NMSRM, TD-SRM and TD-NZSHM. 6 
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1 

 2 
Figure 14. Comparison of the PGA and SA(1.0s) hazard curves (at the Wellington site) for TD-FI-URM, 3 
TD-URM, and TI-URM. The corresponding hazard curve from the New Zealand seismic hazard model for a 4 
1yr-window (TD-NZSHM) is also shown for comparison. The panels on the right show the ratios of the 5 
hazard curves – with respect to TD-URM – for TD-FI-URM, TI-URM and TD-NZSHM. 6 

 7 

5 Discussion 8 
Section 4 outlined a simple case study to demonstrate the capabilities of the proposed framework. The 9 
methodology is flexible enough to be applied to any particular input dataset, as long as the (approximate) 10 
fault geometry and essential geologic characteristics (e.g., rake and slip rates) are available. Under the 11 
principles stated in UCERF3 (Field et al. 2014), this framework may be easily adapted to different areas of 12 
the world or extended to accommodate additional modeling assumptions. The discussion below also 13 
highlights possible extensions and shortcomings of the case study. 14 

Figure 13 compares the hazard curves for TD-URM, TD-NMSRM, and TD-SRM for PGA and SA at 1.0s, 15 
while Figure 14 shows the same comparison for TD-FI-URM, TD-URM, and TI-URM. Both figures refer to 16 
Wellington (marked in Figure 6) and include the hazard curve (TD-NZSHM) as modeled in the NZSHM 17 
(https://github.com/GNS-Science/nshm-2010, Stirling et al. 2012) for a 1yr-window and the fault sources 18 
considered in this study (see Table 2). Note that the findings of Figure 13 and Figure 14 also hold for other 19 
SAs.  20 

For any annual probability of exceedance, TD-NMSRM generally results in at least 15% larger ground-21 
motion amplitudes with respect to TD-URM, which is a direct consequence of the higher TD-NMSRM 22 
event-occurrence probabilities (Table 5). For annual probabilities of exceedance higher than 10A@, TD-SRM 23 
provides up to 50% lower ground-motion amplitudes with respect to TD-URM, because it does not account 24 
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for any (more frequent) earthquakes with magnitudes lower than 𝑀! 7.0 (Figure 8). TD-SRM generally 1 
provides similar results to those of TD-URM for annual probabilities less than 10A@. Both TD-SRM and TD-2 
NMSRM do not include any earthquake with a magnitude higher than 𝑀! 7.4, which is due to the absence 3 
of multi-segment ruptures and the time-dependent occurrence model used for the WairarapaNich and the 4 
WellWHV faults (early stage of earthquake cycle). For annual probabilities of exceedance higher than 5 
around 10A@, TD-SRM (i.e., considering a strict segmentation of the faults) provides a lower-bound hazard 6 
curve, and TD-NMSRM (i.e., considering only floating ruptures with no multi-segment ruptures) produces 7 
an upper-bound hazard curve (Figure 13). Considering both floating ruptures and multi-segment ruptures 8 
(which are commonly seen in nature) via an unsegmented fault model (TD-URM) like UCERF3 (Field et al. 9 
2014) can provide an estimate of the hazard curve which always lies between the upper- and lower-bound 10 
curves for probabilities of exceedance higher than around 10A@ (lower than 1000-year return period). The 11 
hazard curve corresponding to TD-NZSHM is based on a strictly segmented rupture model (Stirling et al. 12 
2012), which is why it is most similar to that of TD-SRM. Discrepancies between the curves produced by 13 
TD-SRM and TD-NZSHM arise because only three fault sources have time-dependent rates in TD-NZSHM, 14 
which are computed using Bayesian methodologies (e.g., Rhoades et al. 2011, Van Dissen et al. 2013). 15 

The comparison of the effects of different occurrence models on the seismic hazard is shown in Figure 14. 16 
This comparison is based on the system-wide aggregated hazard of the ten considered faults and an 17 
unsegmented rupture model (URM). The shape of the seismic hazard curve for TI-URM (time-independent) 18 
is different from that for TD-URM (time-dependent). In particular, TI-URM produces ground-motion 19 
amplitudes that are over 50% lower than those of TD-URM, for probabilities of exceedance higher than 20 
around 10AB (return periods lower than around 100 years). Conversely, TI-URM produces ground-motion 21 
amplitudes up to 50% higher than those of TD-URM, for lower probabilities of exceedance (return period 22 
higher than around 100 years).  23 

Figure 14 also compares the hazard curves obtained for TD-FI-URM and TD-URM (i.e., considering and not 24 
considering the fault interaction mechanism on top of the time-dependent occurrence model). TD-FI-URM 25 
ground-motion amplitudes are within 10% of those produced by TD-URM for most annual probabilities of 26 
exceedance. While differences between TD-URM and TD-FI-URM increase for increasing annual 27 
probabilities of exceedance (i.e., low return periods), they do not become notable. However, the conclusion 28 
that the fault interaction mechanism has a negligible effect on the hazard cannot be generalized. Fault 29 
interaction is strongly dependent on the fault geometry and location, and has been found to significantly 30 
affect the hazard estimates for other areas of the world (e.g., Turkey, Stein et al. 1997; California, Toda and 31 
Stein 2020). In fact, the total rate percentage change of TD-FI-URM (Figure 12) is generally higher than that 32 
of TD-URM, and is positive for most cases (i.e., the total probability of event occurrence is higher after an 33 
earthquake). In the proposed framework, differences between TD-FI-URM and TD-URM can only arise after 34 
one rupture has been simulated. A possible improvement to the presented framework may be to adopt an 35 
approach similar to that of Stein et al. (1997) and Toda and Stein (2020), and consider the stress built-up by 36 
all known historical events until the starting year of the analysis (i.e., setting up an initial stress state). This 37 
would change the time-dependent probabilities for TD-FI-URM from the first year of the simulation, 38 
resulting in higher differences in the hazard curves. 39 

The presented case study contains some limitations. The fault segment geometries shown in Figure 5 (from 40 
NZSHM) are idealized versions of the complex fault geometries provided by Langridge et al. (2016) and the 41 
GNS active fault database website (https://data.gns.cri.nz/af/ last accessed 14th July 2020). Since the 42 
suitability of these geometries for a site-specific study is not guaranteed, they could be revised to include 43 
additional asperities and to avoid inconsistent hazard estimates due to unrealistic fault-to-fault distances and 44 
site-to-source distances (Faure Walker et al. 2019). The simplified fault representations used may have also 45 
impacted the Coulomb stress change calculations (Section 3.4.1). Toda and Stein (2020) proposed a new 46 
approach for calculating Coulomb stresses that accounts for complex fault geometries. However, this method 47 
requires detailed focal mechanism information for a large number of past earthquakes (including small 48 
magnitude events), which reduces its general applicability. 49 
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Since only ten faults close to Wellington city are considered, possible connections with other faults are 1 
implicitly neglected in generating the 408 plausible ruptures. Moreover, according to Manighetti et al. 2 
(2020), it is possible that the 𝑀! 7.8 2016 Kaikōura earthquake (which ruptured the Kekerengu-Needle 3 
fault) resulted in the loading of its eastern continuation, i.e., the WairarapaNich fault; this interaction is 4 
implicitly neglected in the case study. The implications of the possible connection between the Marlborough 5 
fault system, the North Island dextral fault belt, and the Hikurangi subduction zone (suggested by the 2013 6 
Cook Strait sequence, Hamling et al. 2014) are also neglected. 7 

The only known historical event used in the case study (i.e., known date of the last event) is that of the 8 
WairarapaNich fault (𝑀! 8.1 on 23 January 1855). The times of the last events for the WellWHV fault and 9 
the Ohariu faults are inferred from well-confined paleoseismic date distributions. However, this 10 
simplificaiton does not affect the results significantly. It is worth noting that the presented methodology can 11 
handle distributions of time elapsed since the last event as inputs (Field 2015). It is also assumed that the last 12 
event on the WellWHV fault, the WairarapaNich fault, and the Ohariu faults (Rhoades et al. 2011, Van 13 
Dissen et al. 2013) ruptured the entire length of the fault segments. This is probably true for the 14 
WairarapaNich fault (Van Dissen et al. 2013), but it is uncertain for the other fault segments. A refined 15 
geologic and paleoseismic study of the last event would be needed to avoid uncertainty. A further 16 
simplifying assumption is that the slip rate is uniform along the fault segment. However, the framework can 17 
account for different estimates of the slip rate in different locations, if available (Field et al. 2014). 18 

A close analysis of the stochastic sequences (Section 4.6) for TD-FI-URM, TD-URM, and TD-NMSRM 19 
confirmed that the most frequent fault to produce a (floating) rupture is the Wharekauhau thrust fault, which 20 
is the highest contributor to seismic hazard for Wellington city. This is because the WairarapaNich and the 21 
WellWHV faults are at an early stage of the earthquake cycle and do not pose a significant hazard. The 22 
Wharekauhau thrust fault is characterized by a 2.5mm/yr slip rate (the third-highest considered, Table 2). 23 
However, the unknown date of the last event leads to a higher probability of occurrence than would be 24 
produced if the date were known or well constrained (Field and Jordan 2015). This result is not necessarily 25 
realistic because the Wharekauhau fault's slip rate is considered to be “poor quality” (Litchfield et al. 2013). 26 
Moreover, portions of the Wharekauhau fault could have ruptured with the WairarapaNich fault in 1855 27 
(Schermer et al. 2009). Therefore, it cannot be guaranteed that the Wharekauhau fault is the most likely fault 28 
to rupture in the near future. However, it can be said that the presented methodology provides a clear means 29 
of leveraging paleoseismic campaigns and slip rate data collections to potentially better constrain the rates of 30 
earthquake occurrence. 31 

 32 

6 Conclusions 33 

This study has mainly focused on the fault-based ERF component of PSHA. It provided a review of the 34 
current literature on fault segmentation, multi-segment ruptures, time-dependent occurrence models, and 35 
fault interaction effects between subsequent events. Most PSHA studies neglect multi-segment ruptures and 36 
the stress interaction between faults. They also tend to use time-independent seismic hazard models, which 37 
do not capture the earthquake occurrence behavior of the elastic-rebound theory. Recent enhancements in 38 
each of these fields tend to focus on one specific aspect and neglect how one modeling assumption (e.g., 39 
segmented vs. unsegmented fault model) can affect other hypotheses (e.g., time-dependent occurrence 40 
modeling). This study collects the “best available science” in fault-based seismic hazard modeling in a 41 
unique harmonized framework, which includes (1) the fault interaction mechanism, (2) the mainshock time-42 
dependency, and (3) an unsegmented fault model (i.e., relaxing the fault segmentation assumption). 43 

A simple case study (consisting of Wellington city in New Zealand and ten surrounding fault segments) was 44 
used to demonstrate the proposed harmonized framework and compare: 45 

• Time-dependent against time-independent occurrence models; 46 
• Unsegmented fault models against models that assume strict segmentation of ruptures and “no multi-47 

segment ruptures” (only floating ruptures); and 48 
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• Classic time-dependent occurrence models against time-dependent occurrence models that include 1 
fault interaction in the stochastic event set. 2 

It is well known in the literature that, for a single fault segment, time-independent occurrence models can 3 
produce higher hazards with respect to time-dependent occurrence models if the time elapsed since the last 4 
event is lower than around 50% of the mean recurrence interval (Polidoro et al. 2013, Convertito and Faenza 5 
2014; Cornell and Winterstein 1988). Comparisons between time-dependent and time-independent 6 
occurrence modeling in this study are based on several faults contributing to the hazard and on an 7 
unsegmented fault model. In this context, using a time-independent occurrence model leads to lower ground-8 
motion amplitudes than those of the time-dependent occurrence models for low return periods (around 100 9 
years in this study) and higher ground-motion amplitudes than those of the time-dependent occurrence 10 
models for high return periods. Furthermore, the faults with the largest contribution to the hazard differ 11 
between the time-dependent and time-independent cases. These findings can be used to inform the design of 12 
paleoseismic campaigns and slip rate data collections. Using the time-dependent component of the proposed 13 
framework generally promises more accurate hazard estimates since the considered faults' history is 14 
explicitly accounted for. 15 

The segmentation assumption also significantly affects the hazard estimates. For higher annual probabilities 16 
of exceedance (e.g., higher than 10A@ in this study), considering a strict segmentation of the fault segments 17 
(consistent with the characteristic earthquake assumption) provides a lower-bound hazard curve while 18 
considering only floating ruptures (i.e., each fault segment is an independent seismic source) leads to an 19 
upper-bound hazard curve. Considering both floating ruptures and multi-segment ruptures, which are 20 
commonly seen in nature, can provide an estimate of the hazard curve which almost always lies between the 21 
upper- and lower-bound for curves (at least for the aforementioned probabilities of exceedance). 22 

The proposed framework also includes the triggering interaction between faults (Section 2.3 and Section 23 
3.4.1) that promotes or inhibits future events. The interaction is quantified using a simulation-based approach 24 
to generate stochastic earthquake catalogs (Mignan et al. 2016, Toda et al. 1998). For each simulated event, 25 
the fault interaction is evaluated using the Coulomb stress transfer principle, for which there is abundant 26 
evidence in both empirical and numerical studies (Toda and Stein 2020). For the considered case study, the 27 
inclusion of the fault interaction mechanism has a limited effect on the hazard that results from using classic 28 
time-dependent occurrence models: differences in ground-motion amplitudes are less than 10% for most of 29 
the annual probabilities of exceedance. However, this conclusion cannot be generalized. Fault interaction is 30 
strongly dependent on fault segment geometries, distances between fault segment surfaces, and focal 31 
mechanisms and may significantly affect the hazard estimates for other areas of the world (e.g., the North 32 
Anatolian Fault in Turkey, Stein et al. 1997, Murru et al. 2016, Stein 1999). The proposed framework could 33 
be used to check whether the fault interaction process might be significant in the considered study area. 34 

The presented framework could be improved by accounting for the stress built-up by all known historical 35 
events that occurred until the starting year of the analysis, which may change the resulting time-dependent 36 
occurrence probabilities and seismic hazard. It could also be improved by including aftershock hazard. The 37 
vast majority of PSHA studies neglect the generation of aftershocks (and foreshocks) due to the Poissonian 38 
assumption and the declustering of earthquake catalogs (i.e., deleting aftershocks from the catalogs).  39 

The presented harmonized framework incorporates some recent state-of-the-art enhancements in the field of 40 
seismic hazard assessment. It includes features of UCERF3 (Field et al. 2014) that enable the relaxation of 41 
fault segmentation, the inclusion of multi-segment ruptures in a standardized way, the consistent 42 
interpretation of available fault data (e.g., slip rates and paleoseismic data), and the inferring of time-43 
dependent occurrence probabilities. It also explicitly accounts for triggering fault interaction between known 44 
faults, which is not considered in UCERF3. The framework is particularly useful for earthquake risk/loss 45 
models (Mitchell-Wallace 2017) within the (re)insurance industry, where large differences in ground-motion 46 
amplitude at low return periods could lead to significant changes in product pricing. It can produce more 47 
realistic stochastic event sets, and it is suitable for regions where active faults with known slip rates are 48 
identified. 49 
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Appendix A – Inversion constraints 1 
 2 

A.1. Slip rates balancing equation-set 3 

This constraint enforces the fact that the average slip 𝐷5$ in each rupture 𝑟 that includes a given fault 4 
subsection 𝑠, multiplied by the rate 𝑓$ of that rupture, must sum to the long-term slip rate 𝑣5 for that 5 
subsection (Page et al. 2014 and Field and Page 2011). This constraint is applied to each fault subsection in 6 
both normalized and unnormalized form, as written below: 7 

 Y𝐷5$𝑓$ = 𝑣5

2

$01

		and		Y
𝐷5$𝑓$
𝑣5+

=
𝑣5
𝑣5+

2

$01

 (A 1) 

where 𝑅 is the number of ruptures. For the normalized constraint, each slip rate constraint equation is 8 
normalized by the target slip rate 𝑣5+ = max	(0.1	𝑚𝑚/𝑦𝑟, 𝑣5). Including both normalized and unnormalized 9 
forms of this constraint means that both the ratio and the difference between the target and model slip rates 10 
are minimized. The target slip rates are bounded to 0.1 mm/yr to avoid extremely low slip rates dominating 11 
the calculated misfit during the optimization process. 12 

To establish these equations, the average slip on the 𝑠%& subsection in the 𝑟%& rupture, 𝐷5$ is needed, where 13 
the word “average” indicates that this value is the average over multiple occurrences of the event. The 14 
simplest way to compute 𝐷5$ is to first compute the average slip for a given rupture 𝐷$ and then partition this 15 
among the subsections to get 𝐷5$. 𝐷$ is computed converting the magnitude of the rupture to the related 16 
seismic moment 𝑀9$ and then dividing by the rupture area 𝐴$ of the rupture and shear modulus 𝐺 (assumed 17 
equal to 3.0 ∙ 1019	𝑃𝑎): 18 

 𝐷$ =
𝑀9$

𝐺𝐴$
=
101.;<!,#=>.9;

𝐺𝐴$
 (A 2) 

where the area of the rupture 𝐴$ is the sum of associated subsections and the magnitude 𝑀!,$ of each rupture 19 
can be computed from a magnitude-area scaling relations such as Wells and Coppersmith (1994) or others. 20 
Alternative methods to obtain 𝐷$ and alternative magnitude-area scaling relations can be easily integrated in 21 
the framework if considered to be more appropriate for the region under analysis (e.g., Shaw 2013; Hanks 22 
and Bakun 2008). 23 

Once 𝐷$ is computed, it needs to be spread among the subsections composing the rupture to get 𝐷5$ using 24 
the shape of the average single-event slip. The tapered-slip model has empirical basis and has a square-root-25 
sine functional form of the normalized length (Biasi et al. 2013): 26 

 𝐷5$(𝑙) = 1.311𝐷$[sin	(𝜋𝑙/𝐿)]1/B (A 3) 

where 𝐿 is the entire rupture length and 𝑙 is in the range 0 ≤ 𝑙 ≤ 𝐿. The constant factor 1.311 is one divided 27 
by the average of the [(𝑠𝑖𝑛(𝜋𝑥)]1/B term. This model assumes that intra-event, along-strike slip variability 28 
averages out over multiple occurrences to yield the tapered shape. Alternative slip models (e.g., the uniform 29 
distribution of the slip along the strike, Field et al. 2014) can be easily incorporated in the framework. 30 

 31 

A.2. Paleoseismic event rate matching equation-set 32 

This equation-set uses data from paleoseismic trench studies to constrain the rupture rates. Since not all 33 
ruptures that occurred beneath a site are paleoseismicially observable, the detection probability factor 𝑃$

467"8 34 
is used to specify the probability that the 𝑟%& rupture would be seen in a trench study (Page et al. 2014). 35 
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467"8

𝜎5
𝑓$
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$01

=
𝑓5
467"8

𝜎5
 (A 4) 

where 𝐺5$ = 1 if the 𝑟%& rupture includes the 𝑠%& subsection and 0 otherwise, 𝑃$
467"8 gives the probability 1 

that the 𝑟%& rupture will be observed at the 𝑠%& subsection, 𝑓5
467"8 is the paleoseismically observed mean 2 

event rate for the 𝑠%& subsection, and 𝜎5 is the standard deviation of the mean observed event rate. The 3 
equation above means that the total rate of all ruptures that include a given fault subsection, multiplied by the 4 
detection probability each rupture is paleoseismically visible, must sum to the mean paleoseismic event rate 5 
for that subsection.  6 

The compilation of event dates for various paleoseismic studies is needed for the available fault subsections. 7 
The estimates of the mean peleoseismic event rates (along with the standard deviation of the mean observed 8 
event rate) can be computed from these past events dates with several methods (Biasi et al. 2002, Biasi et al. 9 
2015, Pace et al. 2016) and one of the occurrence models mentioned in Section 2.2. The Biasi et al. (2015) 10 
and the BPT distribution (Ellsworth et al. 1999 and Matthews et al. 2002) are used in this study. The Biasi et 11 
al. (2015) method creates sample earthquake sequences by drawing from each event probability distribution 12 
independently to estimate occurrence model parameters. Since event date distributions can overlap, samples 13 
not respecting the events' actual order (e.g., event 2 is reported to occur before event 1) are discarded. An 14 
additional geologically motivated constraint is imposed: the minimum separation time between events cannot 15 
be lower than 20 years. An adaptation of the Maximum Likelihood approach (Ellsworth et al. 1999) is than 16 
applied to compute the most probable occurrence model parameters and the corresponding confidence 17 
intervals. The method proposed by Biasi et al. (2015) is also able to account for the open interval from the 18 
most recent event occurred in the considered site. 19 

The simple model used in the proposed methodology for calculating the probabilities of seeing a given 20 
rupture in a trench 𝑃$

467"8 is the one proposed by Youngs et al. (2003): 21 

 𝑃$
467"8 =

𝑒B.9;@<!A1B.;1

1 + 𝑒B.9;@<!A1B.;1
 (A 5) 

where 𝑀! is the moment magnitude of the event. 22 

Another (more advanced) model is given by Weldon and Biasi (2013). This model depends on both: 23 

• the average slip of the rupture 𝐷$: the higher 𝐷$ of the past event, the higher the probability of 24 
detecting that event; and 25 

• the position of the site relative to the nearest end of the rupture, implying that it is less likely to 26 
observe surface offsets near the ends of a rupture (which is consistent with the square-root-sine 27 
functional form of the 𝐷$ mentioned in the previous section) 28 

However, the model proposed by Weldon and Biasi (2013) was calibrated based on only one site in 29 
California and its applicability to more general cases should be further investigated. 30 

 31 

A.3. Fault segment smoothness constraint equation-set 32 

In satisfying the above paleoseismic event rates, there is the risk that the inversion would simply put a high 33 
(or low) rate of events right at the paleoseismic sites. The smoothness constraint equation-set helps mitigate 34 
this behavior by providing an along-fault smoothing constraint that minimizes curvature in the events' along-35 
fault rate (Page et al. 2014 and Field and Page 2011). 36 

The Laplacian smoothing formula proposed by Page et al. (2014) is used. This formula constraints the rate of 37 
events nucleating in a given magnitude bin to vary smoothly along strike. For each subsection 𝑠 on a fault 38 
with paleoseismic data and its adjacent subsections 𝑠 − 1 and 𝑠 + 1: 39 
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 (𝑅5D − 𝑅5A1D ) + (𝑅5D − 𝑅5=1D ) = 0 (A 6) 

where 𝑅5D is the nucleation rate of events in the 𝑚%& magnitude bin on the 𝑠%& subsection. Note that this 1 
constraint is only applied to fault segments with one or more paleoseismic event-rate constraints and not 2 
beyond the ends of fault segments. 3 

 4 

A.4. Improbability constraint equation-set 5 

The improbability constraints can force a lower rate on any designated event or event type, such as multi-6 
segment ruptures or floating ruptures. There are studies in the literature (e.g., Valentini et al. 2020) that try to 7 
theoretically or empirically support/guide the assignment of improbability constraints. This constraint was 8 
not used in UCERF3, because it was deemed to be redundant. Valentini et al. (2020) showed how this 9 
constraint can be used to force multi-segment ruptures never to occur. Defining 𝑠′ and 𝑠″ as the subsections 10 
adjacent to the a priori segmentation boundary, any ruptures that overcome the boundary can be penalized as 11 
follows: 12 

 𝑓$ = 0 if 𝐺5+$ = 𝐺5$ = 1 (A 7) 

It is also possible to penalize the floating ruptures. Given	𝑛$ as the number of subsections in the 𝑟%& rupture 13 
and 𝑛5"E the total number of subsections in the fault segment, the floating ruptures can be forced to never 14 
occur as follows: 15 

 𝑓$ = 0 if 𝑛$ ≠ 𝑛5"E (A 8) 

 16 

A.5. Fault segment MFD constraint equation-set 17 

This constraint adds the possibility to force the MFD of the fault segment to be as close as possible to a 18 
chosen shape. The constraints equations are written as: 19 

 20 

 s
𝑀5$
D

𝑅5D
𝑓$

2

$01

= 1		for	all		𝑅5D > 0 (A 9) 

where 𝑀5$
D is the fraction of the 𝑟%& rupture of events in the 𝑚%& magnitude bin on the 𝑠%& subsection. 21 

Rupture rates for magnitude bins where 𝑅5D = 0 are also minimized. 22 

 23 

A.6. Minimum rate constraint 24 

This constraint can be used to guarantee that the rupture rates𝑓$ are not below an imposed 𝑓D(. is the 25 
minimum rupture rate: 26 

 𝑓$ ≥ 𝑓D(. (A 10) 

Since the rupture rates cannot be negative by definition, the minimum 𝑓D(. is zero, but there might be 27 
reasons to choose a higher number (Page et al. 2014 and Field and Page 2011). This constraint is not 28 
included in the equation system but is enforced directly in the solving algorithm (Page et al. 2014), which 29 
does not search any solution space that contains negative rates. 30 

 31 

  32 
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Appendix B – Details of the time-dependent probabilities 1 
This appendix provides details of the time-dependent probability calculations used in the proposed 2 
framework. First, the Brownian Passage Time (BPT) occurrence model is explained, with a focus on the key 3 
parameters. The methodology proposed by Field (2015) to compute the time-dependent probability knowing 4 
the time elapsed since the last event is then introduced. Finally, the treatment of the unknown time since the 5 
last event by Field and Jordan (2015) and Field et al. (2015) is presented. 6 

 7 

B.1. BPT model 8 

The most used “elastic rebound” motivated earthquake occurrence model is the BPT model (see Section 2.2), 9 
proposed by Ellsworth et al. (1999) and Matthews et al. (2002). The BPT functional form is an inverse 10 
Gaussian distribution, characterized by only two parameters: the mean recurrence time (𝜇) between events 11 
and the aperiodicity (𝛼) of the mean recurrence time, which is equivalent to the coefficient of variation (𝛼 =12 
𝐶𝑜𝑉). The probability density function (PDF) of the BPT model is: 13 

 𝑓(𝑡) = x
𝜇

2𝜋𝛼B𝜏@
𝑒𝑥𝑝 z−

(𝑡 − 𝜇)B

2𝜇𝛼B𝑡
{ (B 1) 

where 𝑡 is the interarrival time between two subsequent events. The mean recurrence time between events 14 
(𝜇) is the scale parameter in the BPT formulation, which rescales the distribution in time. The aperiodicity 15 
(𝛼) is the shape parameter (i.e., it modifies the shape of the distribution) and it represents a dimensionless 16 
measure of the irregularity in the event sequence. A perfectly periodic sequence has an 𝛼 = 𝐶𝑜𝑉 = 0, while 17 
the BPT tends to a random (i.e., Poissonian) process as the 𝛼 (𝐶𝑜𝑉) increases. 18 

With a renewal time-dependent occurrence model, the conditional earthquake occurrence probabilities 19 
depend on the following parameters: 20 

• the time since the last event (𝑇"); 21 
• the forecast duration (𝛥𝑇); and 22 
• the BPT parameters: the mean recurrence interval (𝜇) and the aperiodicity (𝛼). 23 

However, the normalized values of the above variables are more useful to describe the rebound phenomenon 24 
(Field 2015): the normalized time since last event (𝑇"/𝜇) and the normalized duration (𝛥𝑇/𝜇). These 25 
represent the extent of 𝑇" and 𝛥𝑇 relative to the mean recurrence interval. 26 

 27 

B.2. Time-dependent probabilities 28 

Knowing the long-term rates 𝑓$ of each rupture 𝑟 from the inversion step (Section 3.2), the rate of events 𝑓5 29 
on each subsection 𝑠 can be simply computed as the summation of rates 𝑓$ of the ruptures containing the 𝑠%& 30 
subsection: 31 

 𝑓5 =Y𝐺5$𝑓$

2

$01

 (B 2) 

where 𝐺5$ is a boolean matrix (ones and zeros) containing all the subsections utilized by the generated 32 
ruptures. The corresponding mean recurrence interval of each subsection 𝜇5 can be computed as the inverse 33 
of the relative rate: 34 

 𝜇5 = 1/𝑓5 (B 3) 

If the 𝑟%& rupture is assumed to be the next to occur, its expected recurrence interval can be computed as a 35 
weighted average over the long-term recurrence intervals 𝜇5 of each subsection involved: 36 
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 𝜇$."F% =
∑𝜇5𝐴5
∑𝐴5

 (B 4) 

where, 𝐴5 is the subsection area, and the sums are over all the subsections included in the 𝑟%& rupture. The 1 
“next” superscript refers to the fact that the expected recurrence interval is computed assuming the 𝑟%& 2 
rupture will be the next event to occur. The use of subsection area as weights is consistent with the elastic-3 
rebound-based simulations presented by Field (2015).  4 

As a proxy for how close the rupture is to failure, the average normalized time since the last event for each 5 
rupture will be used: 6 

 𝜂$ =
∑(𝑇" 𝜇5⁄ )𝐴5

∑𝐴5
 (B 5) 

where 𝑇" is the time since the last event on the 𝑠%& subsection and the sums are only over the subsections 7 
utilized by the 𝑟%& rupture. 8 

From the average normalized time since the last event (𝜂$), the normalized forecast duration (𝛥𝑇/𝜇$."F%), and 9 
an assumed aperiodicity (𝛼), it is possible to compute the conditional probability of occurrence for the 10 
rupture using a renewal model and: 11 

 𝑃$GHI = 𝑃(𝑇 ≤ 𝑡 ≤ 𝑇 + 𝛥𝑇	|	𝑡 > 𝑇) =
∫ 𝑓(𝑡)𝑑𝑡I=JI
I

∫ 𝑓(𝑡)𝑑𝑡K
I

 (B 6) 

In the context of this paper, the BPT renewal model, Equation (B 1), is used to compute conditional rupture 12 
probabilities but any time-dependent occurrence model can be used. This probability is calculated assuming 13 
that the 𝑟%& will be the next to occur and is conditional to the knowledge of the time elapsed since the last 14 
event. To account for the fact that the next occurring rupture (amongst the many overlapping ones) is 15 
unknown, the conditional probability of occurrence above is then multiplied by the ratio of the conditional 16 
rupture recurrence interval to the long-term recurrence interval (𝜇$."F%/𝜇$). This is used as a proxy for 17 
probability that the 𝑟%& rupture is chosen (i.e., it is the likelihood of selecting the 𝑟%& rupture given an 18 
occurrence of one the overlapping possibilities). Thus, the total conditional probability of occurrence of each 19 
rupture can be computed as: 20 

 𝑃$ = 𝑃$GHI �
𝜇$."F%

𝜇$
� (B 7) 

One advantage of this method is the ability to apply magnitude-dependent aperiodicity. Table B 1 lists three 21 
sets of magnitude-dependent aperiodicity values inferred from physics-based simulations by Field (2015). 22 

Table B 1. Sets of magnitude-dependent aperiodicity values based on physics-based simulations (after Field 23 
2015). 24 

 
Aperiodicity 

Recurrence 
uncertainty 

MW≤6.7 6.7<MW≤7.2 7.2<MW≤7.7 MW>7.7 

Low 0.4 0.3 0.2 0.1 

Mid 0.5 0.4 0.3 0.2 
High 0.6 0.5 0.4 0.3 

 25 

B.3. Unknown time since the last event 26 
The computation of the conditional probability of rupture occurrence discussed so far assumes the 27 
knowledge of the last event's date, which is not available in most cases. For faults where this date is 28 
unknown, the usual approach is to use a time-independent Poisson model to obtain earthquake probabilities. 29 
Field and Jordan (2015) investigated this issue and proposed a formulation to compute the conditional 30 
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probability of having an event in a certain forecast duration (∆𝑇) and accounting for the fact that the time 1 
elapsed is known to be constrained by the “historic open interval” (𝑇'): 2 

 𝑃$GHI =
∆𝑇 − ∫ 𝐹(𝑇)𝑑𝑇I*=JI

I*

∫ [1 − 𝐹(𝑇)]𝑑𝑇K
I*

 (B 8) 

where 𝐹(𝑇) is the cumulative distribution function (CDF) of the interarrival time between events for a given 3 
renewal occurrence model (e.g., BPT distribution). The historic open interval can be inferred from the 4 
historical earthquakes catalogue: if there is no record of an event occurred on the fault segment of interest in 5 
the earthquake catalogue, the completeness period can be used as the historic open interval. 6 

Field et al. (2015) suggested an approximate method to treat those ruptures where the last event's date is 7 
known on some subsections but not others. The conditional probability of occurrence of the rupture, 𝑃$GHI, 8 
can be computed as: 9 

 𝑃$GHI = � 𝑝(𝜂3	|	𝜂3 ≥ 𝑇'/µ3)	𝑃GHI(𝜂$ , ∆𝑇/µ$)𝑑𝜂3
K

I* L+⁄
 (B 9) 

where µ3 is the average recurrence interval where the time since the last event is unknown, 𝜂3 is the average 10 
normalized time since the last event where unknown, 𝑃𝐵𝑃𝑇!𝜂𝑟, ∆𝑇/µ𝑟" is computed with Equation (B 6), µ$ 11 
is the long-term recurrence interval of the rupture and 𝜂$ is the normalized time since the last event for the 12 
rupture, computed as: 13 

 𝜂$ =
𝐴3𝜂3 + 𝐴R𝜂R

𝐴3 + 𝐴R
 (B 10) 

where 𝜂R is the average normalized time since the last event where known and 𝐴3 and 𝐴R are the sums of the 14 
areas of the subsections where the time since the last event is unknown and known, respectively. The 15 
probability of having a normalized time since the last event 𝜂3 given that the interarrival time between 16 
events has to be greater than the open historical time interval is: 17 

 𝑝(𝜂3	|	𝜂3 ≥ 𝑇'/µ3) =
1 − 𝐹(𝑡)

∫ [1 − 𝐹(𝜏)]𝑑𝜏K
I* L+⁄

 (B 11) 

 18 

  19 
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Appendix C – Fault interaction details 1 
 2 

C.1. Coulomb stress transfer 3 

Since direct measurements of induced stress changes are not possible, slipping a dislocation in an elastic 4 
half-space with uniform isotropic elastic properties is used to estimate the static change in the stress field 5 
(Okada 1992). Changed stress tensor components are resolved on planes of interest (i.e., known fault planes) 6 
and related to triggering or inhibition of future earthquakes. The Coulomb failure stress change (∆𝐶𝐹𝐹) can 7 
be written as: 8 

 ∆𝐶𝐹𝐹 = ∆𝜏 + 𝐹𝐶	∆𝜎. (C 1) 

where ∆𝜏 is the shear stress change in the slip direction, ∆𝜎. the normal stress change and FC is the effective 9 
coefficient of friction (Toda et al. 2011). The effective coefficient of friction usually varies between 0 and 10 
0.75, with an average value of 0.4 that is widely used in Coulomb stress modeling studies for major faults 11 
(King et al. 1994). Failure is promoted if ∆𝐶𝐹𝐹 > 0 and inhibited if ∆𝐶𝐹𝐹 < 0 (Parsons 2005, Toda and 12 
Stein 2020). 13 

For this study, the computation of the Coulomb static stress changes for each subsection 𝑠 (∆𝐶𝐹𝐹5) is carried 14 
out with the software Coulomb v3.3 (Toda et al. 2011), which was extensively tested and used in the 15 
literature (e.g., Murru et al. 2016, Mignan et al. 2016). The calculation is done imposing a “source rupture”, 16 
where a coseismic slip is assumed to be known, and computing the ∆𝐶𝐹𝐹5 on the “receiver subsections”, 17 
where strike, dip, and rake must be known. Typical inputs needed for Coulomb v3.3 are: 18 

• the geometries (including strike, dip, and rake) of the rupture source and the nearby (receiver) 19 
subsection planes. Each subsection is discretized in smaller patches of about 3km x 3km, which are 20 
fed to Coulomb v3.3; 21 

• Poisson’s ratio, a value of 0.25 is typically used (Toda et al. 2011); 22 
• Young’s modulus, 8 ∙ 10; bars is typically used (Toda et al. 2011); 23 
• Effective friction coefficient, 𝐹𝐶 = 0.4 is often used (King et al. 1994). 24 

An estimate of the slip distribution on the source rupture is also needed, along with the dimensions (width 25 
and length) of the surfaces involved (source and receivers). For simplicity, the slip distribution is assumed to 26 
be a square-root-sine functional form of the normalized length, also called tapered-slip model (Biasi et al. 27 
2013, Murru et al. 2016). More complicated distributions are possible if the hypocenter is also randomly 28 
sampled during the simulations (Goda et al. 2017). 29 

 30 

C.2. Coulomb stress change effects 31 

Both the permanent and the transient effects of the Coulomb stress changes are included. Two very similar 32 
methods have been proposed in the literature to estimate the permanent effect of a stress change on the 33 
conditional probability of rupture occurrence. The first method advances the elapsed time (for each 34 
subsection 𝑠) in the conditional probability calculation from 𝑇" to 𝑇"+ (i.e., clock change) by the equivalent 35 
time required to accumulate the stress step through the tectonic stressing process (Dieterich 1988, Toda et al. 36 
1998, Murru et al. 2016): 37 

 𝑇"+ = 𝑇" +
∆𝐶𝐹𝐹5
�̇�5

 (C 2) 

where �̇�5 is the tectonic stressing rate computed on the 𝑠%& subsection. The second approach reduces the 38 
expected mean recurrence time from 𝜇5+  to 𝜇𝑠 (for each subsection 𝑠) by the equivalent time required to 39 
accumulate the stress step through the tectonic stressing process (WGCEP 1990, Mignan et al. 2016): 40 



 

53 
 

 𝜇5+ = 𝜇5 −
∆𝐶𝐹𝐹5
�̇�5

 (C 3) 

Reducing 𝜇𝑠 or increasing 𝑇" for a positive step in stress increases the conditional probability of an 1 
earthquake. The choice of whether to change the elapsed time or the mean recurrence time has a different 2 
effect on the resulting earthquake probability calculation (Stein et al. 1997, Parsons 2005). Probability 3 
calculated with a clock change is most significant at the time of the stress change, and then tends to the 4 
maximum probability value with time. A change in mean recurrence interval has the opposite characteristic: 5 
the probability change is smallest at the time of the stress change and tends to a lower probability (with a 6 
permanent offset). This difference arises from the fact that changing the mean recurrence time, changes the 7 
earthquake occurrence distribution permanently, while changing the time elapsed since the last event does 8 
not change the occurrence distribution. There is no empirical evidence to support one model against the other 9 
(Parsons 2005). Thus, in the proposed methodology, the Equation (C 2) is used (i.e., modifying the time 10 
elapsed since the last event of each subsection) because it is simpler to implement in the framework and it 11 
does not change the calibrated time-dependent mean recurrence time of the ruptures. If the time since the last 12 
event is unknown, the open historic interval 𝑇' is instead increased to emulate a positive clock change 13 
(promoting failure) or decreased to emulate a negative clock change (inhibiting failure). For the 𝑟%& rupture, 14 
the open historic interval change ∆𝑇',$ is calculated as: 15 

∆𝑇',$ =
∑(∆𝐶𝐹𝐹5 �̇�5⁄ )𝐴5

∑𝐴5
 (C 4) 

where 𝐴5 is the subsection area, and the sums are over all the subsections included in the 𝑟%& rupture where 16 
the time elapsed since the last event is unknown. This approach is consistent with the findings and the 17 
methodologies presented by Field (2015). 18 

The transient effect of the stress change is here quantified with the state-dependent formulation proposed by 19 
Dieterich (1994) as implemented by Toda et al. (1998) and Mignan et al. (2016). The new conditional 20 
probability of occurrence of the 𝑟%& rupture including the transient effects (𝑃."T,$) is expressed through a 21 
non-stationary Poisson process as 22 

𝑃."T,$ = 1 − exp	(−𝑁$) (C 5) 

where 𝑁$ is the expected number of times the 𝑟%& rupture occurs during a given time interval [𝑡9, 𝑡1] after a 23 
stress-inducing earthquake occurred at time 𝑡765%. Following Toda et al. (1998), 𝑁$ can be calculated as 24 

𝑁$ = 𝑟4U(𝑡1 − 𝑡9)	

+𝑟41𝑡6 log �
1 + �exp �−∆𝐶𝐹𝐹$𝐴𝜎 � − 1� exp �−

(𝑡1 − 𝑡765%)
𝑡6

�

exp �−∆𝐶𝐹𝐹𝐴𝜎 �
�	

−𝑟49𝑡6 log �
1 + �exp �−∆𝐶𝐹𝐹$𝐴𝜎 � − 1� exp �− (𝑡9 − 𝑡765%)𝑡6

�

exp �−∆𝐶𝐹𝐹$𝐴𝜎 �
� 

(C 6) 

where 𝑡6 is the aftershock duration, ∆𝐶𝐹𝐹$ is calculated as ∑∆𝐶𝐹𝐹5	𝐴5 ∑𝐴5⁄  (sums over all the subsections 25 
included in the 𝑟%& rupture), 𝐴𝜎 is a parameter of the state-dependent formulation, 𝑟4U, 𝑟41 and 𝑟49 are rates 26 
calculated as 27 

𝑟4U = −1/(𝑡1 − 𝑡9) ∙ log	(1 − 𝑃V) 

𝑟41 = −1/(𝑡1 − 𝑡765%) ∙ log	(1 − 𝑃1) 

𝑟49 = −1/(𝑡9 − 𝑡765%) ∙ log	(1 − 𝑃1) 

(C 7) 
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where 𝑃V , 𝑃1 and 𝑃9 are conditional probabilities for intervals [𝑡9, 𝑡1], [𝑡765%, 𝑡1] and [𝑡765%, 𝑡9], respectively. 1 
These are calculated with the methodology described in Appendix B. The global average of the 𝑡6 parameter 2 
is 10.2 years (Toda et al. 1998, Parsons 2005). Hence, the 𝑡6 = 10𝑦𝑟 is used in this study. The parameter 𝐴𝜎 3 
is calculated as �̇�$ ∙ 𝑡6 (Toda et al. 1998), where �̇�$ is calculated as ∑ �̇�5	𝐴5 ∑𝐴5⁄  (sums over all the 4 
subsections included in the 𝑟%& rupture). When more than one earthquake has occurred, the total number of 5 
expected occurrences 𝑁$ in Equation (C 5) is the sum of the individual expected events calculated with 6 
Equation (C 6). 7 

An estimate of the tectonic stressing rate �̇�5 on each subsection is needed to use the clock change adjustment 8 
and the transient effects in the probability calculations. A commonly used approach to estimating tectonic 9 
loading uses dislocation models or three-dimensional models of the crustal deformation (Parsons 2005). For 10 
this study, the tectonic stressing rate of each subsection is estimated from the long-term slip rate 𝑉5 11 
(calculated by summing up all the single-event slips of the ruptures, 𝐷5$ in Section A.1, multiplied by the 12 
corresponding long-term rates 𝑓$, Equation (A 1)) and the area of the 𝑠%& subsection (Murru et al. 2016): 13 

 �̇�5 =
32	G	𝑉5
𝜋B�𝐴5

 (C 8) 

where 𝑉5 is in meters per year, 𝐴5 is the subsection area and 𝐺 is the average shear modulus of the elastic 14 
medium (assumed 30GPa). 15 

 16 

 17 

  18 
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Appendix D – Illustrative examples of the proposed framework 1 
Three example cases are used here to illustrate how the conditional probability of rupture occurrence changes 2 
when an event (i.e., a rupture) is simulated with the framework illustrated in Figure 4 of the main text. The 3 
cases contain up to three ruptures (Rupture 1, Rupture 2, and Rupture 3; described below) and are presented 4 
in order of complexity. 5 

 6 

D.1. General inputs 7 

The BPT model is used (see Appendix B of the manuscript) as follows: 8 

• Rupture 1: mean recurrence interval 𝜇$."F% = 200𝑦𝑟, time elapsed since the last event 𝑇" = 100𝑦𝑟 9 
(assumed known on all subsections), aperiodicty 𝛼 = 0.4, 𝜇$."F% 𝜇$⁄ = 0.1 (where 𝜇$ is the long-10 
term occurrence rate); 11 

• Rupture 2: mean recurrence interval 𝜇$."F% = 300𝑦𝑟, time elapsed since the last event 𝑇" = 150𝑦𝑟 12 
(assumed known on all subsections), aperiodicty 𝛼 = 0.4, 𝜇$."F% 𝜇$⁄ = 0.1 (where 𝜇$ is the long-13 
term occurrence rate); 14 

• Rupture 3: imposed (no probability calculations). 15 

The following assumptions are used for the fault interaction calculations (see Appendix C of the manuscript): 16 

• Tectonic stressing rate �̇�$ = 0.1	bars/yr for all ruptures; 17 
• Coulomb stress on the subsections of Rupture 2, when another rupture occurs ∆𝐶𝐹𝐹 = 1	𝑏𝑎𝑟 18 

(positive) 19 
• 𝑡6 = 10𝑦𝑟 (𝐴𝜎 = 𝑡6 ∙ �̇�$). References: Toda et al. (1998) and Parsons (2005). 20 

Note that all the following calculations can also be performed when the time elapsed since the last event is 21 
unknown for some or all subsections (see Field et al. 2015 and Appendix B). 22 

 23 

D.2. Case 1 (Figure D1) 24 

The analysis starts in 2010. Step 3 of the framework (Section 3.3 of the main text) updates the conditional 25 
probabilities of rupture occurrence for all ruptures as time elapses. Step 4 of the framework (Section 3.4 of 26 
the main text) simulates Rupture 1 at the beginning of January 2030 (see Figure D1). When Rupture 1 27 
occurs, the conditional occurrence probability of Rupture 1 drops to zero (as expected from a time-dependent 28 
model), while the conditional probability of occurrence of Rupture 2 increases due to the transient and 29 
permanent effects of the Coulomb stress increase (Step 4a Section 3.4.1 of the main text). As time passes, the 30 
transient effect decreases to nothing and only the permanent effect remains.  31 

It is worth noting here that the conditional probabilities in Figure D1 are computed on a yearly basis (𝑤 = 1 32 
in Equation 2 of the main text). 33 
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 1 
Figure D1. Case 1: conditional probability of rupture occurrence of example Ruptures 1 and 2 with time. 2 

 3 

D.3. Case 2 (Figure D2) 4 

Step 4 of the framework (Section 3.4 of the main text) can also be used to compute conditional probabilities 5 
of rupture occurrence for post-event time windows less than one year. For this case, it is assumed that Step 4 6 
simulates Rupture 1 at 𝑡( = 0.08𝑦𝑟 after the beginning of 2030 (i.e., the end of January 2030; see Figure 7 
D1). Step 4 then updates the time window for the calculation of conditional rupture occurrence probability as 8 
𝑤 = 1 − 𝑡( and the simulation process is repeated. Note that the probabilities of Figure D2 do not correspond 9 
exactly to those of Case 1 due to differences in the post-Rupture 1 time window. 10 

 11 
Figure D2. Case 2: conditional probability of rupture occurrence for Rupture 2 between 2030 and 2032. It is 12 
assumed that Rupture 1 occurs at the end of January 2030. Note that the x-axis is smaller than that of Figure 13 
D1. 14 

 15 
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D.1. Case 3 (Figure D3) 1 

Step 4 of the framework also enables multiple events to occur within a year. This case assumes Rupture 1 is 2 
simulated at 𝑡(1 = 0.08𝑦𝑟 and Rupture 3 is simulated at 𝑡(B = 0.67𝑦𝑟 after the start of 2030 (i.e., at the end 3 
of January and the end of August 2030, respectively). The corresponding conditional occurrence 4 
probabilities for Rupture 2 are provided in Figure D3. 5 

 6 
Figure D3. Case 3: conditional probability of rupture occurrence for Rupture 2 between 2030 and 2032. It is 7 
assumed that Rupture 1 occurs at the end of January 2030 and Rupture 3 occurs at the end of August 2030. 8 

Note that after the second event (𝑡(B), the probability of rupture occurrence for Rupture 2 decreases because 9 
the time window (𝑤) only comprises a few months. At the beginning of 2031, the annual conditional 10 
probability of occurrence takes the occurrence of Rupture 1 and 3 (with coulomb stress changes) into 11 
account. 12 

 13 


