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Recently, a theoretical and an experimental protocol known as quantum-gravity-induced entanglement of
masses (QGEM) has been proposed to test the quantum nature of gravity using two mesoscopic masses, each
placed in a superposition of two locations. If after eliminating all nongravitational interactions between them
the particles become entangled, one can conclude that the gravitational potential is induced via a quantum
mediator, i.e., graviton. In this paper we explore extensions of the QGEM experiment to multidimensional
quantum objects and examine a range of different experiment geometries, in order to determine which would
generate entanglement faster. We conclude that when a sufficiently high decoherence rate is introduced, mul-
ticomponent superpositions can outperform the two-qubit setup. With low decoherence however, and given a
maximum distance �x between any two spatial states of a superposition, a set of two qubits placed in spatial
superposition parallel to one another will outperform all other models given realistic experimental parameters.
This is further verified with an experiment simulation, showing that O(103) measurements are required to
reject the no-entanglement hypothesis with a parallel-qubit setup without decoherence at a 99.9% confidence
level. The number of measurements increases when decoherence is introduced. When the decoherence rate
reaches 0.125 Hz, six-dimensional qudits are required as the two-qubit system entanglement cannot be witnessed
anymore. However, in this case, O(106) measurements will be required. One can group the witness operators to
measure in order to reduce the number of measurements (up to tenfold). However, this may be challenging to
implement experimentally.
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I. INTRODUCTION

Testing the quantum aspect of gravity is a central question
of modern physics. While many theories of quantum gravity
have been developed, there remains no consensus on how to
unify the theories of general relativity and quantum physics.
However, the lack of experimental evidence for gravity being
quantum still remains an impediment in ongoing research [1].

A number of recent experimental proposals have focused
on trying to unveil general-relativity (GR) and post-GR ev-
idence [2–10] and there has also been an initial attempt to
rule out the semiclassical treatment of quantum gravity in
[11]. Even attempts of detecting the B-mode polarization of
stochastic gravitational waves have uncertainties in the initial
conditions for the universe, which does not provide a concrete
test for the quantum nature of gravity [12].

In this regard, there has been recent progress in providing a
razor-sharp witness to test the existence of the quantum nature
of a graviton in a tabletop experiment based on the following
observations [13].

(i) The mediator of the universal gravitational interaction
occurs via a spin-2 massless graviton, and if the graviton is
quantum, it will entangle the two or more quantum matter
states and provide the static gravitational potential at the low-
est order in the graviton/matter loop expansion.

(ii) The above statement strictly relies on two main as-
sumptions: special relativity and perturbative quantum field
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theory, which allows an off-shell/virtual exchange of a gravi-
ton to mediate the gravitational force.

Based on this, a bona fide test for the quantum nature of
the gravitational interaction was proposed in [14], where the
two mesoscopic masses were allowed to interact in a spa-
tially superposed quantum state via gravity. A similar proposal
was also made in [15]. This has attracted significant interest
from the research community [16–31] and an experimental
initiative in creating a macroscopic superposition with the
Stern-Gerlach setup [32]. The above proposal has been coined
quantum gravity-induced entanglement of masses (QGEM),
which exploits the loophole that as local operations and clas-
sical communications are unable to entangle the two quantum
states if they are not entangled, to begin with, quantum
communication is required to generate the entanglement as
highlighted in [13]. The locality is required for making local
measurements. However, a nonlocal gravitational interaction
[33,34] is indeed allowed to entangle the two quantum states
of matter as shown in [13].

This paper extends the QGEM experiment by analyzing
a version in which multicomponent superposition beyond
qubits is allowed (three, qutrits; D, qudits). In addition, we
analyze different possible setups for the QGEM proposal in
order to determine which will be most efficient to implement
in a real experiment. In particular, we consider how quickly
different setups can generate entanglement according to a
generalized model of the QGEM experiment and how many
measurements would be required to witness that entangle-
ment. We test our findings in the presence of decoherence,
furthering the analyses presented in [19–22].
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FIG. 1. Schematic representation of the experiment, shown here using qubits: (a) the linear setup presented in [14,15,21] and (b) a
schematic for the parallel setup initially presented in [20].

Our key findings are that the parallel setups [20] of the
experiment entangle faster than any other setup considered;
in the presence of decoherence, using qudits may be beneficial
for the experiment and could even be necessary; we provide an
order of magnitude for the number of measurements required
to reach a 99.9% level of confidence (about 3.4σ ) for different
decoherence rates (up to 0.125 Hz).

This paper will proceed as follows. Section II presents a
generalized version of the QGEM experiment, with arbitrary
geometries and allowing for the use of spatial qudits. In
Sec. III we analyze the different setups proposed using the
entanglement entropy under the assumption of no decoher-
ence. More practical entanglement witnesses are introduced
in Sec. IV and used to reanalyze the experiment allowing
for decoherence in Sec. V. A statistical simulation of the
results is presented in Sec. VI to demonstrate how the required
number of runs varies with the dimension of the qudits and the
decoherence rate assumed.

II. QGEM WITH QUDITS

The QGEM experimental protocol [14,21] ensured that
the gravitational interaction would dominate over the elec-
tromagnetic interactions and the Casimir induced vacuum
fluctuations. This also provides one of the primary constraints
on the experimental setup, which we will not seek to modify in
this paper. Specifically, there must be some minimum distance
d maintained between the two particles. A schematic of two
potential forms of the experiment is presented in Fig. 1.

The superposition width (or distance between the leftmost
and the rightmost superposition instance of each qubit) is
labeled �x and was originally suggested to be approximately
250 μm [14]. While the superposition is held, the qubits are
maintained at a distance such that their innermost superposi-
tion instances are a least d apart (with d ∼ 200 μm [14]). If
d < 200 μm then forces such as Casimir-Polder forces and
van der Waals forces can affect the overall state of the system:
Gravity is no longer the only possible quantum mediator for
interactions between the two objects. There has been further
work considered to mediate this (see, for instance, [21]);
however, as it is beyond the primary considerations here and
it does not affect any final conclusion, we will not include it
here.

The two qubits are held in this superposition state for
a time τ ([14] suggests τ = 2.5 s) after which the spatial
states are brought together. The qubits are then measured to
determine whether they were entangled by their gravitational
interactions during the superposition period.

Nguyen and Bernards proposed a nearly identical scheme
[20], in which the superposition positions of each qubit are
aligned parallel to each other as opposed to linearly as in
[14,21]. A schematic for this can be found in Fig. 1. This
scheme was motivated by the fact that maintaining the dis-
tance between the two qubits would be easier in the parallel
case than in the linear case.

In the remainder of this paper, we take the experimental
parameters to match those proposed by Bose et al., that is, d
is always set to approximately 200 μm and the masses of the
two qudits are always approximately 10−14 kg. Furthermore,
unless otherwise stated �x ∼ 250 μm.

While both [14,20] have discussed the implementation
of the respective setups, none of the intermediary mod-
els have been considered and no direct comparison has
been drawn with respect to their impact on how fast the
qubit pair entangles or whether qudits would result in faster
entanglement.

We present a generalized model for the QGEM experiment,
considering rotations of each interferometer, centered on the
innermost spatial states of the two qudits (see Fig. 2). The al-
lowed space of the rotation angles θ1 and θ2 must be restricted
so that at no point do the two masses come within a distance
d of one another. The linear setup and the parallel setup are
special cases of the above, using the angles θ1 = θ2 = 0 and
θ1 = 3π

2 , θ2 = π
2 respectively.

Our model also allows for the use of qudits, rather than
qubits, that is, using D spatial superposition states (and equiv-
alently spin states, assuming Stern-Gerlach interferometry is
used as previously proposed) where D � 2, D ∈ N. Under
these conditions, the generalized state of the system resulting
from the QGEM experiment can be written as

|ψ (t = τ )〉 = 1

D

D−1∑
p=0

(
|p〉 ⊗

D−1∑
q=0

eiφpq |q〉
)

, (1)
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FIG. 2. Top view for the generalized QGEM model showing the
maximum spread of the qudits (distance Cpq in red). The parametriza-
tion of the setup is controlled by θ1 and θ2.

where φpq is defined by

φpq ∼ Gm1m2τ

h̄Cpq
. (2)

The value Cpq for each superposition pair can be derived
using simple trigonometric rules and is given by

Cpq =
√

A2
p + B2

q − 2ApBq cos(θ3), (3)

where

Ap = [(D − 1) − p]
�x

(D − 1)
, (4)

Bq =
[

d2 +
(

q
�x

(D − 1)

)2

− 2d

(
q

�x

(D − 1)

)
cos (π − θ2)

]1/2

, (5)

θ3 = π − θ1 + arcsin

(
q �x

(D−1) sin(θ2)

Bq

)
. (6)

III. ENTANGLEMENT ENTROPY TEST

To assess different setups for the QGEM experiment, we
begin by comparing the von Neumann entropy, or entangle-
ment entropy, of the output state. We recall that denoting by
ρ1 the partial trace over the first qudit of the two-qudit system
ρ, the entanglement entropy is given by [35]

S(ρ) = −Tr(ρ1log2ρ1) (7)

or, using the eigendecomposition of ρ1, ρ1 = ∑
j λ j | j〉〈 j|, we

can rewrite S(ρ) as

S(ρ) = −
∑

j

λ j log2(λ j ). (8)

For a D level system, the von Neumann entropy is bound by

0 � S(ρ) � log2(D), (9)

from which it follows that more entanglement can be pro-
duced from higher-dimension systems. However, this does not
provide any information on how quickly such entanglement
is created. Here we focus on the linear and parallel setups;

a discussion regarding all other alternatives is presented in
Appendix A.

In order to assess whether qubits perform better or worse
than higher-dimensional qudits, we compute the entanglement
entropy for ρpara and ρlin using the generalized version of
the model for two- to six-dimensional qudits. The resulting
entropy scaling with time is plotted in Fig. 3. The parallel
setup appears to perform significantly better than the linear
setup in realistic experiment times.

At the proposed experimental time of 2.5 s, the parallel-
qubit case achieves an entanglement entropy of 0.152, much
larger than that for the qutrit case of 0.084. Going to higher
dimensions further reduces the entanglement entropy to 0.068,
0.060, and 0.056 for four, five, and six dimensions, respec-
tively,1 suggesting that, under this model, multicomponent
superpositions do not entangle faster through gravity. Of
course, given that the superposition phases for the state result-
ing from the QGEM experiment are periodic, the linear setup
will achieve a higher entanglement entropy than the parallel
setup for sufficiently long experiment times.

The entanglement entropy is not a valid metric for entan-
glement if classical mixing or decoherence is affecting the
system as these are indistinguishable from entanglement as
a source of entanglement entropy. Therefore, entanglement
entropy is only used when assuming the system is at all
times in a pure state. As such, for more realistic experiments,
it is necessary to consider other methods of witnessing the
entanglement.

IV. ENTANGLEMENT WITNESS TESTS

Multiple external factors can affect the system state
throughout the experiment; these include decoherence and
classical uncertainties introduced by the hardware used to
implement the experiment. Entanglement witnesses provide
a convenient testing system in the context of an experiment.

The positive partial transpose (PPT) entanglement witness
is an appropriate witness for two negative partial transpose
(NPT) entangled qudits:

WPPT = |λ−〉〈λ−|T . (10)

In the parallel-qubit case, this witness is simply [19]

WPPT = 1
4 [I − X ⊗ X − Z ⊗ Y − Y ⊗ Z]. (11)

It is worth noting however that although this witness is not
optimal in the linear setup, having fewer terms to measure
results in less variance when conducting the experiment (for
a given number of measurements) (see Sec. VI). In addition,
all of the operators in the witness commute. As a result,
there exists a measurement basis in which one can derive the
expectation value of all these operators, reducing the number
of terms to measure to one.

When considering the qudit case, there exist states which
are entangled but cannot be detected by a PPT witness (see,
for example, [36,37]). These states have also been referred to

1Note that, at τ = 2.5 s, as D → ∞ the entanglement entropy
converges to approximately 0.039.
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FIG. 3. Entanglement entropy scaling with the state dimension for D = 2-6 for (a) the parallel setup and (b) the linear setup.

as bound entangled, and multiple methods have been devel-
oped to assess them [38–43]. The witnesses described above
may therefore not be sufficient to test entanglement of D ⊗ D
systems (with D > 2) as they would, by construction, fail to
detect positive partial transpose entangled states (PPTESs).
These can nonetheless be useful in case the theoretical density
matrix of the state created by the experiment is indeed a NPT.

There is currently no general witness construction strat-
egy for detecting PPTESs (also known as entangled bound
states) and research is focused on designing witnesses
specific to certain families of states. Thankfully, bound
entanglement represents only a small proportion of all en-
tangled states and remains unlikely to occur in the proposed
experiment.

We computed the PPT entanglement witness expectation
value for D-dimensional qudits with D = 2-6. The results are
presented in Fig. 4 for both the parallel and linear cases.

The expectation value of the PPT entanglement witness is
nearing −0.148 at τ = 2.5 s for qubits. The witness values
are slightly higher for higher-dimensional qudits, echoing the

FIG. 4. Expectation value of the PPT entanglement witness for
the parallel setup with state dimension for D = 2-6.

findings of the entanglement entropy test. These witnesses
also appear to be finest for the set of states that are produced
by each setup. A witness WA is set to be finer than another
witness WB if it detects as entangled all the states detected
by WB and at least one more (see Ref. [44]). In this case, the
witnesses computed are clearly able to detect all entangled
states produced (for any τ ), albeit with values very close to
zero for low values of τ .

Following the above, we can also note that the high-
dimension states generated by the QGEM experiment setups
considered must be NPT entangled states; otherwise, WPPT

would fail to detect them as entangled.
A further consideration regarding the entanglement witness

is how many operators it needs to be broken into to be mea-
sured experimentally. For this, we can consider the scaling of
generalized Gell-Mann matrices, which is a generalization of
the Pauli basis to quantum states of dimensions higher than
2. There are D2 element for a set of Gell-Mann matrices for
a D-dimensional quantum state. Because we build a system
composed of two quantum objects, we are therefore looking
at a maximum total number of operators of D4 for the entan-
glement witness.

We find that the entanglement witness derived from the
PPT principle has, in general, a slightly lower number of
operators than this (due to the weights of certain operators
being negligible or equal to zero in the decomposition of
the entanglement witness). We can further improve on this
number by grouping together the operators that can be jointly
measured. In general, operators can be jointly measured if
they can be diagonalized together in a specific basis (tensor
product basis) (for an overview of the method see [45]).
Conveniently, this is equivalent to saying that operators can
be jointly measured if they commute. Commutation is not
transitive, and as such, there may be many different solutions
to grouping operators together. To find a good solution, we
use the largest-degree-first coloring (LDFC) algorithm (for a
good summary of the LDFC algorithm, see the Supplemental
Material in [46]), whereby groups are composed starting from
one of the operators which have the highest number of com-
muting operators. The results we obtained are summarized in
Table I.
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TABLE I. Number of operators in the generalized Pauli decom-
position of the witnesses, which must be measured to estimate the
expectation value of the entanglement witness in the parallel case
for D = 2-6. Column 3 presents the number of operator groups
that can be jointly measured in a single basis, obtained using the
LDFC algorithm. Given this algorithm is a heuristic, one could find
a different set and number of groups.

D PPT witness PPT witness (grouped)

2 4 1
3 77 14
4 244 28
5 613 53
6 1272 94

One point to note is that measuring operators jointly re-
quires finding and implementing a joint measurement basis.
While straightforward in some cases, this could yield some
significant complications in an actual experiment as it may
require nonlocal operations.

V. TESTING MODELS WITH DECOHERENCE

So far we have considered the case where both qubits
are only coupled with each other through their positional

superposition. A real experimental setting cannot however
fully remove the potential for coupling of the studied quantum
system with the environment.

The particles’ coherence and hence joint entanglement
erodes over time due to interaction with the environment.
This results in decoherence of the positional qudits into a
single, defined position or a classical mixture of differing but
well-defined positions.

We schematically incorporate this in our model by adding a
time-dependent exponential decay to all off-diagonal terms of
each qudit’s density matrix, parametrized by the decoherence
rate γ . This is under the assumption that in any experiment
�x
D 	 λdB, where λdB is the mass’s de Broglie wavelength.

For a generic qudit, with dimension D and density matrix ρd ,
we can write

ρd =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

c11 c12
... c1(d−1) c1d

c21 c22
... c2(d−1) c2d

...
...

. . .
...

...

c(d−1)1 c(d−1)2
... c(d−1)(d−1) c(d−1)d

cd1 cd2
... cd (d−1) cdd

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

;

as such, following the model described above, decoherence is
incorporated as

ρd →

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

c11 c12e−γ τ ... c1(d−1)e−γ τ c1d e−γ τ

c21e−γ τ c22
... c2(d−1)e−γ τ c2d e−γ τ

...
...

. . .
...

...

c(d−1)1e−γ τ c(d−1)2e−γ τ ... c(d−1)(d−1) c(d−1)d e−γ τ

cd1e−γ τ cd2e−γ τ ... cd (d−1)e−γ τ cdd

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

The overall two-qudit system density matrix is then computed
using ρsystem = ρ

(1)
d ⊗ ρ

(2)
d .

We computed the expectation value of WPPT for dimen-
sions 2–6 for incremental values of γ . The results are plotted
in Fig. 5. Interestingly, higher-dimension models appear more
resilient to decoherence than the qubit case. It is worth noting
that increasing decoherence in the model also reduces the
optimal time for the experiment, that is, the time at which
the entanglement witness is most negative, and the ability
to detect entanglement with longer experiment times. To be
better understand the interplay between time, decoherence,
and the number of dimensions, the expected value of WPPT

was computed at two different values for the decoherence rate:
0.1 and 0.125 Hz (see Fig. 6).

The advantage of higher-dimension models, when decoher-
ence is increased, become significant when γ � 0.1 Hz. This
suggests that in a real run of the experiment, multicomponent
superpositions may be preferable, or even necessary if deco-
herence is sufficiently high. We can also observe, as expected,
that longer time becomes detrimental for high decoherence
rates. We also considered the problem of optimizing the ex-
periment runtime to maximize the decoherence rate for which
the entangled witness could detect the state as entangled.

In Appendix C we plot the expectation value of WPPT

for different values of τ , including decoherence. The
result is that τ = 2.5 s is nearly optimal for qubits
and qudits, though shorter time performs marginally
better for the latter. Of course the experiment can
be run for shorter times without any negative im-
pacts provided a detectable level of entanglement has
developed.

While higher-dimension setups are more resilient to de-
coherence, one key question in this analysis is to determine
what number of measurements will be required to reject that
the experiment state is not entangled. In order to further this
analysis, we now need to fully simulate the experiment in
order to determine the required number of measurements and
runtime of the QGEM experiment. This is the object of the
next section.

VI. EXPERIMENT SIMULATION

In this section we present experiment simulations used to
estimate the number of measurements that will be required
to reject the hypothesis that the qubit pair is not entangled.
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FIG. 5. Expectation value of the PPT entanglement witness as
a function of the decoherence rate in the parallel setup and with D
ranging from 2 to 6.

Failure to reject only means that it is impossible at this stage
to confidently test for gravitationally mediated entanglement.

To compare the entanglement witnesses and the different
models proposed, we simulate an experiment as described
below.

(i) The entanglement witness is decomposed into a
weighted sum of generalized Pauli tensor terms (Gell-Mann
matrices for qutrits and generalized d dimension Pauli opera-
tors for qudits; we used the method for generalization of Pauli
operators described in Ref. [47]). In some cases, we group the
operators (following the groups described in Table I).

(ii) The quantum state resulting from the experiment is
measured a predetermined number of times against each of
the Pauli terms or group to compute (a) their expectation
value and (b) the standard error of the measurement series. To
minimize the variance of the observable for a given number
of measurements, we have weighted the number of measure-
ments in proportion to the weight of each Pauli tensor terms
(or group) in the decomposition of the witness.

(iii) Details on how confidence levels are computed can be
found in Appendix D.

The plots presented in this section are an average over
many single runs of each numerical experiment simulation.
As such, these should be representative of a typical run of
the experiment. The conclusions drawn from these are only
meant to indicate the order of magnitude of the number of
measurements required in order to define the most adequate
experiment setup.

We first describe the results obtained from the experiment
simulation with qubits. The simulation is first run comparing
the linear and parallel setups with no decoherence in Fig. 7
followed by plots of the simulation for increasing decoher-
ence rate γ in Fig. 8. We have used WPPT with full basis
decomposition in this first experiment simulations, holding
�x = 250 μm and τ = 2.5 s.

As we can see from Fig. 7, with no decoherence, it takes
about 500 measurements to reject the hypothesis that the two
states are not entangled at a 99.9% confidence level in the par-
allel case and at least 3000 measurements for the linear setup.

Using the witness derived in the parallel setup marginally
improves the results of the linear case, although not
sufficiently for it to be comparable to the parallel version of
the experiment. This further confirms that the parallel setup
will be preferable in a real experiment and we therefore dis-
card the linear setup in the remainder of the simulations.

We can expect that incorporating decoherence will increase
the number of measurements required as it pushes the ex-
pectation value of WPPT upward. The results of the qubit
experiment simulations with decoherence are presented in
Fig. 8, which illustrates the rapid increase in the number
of measurements required as the decoherence rate is raised.
For γ = 0.05 Hz, the parallel setup still only requires about
2000 measurements. This figure goes up to approximately
6000 measurements for γ = 0.075 Hz. At γ = 0.1 Hz, the
experiment would required at least 25 000 measurements. At
this decoherence rate, qubits have lower negative expectation
values for WPPT than some qudits, and at decoherence rate
above γ = 0.12 Hz, the expectation value of the witness is
positive (that is, no entanglement is detected and therefore the
results are not plotted).

We repeated the experiment simulations as described above
with differing decoherence rates in the case of qudits. We have
used the D = 6 qudit case for illustration. As for the qubit
simulations, all the experiments use the parallel setup, �x =
250 μm and τ = 2.5 s.

As expected, for the six-qudit case, the number of mea-
surements required is significantly higher. This is primarily
due to the large number of additional terms to compute. Our
results are presented in Fig. 9 and show that for γ = 0.05 Hz,
over 200 000 measurements would be needed, while nearly
400 000 would be required if γ = 0.075 Hz and about 600 000
for γ = 0.1 Hz.

One last test that is worth considering is the situation in
which grouping of terms is allowed (this is subject to being
able to produce the relevant measurement bases experimen-
tally, as mentioned in Sec. IV). Figure 10 presents the results
in the case of qubits. We can already see the drastic reduction
in the total number of measurements required, resulting from
the reduction of terms to measure from 4 (in reality 3 since the
identity term does not need to be measured) to 1. Fewer than
1000 measurements and 2000 measurements are necessary
when γ = 0.05 and 0.075 Hz, respectively. Similarly, only
about 12 000 measurements are required if γ = 0.1 Hz.

A very similar pattern can be seen in the qudit case. The
results for six qudits are presented in Fig. 11. The number
of measurements is drastically reduced when operators are
grouped. About 25 000 measurements are needed for γ =
0.05 Hz, while γ = 0.075 Hz requires fewer than 40 000 mea-
surements and γ = 0.1 Hz fewer than 80 000.

There are clearly no reasons to use high-dimensional qudits
unless the decoherence rate is such that the entanglement wit-
ness for qubits always has a positive expectation value. In the
experiment settings we have assumed, this happens at about
γ ≈ 0.12 Hz. We therefore present in Fig. 12 an experiment
simulation showing how six qudits perform in the window of
decoherence rate in which high-dimensional qudits become
relevant.

At γ = 1.25 Hz, it is clear that the six-qudit states still
require a very large number of measurements in order to
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FIG. 6. Entanglement witness expectation value over time for the parallel setup and with D ranging from 2 to 6: (a) γ = 0.1 Hz and (b)
γ = 0.125 Hz.

reject the null hypothesis. However, grouping the operators
to measure in joint measurement bases allows reducing the
number of measurements required from nearly 2 000 000 to
slightly above 200 000. It is worth noting that at this rate,
the qubit case would not work as decoherence pushes the
expectation value of the witness above zero and the four-qudit
and five-qudit cases are too close to zero to reach confidence
of 99.9% in a realistic number of measurements.

VII. CONCLUSION

This paper considered modifying the setup proposed in the
original QGEM experiments to determine how best to gener-
ate, protect, and detect entanglement in a future experiment.
We looked at two aspects, the geometric setup of the exper-
iment and the number of dimensions of the quantum objects

FIG. 7. QGEM experiment simulation in the linear and parallel
setups (no decoherence). There is the expected level of confidence
(probability of the witness value actually being negative) in the qubit
case. We added the case in which the parallel witness is used for
the linear setup showcasing the benefits of having a lower number of
terms to compute.

used, and developed a generalized mathematical model of the
experiment.

Based on this model and using entanglement entropy,
we concluded that the parallel-qubit setup generates entan-
glement the fastest for realistic experiment runtimes (τ of
order of 1 s). As entanglement entropy cannot account for
entanglement once decoherence is introduced, we presented
an entanglement test based on entanglement witnesses. We
concluded that as the decoherence rate is increased to higher
dimension, qudits finally outperform qubits by providing
lower expectation values for the witnesses.

To estimate which setup would require the fewest measure-
ments to evidence entanglement, we simulated experiments to
define a confidence level for the negativity of the expectation
value of the witness given a certain number of measurements.
Without noise, at a 99.9% certainty level, the parallel-qubit

FIG. 8. QGEM experiment simulation with qubits. The confi-
dence levels for three decoherence levels (0.05, 0.075, and 0.1 Hz)
are shown as a function of the number of measurements available.
Here the witness has expectation values of −0.074, −0.043, and
−0.016, respectively.

052416-7



TILLY, MARSHMAN, MAZUMDAR, AND BOSE PHYSICAL REVIEW A 104, 052416 (2021)

FIG. 9. QGEM experiment simulation with six qudits. The con-
fidence levels for three decoherence levels (0.05, 0.075, and 0.1 Hz)
are shown as a function of the number of measurements available.
Here the witness has expectation values of −0.045, −0.032, and
−0.021, respectively

setup requires fewer than 2000 measurements (1000 when
grouped) to reject the null hypothesis (that the state is not
entangled). The number of measurements required increases
rapidly when decoherence is introduced.

Qudits of higher dimensions only become more useful than
qubits when the expectation value of the witness for qubits
becomes non-negative. That is because the number of basis
elements to be estimated to calculate the witness expectation
value increases quadratically in the number of dimensions
(d4). In the experiment settings proposed, at τ = 2.5 s and
�x = 250 μm, qudits of dimension 6 are more favorable than
qubits when the decoherence rate is γ ∼ 0.125 Hz; however,

FIG. 10. QGEM experiment simulation with qubits (operators
grouped). The confidence levels for three decoherence levels (0.05,
0.075, and 0.1 Hz) are shown as a function of the number of measure-
ments available. Here the witness has expectation values of −0.074,
−0.043, and −0.016, respectively.

FIG. 11. QGEM experiment simulation with six qudits (opera-
tors grouped). The confidence levels for three decoherence levels
(0.05, 0.075, and 0.1 Hz) are shown as a function of the number of
measurements available. Here the witness has expectation values of
−0.045, −0.032, and −0.021, respectively.

in this case, over 2 000 000 measurements will be required
(200 000 when operators are grouped).

Thus, to further improve the experiment design, the fol-
lowing points should be considered. Clearly, reducing the
qudit-pair exposure to the environment to decoherence would
render the experiment more economical. The total expected
decoherence rates in specific, realistic experimental designs
must be estimated in order to confirm whether higher-
dimension qudits will be required. Finally, any increase in
the superposition width �x is significantly beneficial as it
both improves the entanglement generation rate, allowing a
significant reduction in overall runtime, which therefore also
minimizes the impact of decoherence.

FIG. 12. QGEM experiment simulation with six qudits. The con-
fidence levels for a decoherence rate of 0.125 Hz are shown as a
function of the number of measurements available in a case where
the operators are grouped and a case where they are not.
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Our PYTHON model for computation and modeling of the
QGEM experiment is available in [48].
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APPENDIX A: THE GEOMETRICALLY
GENERALIZED MODEL

There are a number of parameters in the generalized for-
mula that can be modified and tested for more effective
entanglement generation. We have isolated two which offer
particular insights, the superposition width �x in Sec. VII and
the rotation angles θ1 and θ2 in Sec. VII. Prior to this, however,
there are a few points that are worth noting.

(i) It is clear that more time can allow achieving maxi-
mally entangled states; however, increasing the experimental
runtime is unrealistic due to greater risk of decoherence. This
point is covered in more detail in Sec. V.

(ii) Reducing the minimum distance d also clearly gen-
erates much faster entanglement. However, as mentioned
before, this is not necessarily useful in practice. This has been
considered by others [21], and any results here will also hold
for such modified setups.

(iii) Using more massive quantum objects results in higher
relative phases and in faster entanglement generation. How-
ever, more massive objects would also mean more challenging
implementation for the interferometry, larger particle radii,
and hence higher Casimir-Polder forces. This could in turn in-
crease the minimum distance d and overall negatively impact
entanglement growth. This is not something we will consider
further.

1. Comparing rotation angle setups

In the main text we presented only the linear and paral-
lel cases. Based on our results, the parallel setup entangles
the qudits faster. For completeness, and to allow for further
modification in the implementation by experimentalists, we
also considered a range of additional geometries for the setup
that can be implemented using the generalized QGEM model
derived previously.

The heatmap presented in Fig. 13 displays the entangle-
ment entropy for all possible combinations of θ1 and θ2 as
defined in Fig. 2, having set �x = 250 μm and τ = 2.5 s.
The dark blue dots represent the two possible parallel setups
[(θ1 = 3π

2 , θ2 = π
2 ) and (θ1 = π

2 , θ2 = 3π
2 )], while the yellow

dot represents the linear setup (θ1 = θ2 = 0). On the heatmap,
blue represents low entanglement entropy while white rep-
resents entanglement entropy nearing 1.0. It appears from
this figure that higher entanglement entropy could possibly
be achieved with alternative setups; however, this is without
considering that some combinations result in some superpo-
sition instances being under 200 μm and therefore subject
to non-negligible Casimir-Polder forces (represented by the
shaded areas in the figure).

FIG. 13. Entanglement entropy for all possible combinations of
θ1 and θ2. The areas of reduced contrast (the region around the center
+) are forbidden based on the requirement that the states do not come
too close.

2. Impact of superposition width �x on entanglement entropy

Figure 14 shows that a larger superposition width results
in faster von Neumann entropy growth. To illustrate this point
we can consider the phases for the parallel-qudit setup: φpq is
smaller than or equal to φ, reaching equality at �x = 0 m; as
�x increases, φpq decreases, resulting in all the phase factors
�φpq becoming more negative than they already are and as
such accelerating entanglement generation.

The superposition width, however, is limited in practice by
experimental considerations such as the magnetic field gra-
dient achievable. This suggests that by further modifying the
arrangement into a parallel setup one can further reduce the
magnetic field gradient and/or other experimental parameters
while maintaining a detectable level of entanglement.

FIG. 14. Entanglement entropy for the parallel and linear setups
in the qubit case as a function of the superposition width �x.
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FIG. 15. Entanglement entropy as a function of time for D rang-
ing from 2 to 6. In this case, we have scaled �x to the number of
dimensions.

Using higher-dimension spin quantum objects would, in
theory, result in larger possible superposition width due to the
spin-dependent nature of the magnetic field gradient coupling.
This suggests that higher-dimensional objects would perform
better than qubits if their maximum superposition width is
higher. However, once a larger spin object is created, one can
simply initialize the state including only the outer spin states
and hence recreating a qubit state which performs better at
an equivalent value of �x. For illustration purposes, Fig. 15
represents a plot of entanglement entropy against time for
qudits in which �x is scaled to the number of dimensions.
This somewhat unrealistic setup leads to higher-dimensional
objects performing significantly better.

As such, the analysis allows us to conclude the following.
(i) Qubits entangle faster than qudits for values of τ and

�x realistic for the experiment.
(ii) Parallel setups entangle faster for all dimensions.
(iii) The superposition width �x will be the variable of

interest in terms of obtaining faster entanglement or a more
easily implementable experiment.

APPENDIX B: ALTERNATIVE WITNESS: VICINITY
WITNESS FOR NEGATIVE PARTIAL TRANSPOSE

ENTANGLED STATES

We consider an alternative entanglement witness, which
is built to detect entangled states in the vicinity of a known
entangled pure state. Constructing this witness amounts to
finding a value for α such that Tr(Wvic) � 0 for all separable
states, with Wvic given by

Wvic = αI − |ψ〉 〈ψ | . (B1)

The maximum value of α is then derived as the square of
the maximum Schmidt coefficient of the pure state [49]. De-
noting by λm the highest of these coefficients, we can rewrite
the witness as

Wvic = λ2
mI − |ψ〉 〈ψ | . (B2)

FIG. 16. Expectation value of the PPT and vicinity entanglement
witnesses as a function of time in the qubit case.

We can now compare the performance of the PPT-based wit-
ness WPPT and the vicinity witness Wvic. This analysis is
restricted to the parallel-qubit version of the QGEM experi-
ment as it appears to be the most optimal setup.

Comparing the expectation value of the PPT-based witness
and the vicinity witness, the former exhibits clearly much
lower values in short time frames (see Fig. 16). As such, it is
the recommended entanglement witness for the implemented
experiment. In Table II we show that the vicinity witness in
general requires measuring fewer terms than the PPT witness;
it is not sufficient, however, to make it more advantageous
than the PPT witness in an experimental model and therefore
we have mostly not included it in our analysis.

There also exist numerous other entanglement witnesses,
often based on existing separability criteria, which will not
be treated here as not directly relevant to the proposed re-
search. (For an overview of several entanglement witnesses
see Ref. [50]).

A possible way to reduce the number of operators to be
measured would be to find a suboptimal witness with a lower
number of terms to measure. One example is an approach sim-
ilar to Bell inequalities, which do not detect all the entangled
states as they focus only on identifying states which cannot
be explained through local hidden variable (LHV) models.
In [51] Hyllus et al. showed that it is possible to convert an

TABLE II. Number of operators to be measured to estimate the
expectation value of the entanglement witness in the parallel case
for D = 2-6 for the parallel case and linear case using the PPT
entanglement witness and for the parallel case using the vicinity
entanglement witness.

D PPT (parallel) PPT (linear) Vicinity (parallel)

2 4 9 6
3 77 81 60
4 244 256 211
5 613 625 547
6 1272 1296 1166
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FIG. 17. Expectation value of the PPT entanglement witness for
different runtimes of the experiment and as a function of the deco-
herence rate in the case D = 2.

optimal entanglement witness into a Clauser-Horne-Shimony-
Holt (CHSH)–type inequality. The resulting inequality detects
non-LHV states optimally, but not entangled LHV states.

Therefore, there is a trade-off between the optimality of the
entanglement witness (the finest entanglement witness being
the optimal witness for a given entanglement detection prob-
lem) and the overall number of measurements required to test
entanglement. The conversion method developed by Hyllus
et al. only relates to qubits and does not take into account the
impact of decoherence on the detectability of entanglement
[51]. However, for the qubit case, given the witness used
only has three terms that need to be measured, CHSH-type
inequalities are unlikely to provide a significant benefit.2

APPENDIX C: TIME TRADE-OFF WITH DECOHERENCE

In the original paper, Bose et al. suggested an experiment
runtime of τ = 2.5 s. In this Appendix we consider a simple
way to estimate which runtime produces the highest resilience
to decoherence (which runtime results in the expectation value
of the entanglement witness reaching 0 for the highest de-
coherence rate). Figure 17 presents the case of qubits, while
Fig. 18 presents the case of six-dimensional qudits.

Figure 17 shows that additional time has little impact on
how high the decoherence rate can be allowed to be. It does
however offer more negative expectation values for the en-
tanglement witness. If the experiment decoherence rate is
estimated, one can then verify whether additional time can
reduce the overall number of measurements required. The
effect is more pronounced in the six-dimensional qudit case as
shorter times offer negative expectation values of the witness
for higher decoherence rate.

2Nguyen and Bernards provide a threshold value for the phase
of the parallel setup for which it would violate CHSH inequalities,
including decoherence [20]. Further research would be necessary in
order to conduct a similar test for qudits.

FIG. 18. Expectation value of the PPT entanglement witness for
different runtimes of the experiment and as a function of the deco-
herence rate in the case D = 6.

APPENDIX D: COMPUTING THE CONFIDENCE
INTERVAL FOR A QUANTUM OBSERVABLE

In order to compute statistics related to the expectation
value of a quantum observable, we first need to deconstruct
the witness we are trying to estimate into a weighted sum of
observables that can be directly measured, i.e., a set of Pauli
strings. In particular, in the case of our two-qudit system we
have at most D4 terms. These terms and the tensor product
consist of the list of Gell-Mann matrices of dimension D
which are numbered D = D2. Any witness W can then be
written as

W =
D∑
i

D∑
j

ci jλ
(1)
i ⊗ λ

(2)
j , (D1)

with λ representing any Gell-Mann matrix (in the qubit case,
these are the Pauli matrices: λ ∈ {I, X,Y, Z}). Any tensor
wi j = λ

(1)
i ⊗ λ

(2)
j is a quantum observable that can be directly

measured in an experiment.
For a given number of measurements M, we can partially

improve the overall variance of the observable by distribut-
ing these measurements in proportion to the weight of each
term in the decomposition of the witness such that (noting
c = ∑

i

∑
j |ci j |) we have

M =
∑

i

∑
j

Mi j, (D2)

Mi j = |ci j |
c

M. (D3)

Considering that we conduct Mi j measurements, we can then
determine the mean and variance of each of the term as
follows:

wi j =
Mi j∑
m

w
(m)
i j

Mi j
, (D4)

σ 2
i j =

Mi j∑
m

(
wi j − w

(m)
i j

)2

(Mi j − 1)
. (D5)
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From there, we can compute the witness’s mean and variance

W =
D∑
i

D∑
j

Mi j∑
m

ci jw
(m)
i j

Mi j
, (D6)

σ 2
W =

D∑
i

D∑
j

Mi j∑
m

|ci j |2σ 2
i j . (D7)

Finally, denoting by M the average number of measurements
per term, we can compute the standard error of normally
distributed measurement population as

sW = σW√
M

. (D8)

We then compute the confidence interval C as

CW = [W − αsW ,W + αsW ], (D9)

with α the t value corresponding to the desired level of
confidence.

For computation of the confidence level, we test against
the null hypothesis W � μ0, with μ0 = 0, and compute the t
values following the traditional methods for a one-sided t test:

t = |W − μ0|
sW

. (D10)

Confidence is then computed as 1 − p, with p the p value
corresponding to the t value obtained.
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