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Simulation techniques based on accurate and efficient representations of potential energy surfaces are urgently
needed for the understanding of complex aqueous systems such as solid-liquid interfaces. Here, we present
a machine learning framework that enables the efficient development and validation of models for complex
aqueous systems. Instead of trying to deliver a globally-optimal machine learning potential, we propose to
develop models applicable to specific thermodynamic state points in a simple and user-friendly process. After
an initial ab initio simulation, a machine learning potential is constructed with minimum human effort through
a data-driven active learning protocol. Such models can afterwards be applied in exhaustive simulations to
provide reliable answers for the scientific question at hand, or systematically explore the thermal performance
of ab initio methods. We showcase this methodology on a diverse set of aqueous systems comprising bulk water
with different ions in solution, water on a titanium dioxide surface, as well as water confined in nanotubes
and between molybdenum disulfide sheets. Highlighting the accuracy of our approach with respect to the
underlying ab initio reference, the resulting models are evaluated in detail with an automated validation
protocol that includes structural and dynamical properties and the precision of the force prediction of the
models. Finally, we demonstrate the capabilities of our approach for the description of water on the rutile
titanium dioxide (110) surface to analyze the structure and mobility of water on this surface. Such machine
learning models provide a straightforward and uncomplicated but accurate extension of simulation time and
length scales for complex systems.

Keywords: Machine Learning Potentials | Solid-liquid systems | Aqueous Phase

There is a great need for a better understanding of
complex aqueous systems, in particular those involv-
ing solid-liquid interfaces, to promote progress in fields
as diverse as heterogeneous catalysis, material design,
biotechnology, and energy conversion or storage.1,2 For
this purpose, atomistic insight provided by computa-
tional approaches is urgently required, but off-the-shelf
simulation techniques come with important limitations.
Ab initio based methods, such as ab initio molecular
dynamics (AIMD), struggle in terms of the accessible
time and length scales, while traditional force field ap-
proaches are complicated to develop and often not ac-
curate enough to provide reliable answers for complex
interface problems. In recent years, machine learning
potentials (MLPs) have become a promising alternative,
bypassing expensive ab initio calculations and extend-
ing length and time scales in molecular simulations.3–7

This is exemplified in studies on the understanding of the
unique properties of water,8–10 structural and electronic
transitions in disordered silicon,11 and phase transitions
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of hybrid perovskites12 to name but a few. The success
of MLPs is grounded in a number of distinct approaches
that have been introduced over the years, notably us-
ing artificial neural networks,13–17 or kernel based meth-
ods.18–23

Despite compelling advances towards data-driven and
automated techniques mostly in the context of active
learning,24–31 the construction of a successful model, in
particular for complex systems, remains a difficult task.
This becomes most apparent when trying to achieve a
high degree of transferability or generality, as for exam-
ple recently shown in the development of general purpose
MLPs for silicon,32 carbon,33 or phosphorous.34 The ex-
amples cited and many similar ones reported in the lit-
erature can take years to develop as broad regions of
phase space have to be sampled by an appropriate bal-
ance of training points to provide reliable predictions
across the board. As a consequence relatively few stud-
ies exist in which complex solid-liquid systems have been
described with MLPs.35–39 These limitations have ham-
pered progress in understanding solid-liquid interfaces,
where accurate MLPs are urgently needed and offer many
opportunities for deepening our understanding of pro-
cesses like wetting, ice formation, or liquid flow and fric-
tion under confinement.
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However, the high degree of generality that most MLPs
try to achieve is in practice not always needed to an-
swer the scientific question at hand. Often, it is suffi-
cient to sample just a small region of configuration space
under specific thermodynamic and boundary conditions,
while reaching the time and length scales at appropriate
ab initio accuracy represents the true challenge. This
is the main motivation behind the very promising on-
the-fly learning techniques,22,40,41 (or surrogate models
for global structure optimizations42) that do not aim for
a high degree of generality. Yet, even these approaches
have so far not had wide uptake for complex interfaces
and they have been developed and validated on a system
specific case by case basis.

Here, we present another approach to generate MLPs
in a simple and fast fashion that is particularly suited
for complex systems. To achieve this task, we make use
of a 1) widely applicable, robust and scalable machine
learning model for the representation of the structure-
energy relation, 2) a general strategy for the generation
and selection of representative training data, and finally
3) a comprehensive and automated validation procedure.
By design we concentrate the development on a specific
thermodynamic condition. This inherent loss of general-
ity is counter-balanced by the speed of the development
as well as the local (as opposed to global) accuracy of the
MLP. The workflow to develop and apply such models fol-
lows broadly the following simple and computationally
inexpensive steps. The relevant thermodynamic condi-
tion is initially sampled with a small-scale reference ab
initio simulation. This trajectory is screened by a data-
driven and automated active learning procedure to con-
struct the machine learning model. The resulting model
is then validated through a automated validation proto-
col and afterwards applied in large-scale simulations to
answer the relevant scientific question. We show how
these models can be developed with minimum human ef-
fort, while retaining reliable predictions over long time
scales for complex aqueous systems at orders of magni-
tude lower computational cost than the original ab initio
method. This methodology is applied to six exemplary
aqueous systems, comprising the fluoride and sulfate ions
in aqueous solution, water in carbon and hexagonal boron
nitride nanotubes, water on a titanium dioxide surface,
and water under molybdenum disulfide confinement.

Due to the efficient nature of this approach, both from
a computational but also user perspective, such readily
developed models can afterwards be applied in extensive
molecular simulations to evaluate properties of interest.
We demonstrate this in the present case for the descrip-
tion of water on the rutile titanium dioxide surface, for
which we investigate structural and dynamical proper-
ties with extended molecular dynamics simulations. We
believe that the change of paradigm of generating a ma-
chine learning model in a “cheap and simple” process as
described here will lead to an increase in the adoption of
MLPs to simulate complex systems. These concepts are
also expected to be transferable to other machine learn-

ing approaches that can be easily coupled to the open-
source active learning package, that we make freely ac-
cessible. Having shown that this approach is able to cor-
rectly capture the properties of various aqueous systems
under confinement and at interfaces, we suggest that it
outlines a straightforward strategy for the uncomplicated
but accurate investigation of many technologically rele-
vant systems.

RAPID DEVELOPMENT OF COMMITTEE NEURAL
NETWORK POTENTIALS

The implementation of our MLP framework relies on
committee neural network potentials (C-NNPs),43 in our
case built from Behler-Parrinello NNPs.13,44 While these
models only consider the local environment of each atom
explicitly within a finite range, long-range contributions
can in principle be incorporated in MLPs as demon-
strated in the literature.45–48 The main idea behind the
current approach is the combination of multiple NNPs in
a “committee model”, where the committee members are
separately trained from independent random initial con-
ditions to a subset of the total training set. The resulting
committee model has multiple benefits over its individual
members. While the committee average, which is used as
the prediction of the whole model, has been shown to pro-
vide better performance than the individual NNPs, the
committee disagreement, which is defined as the standard
deviation between the committee member predictions,
grants access to an estimate of the error of the model. If
scaled by a constant obtained by comparison to the true
validation error,49 the committee disagreement provides
an objective measure of the accuracy of the underlying
model. To construct a training set of such a model in
an automated and data-driven way, new configurations
with the highest disagreement can be added to the train-
ing set. This is an active learning strategy called query
by committee and can be used to systematically improve
a machine learning model, while making efficient use of
the limited data available which provides an important
advantage for the current application. Further details on
the C-NNP methodology can be found in Ref. 43.

These concepts can be used for the rapid development
of MLPs as described in the following and schematically
depicted in the top panel of Fig. 1. Initially, a small-
scale reference AIMD simulation is performed to sample
the system of interest under the selected thermodynamic
condition. Small-scale refers here mostly to the envisaged
time and length scales of the final application, while they
might still be considered large from the ab initio perspec-
tive. In practice, AIMD trajectories with a length of 30 ps
have been sufficient for this purpose with system sizes
that are large enough to cover all required local chemi-
cal environments. Given this trajectory, which can also
come from existing previous work, we then construct the
training set of the C-NNP model by selecting the most
representative configurations for the system and condi-
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FIG. 1. Schematic depiction of the rapid development process of machine learning models with committee neural network
potentials (C-NNPs). The top panel depicts the workflow used to generate a C-NNP model starting from a single reference
trajectory. Using a small-scale ab initio molecular dynamics (AIMD) simulation as input, the C-NNP model is constructed
in an active learning cycle that selects the most important configurations for an improvement of the model. This is achieved
in an automated iterative process of first training the model and then screening of a large set of candidate configurations for
structures with largest error estimate, which are added to the training set. Subsequently, the C-NNP model can be applied
to large-scale simulations in order to provide insight into the system of interest. The systems and potential energy curves
schematically shown in the top panel are chosen for illustration purposes and do not reflect actual simulation data. The
bottom panel depicts representative sections of the simulation cells used for the six aqueous systems chosen in this study
for which we successfully applied our machine learning protocol. They are the fluoride ion in solution (F–H2O), the sulfate
ion in solution (SO2–

4 H2O), water in carbon (CNTH2O) and hexagonal boron nitride nanotubes (BNNTH2O), water under
molybdenum disulfide confinement (MoS2H2O), and water on a titatium dioxide interface (TiO2H2O).

tion of interest in an iterative active learning procedure.
In the beginning, a small set of 20 structures is randomly
selected from the reference trajectory in order to train an
initial C-NNP model. Next, query by committee is used
to actively select 20 configurations based on the highest
committee disagreement in the atomic forces from the
set of candidate structures provided by the reference tra-
jectory. These points are added to the training set and
an improved C-NNP model is trained to the extended
training set. No additional ab initio reference calcula-
tions are required in this process, as the potential energy
and atomic forces are already available from the reference
AIMD simulation. Such iterations are repeated until con-
vergence of the committee disagreement is observed, in-
dicated by marginal improvements of the disagreement in
subsequent iterations and no substantial difference in dis-
agreement between the selected points and those already
present in the training set. This implies that a sufficient

variety of structures has been added to the training set
to yield an accurate and robust C-NNP model.

The uncomplicated construction of MLPs for new sys-
tems requires a general set of atomic descriptors. In
the case of the atom-centered symmetry functions,50 em-
ployed here, we make that possible by generating a sys-
tematic set of radial and angular functions. This set con-
sists of ten equidistantly shifted radial functions with a
fixed width and four angular functions applied to each
pair and triple of atoms, respectively. In addition, we
apply the same hyperparameters, such as number of com-
mittee members, hidden layers and nodes, as well as neu-
ral network optimization parameters, to every system to
remove as much user input from our procedure as possi-
ble. Thanks to the active learning procedure that adapts
the training set to the flexibility of a particular model, we
have in practice observed no limitations of such an appli-
cation of a general set of parameters and settings. The
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remaining task of the user is to provide the reference tra-
jectory for the system of interest under the chosen simu-
lation conditions. Given that input, a C-NNP model can
be obtained in practice without further adjustments and
in a short amount of time.

Once a new model is trained, it can be applied to the
system of interest close to the same state point sampled
by the original reference trajectory, reducing the com-
putational cost compared to the ab initio reference by
orders of magnitude. During such simulations, the com-
mittee disagreement of the C-NNP model is a valuable
tool to gauge the validity of the model. It provides an
intrinsic error estimate and thus can be monitored over
the course of the simulation and compared to the train-
ing process. These concepts enable the straightforward
extension of both time and length scales in molecular
simulations. Per design, the construction in the above
fashion will be state dependent. The heart of the mat-
ter is that this lack of generality is compensated by the
speed and simplicity in its fitting.

Besides this simple and robust framework for the gen-
eration of MLPs for complex systems, special emphasis
lies on the selection of a suitable electronic structure ref-
erence method. MLPs will always only be as good as
their underlying reference method and a user has to make
a careful choice for each system of interest. In this con-
text, density functional theory (DFT) has become indis-
pensable for the investigation of aqueous systems, while
careful benchmark studies51–58 can guide the selection of
suitable functionals. In addition, there has been promis-
ing steps to better understand remaining limitations of
existing functionals and provide potential solutions in re-
cent studies.59–61 Combined with the inexpensive yet reli-
able representation of interactions, as shown in this work,
this opens up the possibility for the uncomplicated but
accurate investigation of many technologically relevant
systems.

Following our active learning workflow, we have ob-
tained C-NNP models for six different aqueous phase
systems, which are shown in the bottom panel of Fig. 1.
These diverse systems involve various types of interac-
tions, feature bulk, interface and confinement regions and
go up to a chemical composition of four elements. In all
cases, the training set of the model is exclusively based on
a set of structures generated by ab initio molecular dy-
namics simulations, as described in detail in the Materials
and Methods section. Given that input, all six models
have been generated without further adjustments. For
all these systems, convergence was achieved with a com-
pact training set of roughly 300 structures, highlighting
the advantages of the active learning procedure.

AUTOMATED QUALITY ASSESSMENT OF
COMMITTEE NEURAL NETWORK POTENTIALS

An automated training procedure calls for an efficient
and robust validation protocol. Through extensive com-

parisons of our models to the underlying ab initio ref-
erence trajectories we have identified a general set of
properties that serve to provide a stern test of our mod-
els. These can be evaluated for any system of interest
and provide a broad overview of the performance of a
MLP, while further tests are included in the Support-
ing Information. The selected properties exemplify the
performance of the models for structural and dynamical
properties as well as the precision of the force prediction.
Specifically, the performance for structural properties is
assessed by the match of the radial distribution functions
(RDF) for all involved species comparing the ab initio
reference to the model prediction based on molecular dy-
namics simulations. All RDFs of a given system provide
a comprehensive summary of the structural arrangement
of the system of interest and are thus ideal to evaluate the
performance of the machine learning model for thermo-
dynamic properties. Dynamical properties are validated
by comparing the species-resolved vibrational density of
states (VDOS) obtained with the model and the refer-
ence, which gives a comprehensive overview of inter- and
intramolecular motions. Finally, the force prediction of
the model is validated by the force root mean square er-
ror (RMSE) of a randomly selected subset of structures
from the ab initio reference simulation. This quantity
is chosen since the forces ultimately drive the molecular
dynamics simulations when using the model. In order to
make these properties comparable for all systems, they
are reduced into a score by suitable difference measure-
ments and subsequent averaging over the involved species
as described in detail in the Supporting Information. The
entire testing protocol functions in an automated man-
ner and efficiently provides a condensed summary of the
accuracy of each model.

The resulting summary of the quality assessment for all
six studied systems is shown in Fig. 2. From this analy-
sis it is clear that all models reproduce the three selected
properties with rather high precision, where the RDF
score ranges between 100 to 98%, the VDOS score be-
tween 98 to 96%, and the force score between 95 to 86%.
To illustrate the meaning of these values, we depict the
individual functions (RDF and VDOS) and the force cor-
relation for the solvated fluoride ion C-NNP model along
with the total scores in Fig. 2, while all other properties
for the remaining models are compiled in the Supporting
Information. This comparison shows that the selected
properties are reproduced with good agreement to the ab
initio reference method by our six C-NNP models. In
addition, all C-NNP results included in this performance
summary are based on substantially extended simulation
times compared to the AIMD references as described in
detail in the Supporting Information. This highlights the
robust nature of our models, enabling reliable predictions
over long time scales. We note that statistical fluctua-
tions due to the more converged nature of our C-NNP
simulations accounts only for very minor changes of the
final property scores on the order of 0.5%.

Besides the three sets of properties that we have quan-
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FIG. 2. Performance assessment of the committee neural network potentials (C-NNP) for six different aqueous systems. The
bar plot on the left features the summary of the accuracy for the radial distribution functions (RDF), the vibrational density of
states (VDOS) and the force predictions (Force) in percent for each system. The plots on the right depict the species resolved
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in the Supporting Information.

titatively validated here, we have performed additional
performance tests, in particular for the more complex sys-
tems of water confined in nanotubes and between MoS2

sheets as well as water on TiO2. These tests include the
detailed analysis of the global structure of the solid and
liquid subsystems, as encoded by the density profiles, the
hydrogen bonding of water in the various systems, and
the orientation of water with respect to the involved in-
terfaces. For all these tests, which are presented in detail
in the Supporting Information, we observe good agree-
ment between our C-NNP results and the AIMD ref-
erence simulations within the statistics of those shorter
AIMD runs. We are therefore confident that our perfor-
mance overview, presented in Fig. 2, underlines the high
quality of our C-NNP models.

The quality assessment for the six different systems in-
cluded in this work clearly highlights that our simple and
straightforward process to develop machine learning po-
tentials is able to provide robust and accurate models for
the selected thermodynamic condition. Compared to the
typical DFT setups employed here, the evaluation of the
potential energy and atomic forces is usually four to five
orders of magnitude faster with the C-NNP model. As
a consequence, all chosen systems could now be studied
in detail using exhaustive simulations that are accessible

with the developed models. Given the focus on general
properties in the testing protocol, we expect that it could
prove useful for the development of potentials for various
other solid-liquid systems of technological and/or scien-
tific interest.

REACHING LONGER LENGTH AND TIME SCALES

Let us finally showcase the potential of the presented
methodology to extend the length and time scales of
molecular simulations and thus further the understand-
ing of a system of interest. For that purpose we investi-
gate structural and dynamical properties of water in con-
tact with rutile TiO2(110). This system is of scientific
and technological importance due to the application of
TiO2 for example in photocatalysis or self-cleaning coat-
ings and sensors. In addition, it is an established pro-
totypical oxide system in surface science62 and a rather
controversial benchmark system both for theory and ex-
periment.63 For example, the extent of the mobility of
water in the contact layers, relevant e.g. for a detailed
understanding of catalytic processes, has been the focus
of substantial research.64–68

In order to shed light on these questions, we have used
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the developed C-NNP model to simulate rutile TiO2(110)
in contact with water. The model was constructed from
a 30 ps AIMD simulation at 300 K with the optB88-vdW
functional,69 involving a four O-Ti-O trilayer slab in con-
tact with 80 water molecules, forming a 1.5 nm water
film on the surface. After the development and bench-
marking of the C-NNP model as shown in the previous
section, we made a 2×2 model of the interface (resulting
in a TiO2/H2O setup with 1728 atoms) and ran 5 ns of
MD. Reaching such length and time scales with AIMD
simulations would represent an enormous computational
burden, while they can be routinely performed with the
C-NNP models. Further details of these simulations can
be found in the Materials and Methods section.

First, we analyze the water structuring by looking at
the density profile of water on the TiO2 surface shown in
panel b) of Fig. 3. The first important observation is the
close match between the crude density profile obtained
for our AIMD simulation and the statistically converged
profile obtained with the significantly extended C-NNP
simulation. Overall, we observe a highly structured ar-
rangement of water in the first two layers, which cor-
respond to the water adsorbed on the 5-coordinated ti-
tanium site for the first peak and the water around the
6-coordinated titanium site for the second peak, as shown
in the snapshot in the top panel. This density profile is
substantially more structured than for AIMD simulations
of water on rutile65 with the PBE functional, which high-
lights the complex dependence of interfacial properties on
the chosen functional. Given the improved understand-
ing of the dependence of the properties of water on the
DFT functional, in particular regarding the inclusion of
dispersion interactions,54 we conclude that modern DFT
approaches predict a highly structured arrangement of
water on the rutile surface reaching up to about 1 nm
into the liquid. This is also in good agreement with the
density profiles obtained from MLP simulations of wa-
ter on the anatase (101) surface37 that used the SCAN
functional as the reference method.

In a next step, we evaluate the water diffusion coef-
ficient resolved by the distance from the TiO2 surface.
Specifically, we make use of the mean square displace-
ment, which we spatially decompose based on the po-
sition of each water molecule at zero delay70 — an ap-
proach made feasible by the extensive statistics provided
by our C-NNP model. We then obtain a local estimate
of the diffusion coefficient by the well-known Einstein re-
lation, which can be evaluated separately for the parallel
(xy) and perpendicular (z) directions with respect to the
interface. Panel c) in Fig. 3 depicts the resulting water
diffusion constant Dxy and Dz as a function of the dis-
tance from the TiO2 surface. As anticipated from the
very structured density profile, the mobility close to the
surface is reduced substantially, where essentially no dif-
fusion is observed in the strongly adsorbed contact layer.
Beyond the first and second layer, the diffusivity in the
xy-direction increases steadily up to the water-vacuum
interface. At the same time, Dz features a plateau around
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FIG. 3. Properties of water on the rutile TiO2(110) surface.
Panel a) depicts a representative section of the simulation
cell including the four distinct adsorption sites at the inter-
face (Ti5c: fivefold coordinated titanium, Ti5c: sixfold co-
ordinated titanium, O3c: threefold coordinated oxygen, Obr:
oxygen bridge site. Panel b) features the mass density profile
based on all water atoms, panel c) the water diffusion con-
stant separated into parallel (xy) and perpendicular (z) com-
ponents, and panel d) shows, as a function of the distance
from the surface, the C-NNP atomic force error estimate for
structures from the C-NNP simulation and for all structures
from the original AIMD simulation. This error estimate is ob-
tained as a direct product of the committee disagreement σF

and a scaling factor α to match the force RMSE of a valida-
tion set as proposed in Ref. 49. The inset in panel d) depicts
the average atomic force error estimate of the water atoms
as a function of the simulation time. Panel e) and f) depict
the free energy profile of the water adsorbed in the two con-
tact layers from AIMD and C-NNP simulations, respectively.
Titanium atoms are shown in gray, oxygen atoms in red and
hydrogen atoms in white.
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1 nm from the surface and a substantial increase in dif-
fusion towards the vapor interface. Overall, this analysis
highlights the strong influence of the TiO2 interface on
the water diffusion stretching more than 1 nm into the
liquid.

Next, we address the accuracy of our extended C-NNP
simulations by analyzing the intrinsic error estimate of
our model, given by the atomic force committee disagree-
ment σF. Panel d) in Fig. 3 resolves this local error esti-
mate of the atomic force components for all water atoms
as a function of the distance from the surface. This er-
ror estimate is a product of the committee disagreement
σF, as directly provided by our C-NNP simulations, and
a scaling factor α determined to match the force RMSE
of a validation set as proposed in Ref. 49. In addition,
we have evaluated this error estimate with our C-NNP
model for all configurations of the original AIMD sim-
ulation to assess if the increased system size or C-NNP
generated structures lead to higher errors. Overall, we
observe error estimates between 40 to 80 meV/Å over the
entire water region with only slightly higher values close
to the TiO2 surface, indicating the increased complexity
of the involved interactions in this inhomogeneous region.
Furthermore, the error (averaged over all water atoms)
does not deteriorate over the course of the 5 ns long tra-
jectory, fluctuating around an average of 60 meV/Å, as
shown in the inset of panel d). Such atomic force er-
rors are similar or even smaller than those reported for
other developed MLPs e.g. for pure water.8–10,43 At the
same time, the error estimate obtained for the AIMD
configurations features essentially the same distance re-
solved profile, which reveals that our C-NNP simulations
are able to conserve their predictive power, while sub-
stantially extending both time and length scales of the
simulations.

Finally, we analyze the free energy profile of water ad-
sorbed in the first two contact layers on the TiO2 surface,
as depicted in panels e) and f) in Fig. 3 for the AIMD
and C-NNP simulation, respectively. From the direct
comparison between the AIMD and C-NNP results it is
clear that the limited statistics of the shorter AIMD sim-
ulation is insufficient to provide reliable insight into this
property. Only with the extensive sampling enabled by
the C-NNP model, the free energy profile can be fully
converged. The C-NNP free energy profile clearly un-
derlines the strong preference for water adsorption above
the fivefold coordinated titanium sites in the first con-
tact layer and the slightly weaker adsorption of water
around the sixfold coordinated titanium and threefold
coordinated oxygen sites in the second contact layer. In
between these adsorption sites, substantial free energy
barriers are observed, highlighting the immobile nature
of the two contact layers as also revealed by the analysis
of the water diffusion.

In summary, the extensive simulations with our C-
NNP model, obtained in a straightforward and efficient
workflow, provide detailed insight into the properties of
water on the rutile surface. We observe a pronounced

water layering effect with strong density fluctuations and
clear evidence of a highly structured arrangement of wa-
ter in the first adsorption layers. In addition, our analysis
of the water dynamics reveals almost no water diffusion
close to the interface and a strong influence on the dif-
fusion stretching more than 1 nm into the liquid. The
treatment of a complex interfacial system such as this
one requires an accurate description of the binding at
the various adsorption sites as well as long-time sampling
of the dynamics. The C-NNP model developed here de-
livers on both fronts, which highlights the potential of
our approach to deepen understanding of technologically
relevant solid-liquid systems.

CONCLUSION

In this work, we have presented a machine learning
framework that makes the generation of MLPs simple.
We have also showcased its versatility for the descrip-
tion of a range of complex aqueous systems. Making use
of committee neural network potentials, we have shown
how MLPs can be obtained in a straightforward and ro-
bust process from a single reference simulation. By es-
sentially removing the need to adjust any hyperparame-
ters, a new system of interest can be tackled in a direct,
data-driven way. We have demonstrated the potential
of this approach employing it for six complex liquid and
solid-liquid systems and have evaluated the quality of the
resulting models in detail for various properties underlin-
ing the high accuracy of our models. This important final
step is realized with an automated validation protocol
that is fully integrated into our framework. These de-
velopments are directly accessible to the community as
they build exclusively on open-source solutions and we
make our underlying software package and all templates
available.

In its spirit similar to on-the-fly learning techniques,
we depart from the goal of a high degree of transferabil-
ity or generality to concentrate exclusively on the ther-
modynamic condition relevant for the chosen scientific
question. Under these constraints, we have shown how
a robust and accurate machine learning potential can be
obtained with limited user input in an uncomplicated
process. We note that we have also explored the applica-
tion of our models for elevated and lowered temperatures,
which was possible without problems in a ±30 K regime.
During such simulations, the intrinsic error estimate of
our approach is a very useful tool to gauge the validity
of the results. Due to these promising signs, we plan to
systematically validate the robustness of our models to
venture beyond the chosen thermodynamic state point,
for example to describe variations in pressure.

We note that we built our development on established
components, such as an efficient ML structure-energy
representation and active learning concepts. At the same
time, we expect that the concepts laid out in this work
are transferable to other MLPs and active learning ap-
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proaches, making it possible to achieve similar results.
The novelty of our work lies in a change in perspective,
where relatively little effort is put into creating an inter-
molecular potential which, in spite of concentrating on
a sub-section of phase space, is still robust and accurate
enough to be used to describe the non-trivial behavior
of complex molecular systems. The importance clearly
is not in the individual pieces but rather in the end-to-
end framework and the broad range of applications made
possible. This work therefore enables simulations that
were not possible a short time ago, pushing forward the
straightforward and reliable application of MLPs.

Looking to the future, we have limited ourselves to
aqueous systems with four species in this work. How-
ever, we are confident that systems with more element
types can also be tackled with our approach. In ad-
dition, we have not explored reactive processes in this
study. Since MLPs are able to describe bond breaking
and bond making events by design, we again anticipate
the straightforward application of our methodology to
such situations. This will be especially important to in-
vestigate interesting surface reaction phenomena, such as
water dissociation on reactive surfaces or the recently re-
ported reversible hydrolysis of zeolites in contact with
water.71 Key to a successful application in such situa-
tions will be the sampling of the relevant reactive pro-
cess by the initial AIMD simulation used as input to our
active learning protocol. Finally, we are currently explor-
ing a training protocol in which structures are generated
by classical molecular dynamics as input for our active
learning protocol to minimize the need for expensive ab
initio calculations. In this approach the expensive quan-
tum computing engine is only used to obtain the ab initio
potential energies and atomic forces for those configura-
tions identified to be most important for the generation
of the model. Such an approach has potential for addi-
tional cost savings over the one presented here and does
not require expertise in AIMD simulations, thus more
readily opening up the approach to researchers from the
classical force field community.

In our six showcase applications of complex aqueous
systems we have developed models with different DFT
functionals, all of which represent reasonable choices for
the aqueous systems studied. However, this illustrates a
broader issue which is that there is currently no ‘perfect’
DFT functional for water and complex aqueous inter-
faces. We believe that the approach developed here could
become a valuable tool in this long-standing quest to find
suitable DFT functionals. Since our procedures provide
the ability to reveal the true converged thermal perfor-
mance of any given functional for a realistic system, at
a modest cost, the systematic exploration of the perfor-
mance of DFT methods for complex disordered systems
becomes feasible. This makes it possible to go beyond
the usual energetic benchmarks of relatively small sys-
tems in the absence of temperature and thus facilitates
direct comparison with experiment. Due to the moderate
size of our training sets, our framework is also expected

to be easily extendable to more expensive ab initio meth-
ods, e.g. at the hybrid DFT level or considering explicit
electron correlation, thus making these methods available
for the realistic simulation of complex interfacial systems.

Overall, the developments reported herein will enable
the investigation of complex aqueous processes such as
water structuring in contact with interfaces and wetting
or ice formation on surfaces in a straightforward man-
ner. Although here we applied it to aqueous systems,
we believe that the methodology will also prove useful
for other materials and liquids in contact with solids, as
well as general solvation phenomena, enabling the fast
screening of different materials at ab initio accuracy. It
will also be particularly useful for situations where long
sampling is required as for the exploration of free energy
surfaces, or calculations of dynamical properties, such as
the friction or viscosity of liquids in contact with inter-
faces. In summary, this work outlines a straightforward
strategy for the uncomplicated yet accurate investiga-
tion of many technologically and scientifically relevant
systems by molecular simulations.

MATERIALS AND METHODS

The introduced machine learning framework has been
implemented in the AML Python package, which inter-
leaves the required simulation packages and data manip-
ulation steps in a user friendly environment. The AML
package is available free of charge at https://github.
com/MarsalekGroup/aml and enables the straightfor-
ward generation of a C-NNP model given a reference tra-
jectory as input. With this code all six C-NNP models
were developed for the various aqueous phase systems
studied here.

NNP optimizations were performed with the open-
source n2p2 code72 using the optimization parameters
and symmetry functions as provided in the template
file in the associated data repository for this paper.
All additional information on the C-NNP fitting pro-
cedure can be found in the SI, while all training in-
put files, training sets and parameters of the final
models are publicly available at https://github.com/
water-ice-group/simple-MLP.

The reference AIMD simulations used as the starting
point for our C-NNP models employed quite different
DFT settings, while all having been performed with the
CP2K simulation package.73 We provide full detail about
these reference simulations in the SI, but the typical sim-
ulation setups consist of 64 to 110 water molecules reach-
ing simulation times between 30 to 130 ps.

MD simulations using the C-NNP models were also
performed with CP2K, which features an open-source
implementation of the C-NNP methodology since release
8.1. All C-NNP simulations for our validation protocol
were propagated for at least 0.5 ns to allow for the con-
verged computation of the RDF and VDOS. Further de-
tails of the validation protocol and the associated simula-

https://github.com/MarsalekGroup/aml
https://github.com/MarsalekGroup/aml
https://github.com/water-ice-group/simple-MLP
https://github.com/water-ice-group/simple-MLP
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tions can be found in the SI, while the validation can be
performed with the AML Python package. The C-NNP
simulations of the TiO2 water system were propagated
for 5 ns for a 2×2×1 supercell of the original AIMD
setup, resulting in total in 1728 atoms making up 320
water molecules on four O-Ti-O trilayers in a 23.672,
25.988, 42.0 Å periodic box. This simulation employed
a molecular dynamics time step of 1 fs, while using deu-
terium masses for the hydrogen atoms. The tempera-
ture of 300 K was maintained with a canonical sampling
through velocity rescaling thermostat.74
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QUALITY ASSESSMENT

In order to validate the six models developed by our rapid machine learning framework, we have established a
validation protocol that makes it possible to compare the performance of the various models for different systems in a
direct and condensed manner. For that purpose we have selected three main categories for structural and dynamical
properties as well as the precision of the force prediction. The main idea behind this validation protocol is that
it probes the performance of a given model for the thermodynamic condition it is developed for. Thus, all three
categories are compared directly against the AIMD simulation that was used as the starting point of the development
of the models. This enables the straight-forward evaluation of the models without the need for additional benchmark
simulations with the expensive reference method.

Structural properties for complex liquid-solid systems are directly probed by the radial distribution functions (RDFs)
of the various species, which provide detailed insight into the two-component structural arrangement. For the scoring
of the models, we compute all RDFs for a given system, both for the AIMD reference simulation and for independent
C-NNP simulations using the developed model. For an N component system this results in

(
N+1
2

)
RDFs which can

be directly compared between the AIMD and C-NNP results by using a suitable norm dRDF

dRDF = 1−
∫ +∞
0

∣∣gAIMD(r)− gC-NNP(r)
∣∣ dr∫ +∞

0
gAIMD(r)dr +

∫ +∞
0

gC-NNP(r)dr
(S1)

which provides a measure of the similarity of two RDFs ranging from 0 (for most different) to 1 (for identical).

Averaging over all
(
N+1
2

)
norms dRDF finally yields a single number that can be converted into percent to provide a

condensed score for the performance of the C-NNP model for structural properties.
Dynamical properties are directly encoded by the vibrational density of states (VDOS), which is obtained by

Fourier transform of the velocity autocorrelation function. The VDOS can be computed separately for all components
in a system of interest and thus provides detailed insight into the dynamical properties of the system, probing vastly
different processes over a broad frequency range. For an N component system N species-resolved VDOS are computed,
both for the AIMD and C-NNP simulations. Using a similar norm dVDOS as for the RDFs

dVDOS = 1−
∫ +∞
0

∣∣fAIMD(ν)− fC-NNP(ν)
∣∣ dν∫ +∞

0
fAIMD(ν)dν +

∫ +∞
0

fC-NNP(ν)dν
(S2)

the AIMD and C-NNP results can be condensed into a measure of the similarity between the different functions,
which after averaging over the different species and conversion into percent provides the score of a C-NNP model for
dynamical properties.

a)Electronic mail: cs2121@cam.ac.uk
b)These authors contributed equally.

c)Electronic mail: am452@cam.ac.uk

mailto:cs2121@cam.ac.uk
mailto:am452@cam.ac.uk


S2

Finally, the precision of the C-NNP model for the prediction of the forces is evaluated to provide another property
score. The forces are what drives the dynamics of the system of interest and are thus of fundamental importance for
an accurate description. We generated a test set for the evaluation of the force performance, by selecting a large subset
of 1000 structures and associated forces from the original AIMD simulation. The root mean square error (RMSE),
calculated separately for the N species in each system

FRMSE =

√∑3M
i=1

(
FAIMD
i − FC-NNP

i

)2
3M

(S3)

is used as a suitable measure for the force prediction. Since the magnitude of the forces can fluctuate strongly for
different systems, but also within a given system (solid compared to liquid atoms), the RMSE is put into relation of
the average force fluctuation of a given species

FRMS =

√∑3M
i=1

(
FAIMD
i

)2
3M

. (S4)

The resulting N scaled force errors FForce = FRMSE

FRMS are averaged and converted into percent to provide the force score
of the C-NNP model.

Properties evaluated for Quality Assessment

All individual properties evaluated for the validation protocol comprising the final RDF, VDOS, and force score, as
presented in the main text, are shown in full detail for all six C-NNP models in Fig. S1 to Fig. S6. Overall, essentially
perfect agreement between the AIMD and C-NNP properties is observed for all six systems.

In addition, we have evaluated other properties for the systems of water under confinement or at interfaces in order
to validate our C-NNP models in more detail. These properties are the density profiles, number of hydrogen bonds,
and water orientation with respect to the interfaces for the CNTH2O, BNNTH2O, MoSH2O, and TiO2H2O systems.
They are all depict in Fig. S7 where overall substantial agreement between the C-NNP prediction and the much shorter
AIMD reference simulations is observed. In particular, the density profile of the liquid and solid subsystems as shown
in the upper two columns highlight the different nature of confinement with distinct density modulations that are all
well reproduced by our C-NNP models. In addition, the number of hydrogen bonds along the water density profile is
in substantial agreement between AIMD reference and C-NNP prediction for all four systems. Finally, the orientation
of water with respect to the involved interfaces, as encoded by the cosine of the angle between the water dipole vector
and the normal of the interface, is also well reproduced by our C-NNP models.

COMPUTATIONAL DETAILS

C-NNP models

All C-NNP models for the six selected systems were trained with the active learning workflow implemented in the
AML Python package, available at https://github.com/MarsalekGroup/aml.

Using an ab initio trajectory as input, we construct a C-NNP model and its associated training set in an active
learning protocol. 20 randomly selected structures from the trajectory are used to generate an initial C-NNP model.
Next, the model is improved by iteratively adding structures with largest mean force committee disagreement to the
training set, which is continued until convergence of the committee disagreement is observed. We performed 15 such
active learning steps for all systems studied here, identifying 20 new structures for the training set in every step, but
keeping out previously selected structures, which results in a total training set size of about 300 structures. Within
every active learning step, the committee disagreement of 2000 randomly selected structures from the AIMD reference
trajectory is evaluated and the 20 structures with largest mean force disagreement are added to the training set. The
final C-NNP models are then obtained after stringent training of the NNP members with tight convergence criteria,
as mentioned below in detail.

The chemical environment around each atom is described by a set of atom–centered symmetry functions,S1 which
transform the structure into suitable input for the atomic NNs. We applied a general set of symmetry functions to
all systems studied here that can be automatically generated for a new system of interest within the AML package.
The structural information for angular and radial symmetry functions is restricted to a radial cutoff of 12 bohr by

https://github.com/MarsalekGroup/aml
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a cosine cutoff function. For every pair of elements we employ ten radial symmetry functions, with fixed Gaussian
width of 0.308 bohr, which are equally distributed within the 12 bohr cutoff. For every triple of elements we use
four angular symmetry functions with a fixed Gaussian width of 0.012 bohr, λ = ±1 and ζ of 1 and 4, respectively.
All symmetry function values are scaled and centered based on the average and range of the individual symmetry
functions encountered in the training set according to

Gi =
Gi −Gi

avg

Gi
max −Gi

min

. (S5)

All NNs consist of two hidden layers with 20 neurons, while the hyperbolic tangent was used as activation function
for all layers, except the output neuron, which features a linear activation function. NNP optimizations are performed
with the open-source n2p2 codeS2 and the optimization parameters have been chosen according to the detailed
benchmarking of this code for water.S2

Each C-NNP model is made up of 8 NNP members, which are constructed by random subsampling of the full
reference data, where 10% of the points are left out in each case to impose the required diversity between C-NNP
members. After different random initialization for each committee member, the weights and biases of the NNs were
optimized using the parallel multistream versionS2 of the adaptive global extended Kalman filter as implemented in
n2p2. C-NNPs used for QbC were optimized for 15 epochs with 6 streams, while the final C-NNPs, to be used for
simulations, were optimized for 50 epochs with 24 streams. All training input files, training sets and parameters of
the final models are publicly available at https://github.com/water-ice-group/simple-MLP.

AIMD simulations

All ab initio molecular dynamics simulations used as input for our machine learning framework haven been performed
with the CP2K software package.S3

The fluoride ion in water was described at the hybrid DFT level with the revPBE0 functional and D3 dispersion
correction. The wavefunction was represented up to a plane wave cutoff of 400 Ry in conjunction with the TZV2P
basis set and GTH pseudopotentials. The Hartree-Fock exchange calculation is speed up using the auxiliary density
matrix methods as implemented in C2PK. A single fluoride ion was described in a periodic box of 64 water molecules
with a cell size of 12.445 Å. The system was propagated in the NVT ensemble at 300 K with a molecular dynamics
timestep of 0.5 fs. Equilbiration with a CSVR thermostat and 30 fs coupling constant was performed for 3 ps, while
the temperature for the 50 ps production run was maintained with a CSVR thermostat and 1 ps coupling constant.

The sulfate ion in water was described with the BLYP functional in combination with the D3 dispersion correction.
A plane wave cutoff of 280 Ry was used, while the molecularly optimized TZV2P atomic basis set was employed
for all elements in combination with GTH pseudopotentials. The system contains a single sulfate ion and 64 water
molecules in a 12.41 Å periodic box. This setup was simulated in the NVT ensemble with a time step of 0.5 fs,
while the temperature was maintained with a CSVR thermostat with a 50 fs coupling constant. Equilibration was
performed for 5 ps followed by a 30 ps production run. This simulation has been used in a previous study on the
effects of polarization for the properties of the sulfate ion.S4

Simulations of water confined in carbon and hexagonal boron nitride nanotubes were performed for (12,12) armchair

nanotubes with a length of 3 unit cells at a water density of 1.0 g/cm
3
. This results in 288 wall atoms and 65 water

molecules for the carbon nanotube and 68 water molecules for the hexagonal boron nitride nanotube. The PBE
functional with D3 dispersion correction was used, in combination with GTH pseudopotentials, a 460 Ry plane wave
cutoff and the DZVP molecularly optimised basis set. Deuterium masses were used for the hydrogen atoms and the
molecular dynamics time step was set to 1.0 fs. Systems were pre-equilibrated for 5 ps at a temperature of 500 K using
velocity rescaling, while keeping the positions of the atoms in the confining nanotubes fixed. Production runs in the
NVT ensemble were then performed using Langevin dynamics, at a temperature of 330 K. Statistics were collected
for approximately 130 ps for each system.

For water confined within molybdenum disulphide, the ab initio reference simulation consists of 109 water molecules
confined by single layer MoS2 sheets of 168 atoms in a 22.545, 22.314, 11.500 Å periodic box. The optB88-vdW
functional was used, with GTH pseudopotentials, a 550 Ry plane wave cutoff, a relative cutoff of 60 Ry and the DZVP
molecularly optimised basis set for all elements. Equilibration was performed in the NVT ensemble, with a Nosé-
Hoover chain thermostats of length 5 to maintain a temperature of 500 K for 5 ps. This was followed by a second
equilibration stage at 400 K for a further 5 ps. Final data collection was performed at 400 K over a 30 ps period.

Water on the rutile titanium dioxide (110) surface was described by a system consisting of 80 water molecules on
four O-Ti-O trilayers in a periodic box of dimension 11.836, 12.9938, 42.00 Å. This results in a 1.5 nm thick water film
on the four trilayers with additional 15 Å vacuum to separate the periodic images in z-direction. The optB88-vdW

https://github.com/water-ice-group/simple-MLP
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FIG. S1. Assessment of the precision of the fluoride-water C-NNP model for structural and dynamical properties as well as
the force prediction. The radial distribution functions (RDF) of all pairs of species are shown in the left panels comparing the
AIMD and C-NNP results. The vibrational density of states (VDOS) of all species are shown in the middle panels comparing
the AIMD and C-NNP results. The force correlation between AIMD and C-NNP forces of all species are shown in the right
panels.

functional was used in combination with GTH pseudopotential, a 400 Ry plane wave cutoff and the DZVP molecularly
optimised basis set for all elements. After equilibration, the system was propagated for 30 ps in the NVT ensemble at
300 K maintained by a Nosé-Hoover chain thermostat of length 4 with a coupling constant of 40 fs. A 1.0 fs timestep
in combination with deuterium masses for hydrogen atoms was used and the atoms of the lowest O-Ti-O trilayer —
not in contact with water — were kept fixed.
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FIG. S2. Assessment of the precision of the sulfate-water C-NNP model for structural and dynamical properties as well as
the force prediction. The radial distribution functions (RDF) of all pairs of species are shown in the left panels comparing the
AIMD and C-NNP results. The vibrational density of states (VDOS) of all species are shown in the middle panels comparing
the AIMD and C-NNP results. The force correlation between AIMD and C-NNP forces of all species are shown in the right
panels.
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FIG. S3. Assessment of the precision of the carbon nanotube-water C-NNP model for structural and dynamical properties
as well as the force prediction. The radial distribution functions (RDF) of all pairs of species are shown in the left panels
comparing the AIMD and C-NNP results. The vibrational density of states (VDOS) of all species are shown in the middle
panels comparing the AIMD and C-NNP results. The force correlation between AIMD and C-NNP forces of all species are
shown in the right panels.
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FIG. S4. Assessment of the precision of the hexagonal boron nitride nanotube-water C-NNP model for structural and
dynamical properties as well as the force prediction. The radial distribution functions (RDF) of all pairs of species are shown
in the left panels comparing the AIMD and C-NNP results. The vibrational density of states (VDOS) of all species are shown
in the middle panels comparing the AIMD and C-NNP results. The force correlation between AIMD and C-NNP forces of all
species are shown in the right panels.
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FIG. S5. Assessment of the precision of the molybdenum disulfide-water C-NNP model for structural and dynamical properties
as well as the force prediction. The radial distribution functions (RDF) of all pairs of species are shown in the left panels
comparing the AIMD and C-NNP results. The vibrational density of states (VDOS) of all species are shown in the middle
panels comparing the AIMD and C-NNP results. The force correlation between AIMD and C-NNP forces of all species are
shown in the right panels.
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FIG. S6. Assessment of the precision of the titanium dioxide-water C-NNP model for structural and dynamical properties
as well as the force prediction. The radial distribution functions (RDF) of all pairs of species are shown in the left panels
comparing the AIMD and C-NNP results. The vibrational density of states (VDOS) of all species are shown in the middle
panels comparing the AIMD and C-NNP results. The force correlation between AIMD and C-NNP forces of all species are
shown in the right panels.
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FIG. S7. Validation of system properties for four complex systems involving water under confinement or at interfaces. The first,
second, third, and forth column compile results for water in a carbon nanotube (CNTH2O), water in a hexagonal boron nitride
nanotube (BNNTH2O), water confined by single layer molybdenum disulfide (MoS2H2O), and water at the rutile titanium
dioxide surface (TiO2H2O), respectively. The top row shows the density profiles of the involved solid subsystem and the second
row the corresponding density of the water as a function of the radius for the two nanotubes and Z position for the others. The
third row depicts the number of hydrogen bonds along the water density profile for the four systems, while the bottom row
features the orientation of water with respect to the involved interface along the water density profile. The AIMD reference
results are shown with solid lines, while the C-NNP predictions are included as dotted lines.
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