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Public, private, and not-for-profit organizations find advanced technology and product development projects

challenging to manage due to the time and budget pressures, and turn to their development partners and

suppliers to address their development needs. We study how dynamic development contests with enriched

rank-based incentives and carefully-tailored information design can help these organizations outsource their

development projects at the minimum project lead time by stimulating competition among suppliers. We

show that an organization can use dynamically-adjusted flexible rewards to achieve the absolute minimum

expected project lead time at a significantly lower cost than a fixed-reward policy. Importantly, our flexible-

reward policy pays the absolute minimum expected reward (i.e., achieves the first best). We further study

the case where the organization does not have sufficient budget to offer a reward that attains the absolute

minimum expected lead time. We propose that in this case, the organization can dynamically increase the

contest reward until its budget constraint binds and then use information sharing as a strategic tool to

incentivize suppliers. Specifically, we propose an easy-to-implement random-update policy where the orga-

nization periodically monitors the status of suppliers at random times and immediately discloses any partial

progress. We show that such a random-update policy outperforms other canonical information disclosure

strategies. Our results indicate that dynamic rewards and strategic information disclosure are powerful tools

to help organizations outsource their development needs swiftly and cost effectively.
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1. Introduction

Organizations worldwide face the challenges of developing advanced technologies and products

under time and budget pressures. Private, public, and not-for-profit organizations aim to develop

technologies with the help of Tier 1 suppliers to tackle complex problems that require rigorous work

with significant uncertainty and multiple major milestones. Examples include the US Department

of Defense racing against other global powers to build hypersonic missiles by leveraging suppliers

like Lockheed Martin and Boeing; or Global Alliance of Vaccine and Immunization (GAVI) racing

to develop vaccines for deadly and debilitating infectious diseases such as pneumococcal meningitis

1
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or COVID-19 by tapping key competing pharmaceutical suppliers such as Pfizer and Astrazeneca.1

In this paper, we study how such organizations can go beyond contractual development and resort

to a “dynamic development contest” approach - by utilizing advanced elements of contests such

as rank-based incentives and strategic information disclosure to stimulate development effort from

competing suppliers to minimize project lead time while keeping the incentive budget in check.

There are three distinguishing aspects of a dynamic development contest:

1. Lead-Time-Based Competition. The development organization (hereafter, “principal”) is

engaged in launching a carefully-specified product (e.g., a hypersonic missile) or solving a well-

defined problem (e.g., developing a vaccine with a certain efficacy) and is focused on minimizing

the highly uncertain project lead time while keeping the cost of incentives in check. Lead time

minimization has not been a major priority for the more exploratory innovation contests, where

the focus is to obtain the highest quality innovative solutions for a broadly defined problem.

2. Expert-Sourcing. Due to complexity of problems and the enormity of investments necessary,

the principal in a development contest typically works with a few strategic suppliers (here-

after, “agents”) who have a proven expertise in the specific technologies and make significant

resource investments - in contrast to crowd-sourced contests that aim to attract a larger pool of

solvers making relatively low out of pocket investments. While such expert sourcing is involved

in its own ways, it also offers the principal some additional degrees of freedom with the suppli-

ers/agents, which can be put to good use as characterized in this paper to meet the principal’s

objectives of lead time minimization under budget constraints.

3. Difficult Multi-phase Problem. The development setting’s complexity means it is subdi-

vided into multiple milestones or stages (such as preclinical and clinical in the case of vaccine

development) to achieve the development goals allowing the organization to interact with the

suppliers at the milestone points.

Development contests also share similarities with other types of contests in their tendency to engage

in and benefit from contestants. We extend and adapt the contest paradigm to development settings

and contribute additional novel features such as enriched rank-based incentives and carefully-

tailored information design to stimulate competitive effort from suppliers.

Although development contests have the potential for significant economic and societal impact,2

they are not without challenges. First, as agents tackle a difficult problem, there is a danger that

some agents will lose interest in the absence of sufficient progress. Thus, an effective mechanism

1 In GAVI development contests, a small set of vaccine suppliers race to develop vaccines of acceptable efficacy at the
shortest lead time to win a reward in the form of a large supply contract with guaranteed prices (GAVI 2020).

2 GAVI reports that pneumococcal vaccine developed as a result of its development contest has prevented 700,000
children’s deaths in 60 developing countries over the last decade (GAVI 2020).
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should dynamically keep agents’ incentives alive to minimize the development lead time. Second,

major development projects require substantial investment from agents so the cost of incentivizing

effort from agents is significant. Considering that cost of incentives is usually covered by taxpayers’

money or donations, an effective mechanism should avoid overpaying agents. Therefore, we aim to

understand how contest organizers can design such contests for maximum efficiency – to minimize

lead time of development at the minimum cost of incentives.

To capture the key characteristics of a dynamic development contest, we build a parsimonious

model where two agents compete to complete a two-stage development project by exerting costly

effort over a continuous time frame. Successful completion of a stage (success) for an agent arrives

at a random point in time where the rate of arrival for each success increases with the agent’s effort.

An agent’s success is not observable by another agent so it is up to the principal whether and when

to share this information. The contest ends when one of the agents achieves two successes at which

point this winning agent is given a pre-determined reward. The principal commits to a reward

schedule about how this reward changes over time and an information disclosure policy which

specifies how the principal will disclose information throughout the contest (e.g., no information

sharing, full information sharing) at the beginning of the contest.

We first focus on the problem of a principal with no budget constraint. We establish that such

a principal can utilize a fixed-reward dynamic contest that does not change the reward over time

to solicit agents to exert their best efforts and attain the absolute minimum expected lead time.

Yet, we also find that such a principal significantly overpays agents. Specifically, by utilizing a

carefully designed flexible-reward schedule that increases the reward over time, the principal can

still achieve the absolute minimum expected lead time with 20% less cost of incentives/reward on

average, which could mean substantial savings in development settings that can cost hundreds of

millions of dollars. Better yet, a principal who makes use of information disclosure can simplify

the reward schedule tremendously while reaping all the benefits of the flexible-reward schedule.

Specifically, if the principal commits to keep each agent fully apprised of any partial progress

(i.e., an agent achieving the first success), the optimal flexible-reward schedule consists of just two

levels of rewards where the principal sets a guaranteed reward amount upfront with the promise

of increasing the reward amount if multiple agents achieve partial progress. Importantly, we show

that the flexible-reward schedule pays the absolute minimum expected reward (i.e., the first-best).

We next analyze a budget-constrained principal that cannot set a sufficiently large reward to

achieve the absolute minimum expected lead time. In this case, we first focus on how the principal

can utilize information as a strategic commodity by considering a fixed-reward contest that uses all

of the reward budget. By harnessing a dynamic Bayesian persuasion approach, we propose a simple

to implement “random-update” policy in which the principal commits to not monitoring the status
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of agents for a pre-determined initial time window; and then periodically monitoring the status

of agents at random times and immediately disclosing any partial progress. We show that this

easy-to-implement random-update policy achieves a shorter expected lead time than any canonical

information disclosure policy such as no information disclosure, full information disclosure (e.g.,

Halac et al. 2017, Mihm and Schlapp 2019), cyclic information disclosure with periodic updates

every fixed periods of time (e.g., Bimpikis et al. 2019, Ely et al. 2020), and deterministic-delay

policy that commits to share partial progress after a fixed delay (e.g., Ely 2017). We then find

that by utilizing a flexible-reward policy during the initial no-monitoring period, the principal can

reduce the cost of incentives without hindering project lead time. Our results indicate that enriched

rank-based incentives and carefully-tailored information design can be powerful tools to incentivize

development efforts of suppliers without overpaying them. We now commence with a review of

related literature before presenting the model and the results.

2. Related Literature

Our paper is related to three streams of literature: (i) innovation contests with no information

sharing, (ii) contests with one-time or dynamic information sharing, and (iii) Bayesian persuasion.

Our work has some connection to innovation contest literature pioneered by Taylor (1995) and

Terwiesch and Xu (2008) who study how many participants to let in a contest. In a more general

framework, Ales et al. (2017, 2020) derive conditions for the optimality of winner-takes-all and

open-entry contests. Extensions to heterogeneous agents, internal innovation contests, and multiple

attributes are considered by Körpeoğlu and Cho (2018), Nittala and Krishnan (2016), and Hu

and Wang (2020), respectively. More recent work investigates procurement decisions (Chen et al.

2018), participation (Stouras et al. 2019), duration (Korpeoglu et al. 2020), supplier collaboration

(Shalpegin et al. 2020), teamwork (Candoğan et al. 2020), and the impact of running parallel

contests (Körpeoğlu et al. 2017, Stouras et al. 2020). While this literature has provided valuable

insights on innovation contests that aim to crowdsource the best-quality solution to a problem, we

are interested in analyzing a dynamic development contest that differs from innovation contests

in three key properties discussed in §1. These distinct properties allow us to consider new degrees

of freedom available to the development organization including flexible rewards and information

design due to their dynamic strategic interactions with a small number of development partners.

Moreover, we study the design of incentives in a dynamic multi-stage framework to show how an

organization can encourage its suppliers and development partners to reduce project lead time by

exerting their best effort throughout the contest without overpaying them.

To study the role of information sharing in contests, a relatively recent stream of research has

been focusing on how to provide interim performance feedback in a two-period, two-agent frame-

work (e.g., Aoyagi 2010, Ederer 2010, Goltsman and Mukherjee 2011). Mihm and Schlapp (2019)
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applies this framework to innovation contests and adds to this stream by considering private dis-

closure policy in addition to full and no-information disclosure policies. Schlapp and Mihm (2018)

build on this work and prove that, in a wide class of feedback policies, there can be no feedback

policy that outperforms pre-committed truthfulness. Private feedback in the form of screening

intermediate submissions of N ≥ 2 solvers is considered by Khorasani et al. (2020) who show that

different contest environments require different ways of balancing screening specificity and sensi-

tivity. Our continuous-time framework enables us to add to this literature by providing insights

on how an organization should choose the rate and timing of information disclosure, rather than

giving a one-time interim feedback, in order to dynamically manage incentives of suppliers.

Our model is closer to a few papers that study dynamic information disclosure in contests using

a continuous-time framework. Halac et al. (2017) consider an experimentation contest where agents

compete to obtain a single-stage innovation whose feasibility is initially unknown and the principal

wishes to maximize the probability of obtaining the innovation. They show that in a setting with

full information disclosure, a winner-takes-all policy dominates others. Building on this framework,

Bimpikis et al. (2019) study a two-stage winner-takes-all contest where two agents compete and

the feasibility of the first stage is initially unknown. They show that full information disclosure

after an initial silent period may dominate no, full, or constant probabilistic disclosure. They also

explore a setting with no uncertainty in the first stage and show that a cyclic information disclo-

sure sometimes dominates no or full disclosure. Ely et al. (2020) derive optimal effort-maximizing

contests where agents exert effort to obtain a single breakthrough. They propose a cyclic feedback

policy that informs agents about peer success at the end of each fixed-length cycle. We contribute

to this scant literature in two ways. First, we show the value of flexible rewards in contests which

if designed carefully can help the principal achieve the absolute minimum expected lead time by

paying the absolute minimum expected reward (i.e., the first-best). This result is important in

any development setting where time and budget are of the essence. Second, we highlight the value

of strategic probabilistic disclosure in contests and propose a random-update policy that always

dominates other canonical disclosure policies including the ones studied by the above papers.

Lastly, our work is related to the growing literature of Bayesian persuasion pioneered by Rayo

and Segal (2010) and Kamenica and Gentzkow (2011). The bulk of the work on Bayesian persua-

sion focuses on static information design where principal shares information with each agent only

once (e.g., Rayo 2013, Bergemann and Morris 2019, Kamenica 2019). Indeed, there is a growing

literature that applies this static framework to operational problems (see Küçükgül et al. 2019,

deVericourt et al. 2020, and references therein). Recently, Ely (2017) introduces a dynamic per-

suasion mechanism where the principal dynamically shares information with agent(s) based on
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an exogenously given state of a stochastic process.3 Inspired by this approach, we construct our

random-update policy, and show that it improves upon other canonical information disclosure

policies. Importantly, our framework is much more complex because the state of the stochastic

process that the principal bases its information design on is no longer exogenous. Instead, it is

endogenously determined by actions of both agents as well as any prior information shared with

agents. Characterizing a well-performing information disclosure policy in this setting is not an easy

endeavor as pointed out in the survey by Horner and Skrzypacz (2017).

3. Model Development

Consider a setting where an organization (“principal”) aims to incentivize a small group of expert

firms (“agents”) to complete a difficult multi-stage task as fast as possible by rewarding the agent

who completes the task (i.e., all stages) first. Here we are interested in analyzing the impact of

partial progress (see §1 for examples) on agents’ incentives, so as common in the related literature

(e.g., Bimpikis et al. 2019, Mihm and Schlapp 2019), we take the minimal model with two stages

and two agents {i,−i}. This setting fits our dynamic development contest framework well because

such contests feature a small number of expert suppliers and a few major milestones (see §1). Time

(indexed by t) runs continuously, and the contest can last over a potentially infinite horizon.

As is standard in the contest literature reviewed in §2, we consider a winner-takes-all contest

where the first agent to complete both stages wins the contest and is given a reward Rt. Unlike

the standard contest framework where this reward is fixed (i.e., Rt = R), we consider a more

general rank-based mechanism where the reward can potentially change over time. We refer to the

“standard” contest mechanism as a fixed-reward contest and ours as a flexible-reward contest.

For an agent, successful completion of a stage (hereafter, “success”) arrives with a Poisson

process, and the agent can boost the arrival rate by exerting costly effort. Specifically, agent i who

has achieved k ∈ {0,1} successes while her opponent has achieved l ∈ {0,1} successes (if known by

agent i) privately chooses effort xik,l,t ∈ [0,1] at each instant t with an instantaneous cost cxik,l,t for

a constant c > 0, and a success in a stage may arrive with a Poisson process with instantaneous

probability λxik,l,t, where λ is the “achievability” parameter that is inversely proportional to how

difficult a stage is. (Our analysis and insights hold if we assume different Poisson arrival rates

for different stages of the contest.) The contest ends upon the arrival of the second success (i.e.,

completion of the second stage) for an agent at any time t and the winner receives the current

posted reward Rt. We denote by T the random date at which the contest ends.4

3 The key idea in dynamic Bayesian persuasion is to examine how an informed principal can persuade a set of players
over time to take desirable actions (in our case, exert their best effort) by influencing their beliefs. The common
theme in all such applications is that no information manipulation is required in states when incentives are sufficient
and only the bare minimum information is needed in states where incentives are misaligned.

4 Although the contest can potentially run over an infinite horizon, we show in §4 and §5 that in our model the
principal can always design a contest where the second success is attainable in finite time (i.e., T <∞).
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Denote by V i
k,l,t the expected utility (hereafter “continuation payoff”) of agent i who has achieved

k ∈ {0,1} successes while her opponent has achieved l ∈ {0,1} successes (if known by agent i) at

any moment t. Then at any time t, each agent i anticipates the efforts of her opponent and chooses

her effort levels from time t onward to maximize her expected utility

V i
k,l,t = max

xi
k,l,τ

E
[
RT .1{i wins}−

∫ T

t

cxik,l,τdτ

]
. (1)

As is common in the contest literature, we assume that all parties are risk-neutral (e.g., Ales et al.

2017, Halac et al. 2017, Bimpikis et al. 2019, Ely et al. 2020). We also assume that agents do not

discount time because considering discounting complicates the expressions without providing any

new insights (e.g., Halac et al. 2017, Mihm and Schlapp 2019, Ely et al. 2020). However, in §B.1

of Appendix B we show how our results can be generalized to a setting where all parties discount

future payoffs. Also, we normalize the agents’ outside option to zero without loss of generality.

Consistent with the literature on dynamic contests with information disclosure (e.g., Halac et al.

2017, Bimpikis et al. 2019, Ely et al. 2020), we assume that successful completion of a stage by an

agent is only observable to that agent and the principal, and that only the principal can credibly

disclose information about the status of agents’ progress (i.e., whether each agent is in the first or

second stage). This assumption is sensible given that an agent can easily misrepresent her partial

progress (i.e., success in the first stage) to other agents. As a result, the only party who can

credibly confirm the completion of a stage is the principal.5 To ensure that agents can interpret

the presence (or lack) of any information, the principal specifies its information disclosure policy to

agents at the outset of the contest (e.g., Halac et al. 2017, Bimpikis et al. 2019, Ely et al. 2020). We

consider and analyze several mainstream information disclosure policies including full information

disclosure where the principal commits to disclose any success upon its arrival, no information

disclosure where the principal does not use any information sharing, cyclic information disclosure

where the principal stays silent during fixed-length cycles and discloses full information at the end

of each cycle, and more strategic disclosure policies with deterministic or stochastic delay. Note

that whenever we consider an information disclosure policy where an agent does not know her

opponent’s state, we drop the corresponding index l (e.g., xik,l,t becomes xik,t).

The principal aims to minimize the expected lead time of the contest while also minimizing

the reward necessary to achieve this goal. The standard approach in the contest literature is

to assume that the principal can boil down agents’ performance and reward components into a

single dimensional profit function. Although this assumption makes sense in settings where agents

5 As we show in §4.2, an agent always prefers her partial progress (i.e., success in the first stage) to be disclosed to
her opponent because her opponent is discouraged by this information. Therefore, there is no cause for an agent to
conceal partial progress from the principal. For the same reason, an agent has an incentive to falsely disclose partial
progress to her opponent so without the approval of the principal, such information is not credible.



Khorasani, Körpeoğlu, Krishnan: Dynamic Development Contests
8

compete in solution quality, generating such a single dimensional profit function may be hard to

achieve when agents compete in time. Thus, instead of assuming such a single dimensional profit

function, we take a lexicographic approach that focuses on expected lead time first and expected

reward second. Specifically, we check if the principal can achieve the absolute minimum expected

lead time T by inducing both agents to exert full effort throughout the contest. If T is achievable,

we aim to find a reward schedule that yields T at the minimum expected reward by solving

min
Rt

E
[
RT .1{i or −i wins at T}

]
s.t. E

[
T.1{i or −i wins at T}

]
= T . (2)

Interestingly, we show in §4 that T is achievable if and only if the principal has sufficient funds. If the

principle is budget-constrained (formally defined in §5) with a low reward budget R, then it is not

possible to achieve T . We cover this case in §5, where we compare different information disclosure

policies to find the one that yields the minimum expected lead time E
[
T.1{i or −i wins at T}

]
by

using the whole reward budget. We study a principal with sufficient funds in §4 and a budget-

constrained principal in §5. All proofs are presented in the Appendix.

4. A Principal with Sufficient Funds

In §4.1, we present a benchmark (first-best) under which the principal achieves the absolute mini-

mum expected lead time at the lowest possible cost by assuming observable and contractible effort.

In the following sections, we use this benchmark to measure the performance of our contest mech-

anisms with unobservable effort. In §4.2, we characterize the optimal fixed-reward contest under

full information disclosure. In §4.3 and §4.4, we derive optimal flexible-reward contests under full

information disclosure and no-information disclosure, respectively.

4.1. First-Best Contract with Observable Effort

As a form of benchmark, we first identify the absolute minimum reward the principal should give

to achieve the absolute minimum expected lead time. Consider a case in which the principal can

observe agents’ efforts and specify the effort each agent will exert as long as it is individually

rational for the agent (i.e., the agent’s expected utility when exerting the designated effort is higher

than her outside option normalized to zero). In this case, the principal does not need to run a

contest; instead, the principal can pay a sufficient compensation to cover the cost of agents’ effort

by offering an individually rational contract that induces each agent to exert full effort for all t until

one agent achieves two successes. This contract achieves the absolute minimum expected lead time

T . Thus, the principal’s objective boils down to offering a contract which pays the smallest expected

compensation to agents such that both agents find it individually rational to exert full effort. It is

easy to verify that the expected duration of any such contract (i.e., the absolute minimum expected

lead time of the task), when both agents exert full effort at all times, is 5/(4λ) unit of time as
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derived in (11) in the Appendix. As a result, if the principal offers each agent 5c/(4λ), then it will

be individually rational for agents to accept such a contract and exert full effort at all times because

such effort will make agents’ (ex-ante) expected utility equal to their outside option. Thus, the

minimum required compensation to agents to achieve full effort can be calculated by multiplying

5c/(4λ) with 2. Proposition 1 formally states this result.

Proposition 1. There exists an individually rational “first-best” contract that induces full effort

at all times with the minimum required compensation of 5c/(2λ) to agents.

Proposition 1 characterizes the lower bound for the budget required to induce both agents to

exert full effort at all times. Yet, this lower bound is achieved under the assumption that agents’

efforts are observable, which is rarely the case in practice. Thus, in the remainder of this section,

we seek to understand how much reward is needed to induce both agents to exert their best efforts

until one agent achieves two successes by running a development contest without observing agents’

efforts and compare the result with the first-best contract.

4.2. Full Information Disclosure with Fixed Reward

In this section, we analyze a contest with a fixed reward R where the principal commits to disclose

any success upon its arrival. In other words, each agent is kept apprised of the progress of her

opponent at any instant. We analyze the agent’s problem by moving backward on the state of the

game where the states are defined by the number of successes of the agents. If both agents have

already achieved one success, agent i’s continuation payoff from any time t onward is given by:

V i
1,1,t = max

xi1,1,τ

∫ ∞
t

xi1,1,τ (λR− c)e
−
∫ τ
t λ(x

i
1,1,s+x

−i
1,1,s)dsdτ. (3)

To understand the above expression, note that if agent i chooses effort xi1,1,τ during interval (τ, τ +

dt), she incurs a cost cxi1,1,τdt and if a success arrives with probability λxi1,1,τdt, she enjoys the

fixed reward R, or if her opponent obtains the second success, the contest ends and she gets zero.

Furthermore, e−
∫ τ
t λ(x

i
1,1,s+x

−i
1,1,s)ds captures the probability that none of the agents have obtained

the second success by time τ . Now suppose the principal aims to induce both agents to exert full

effort at all times to attain the absolute minimum expected lead time T . From (3), the continuation

payoff of each agent i is given by V i
1,1,t = 1

2
(R− c

λ
).

Next, consider the state of the game with a leader (an agent with one success) and a laggard

(an agent with no success). The laggard’s continuation payoff from any time t onward is given by:

V i
0,1,t = max

xi0,1,τ

∫ ∞
t

xi0,1,τ (λV1,1,τ − c)e−
∫ τ
t λ(x

i
0,1,s+x

−i
1,0,s)dsdτ, (4)

where the laggard anticipates to receive a continuation payoff V1,1,τ if she succeeds and zero if her

opponent succeeds. Obviously, the laggard is willing to exert any effort only if her continuation



Khorasani, Körpeoğlu, Krishnan: Dynamic Development Contests
10

payoff upon success compensates her cost of effort. It follows immediately that the principal needs to

specify a fixed reward weakly greater than 3c/λ (which makes V1,1,t ≥ c/λ) to sufficiently incentivize

the laggard. The following proposition establishes that this minimum fixed reward is enough to

encourage full effort by both agents at all times.

Proposition 2. Under full information disclosure, the minimum fixed reward needed to induce

both agents to exert full effort at all times is 3c/λ.

Proposition 2 highlights that when the agents’ partial progress is observable, the laggard is at

risk of becoming discouraged if the reward is not large enough. This is because an agent i’s chance

of winning the reward declines once her opponent proceeds to the second stage (and hence agent i

becomes a laggard). Therefore, the principal has to offer the minimum fixed reward of 3c/λ to keep

the laggard’s continuation payoff upon success equal to c/λ. However, with this large fixed reward,

the principal overpays the leader and she receives a continuation payoff equal to V i
1,0,t = 3c/(2λ)

as derived in the Appendix. This large reward also delivers an ex-ante expected utility equal to

V i
0,0,t = c/(4λ) to each agent, which shows that the principal leaves money on the table as compared

to the first-best contract. In the next section, we investigate whether the principal can do better

than the fixed-reward contest by designing a flexible-reward contest that achieves the absolute

minimum expected lead time T under full information disclosure.

4.3. Full Information Disclosure with Flexible Reward

Notice that under full information disclosure, each agent’s effort provision decision and continuation

payoff depend solely on the state of the game, rather than on time itself since in the absence

of a deadline, the agent’s optimization problem is stationary. Thus, as we explain in the proof

of Theorem 1, it is without loss of optimality to let the principal choose a reward schedule that

depends only on the state of the contest (i.e., whether each agent achieved a success or not).

Observe that a contest may end under two states of the world: (i) a case where the leader obtains

the second success before the laggard obtains any success and (ii) a case where both agents have

already obtained one success and one of them achieves the second success. Denote by R2,0 the

contest reward in the former case and R2,1 the adjusted contest reward in the latter case. This

flexible-reward contest enables the principal to motivate full effort at all times by giving sufficient

incentives to the laggard without overpaying the leader. The following theorem formalizes this

argument and characterizes the optimal level of rewards.

Theorem 1. Under full information disclosure, a flexible-reward contest with R2,0 = 2c/λ and

R2,1 = 3c/λ induces both agents to exert full effort at all times by paying the first-best expected

reward of 5c/(2λ).
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As discussed in §4.2, under full information disclosure, the principal has to offer a minimum

continuation payoff of c/λ upon the arrival of a success to motivate the laggard whose opponent

advanced to the second stage. Thus, as in the case of fixed reward, this motivation can be achieved

by offering 3c/λ to the winner if the laggard obtains her first success. However, unlike a fixed-

reward schedule, the proposed flexible-reward design does not have to overpay the leader, who has

larger incentives to exert effort knowing that her opponent is in the first stage. Specifically, the

reward a leader will receive before the laggard achieves the first success (i.e., before the leader

loses her lead, see case (i) above) is R2,0 = 2c/λ. On the other hand, the reward a winner will

receive after both agents achieve the first success is R2,1 = 3c/λ (i.e., after the leader loses her lead,

see case (ii) above). The proposed flexible-reward schedule in Theorem 1 achieves the absolute

minimum expected lead time T by eliciting full effort at all times from both agents and gives the

minimum necessary reward. It also delivers the minimum surplus to the agents while respecting

their incentive compatibility constraints (as derived in the Appendix) at all times by offering a

continuation payoff equal to zero (recall that agents’ outside option is normalized to zero) to any

agent with no success (i.e., V i
0,0,t = V i

0,1,t = 0) and a continuation payoff equal to c/λ to any agent

with one success (i.e., V i
1,1,t = V i

1,0,t = c/λ).

The optimality of the proposed flexible-reward schedule can be seen from the fact that it incen-

tivizes full effort at all times by just offering the first-best expected reward. This is because with

probability 1/2, the contest ends before the arrival of any success for the laggard and the prin-

cipal spends R2,0 = 2c/λ; and with probability 1/2, the contest ends after the arrival of the first

success for the laggard (the state when both agents have obtained one success) and the principal

pays R2,1 = 3c/λ. Thus, the expected reward of the contest equals 5c/(2λ), which is the first-best

expected reward in Proposition 1. Another key feature of this design which makes it practically

appealing is its simplicity. The policy can easily be implemented by offering a guaranteed reward

of 2c/λ with the option to increase the reward if multiple agents progress to the second stage. The

flexible-reward schedule is quite impactful as well because it spends 20% less money on average

relative to the fixed-reward schedule to achieve the same contest outcome.

In practice, full information disclosure may not always be feasible because it may be difficult for

the principal to continuously monitor agents’ progress. To capture this setting, in the next section,

we investigate the effectiveness of a flexible-reward design in the case of no information disclosure.

4.4. No Information Disclosure with Flexible Reward

In this section, we characterize the optimal flexible-reward schedule in a contest where the principal

does not use any information sharing. Because each agent does not receive any information from

the principal, she forms a belief about her opponent’s progress and updates this belief over time.
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Specifically, let pit be the probability that agent i assigns at time t to the event that her opponent

has already progressed to the second stage (i.e., achieved a success in the first stage). As time

passes, the only information that agent i receives is whether the contest is still ongoing which

signals to agent i that her opponent has not yet completed the second stage. Given this information

update, and by Bayes’ rule, pit evolves according to:

dpit = λ(1− pit)(x−i0,t− pitx−i1,t)dt, (5)

with the boundary condition pi0 = 0 where x−i0,t denotes the opponent’s effort at time t conditional

on not having achieved a success yet, and x−i1,t denotes her effort at time t conditional on having

achieved the first success.6 Intuitively, and as shown in (5), the probability that each agent’s

opponent already advanced to the second stage, pit, is increasing in the opponent’s first-stage effort

x−i0,t and decreasing in the opponent’s second-stage effort x−i1,t.

Recall that V i
k,t is the continuation payoff of each agent i who has achieved k ∈ {0,1} successes

by time t. Then, the maximization problem for agent i after obtaining the first success is given by:

V i
1,t = max

xi1,τ

∫ ∞
t

xi1,τ (λRτ − c)e
−
∫ τ
t λ(x

i
1,s+p

i
sx
−i
1,s)dsdτ, (6)

where Rτ is the specified reward if the contest ends at time τ . The above expression can be

interpreted as follows: if agent i chooses effort xi1,τ during interval (τ, τ + dt), she incurs a cost

cxi1,τdt and if a success arrives with probability λxi1,τdt, she enjoys a reward Rτ . On the other

hand, the probability that her opponent is in the second stage and achieves a success in this time

interval is piτλx
−i
1,τdt, and in that case, the agent receives zero reward. Finally, e−

∫ τ
t λ(x

i
1,s+p

i
sx
−i
1,s)ds

captures the probability that neither the agent achieves a success, nor does her opponent achieve

the second success by time τ . Anticipating a continuation payoff of V i
1,τ upon the arrival of the first

success at time τ , agent i’s continuation payoff from time t onward before obtaining any success

can be expressed as follows:

V i
0,t = max

xi0,τ

∫ ∞
t

xi0,τ (λV
i
1,τ − c)e

−
∫ τ
t λ(x

i
0,s+p

i
sx
−i
1,s)dsdτ. (7)

The above expression can be interpreted similar to (6). As derived in condition (31) in the

Appendix, an agent with no success finds it optimal to exert full effort if and only if her additional

utility upon the arrival of her first success is sufficiently large. Proposition 3 characterizes the

optimal flexible-reward schedule that induces both agents to exert full effort at all times.

6 Note that, by Bayes’ rule, the probability that agent i assigns at time t+ dt to the event that her opponent has
succeeded once, given pit, can be expressed as follows:

pit+dt =
pit(1−x−i1,tλdt) + (1− pit)x−i0,tλdt

pit(1−x−i1,tλdt) + 1− pit
,

where the numerator is the probability that the opponent is in the second stage given that the game has not ended
yet, and the denominator is the total probability that the contest has not finished yet. The law of motion can be
obtained by subtracting pit from both sides, dividing by dt, and taking the limit as dt→ 0.
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Proposition 3. Under no information disclosure, a flexible-reward contest with Rt = (2 + pt)c/λ

where pt = λt/(1 + λt) induces both agents to exert full effort at all times by paying the first-best

expected reward of 5c/(2λ).

Under no information disclosure, an agent gradually increases the probability she assigns to her

opponent’s partial progress. This update in the agent’s beliefs reduces her incentives to exert full

effort. Thus, to mitigate reduced incentives, the optimal design with no information disclosure offers

a gradually increasing reward schedule over time which achieves the first-best expected reward

despite unobservable effort. To understand the intuition for this reward structure better, recall

that under full information disclosure, the principal has to offer a minimum continuation payoff of

c/λ to encourage an agent with no success to keep working when her opponent already progressed

to the second stage. In the absence of any information about the opponent’s progress, an agent i’s

belief about her opponent agent −i’s progress gradually increases over time, according to (5), as

she anticipates full effort provision in equilibrium. Thus, as agent i fails to achieve the first success

over time, she will anticipate that agent −i is more and more likely to be in the second stage. As

a result, agent i will think that even if she advances to the second stage, she is likely to compete

with agent −i in the second stage for the reward. This reduces the expected utility of progressing

to the second stage over time, and hence reduces the incentives for an agent with no success to

exert effort in the first stage. In order to give sufficient incentives to agents, the principal offers a

flexible-reward schedule according to Rt = (2 + pt)c/λ, where pt is the equilibrium belief of each

agent about the partial progress of her opponent.

Notice that agents’ and principal’s combined surplus is the same across any design that achieves

the absolute minimum expected lead time T . Therefore, the principal’s surplus is maximized when

the agents’ surplus is minimized. The proposed flexible-reward schedule in the above proposition

with no information disclosure minimizes the agents’ surplus by keeping the continuation payoff of

an agent with no success equal to zero (her outside option) and the continuation payoff of an agent

with one success equal to c/λ which is the bare minimum utility to incentivize first-stage effort.

Therefore, this design maximizes the principal’s surplus and hence is optimal.

Our results suggest that under both full information and no-information disclosure policies, the

principal should pay attention to two things. First, the principal should give sufficient reward to

keep the agent with no success incentivized to work when her opponent already progressed (or

is likely to have progressed) to the second stage. Second, the principal should avoid overpaying

agents when they have sufficient incentives to work. Under full information disclosure, this can be

achieved by increasing the reward one time from 2c/λ to 3c/λ when both agents complete the first

stage. Under no information disclosure, a gradually increasing reward in the form of (2 + pt)c/λ
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sustains full effort with the lowest expected reward. Therefore, for any information disclosure policy,

the principal can find an appropriate flexible-reward schedule that attains the absolute minimum

expected lead time at the minimal cost of incentives. This indicates that although the flexible-

reward schedule is easier to implement under a full information disclosure policy, the specific

information disclosure policy does not make a material difference in the principal’s objective.

However, this result assumes that the principal has a minimum budget of 3c/λ to encourage the

agent with no success to keep working when her opponent is in the second stage. (Note that

the reward under no information disclosure increases to 3c/λ as the opponent’s probability of

advancing to the second stage approaches 1). However, when the principal is budget-constrained

(i.e., her maximum budget R is strictly less than 3c/λ), these reward schedules will not be directly

implementable and information disclosure may play a more central role as a non-monetary incentive

mechanism in designing dynamic contests. Therefore, in the following section, we focus on the

information disclosure policy for a budget-constrained principal with a budget less than 3c/λ.

5. Using Information Design for Development Contests

In this section, we study another potential degree of freedom for principals engaging in development

contests, namely the use of information design. Such an approach can come in handy for a budget-

constrained principal who may fall short of the optimal reward amount derived in the previous

section. As we discussed in §4, the principal needs a minimum budget of 2c/λ for the second success

to be attainable (c/λ for each success) with no competition, and 3c/λ is a sufficient budget to

implement full effort at all times with two competing agents. If the principal is resource constrained

and falls short of this sufficient budget amount, we study how they can use information disclosure

to incentivize suppliers. We begin by considering a fixed reward and then consider information

disclosure jointly with a flexible reward in §5.3. For the rest of the analysis, we assume 2c/λ<R<

3c/λ, and we name a principal facing this limitation a budget-constrained principal. In §5.1, we

discuss the role of strategic information disclosure and propose a novel probabilistic design which

improves upon extreme cases of disclosure policies. Then in §5.2, we study the comparative benefit

of probabilistic disclosure over other canonical disclosure policies.

5.1. Information as a Strategic Commodity

An agent who has already achieved one success is easy to incentivize because she is already encour-

aged by the fact that she needs only one more success to obtain the reward. For such an agent, as we

will show throughout this section, the information disclosure policy has no impact on incentives. In

contrast, an agent with no success is at risk of becoming discouraged over time once she realizes (or

believes) that her opponent has already progressed to the second stage. To analyze the impact of
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partial progress on the incentives of agents and show the strategic value of information disclosure,

we first analyze the problem faced by a budget-constrained principal that offers no information

disclosure throughout the contest. Notice that unlike §4.4, the principal does not have sufficient

funds to gradually increase the reward up to 3c/λ to mitigate an agent’s reduced incentives caused

by the threat that her opponent has already progressed to the second stage. Therefore, in the

unique symmetric equilibrium of the contest, an agent with no success only exerts full effort as

long as monetary incentives are sufficient, and lowers her effort level after a certain threshold when

incentives are missing. The equilibrium is formally characterized below.

Proposition 4. When the principal is budget-constrained, and under no information disclosure,

there exists a unique symmetric equilibrium in which an agent with no success exerts full effort

until some time tr = pr
λ(1−pr) where pr = λR

c
− 2. After tr, she reduces her effort level to pr(< 1). An

agent who has achieved one success exerts full effort until the end.

To understand Proposition 4, we need to first understand that exerting full effort is incentive

compatible for an agent with no success if and only if she earns an additional utility of at least

c/λ upon the arrival of her first success (see condition (31) in the Appendix). While the agent

is working, the expected utility of progressing to the second stage diminishes over time as she

puts more weight to the event that her opponent already achieved the first success. Therefore, a

budget-constrained principal can only induce an agent with no success to exert full effort until time

tr where her belief reaches pr = λR
c
−2. After that, monetary incentives are not sufficient to justify

full effort, so each agent with no success reduces her effort to pr and keeps this effort level. To

understand why the equilibrium effort becomes pr, we need to understand that pr is the belief level

that keeps an agent indifferent between exerting any effort level. When an agent i’s belief is below

pr (which happens if the opponent exerts effort smaller than pr after tr), she exerts full effort but

when it is above pr (which happens if the opponent exerts effort larger than pr after tr), she exerts

zero effort. Thus, after tr, the unique symmetric equilibrium effort is pr, which uniquely keeps the

agent’s belief at the threshold and holds her expected continuation payoff after obtaining the first

success at c/λ such that the agent remains indifferent between exerting any effort at each instant.

It is worth noting that both the time threshold tr and the belief threshold and reduced effort

level pr are increasing in the size of the budget R and the achievability parameter λ, and decreasing

in the marginal cost of effort c. Also, as we discuss above, each agent has sufficient incentives to

exert full effort until the end after obtaining the first success (see condition (33) in the Appendix).

While no-information design elicits full effort before time tr, the reduced effort provision by an

agent with no success after time tr hints the benefit of using information strategically to improve

contest outcome. Let us first consider the full information disclosure policy. As discussed in §4.3,
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the principal should offer a reward of 3c/λ to the laggard once she realizes that her opponent

is in the second stage. Obviously, a budget-constrained principal does not have access to such

a high reward. Therefore, upon the arrival of the first success, the laggard stops exerting effort

immediately (see Proposition B1 in Appendix B). This is in contrast to no-information disclosure

policy where the principal never loses the laggard, but an agent with no success reduces her effort

level to pr < 1 after time tr even if her opponent does not achieve any partial progress. Our result

seems consistent with the empirical findings of Lemus and Marshall (2021) who study information

disclosure (no versus full), and show that disclosing information discourages a laggard, but the lack

of information creates uncertainty regarding how much effort is needed to remain competitive.

In a recent study, Bimpikis et al. (2019) highlight this observation and suggest a cyclic informa-

tion disclosure design with silent periods in between and full disclosure at the end of each cycle.

Specifically, in their mechanism, the principal stays silent during cycles of tr periods of time and

discloses full information about the status of the contest at the end of each cycle. This design

somehow blends the key benefits of the two extreme cases by: i) hiding any partial progress during

each silent period and inducing the agents to keep working, and ii) disclosing full information at

the end of each silent period to replenish incentives of the agents and to avoid reduced effort levels.

We next analyze the equilibrium under cyclic information disclosure policy in our setting.

Proposition 5. When the principal is budget-constrained, and commits to cyclic information dis-

closure with silent periods of length tr = pr
λ(1−pr) where pr = λR

c
−2, there exists a unique symmetric

equilibrium in which both agents exert full effort until time tr. At the end of the first cycle:

(i) If no agent has made any partial progress by time tr, the contest resets and the next silent period

with length tr begins in which both agents exert full effort.

(ii) If only one agent has made partial progress at the end of one cycle, the agent with no success

quits and the agent with one success exerts full effort until the end.

(iii) If both agents have made partial progress at the end of one cycle, both agents exert full effort

until the end.

The intuition of Proposition 5 is as follows. A cyclic design with silent periods of length tr

ensures that no information is provided to the agents during each cycle where the incentives are

sufficient to elicit full effort. At the end of each cycle, the belief of any agent with no success

reaches the threshold pr. In order to mitigate the reduced effort by the agents with no progress,

the principal provides full information disclosure so that if both agents have zero success, they

reset their beliefs and keep exerting full effort for another cycle. However, the major caveat of this

information disclosure is that if one of the agents has progressed to the second stage by the end of

one cycle, an agent with no success immediately quits once this information is disclosed.
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While the cyclic information policy improves upon the full information policy by delaying the

laggard’s stopping time with the help of the silent periods and hence reducing the expected lead

time of the contest, it does not necessarily improve upon the no-information policy (see Figure 2).

Indeed, no-information policy provides no information after tr when incentives are missing, and

cyclic information policy may be providing too much information at the end of each cycle which

may hurt the principal by losing one of the agents. Thus, information is a strategic commodity and

the principal must ensure not to provide too much or too little information.

As the main result of this section, we will provide a better information disclosure policy that

improves upon all of the above policies. To address the issues of too little information under no

information disclosure and too much information under full (or cyclic) information disclosure, we

propose an information disclosure policy in which the principal commits to disclose any partial

progress (arrival of the first success) with time-dependent instantaneous rate γt ≥ 0. If we study

the problem faced by agent i who has not achieved any success under this information policy, we

observe that the belief of agent i about the partial progress of her opponent evolves according to:

dpit = (1− pit)(x−i0,tλ− pitx−i1,tλ− pitγt)dt. (8)

This equality takes into account that the principal sharing no news with agent i has a lowering effect

on the probability that her opponent is in the second stage. Under this design, the continuation

payoff of agent i with no success from any time t onward is the following:

V i
0,t = max

xi0,τ

∫ ∞
t

xi0,τ (λV
i
1,τ − c)e

−
∫ τ
t (xi0,sλ+p

i
sx
−i
1,sλ+p

i
sγs)dsdτ, (9)

where by choosing effort xi0,τ during interval (τ, τ + dt), the agent incurs a cost cxi0,τdt and if a

success arrives, she enters the second stage and enjoys a continuation payoff of V i
1,τ . If her opponent

completes both stages during interval (τ, τ + dt), agent i receives zero reward. Moreover, if the

principal discloses partial progress of agent i’s opponent, agent i quits and receives zero utility

because her continuation payoff upon the arrival of her first success falls below c/λ. Also, recall

that an agent with one success always exerts full effort until the end.

Previous analysis indicates that the principal can induce agent i to exert full effort with no

information sharing until her belief reaches pr. After that, the principal’s budget is not sufficient

to incentivize full effort. When no information is provided (i.e., γt = 0), the agent reduces her

effort level to pr which holds the agent’s equilibrium belief constant. If full information is provided

(γt =∞), the agent keeps working if her belief jumps to zero and quits if her belief jumps to one.

Using the idea of dynamic Bayesian Persuasion (e.g., Ely 2017), we introduce the following design.

Definition 1. The “probabilistic encouragement design” prescribes no information to the

agents (i.e., γt = 0) up to time tr = pr
λ(1−pr) where pr = λR

c
− 2. After that it discloses any partial

progress with rate γr = λ(1−pr)
pr

= 1
tr

.
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The probabilistic encouragement design features a silent period of length tr in the beginning

where the principal discloses no information and the agents’ beliefs drift upward to pr according

to (5). After that, the principal commits to inform each agent of her opponent’s partial progress

at constant rate γr. Proposition 6 describes the equilibrium under this design.

Proposition 6. When the principal is budget-constrained, and commits to probabilistic encour-

agement design, an agent who has not achieved a success exerts full effort until she obtains her

first success, or her opponent obtains her second success, or the principal discloses the opponent’s

partial progress. An agent who has achieved one success exerts full effort until the end.

The key benefit of the probabilistic encouragement design is to fine-tune the rate of information

disclosure after the silent period tr. In this case, (8) implies that the principal can persuade an

agent with no success to exert higher effort than the case of no information disclosure, x0,t > pr, by

committing to disclose partial progress with rate λ(x0,t−pt)/pt. This rate of information disclosure

holds the agent’s belief at the threshold pr when her opponent exerts effort x0,t > pr as long as

no partial progress is disclosed. This belief keeps the agent’s continuation payoff upon success at

c/λ for all t≥ tr, and hence the unique symmetric equilibrium is where an agent with no success

continues exerting effort x0,t until she succeeds, the contest ends, or partial progress is disclosed.

Notice that the principal is facing a trade-off by sharing information regarding partial progress.

A higher rate of disclosure stimulates greater effort from an agent with no success after tr which

reduces the expected lead time of the contest, but it also increases the probability of losing the

laggard and prolonging the contest’s expected lead time if partial progress is disclosed. The proba-

bilistic encouragement design works such that the bare minimum of information is disclosed by the

principal to sustain full effort (i.e., x0,t = 1) after tr as illustrated in Figure 1(c). This policy enables

the principal to not disclose too much information like the case of full information disclosure and

also significantly improves the reduced effort level of the agents under no information disclosure.

Figure 1 depicts the evolution of beliefs and the continuation payoffs V0,t and V1,t over time for

an agent with no success under probabilistic encouragement design. As illustrated in Figures 1(a)

and 1(b), the agent’s belief remains at pr and her incentive compatibility condition (36) is binding

after tr. We are now ready to state the main result of this section.

Theorem 2. Probabilistic encouragement design yields an expected lead time of (5 + e−2λtr)/(4λ),

which is strictly lower than the expected lead times under no, full or cyclic information disclosure

policies.

As we discussed in §4.1, the absolute minimum expected lead time of the contest for an uncon-

strained principal is T = 5/(4λ), and this minimum is attainable by inducing both agents to exert
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(c) Disclosure rate γt.

Figure 1 Probabilistic encouragement design. Setting: c= λ= 1 and R= 2.5. Here, tr = 1 and pr = 0.5.

full effort at all times. When the principal is budget-constrained, inducing agents to exert full

effort is no longer possible. Yet, the probabilistic encouragement design performs relatively well

and prolongs the expected lead time by only e−2λtr/(4λ). This additional lead time gets smaller if

the reward size R or the achievability parameter λ increases, or the cost of effort c decreases.

As cyclic information disclosure clearly dominates full information disclosure, we will explain

the intuition for why probabilistic encouragement design dominates cyclic information disclosure

policy. To understand the intuition, we need to compare agents’ effort provision under different

states in the contest. Both policies are able to elicit full effort in states with no partial progress or

after both agents achieve partial progress. Thus, the subtlety arises in states where only one success

is obtained. There are two different cases depending on whether the first success is achieved before

or after time tr. If there is one partial progress before tr, say at time t, cyclic information disclo-

sure immediately shares this information at time tr and loses the laggard. However, probabilistic

encouragement design delays the relaying of this information and keeps the laggard incentivized for

tr more periods of time on average. This is because γr = 1/tr and disclosure starts at tr. If the first

success arrives at time t > tr, then cyclic information disclosure policy releases this information at

the end of the current cycle with a delay of at most tr periods of time. Probabilistic encouragement

design on the other hand allows a delay of tr periods on average. Thus, in both cases, probabilistic

encouragement design delays the disclosure of partial progress more (on average) than the cyclic

information disclosure, and keeps the laggard incentivized longer.

Next, to see how probabilistic encouragement design dominates no information disclosure, we

show in the Appendix that the expected lead time of the contest is the same across both designs once

the first success is obtained. However, probabilistic encouragement design significantly outperforms

no information disclosure by sustaining full effort when both agents have zero success, whereas

agents reduce their effort level after tr under no information disclosure.

In the probabilistic encouragement design, the principal commits to disclose any partial progress

probabilistically. For cases where it is difficult to justify such a probabilistic disclosure policy, we
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propose an equivalent and easy-to-implement “random-update” policy. In this policy, the principal

commits to not monitoring the status of agents up to time tr and then periodically monitoring the

status of agents at random times (with arrival rate γr = 1
tr

) and immediately disclosing any partial

progress. This way the principal does not need to constantly observe the status of the game and

selectively obfuscate information. Instead, in an economically equivalent approach, the principal

can deliberately choose to only monitor agents’ progress at random times after time tr and inform

agents immediately if any progress is made.

In the following section, we further highlight the value of probabilistic disclosure design by

showing how it improves upon a deterministic information disclosure with delay.

5.2. The Value of Probabilistic Information Disclosure

In the previous section, we proposed a probabilistic information disclosure policy and showed

that it dominates other mainstream information disclosure policies. The key idea of probabilistic

encouragement design is to probabilistically delay the disclosure of partial progress and hence keep

an agent with no success incentivized for a longer period of time. Thus, one may wonder whether

the same benefit can be achieved by deterministically delaying the disclosure of partial progress.

In this section, we will show that this is not the case.

Consider a case where the principal commits to disclose any partial progress with td periods of

delay. This mechanism leads to an initial silent period of length td during which agents’ beliefs

drift upward to pd according to (5). During interval (td, td +dτ), if the principal announces partial

progress, an agent with no success (i.e., the laggard) quits. Otherwise, each agent’s belief remains

constant at pd as she realizes that no progress has been made during the initial dτ period of

the contest, akin to a contest that starts at dτ instead of time 0. Here, to compare the contest

outcome with our proposed probabilistic encouragement design (and equivalently our random-

update policy), we restrict our attention to mechanisms in which an agent with no success puts

full effort until information is disclosed by the principal. Intuitively, the principal wishes to extend

this delay as long as possible to keep the laggard in the contest. The following theorem derives the

unique symmetric equilibrium under this deterministic delay policy and compares the expected

lead time of the contest under this policy with that under our probabilistic encouragement design.

Theorem 3. Suppose that the principal is budget-constrained. In the deterministic delay design,

the principal commits to disclose partial progress after a delay of length td given by(
1 + e−2λtd

)(
R− c

λ

)
= 2(1 +λtd)

(
3c

λ
−R

)
. (10)

Furthermore, under the deterministic delay design:

(i) An agent who has not achieved a success exerts full effort until she obtains her first success, or
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her opponent obtains her second success, or the principal discloses the opponent’s partial progress.

An agent who has achieved one success exerts full effort until the end.

(ii) Delay length td < tr = pr
λ(1−pr) where pr = λR

c
− 2.

(iii) The expected lead time of the contest is given by (5 + e−2λtd)/(4λ), which is strictly larger than

the expected lead time under the probabilistic encouragement design.

To elicit full effort from agents, the principal should commit to disclose any progress at most

td periods of time after its arrival. Theorem 3 shows that when information is disclosed with a

deterministic delay, the principal cannot keep the initial silent period as long as the one in prob-

abilistic encouragement design (i.e., td < tr). The intuition is as follows. When deciding whether

to exert effort at any instant, an agent i with no success trades off the benefit of achieving partial

progress with the cost of additional effort. The more likely it is for agent i’s opponent to give up

after agent i’s partial progress, the higher agent i’s benefit from partial success. Under probabilistic

encouragement design, there is a chance that the principal discloses agent i’s partial progress at

any instant, whereas under deterministic delay, agent i knows that there is no such chance because

the principal never discloses success until td periods after its arrival. Thus, under probabilistic

encouragement design, an agent i with no success expects to benefit more from partial progress

and hence has larger incentives to exert full effort. Somewhat counter-intuitively, although prob-

abilistic encouragement design on average delays information disclosure more than deterministic

delay design (i.e., tr > td), the agent is still willing to work longer under this design.

This observation highlights the value of probabilistic information disclosure as it smoothens

incentives over time, and helps the principal extend the period over which agents are willing to

work. Consequently, as depicted in Figure 2, our probabilistic encouragement design achieves a

shorted average lead time than its deterministic counterpart. Figure 2 also illustrates that the

probabilistic design (and equivalently our random-update policy discussed in §5.1) outperforms

other canonical information disclosure policies unconditionally.

5.3. Probabilistic Information Disclosure with Flexible Reward

So far in §5, we focus on the role of information disclosure in the contest design by holding the

reward fixed. We can further improve our proposed probabilistic encouragement design without

changing agents’ equilibrium effort levels by incorporating flexible reward to reduce the expected

reward of the contest. Observe that in the probabilistic encouragement design, the principal dis-

closes no information up to time tr where monetary incentives are sufficient to motivate full effort.

Only after tr, when the belief of an agent with no success reaches the threshold pr, the principal

starts disclosing information. Proposition B2 in Appendix B states that the principal can offer a
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Figure 2 Probabilistic encouragement design reduces expected project lead time. Setting: λ= 1.

flexible reward according to Rt = (2 + pt)c/λ where pt = λt/(1 + λt) if t < tr, and Rt =R if t≥ tr
and achieve the same equilibrium outcome as in the original probabilistic encouragement design.

The intuition for this result is that the principal does not need to overpay agents during early

stages of the contest where incentives are sufficiently high. As discussed in §4.4, the principal can

guarantee sufficient incentives to agents by offering a gradually increasing reward schedule over

time as each agent finds it more likely for her opponent to achieve partial progress. This increasing

flexible-reward structure up to time tr helps the principal to set the reward at the right amount

before time tr at which the reward schedule hits the budget constraint R. After that, the principal

spends the whole reward budget. Notice that the expected lead time is strictly decreasing in R as

a higher reward budget helps the principal to start the probabilistic information disclosure phase

later. For the same reason, the principal benefits from allocating her entire budget after time tr.

Combining probabilistic disclosure with flexible reward can help the principal reduce both the

expected lead time and the cost of reward in the contest.

6. Conclusion

Organizations worldwide face the challenges of developing advanced technologies and products

under time and budget pressures, and turn to their expert suppliers to tackle complex problems.

In this paper, we study how such organizations can effectively organize a dynamic development

contest to stimulate development effort from a small set of competing suppliers to minimize the

lead time of a multi-stage project while keeping the incentive budget in check.

We sought to build a parsimonious model of a dynamic development contest where two agents

compete to complete a two-stage development project by exerting costly effort over a continuous

time frame. Successful completion of a stage for an agent arrives at a random point in time where the

rate of arrival for each success increases with the agent’s effort. An agent’s success is not observable

by another agent so it is up to the principal whether and when to share this information. The

contest ends when one of the agents successfully completes both stages and wins a pre-determined
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reward. At the outset of the contest, the principal commits to a reward schedule that determines

how this winner reward will change over time and an information disclosure policy which specifies

how the principal will disclose information throughout the contest.

We establish that a principal with no budget constraint can utilize a flexible-reward schedule

to achieve the absolute minimum expected lead time by giving 20% less reward on average than

a fixed-reward schedule. Under full-information disclosure, the principal can easily implement the

optimal flexible-reward schedule by setting a guaranteed reward amount upfront with the promise of

increasing the reward amount if multiple agents successfully complete the first stage. Importantly,

the flexible-reward schedule pays the absolute minimum expected reward (i.e., the first-best).

We next analyze how a budget-constrained principal can utilize information as an incentive tool.

By harnessing a dynamic Bayesian persuasion approach, we characterize an easy-to-implement

“random-update” policy in which the principal does not monitor the status of agents for a pre-

determined initial time window; and then periodically monitors the status of agents at random

times and discloses any partial progress immediately. We show that this random-update policy

achieves a shorter expected lead time than any canonical information disclosure policy. We then

find that by utilizing a flexible-reward policy during the initial no-monitoring period, the principal

can reduce the cost of incentives without hindering project lead time. Our results indicate that

enriched rank-based incentives and carefully-tailored information design can be powerful tools to

incentivize development efforts of suppliers without overpaying them. With development contests

such as vaccines and hypersonic missiles running into billions of dollars and racing against time,

the flexible reward coupled with information disclosure can potentially achieve substantial savings

in project budget (to the tune of hundreds of millions of dollars) and lead time.

Our analysis opens up several interesting future research directions. First, as a first step to

understanding dynamic development contests, we have abstracted away from features such as skills

heterogeneity, learning by doing, or the uncertainty regarding the feasibility of the first or second

stage, but extending our work by containing such features can be interesting research avenues.

Adding these features would make the analysis more involved but can provide useful further insights

on designing development contests. Second, an interesting research to pursue would be to see how

our proposed methods work when success has a quality measure that can be improved over time

rather than taking the form of a breakthrough. Finally, our random-update policy also provides

new opportunities for empirical and experimental research. Recently Mostagir et al. (2021) run a

laboratory experiment to investigate the impact of full and no-information disclosure policies on

the agents’ behavior and the principal’s outcome in a framework similar to Bimpikis et al. (2019).

In our model, besides considering full and no information, we analyze and compare more strategic

disclosure policies including cyclic, deterministic delay and probabilistic policies to show the value
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of information design and highlight its impact on incentives. Studying these policies empirically or

experimentally could be an interesting research direction.
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Appendix

A. Proofs

Proof of Proposition 1: We first calculate the expected duration of a contract in which both

agents exert full effort at all times. We solve the problem by backward induction on the state of

the game where the states are defined by the number of success for each agent. First, consider the

state when both agents have already achieved one success, then the expected arrival time for the

second success is given by:∫ ∞
0

2λte−2λtdt=−te−2λt
∣∣∣∣∞
0

+

∫ ∞
0

e−2λtdt=− 1

2λ
e−2λt

∣∣∣∣∞
0

=
1

2λ
.

Next, consider the state of the game with a leader (an agent with one success) and a laggard (an

agent with no success). Then the expected arrival time for the second success can be expressed as:∫ ∞
0

[
λt+λ

(
t+

1

2λ

)]
e−2λtdt=

1

2λ
+

∫ ∞
0

1

2
e−2λtdt=

1

2λ
+

1

4λ
=

3

4λ
,

where with instantaneous probability λ the leader may obtain the second success at time t or the

laggard may hit the first success at time t (proceeding to the above-mentioned state) in which case

the expected duration of the contract is t+1/2λ. Finally, considering the state when neither of the

agents has one success, the expected duration of the contract is as follows:∫ ∞
0

2λ(t+
3

4λ
)e−2λtdt=

1

2λ
+

∫ ∞
0

3

2
e−2λtdt=

1

2λ
+

3

4λ
=

5

4λ
. (11)

Clearly, given the cost of effort at each instant, the principal has to offer each agent at least 5c/(4λ)

so that each agent’s ex-ante expected payoff is non-negative. �

Proof of Proposition 2: To derive the symmetric pure-strategy Nash equilibrium with full

effort, let us fix agent −i’s effort x−ik,l,t = 1 for all k, l, and t and find conditions under which agent

i optimally chooses xik,l,t = 1 for all k, l, and t. For notational simplicity, we drop the superscript

i. Consider the state of the game where both agents have already achieved one success, using (3)

we can write:

V1,1,t = max
x1,1,τ

∫ ∞
t

x1,1,τ (λR− c)e−
∫ τ
t λ(x1,1,s+1)dsdτ.

The agent’s problem is an infinite horizon problem, so it is stationary. Thus, we can drop the

subscript t and write the equivalent Bellman equation for the agent’s problem as follows:

V1,1 = max
x1,1
{x1,1(λR− c)dt+ (1−λx1,1dt−λdt)V1,1} ,

Note that −cx1,1dt denotes the agent’s cost of effort within the time interval (t, t+dt), while x1,1λdt

denotes the probability that a success arrives within (t, t+ dt), in which case the agent receives
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R. On the other hand, the probability that her opponent achieves the second success in that time

interval is λdt, and in this case, the agent receives zero reward. With probability (1−λx1,1dt−λdt),

neither the agent nor her opponent achieves the second success, in which case the contest continues

and the agent anticipates to receive a continuation payoff of V1,1 due to stationarity. Simplifying the

above expression and dividing both sides by dt, we obtain the following Hamilton-Jacobi- Bellman

(hereafter HJB) equation for the agent’s problem:

0 = max
x1,1

−cx1,1︸ ︷︷ ︸
cost

+λx1,1 (R−V1,1)︸ ︷︷ ︸
benefit

− λV1,1︸ ︷︷ ︸
externality

 . (12)

First, second, and third terms reflect the agent’s flow cost of effort, her flow benefit from effort,

and the externality imposed by her opponent’s effort, respectively. Since the HJB in (12) is linear

in x1,1, it can be concluded that x1,1 = 1 is optimal if and only if

R−V1,1 ≥
c

λ
. (13)

The above condition implies that each agent finds it optimal to work if the principal rewards the

agent with additional utility of at least c/λ upon the arrival of a success.

Next, consider the state of the game where agent i is the leader with one success and agent −i

is the laggard with no success. Bellman and HJB equations for agent i can be expressed as follows:

V1,0 = max
x1,0
{x1,0(λR− c)dt+λV1,1dt+ (1−λx1,0dt−λdt)V1,0}

⇒ 0 = max
x1,0
{x1,0 (λR− c−λV1,0) +λ (V1,1−V1,0)} , (14)

The first line admits a similar interpretation as in the previous case, except that if the laggard

(agent −i) obtains a success, the leader agent i receives a continuation payoff equal to V1,1. From

(14), we can derive the Incentive Compatibility (hereafter IC) constraint for agent i which tells us

that x1,0 = 1 is incentive compatible if and only if

R−V1,0 ≥
c

λ
. (15)

When agent i is the laggard with no success and agent −i is the leader with one success, we can

rewrite agent i’s problem in (4) as follows:

V0,1 = max
x0,1
{x0,1(λV1,1− c)dt+ (1−λx0,1dt−λdt)V0,1}

⇒ 0 = max
x0,1
{x0,1 (λV1,1− c−λV0,1)−λV0,1} , (16)
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which implies that exerting full effort for the laggard is optimal if and only if the following IC

constraint holds:

V1,1−V0,1 ≥
c

λ
. (17)

Finally, before the arrival of any success, the continuation payoff of agent i is given by:

V0,0 = max
x0,0
{x0,0(λV1,0− c)dt+λV0,1dt+ (1−λx0,0dt−λdt)V0,0}

⇒ 0 = max
x0,0
{x0,0 (λV1,0− c−λV0,0) +λ (V0,1−V0,0)} . (18)

From (18), exerting x0,0 = 1 is incentive compatible for agent i if and only if

V1,0−V0,0 ≥
c

λ
. (19)

We are now ready to show that R= 3c/λ is the minimum required fixed reward to induce agent

i (and by symmetry agent −i as well) to exert full effort at all times. From (17), V1,1 ≥ c/λ since

V0,1 has to be non-negative. Also, from (12), under full effort, one can verify that V1,1 = 1
2

(
R− c

λ

)
.

Combining these together, we require 1
2

(
R− c

λ

)
≥ c

λ
, which boils down to R≥ 3c/λ. Thus, we need

R= 3c/λ at the minimum to ensure that (17) is satisfied, and hence it is incentive compatible for

the laggard to exert full effort.

It remains to show that R= 3c/λ satisfies all IC constraints. It is straightforward to check that

(13) is satisfied, that is R−V1,1 = 3c
λ
− c

λ
> c

λ
. Plugging in the value of V1,1 = c/λ into (16), we find

that V0,1 = 0 and so the IC constraint in (17) for the laggard is binding. Similarly, plugging in the

value of V1,1 = c/λ into (14), it can be concluded that V1,0 = 3c/(2λ) and so the IC constraint in

(15) for the leader is satisfied since R− V1,0 = 3c
λ
− 3c

2λ
= 3c

2λ
> c

λ
. Finally, plugging in the values of

V1,0 = 3c/(2λ) and V0,1 = 0 into (18), one can verify that V0,0 = c/(4λ) and so the IC constraint in

(19) for each agent is satisfied as V1,0−V0,0 = 3c
2λ
− c

4λ
= 5c

4λ
> c

λ
. �

Proof of Theorem 1: Consider a flexible-reward contest with R2,0 = 2c/λ and R2,1 = 3c/λ where

the principal commits to disclose any success upon its arrival. Similar to the previous case, we

analyze the problem by moving backward on the state of the game where the states are defined

by the number of successes of the agents. Let us fix agent −i’s effort x−ik,l,t = 1 for all k, l, and t

and find conditions under which agent i optimally chooses xik,l,t = 1 for all k, l, and t. Consider

the state of the game where both agents have already achieved one success. The Bellman equation

and the corresponding HJB for agent i’s problem can be expressed as follows:

V1,1 = max
x1,1
{x1,1(λR2,1− c)dt+ (1−λx1,1dt−λdt)V1,1}

⇒ 0 = max
x1,1
{x1,1 (λR2,1− c−λV1,1)−λV1,1} , (20)
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where we use the fact that the winner receives R2,1 in this state of the game. From (20), we can

derive that x1,1 = 1 is optimal if and only if

R2,1−V1,1 ≥
c

λ
. (21)

Next, consider the state of the game with a leader and a laggard. The Bellman equation and the

corresponding HJB for the leader’s problem (which we assume to be agent i) can be written as:

V1,0 = max
x1,0
{x1,0(λR2,0− c)dt+λV1,1dt+ (1−λx1,0dt−λdt)V1,0}

⇒ 0 = max
x1,0
{x1,0 (λR2,0− c−λV1,0) +λ (V1,1−V1,0)} , (22)

where we use the fact that the winner receives R2,0 in this state of the game. From (22), we can

derive the IC constraint for the leader which tells us that x1,0 = 1 is incentive compatible if and

only if

R2,0−V1,0 ≥
c

λ
. (23)

Similarly, we can express the Bellman equation and the corresponding HJB for the laggard’s prob-

lem (assuming to be agent i) as follows:

V0,1 = max
x0,1
{x0,1(λV1,1− c)dt+ (1−λx0,1dt−λdt)V0,1}

⇒ 0 = max
x0,1
{x0,1 (λV1,1− c−λV0,1)−λV0,1} , (24)

which implies that exerting full effort for the laggard is optimal if and only if the following IC

constraint holds

V1,1−V0,1 ≥
c

λ
. (25)

Finally, before the arrival of any success, the continuation value of each agent is given by:

V0,0 = max
x0,0
{x0,0(λV1,0− c)dt+λV0,1dt+ (1−λx0,0dt−λdt)V0,0}

⇒ 0 = max
x0,0
{x0,0 (λV1,0− c−λV0,0) +λ (V0,1−V0,0)} . (26)

From (26), exerting x0,0 = 1 is incentive compatible for each agent if and only if

V1,0−V0,0 ≥
c

λ
. (27)

We now verify that the proposed flexible-reward schedule in Theorem 1 satisfies all of the above

IC constraints and spends the minimum first-best expected reward. Given (25), we can see that

V1,1 = c/λ is the minimum required continuation payoff to incentivize the laggard to put full effort.

From (20), we know that V1,1 = 1
2

(
R2,1− c

λ

)
. Thus, the principal has to specify a reward R2,1 = 3c/λ

in order to satisfy V1,1 = c/λ. Given these values, it is straightforward to check that the IC constraint
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in (21) is satisfied, that is R2,1 − V1,1 = 3c
λ
− c

λ
> c

λ
. Also, plugging in the value of V1,1 = c/λ into

(24), we obtain that V0,1 = 0 and so the IC constraint for the laggard is binding. Next, from (27), we

can conclude that V1,0 = c/λ is the minimum required continuation payoff to motivate the agents

to exert effort. Plugging in this value into (22), R2,0 = 2c/λ is needed to satisfy the HJB. It follows

that the IC constraint in (23) is indeed binding for the leader as R2,0− V1,0 = 2c
λ
− c

λ
= c

λ
. Finally,

given V1,0 = c/λ and V0,1 = 0, we conclude by (26) that V0,0 = 0 which shows that the last IC

constraint in (27) is also binding, that is V1,0− V0,0 = c
λ
− 0 = c

λ
. Therefore, full effort is incentive

compatible at all times.

To calculate the expected reward of the contest with flexible reward, note that when both agents

have already obtained one success, the expected reward of the contest is given by R2,1 = 3c/λ.

When there is a leader and a laggard, the expected reward can be computed as follows:∫ ∞
t

λ

(
2c

λ
+

3c

λ

)
e−2λ(τ−t)dτ =

5c

2λ
.

To interpret the above equation note that if the leader obtains her second success, the reward is

R2,0 = 2c/λ and if the laggard obtains her first success, the state of the game transitions to the

case where both agents have already obtained one success and the reward is adjusted upward to

R2,1 = 3c/λ. Finally, the ex-ante expected reward of the contest is given by:∫ ∞
0

2λ

(
5c

2λ

)
e−2λtdt=

5c

2λ
.�

Proof of Proposition 3: To derive the symmetric pure-strategy Nash equilibrium with full

effort, we shall fix the opponent’s effort x−ik,t = 1 for all k and t and try to find conditions under

which agent i best-responds by choosing xik,t = 1 for all k, t.

Consider the problem faced by an agent who has not yet achieved a success. Dropping the

superscript i in (7) by using the symmetry of agents, the equivalent Bellman equation for the

agent’s problem is as follows:

V0,t = max
x0,t
{−cx0,tdt+x0,tλV1,tdt+ (1−x0,tλdt− ptλdt)V0,t+dt} . (28)

Note that cx0,tdt denotes the agent’s cost of effort within the time interval (t, t+dt), while x0,tλdt

denotes the probability that a success arrives within (t, t+ dt), in which case the agent receives a

continuation payoff, V1,t. On the other hand, the probability that her opponent is in the second

stage and achieves a success in this time interval is ptλdt, and in that case, the agent receives

a continuation value of zero. With probability (1− x0,tλdt− ptλdt), neither the agent achieves a

success, nor does her opponent achieve the second success, in which case the contest continues

and the agent anticipates to receive her continuation payoff, V0,t+dt. Given that we have an infinite
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horizon dynamic model with no deadline, from (28) one can verify that the continuation payoff

solely depends on the probability pt rather than time itself. Thus, we can define a stationary

Bellman function Vk,p for k ∈ {0,1} that does not depend on time but depends on the current state

of pt. Let p be a state variable that corresponds to the probability that each agent assigns to the

fact that her opponent is in the second stage under no information disclosure. Then, we can express

each agent’s continuation payoff as Vk,p. Thus, we can rewrite (28) as follows:

V0,p = max
x0,p
{−cx0,pdt+x0,pλV1,pdt+ (1−x0,pλdt− pλdt)V0,p+dp} . (29)

Using a Taylor expansion (Ito’s Lemma), we have

V0,p+dp ' V0,p +V
′

0,pdp= V0,p +λ(1− p)2V
′

0,pdt,

where we have used that x−ik,t = 1 and dp= λ(1−p)2dt according to (5). Substituting this expression

into (29), dropping the terms of the order dt2 (since dt2 ' 0), canceling terms and dividing both

sides by dt, we obtain the following HJB equation for the agent’s problem:

0 = max
x0,p

−cx0,p︸ ︷︷ ︸
cost

+x0,pλ (V1,p−V0,p)︸ ︷︷ ︸
benefit

−λ
[
pV0,p− (1− p)2V ′0,p

]︸ ︷︷ ︸
externality

 . (30)

Note that the first term reflects the agent’s flow cost of effort, the second term reflects her flow

benefit from effort, and the third term captures the externality imposed by her opponent’s effort.

Since the HJB in (30) is linear in x0,p, it can be concluded that x0,p = 1 is optimal if and only if

V1,p−V0,p ≥
c

λ
. (31)

The above IC constraint implies that an agent with no success finds it optimal to work if the

principal rewards the agent with additional utility of at least c/λ upon the arrival of a success.

Next, consider the problem faced by an agent who has achieved one success as formulated in

(6). Since the continuation payoffs of agents depend on the state variable p rather than time, the

principal’s problem is also stationary (i.e., independent of t) and hence it is optimal for the principal

to choose a reward schedule that depends only on p. In other words, an agent who achieves two

successes first is rewarded Rp, where p is her belief about her opponent’s progress. As a result,

after dropping the superscript i in (6) by using the symmetry of agents, the corresponding Bellman

equation for the agent’s problem is given by:

V1,p = max
x1,p
{−cx1,pdt+x1,pλRpdt+ (1−x1,pλdt− pλdt)V1,p+dp}
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which using the previous techniques gives us the following HJB eqution

0 = max
x1,p

−cx1,p︸ ︷︷ ︸
cost

+x1,pλ (Rp−V1,p)︸ ︷︷ ︸
benefit

−λ
[
pV1,p− (1− p)2V ′1,p

]︸ ︷︷ ︸
externality

 . (32)

Since the HJB in (32) is linear in x1,p, it can be concluded that x1,p = 1 is optimal if and only if

Rp−V1,p ≥
c

λ
. (33)

We are now ready to prove that full effort is incentive compatible at all times given the proposed

flexible-reward schedule in Proposition 3. First, notice that when we fix the opponent’s effort

x−ik,t = 1 for all t and solve (5) with initial condition pi0 = 0, we obtain pt = λt/(1 + λt) as stated

in the proposition. Second, note that if an agent with no success receives a continuation payoff

V1,p = c/λ, ∀p, by substituting this value into the integral form of the agent’s problem in (7), we

obtain V0,p = 0. Hence, (31) is always binding. Moreover, if V1,p = c/λ, the flexible-reward schedule

Rp = (2 + p)c/λ always satisfies (33). Plugging in Rp = (2 + p)c/λ into (32), it can be verified that

V1,p = c/λ for all p is a solution. Finally, plugging in V1,p = c/λ into (30), it can be verified that

V0,p = 0 for all p is a solution. Therefore, the design is incentive compatible at all times.

Next, to prove the optimality of this design, we provide a simple surplus argument. Notice that

agents’ and principal’s combined surplus is the same across any design that implements full effort

at all times. Therefore, the principal’s surplus is maximized when the agents’ surplus is minimized.

The minimum continuation payoff for an agent who has not yet achieved a success is V0,p = 0. In

order to satisfy the IC constraint in (31), the principal has to offer the minimum continuation

payoff V1,p = c/λ to an agent upon the arrival of a success and by (32), this value uniquely gives

Rp = (2 + p)c/λ. Therefore, this design minimizes the agents’ surplus and hence maximizes the

principal’s surplus.

Finally, we can verify that this design spends the first-best expected reward. To show this, we

compute the expected reward that the principal has to pay under this design. Denote by Rk,l the

principal’s expected payout conditional on the first agent having achieved k ∈ {0,1} successes, and

the second agent having achieved l ∈ {0,1} successes. Let us consider the state of the game when

both agents have already achieved one success, then the expected payout is given by:

R1,1,t =

∫ ∞
t

2λ

(
2 +

λτ

1 +λτ

)
c

λ
e−2λ(τ−t)dτ =

3c

λ
− 2c

λ
e2(1+λt)

∫ ∞
2(1+λt)

e−x

x
dx,

where the first equality can be interpreted as follows: if any agent obtains the second success during

interval (τ, τ + dt) which happens with probability 2λdt, the principal has to pay (2 + pτ )c/λ to

the winner, provided that none of the agents have already obtained the second success by time τ

which is captured by the term e−2λ(τ−t), and the second equality is obtained by change of variables.
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Next, consider the state of the game with a leader and a laggard. Then the expected payout can

be computed as follows:

R1,0,t =

∫ ∞
t

λ

[(
2 +

λτ

1 +λτ

)
c

λ
+R1,1,τ

]
e−2λ(τ−t)dτ

=

∫ ∞
t

(
2 +

λτ

1 +λτ

)
ce−2λ(τ−t)dτ +

∫ ∞
t

λR1,1,τe
−2λ(τ−t)dτ

=
1

2
R1,1,t +

∫ ∞
t

λ

[
3c

λ
− 2c

λ
e2(1+λτ)

∫ ∞
2(1+λτ)

e−x

x
dx

]
e−2λ(τ−t)dτ

=
3c

λ
− c

λ
e2(1+λt)

∫ ∞
2(1+λt)

e−x

x
dx− 2ce2(1+λt)

∫ ∞
t

∫ ∞
2(1+λτ)

e−x

x
dxdτ

=
2c

λ
+
c

λ
e2(1+λt)(1 + 2λt)

∫ ∞
2(1+λt)

e−x

x
dx.

Finally, starting from time zero, the expected reward of the contest is given by:

R0,0,0 =

∫ ∞
0

2λR1,0(t)e
−2λtdt

=

∫ ∞
0

[
4ce−2λt + 2ce2(1 + 2λt)

∫ ∞
2(1+λt)

e−x

x
dx

]
dt

=
2c

λ
+

c

2λ
=

5c

2λ
.�

Proof of Proposition 4: We prove the proposition in multiple steps.

Step 1: We first verify that the strategy of the agents in the proposition forms a symmetric

equilibrium.

To check this, we fix the strategy of agent −i to the proposed one in the proposition and verify

that agent i best-responds by playing the same strategy. First, using condition (33), it is easy to

verify that exerting full effort is incentive compatible for an agent with one success for all p since

V1,p can not exceed R− c/λ. Given that agent −i exerts effort x−i0,t = pr for t≥ tr, and x−i1,t = 1, by

(5) we obtain ṗit = 0. As a result, pit = pr for t≥ tr. Following this observation, note that if agent i

with no success, holding a belief pr, receives a continuation payoff V1,pr = c/λ, by substituting this

value into the integral form of the agent’s problem in (7), we get V0,pr = 0. Hence, the incentive

compatibility condition in (31) is binding for all t≥ tr implying that agent i is indifferent between

any level of effort and so exerting x0,pr = pr is optimal. Plugging in R= (2+pr)c/λ into (32), it can

be verified that V1,p = c/λ is a solution for all t≥ tr where pt = pr. Finally, to prove that exerting

full effort is optimal for agent i with no success for all p < pr, we move backward from time tr

associated with belief pr and prove that if the agent finds it optimal to exert strictly positive effort

at any belief p′ where p≤ p′ ≤ pr (i.e., if V1,p′+dp − V0,p′+dp ≥ c/λ), then we have V1,p − V0,p ≥ c/λ
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implying that exerting full effort is optimal at belief p− dp. This can be seen by the following

analysis:

V1,p−V0,p =

−cdt+λRdt+ (1−λdt− pλdt)V1,p+dp + cdt−λV1,pdt− (1−λdt− pλdt)V0,p+dp ≥

λRdt+ (1−λdt− pλdt) c
λ
−λV1,pdt≥

c

λ
,

where the last inequality results from the fact that

V1,p =

∫ ∞
t

(λR− c)e−
∫ τ
t λ(1+ps)dsdτ ≤

∫ ∞
t

(λR− c)e−λ(1+p)(τ−t)dτ

=
λR− c
λ(1 + p)

≤R− (1 + p)
c

λ
,

where the first line results from the fact that pt is weakly increasing and the second line holds if

and only if (2+p)c/λ≤R which is satisfied for p≤ pr. This verifies the equilibrium. Next, we prove

the uniqueness of the symmetric equilibrium.

Step 2: Let pr solve (2 +pr)c/λ=R. There is no symmetric equilibrium in which an agent with

no success exerts full effort at some p > pr.

First note that x0,p < 1 for some p. This is because as p approaches 1, V1,p approaches V1,1 =

1
2
(R−c/λ)< c/λ given the budget constraint, where we use the fact that an agent with one success

exerts full effort at all times. Then, suppose t is the first time at which the belief of an agent with

no success reaches its maximum level (p) in a symmetric equilibrium, and p > pr. Let us focus

on a region where the belief is strictly increasing and reaches p for the first time. If the agent

exerts full effort at p, by (5) p strictly increases which is a contradiction. Therefore, we must have

V1,p+dp−V0,p+dp ≤ c/λ. This condition implies that exerting zero effort is optimal at belief p. Then,

we consider the following two cases:

• V1,p+dp−V0,p+dp = c/λ: To find the agent’s optimal effort at belief p− dp, given that x0,p = 0,

we write the following:

V1,p−V0,p =

(λR− c)dt+ (1−λdt− pλdt)V1,p+dp− (1− pλdt)V0,p+dp =

V1,p+dp−V0,p+dp +
[
λR− c−λV1,p+dp− pλ (V1,p+dp−V0,p+dp)

]
dt

=
c

λ
+ (λR− c−λV1,p+dp− pc)dt <

c

λ
,

where the last inequality results from the fact that V1,p+dp ≥ c/λ and R = (2 + pr)c/λ <

(2 + p)c/λ. Thus, an agent with no success exerts zero effort at belief p− dp and by (5) p

decreases which is a contradiction.
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• V1,p+dp−V0,p+dp < c/λ: From the previous case, we know that an agent with no success must

exert full effort at belief p− dp which requires V1,p − V0,p ≥ c/λ. By continuity of V1,p − V0,p,

we conclude that V1,p−V0,p = c/λ. Doing the same analysis as before, we find that the agent

finds it optimal to put zero effort at belief p− 2dp which violates the assumption that the

agent’s belief is strictly increasing in this region.

Step 3: Let pr solve (2 +pr)c/λ=R. There is no symmetric equilibrium in which an agent with

no success does not exert full effort at some p < pr.

Suppose τ is the first time that the agent with no success does not exert full effort. Let t > τ be

the first time at which the belief of an agent with no success in the equilibrium reaches its minimum

level (p) and p < pr. Let us focus on a region where the agent’s belief is strictly decreasing and

reaches p for the first time. If the agent exerts zero effort at belief p, by (5) p strictly decreases

which is a contradiction. Therefore, we must have V1,p+dp − V0,p+dp ≥ c/λ. This condition implies

that exerting full effort is optimal at belief p. Then we consider two cases:

• V1,p+dp−V0,p+dp = c/λ: To find the agent’s optimal effort at belief p− dp, given that x0,p = 1,

we can write the following:

V1,p−V0,p =

(λR− c)dt+ (1−λdt− pλdt)V1,p+dp− (λV1,p+dp− c)dt− (1−λdt− pλdt)V0,p+dp =

V1,p+dp−V0,p+dp +
[
λR−λV1,p+dp− (1 + p)λ

(
V1,p+dp−V0,p+dp

)]
dt=

c

λ
+
[
λR−λV1,p+dp−

(
1 + p

)
c
]
dt >

c

λ
,

where the last inequality results from the fact that

V1,p =

∫ ∞
t

(λR− c)e−
∫ τ
t λ(1+ps)dsdτ ≤

∫ ∞
t

(λR− c)e−λ(1+p)(τ−t)dτ

=
λR− c
λ(1 + p)

≤R− (1 + p)
c

λ
,

where the first line results from the fact that p is the minimum belief in the equilibrium and

the second line holds since (2 + p)c/λ ≤ R. Therefore, the agent exerts full effort at belief

p− dp and by (5) p strictly increases which is a contradiction.

• V1,p+dp−V0,p+dp > c/λ: From the previous case, we know that an agent with no success must

exert zero effort at belief p− dp which requires V1,p− V0,p ≤ c/λ. By continuity of V1,p− V0,p,

we conclude that V1,p−V0,p = c/λ. Doing the same analysis as before, we find that the agent

finds it optimal to put full effort at belief p − 2dp which violates the assumption that the

agent’s belief is strictly decreasing in this region.

From steps 2 and 3, we conclude that the symmetric equilibrium in the proposition is unique. �
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Proof of Proposition 5: We build on the proofs of Propositions 4 and B1. As before, let us

fix the strategy of agent −i to the proposed one in the proposition and verify the best response of

agent i. Consider the very last instant of the first cycle at which the belief of agent i reaches pr.

The IC condition (31) implies that full effort is optimal for an agent with no success if and only if

V1,p−V0,p ≥ c/λ. We can rewrite this condition at time tr associated with belief pr as follows:

prV1,1 + (1− pr)V1,quit− (1− pr)V0,0 ≥ c/λ. (34)

The above condition can be interpreted as follows: if agent i obtains her first success at tr, her

expected continuation payoff is given by prV1,1 + (1 − pr)V1,quit anticipating that the principal

discloses full information at the end of the cycle. Therefore, with probability pr her opponent

has already made partial progress which in that case they keep working until the end and the

continuation payoff is V1,1, or her opponent quits if she has not obtained any success and the

continuation payoff is V1,quit. On the other hand, if agent i does not succeed at tr, she quits if her

opponent has progressed to the second stage. Otherwise, the contest and the beliefs reset and a

new cycle begins with a continuation payoff of V0,0.

Given that an agent with one success always puts full effort until the end, we know V1,1 =

1
2
(R− c/λ) and V1,quit = R− c/λ. Moreover, the upper bound for V0,0 is given by V F

0,0, where F

stands for full information, which is the continuation payoff if full information is provided during

each cycle. To see this, suppose that full information is provided during each cycle. We consider

two cases: i) if agent i obtains the first success, her opponent immediately quits. This leads to a

higher continuation payoff than the case of silent period where the opponent keeps working until

the end of the cycle; ii) if agent i’s opponent obtains the first success, agent i’s best response is

to quit. However, in a silent period, agent i earns a negative ex-post payoff. Therefore, the upper

bound for V0,0 is given by V F
0,0 = 1

2
(R−2c/λ). Plugging in these values into (34), it is easy to verify

that the condition is binding implying that full effort is optimal.

Finally, to prove that exerting full effort is optimal for agent i with no success during each cycle

where p < pr, we can show that if the agent finds it optimal to exert strictly positive effort at any

belief p′ where p≤ p′ ≤ pr (i.e., if V1,p′+dp−V0,p′+dp ≥ c/λ), then we have V1,p−V0,p ≥ c/λ implying

that exerting full effort is optimal at belief p− dp. This can be seen by the following analysis:

V1,p−V0,p =∫ tr

t

(λR− c)e−
∫ τ
t λ(1+ps)dsdτ + [prV1,1 + (1− pr)V1,quit]e

−
∫ tr
t λ(1+ps)ds

−
∫ tr

t

(λV1,τ − c)e−
∫ τ
t λ(1+ps)dsdτ − (1− pr)V0,0e

−
∫ tr
t λ(1+ps)ds
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=

∫ tr

t

λ
(
R−V1,τ

)
e−
∫ τ
t λ(1+ps)dsdτ + [prV1,1 + (1− pr)V1,quit− (1− pr)V0,0]e

−
∫ tr
t λ(1+ps)ds ≥ c

λ
,

where the last inequality can be verified after plugging in the values of V1,p, V1,1, V1,quit, and V0,0

into the above expression, computing the above integral and some tedious algebra. �

Proof of Proposition 6: Let us fix the strategy of agent −i to the proposed one in the propo-

sition and verify that agent i best-responds by playing the same strategy. We already show that

an agent with one success finds it optimal to put full effort if and only if

R−V1,p ≥
c

λ
, (35)

which always holds as V1,p ≤R− c/λ. Using p as the state variable, consider the Bellman equation

for the maximization problem of agent i with no success as follows:

V0,p = max
x0,p
{−cx0,pdt+x0,pλV1,pdt+ (1−x0,pλdt− pλdt− pγpdt)V0,p+dp} .

Using the same techniques as before, we can derive the following HJB equation:

0 = max
x0,p

{
−cx0,p +x0,pλ (V1,p−V0,p)− pλV0,p− pγpV0,p + (1− p)(λ− pλ− pγp)V ′0,p

}
.

Therefore, the IC constraint for an agent with no success implies that x0,p = 1, if and only if

V1,p−V0,p ≥ c/λ, (36)

which is similar to (31). To derive the expected continuation payoff of agent i, holding a belief p,

upon the arrival of the first success, we can write:

V1,p = pV1,1 + (1− p)V1,0. (37)

where V1,1 = 1
2
(R− c/λ) is the expected continuation payoff if the opponent has already progressed

to the second stage, and V1,0 is the expected continuation payoff if the opponent has not progressed

to the second stage. Given the probabilistic encouragement rate of information disclosure γr =

λ(1−pr)/pr = 1/tr, by (8) we obtain pt = pr remains constant for t≥ tr. Therefore, at any threshold

belief p= pr, we have:

V1,0 =

∫ ∞
t

[(
λR− c

)
+λ

1

2

(
R− c

λ

)
+ γr

(
R− c

λ

)]
e−(2λ+γr)(τ−t)dτ,

given that during interval (τ, τ +dt), the leader puts full effort and earns (λR−c)dt, or the laggard

may achieve her first success (given her full effort strategy in the equilibrium) and the continuation

payoff is 1
2
(R−c/λ), or partial progress may be disclosed and in that case the leader gets (R−c/λ).

Taking the above integral, we obtain:

V1,0 =
3λ+ 2γr

2(2λ+ γr)

(
R− c

λ

)
. (38)
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Plugging in this value into (37), we obtain

V1,pr = prV1,1 + (1− pr)V1,0 = pr
1

2

(
R− c

λ

)
+ (1− pr)

3λ+ 2γr
2(2λ+ γr)

(
R− c

λ

)
=
c

λ
, (39)

where the last equality results from substituting γr = λ(1− pr)/pr and R = (2 + pr)c/λ. Hence,

V1,pr = c/λ for t≥ tr. Using (9), we obtain V0,pr = 0 for t≥ tr and hence (36) is binding. Finally, the

exact same argument in the proof of Proposition 4, step 1 can be provided to prove that exerting

full effort is optimal for agent i with no success for all p < pr, by showing that if the agent finds it

optimal to exert strictly positive effort at any belief p′ where p≤ p′ ≤ pr, then exerting full effort

is optimal at belief p− dp. Therefore, an agent with no success puts full effort until she succeeds,

or the game ends, or partial progress is disclosed. �

Proof of Theorem 2: We prove the theorem in multiple steps. To gain insights for why prob-

abilistic encouragement design reduces the expected lead time of the contest, we prove the result

for a more general class of contests in which the principal commits to disclose information about

any partial progress at constant rate λ(x0−pr)/pr after tr so that in equilibrium an agent with no

success reduces her effort to x0 ≥ pr for all t≥ tr. Notice that no information disclosure is a special

case with x0 = pr and γt = 0, and probabilistic encouragement design is a special case with x0 = 1

and γr = λ(1− pr)/pr for all t≥ tr.

Step 1: We calculate the expected lead time of the contest under probabilistic encouragement

design.

Denote by Tk,l,t the expected lead time of the contest when one agent has obtained k successes

and the other one has obtained l successes from any time t onward. Let us consider the state of

the game when both agents have already obtained one success. Then the expected arrival time for

the second success is given by:

T1,1,t =

∫ ∞
t

2λ(τ − t)e−2λ(τ−t)dτ =
1

2λ
.

Here, information disclosure does not affect the outcome since both agents exert full effort until the

end. Next, consider the state of the game with a leader (an agent with one success) and a laggard

(an agent with no success). Then, the expected lead time of the contest from any time t≥ tr can

be expressed as follows:

T1,0,t≥tr =

∫ ∞
t

[
λ(τ − t) +x0λ

(
τ − t+

1

2λ

)
+
λ(x0− pr)

pr
(τ − t+T1,quit,τ )

]
e
−
(
λ+x0λ+

λ(x0−pr)
pr

)
(τ−t)

dτ

=
2 + pr

2λ (1 + pr)
, (40)
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where T1,quit,τ is the expected arrival time for the second success once the principal discloses that

the leader has made partial progress and the laggard quits, namely,

T1,quit,t =

∫ ∞
t

λ(τ − t)e−λ(τ−t)dτ =
1

λ
.

(40) can be interpreted as follows: conditional on reaching to any instant τ , the leader exerts

full effort and if she succeeds the contest ends at τ − t, or the laggard who is putting x0 effort

may achieve her first success and in that case the contest’s expected lead time is τ − t+ 1/2λ, or

information may be disclosed by the principal and in that case the laggard quits and the contest

ends by the leader at τ − t+ 1/λ in expectation. Interestingly, T1,0,t≥tr is independent of x0. Next,

for any t < tr, the expected lead time is given by:

T1,0,t<tr =

∫ tr

t

[
λ(τ − t) +λ

(
τ − t+

1

2λ

)]
e−2λ(τ−t)dτ +

(
tr− t+

2 + pr
2λ (1 + pr)

)
e−2λ(tr−t)

=
3

4λ
+

1− pr
4λ(1 + pr)

e−2λ(tr−t), (41)

where we use the fact that no information is disclosed by the principal before tr. Finally, the ex-ante

expected lead time of the contest for any t≥ tr can be expressed as follows:

T0,0,t≥tr =

∫ ∞
t

2x0λ (τ − t+T1,0,τ≥tr)e
−2x0λ(τ−t)dτ

=

∫ ∞
t

2x0λ

[
τ − t+

2 + pr
2λ (1 + pr)

]
e−2x0λ(τ−t)dτ =

1 + pr +x0(2 + pr)

2x0λ(1 + pr)
, (42)

where we use that an agent with no success exerts effort x0 after tr, and for any t < tr is given by:

T0,0,t<tr =

∫ tr

t

2λ (τ − t+T1,0,τ<tr)e
−2λ(τ−t)dτ + (tr− t+T0,0,tr)e

−2λ(tr−t)

=

∫ tr

t

2λ

[
τ − t+

3

4λ
+

1− pr
4λ(1 + pr)

e−2λ(tr−τ)
]
e−2λ(τ−t)dτ +

[
tr− t+

1 + pr +x0(2 + pr)

2x0λ(1 + pr)

]
e−2λ(tr−t)

=

[
2(1 + pr)−x0(1 + 3pr) + 2x0λ(1− pr)(tr− t)

4x0λ(1 + pr)

]
e−2λ(tr−t) +

5

4λ
, (43)

given that both agents exert full effort before tr.

Under probabilistic encouragement design, we have x0 = 1 after tr. Also, pr = λtr/(1 + λtr).

Plugging in these values into (43), the expected lead time of the contest under probabilistic encour-

agement design is given by:

T0,0,0 =

[
1− pr + 2λ(1− pr)tr

4λ(1 + pr)

]
e−2λtr +

5

4λ
=

1

4λ
e−2λtr +

5

4λ
. (44)

Step 2: We prove that probabilistic encouragement design dominates no information disclosure.

This immediately follows from the previous step. We already show that T1,0,t is independent of

x0. This means the expected lead time of the contest from any time t onward once the first success
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is obtained is the same across any design with constant information disclosure of rate λ(x0−pr)/pr
that stimulates constant effort x0 after tr in the equilibrium. However, according to (43), T0,0,0

is decreasing in x0 and probabilistic encouragement design ensures that x0 = 1 as long as both

agents have zero success which results in the minimum expected lead time within this class of

contests. Notice that no information disclosure or any disclosure with a rate lower than γr fails to

encourage full effort and hence is dominated by the probabilistic encouragement design. Finally,

we can compute the expected lead time of the contest under no information disclosure by plugging

in x0 = pr into (43).

Step 3: We prove that probabilistic encouragement design dominates full information disclosure.

This step is easy to verify. Note that under full information, the laggard quits upon the arrival

of the first success at any time t. Therefore, the expected lead time in this case is given by:

T F0,0,0 =

∫ ∞
0

2λ

(
t+

1

λ

)
e−2λtdt=

3

2λ
,

where F stands for full information. However, under probabilistic encouragement design, the prin-

cipal delays the stopping time of the laggard by tr periods of time on average if success arrives

after time tr (given that γr = 1/tr) and by 2tr − t periods of time on average if success arrives at

any time t < tr. It is easy to see that T F0,0,0 < (5 + e−2λtr)/(4λ).

Step 4: We prove that probabilistic encouragement design dominates cyclic information disclo-

sure.

During the first cycle in a design with cyclic information disclosure, if the first success arrives at

time t < tr, both agents put full effort during the cycle and the laggard quits at time tr at the end

of the cycle. Therefore, we can write:

TC1,0,t<tr =

∫ tr

t

[
λ(τ − t) +λ

(
τ − t+

1

2λ

)]
e−2λ(τ−t)dτ+

(
tr− t+

1

λ

)
e−2λ(tr−t) =

3

4λ
+

1

4λ
e−2λ(tr−t),

where C stands for cyclic information disclosure. Given this, the ex-ante expected lead time of the

contest under cyclic information disclosure is given by:

TC0,0,0 =

∫ tr

0

2λ

(
t+

3

4λ
+

1

4λ
e−2λ(tr−t)

)
e−2λtdt+ (tr +T0,0,tr)e

−2λtr

⇒ TC0,0,0 =
tr e

−2λtr

2 (1− e−2λtr)
+

5

4λ
, (45)

where we use the fact that TC0,0,0 = TC0,0,tr as the game resets at time tr. However, under probabilistic

encouragement design, information is disclosed at least tr periods on average after the success is

arrived. It is easy to check that TC0,0,0 < (5 + e−2λtr)/(4λ). Thus, probabilistic encouragement design

dominates cyclic disclosure. �
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Proof of Theorem 3: Part (i). As before, we fix the strategy of agent −i to the proposed one

in the theorem and verify that agent i best-responds by playing the same strategy. Condition (31)

implies that full effort is optimal for an agent with no success if and only if V1,p− V0,p ≥ c/λ. We

use this condition to pin down td. Consider the very last instant during the initial silent period of

length td at which an agent with no success finds it optimal to work. Then, we must have:

V d
1,pd

= pdV
d
1,1 + (1− pd)V d

1,0 =
c

λ
, (46)

where pd = λtd/(1 + λtd) is the belief of agent i at time td anticipating the equilibrium behavior

of agent −i. We use the superscript d to refer to a design with delay. Given that the principal

discloses any progress with a delay td, agent i’s belief remains constant for t≥ td. Therefore, at any

threshold belief p= pd, we can write:

V d
1,0 =

∫ t+td

t

[(
λR− c

)
+λ

1

2

(
R− c

λ

)]
e−2λ(τ−t)dτ + e−2λtd

(
R− c

λ

)
,

given that during interval (τ, τ +dt), the leader puts full effort and earns (λR−c)dt, or the laggard

may achieve her first success (given her full effort strategy in the equilibrium) and the continuation

payoff is 1
2
(R− c/λ). If neither the leader achieves the second success, nor does the laggard achieve

her first success, the principal discloses progress td periods of time after its arrival and in that case

the laggard quits and the leader gets (R− c/λ). Taking the above integral, we obtain:

V d
1,0 =

(
3

4
+

1

4
e−2λtd

)(
R− c

λ

)
. (47)

Notice from the above expression that V1,0 depends on td and not p. Substituting the above value

and V d
1,1 = 1

2
(R − c/λ) into (46) and simplifying the equation, we find that td must solve (10).

Finally, to prove that exerting full effort is optimal for agent i with no success for all p < pd, we

move backward from time td associated with belief pd and prove that if the agent finds it optimal

to exert strictly positive effort at any belief p′ where p≤ p′ ≤ pd (i.e., if V1,p′+dp − V0,p′+dp ≥ c/λ),

then we have V1,p − V0,p ≥ c/λ implying that exerting full effort is optimal at belief p− dp. This

can be seen from the following:

V d
1,p−V d

0,p =−cdt+λRdt+ (1−λdt− pλdt)V d
1,p+dp + cdt−λV d

1,pdt− (1−λdt− pλdt)V d
0,p+dp

≥ λRdt+ (1−λdt− pλdt) c
λ
−λV d

1,pdt≥
c

λ
.

To show the last inequality, we need to show that

V d
1,p ≤R− (1 + p)

c

λ
.
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We prove this in two steps. First, we prove that

V d
1,p ≤

1

1 + p

(
R− c

λ

)
⇔ V d

1,p = pV d
1,1 + (1− p)V d

1,0 = p
1

2

(
R− c

λ

)
+ (1− p)

(
3

4
+

1

4
e−2λtd

)(
R− c

λ

)
≤ 1

1 + p

(
R− c

λ

)
⇔ p

1

2
+ (1− p)

(
3

4
+

1

4
e−2λtd

)
≤ 1

1 + p
⇔ 1 + e−2λtd ≤ 2

1 + p
.

To show the last inequality, we use that p= λt/(1 +λt) and t≤ td. Thus, it is enough to show that

1 + e−2λtd ≤ 1 + e−2λt ≤ 2(1 +λt)

1 + 2λt
⇔ 1− (1 + 2λt)e−2λt ≥ 0,

and the last inequality holds given that the left-hand-side is increasing in t and at t = 0, it is

binding. In the second step, we prove that

1

1 + p

(
R− c

λ

)
≤R− (1 + p)

c

λ

which holds if and only if (2 +p)c/λ≤R which is satisfied for p≤ pd. This verifies the equilibrium.

Part (ii). To prove that td < tr, first notice that the left-hand-side of (46) is strictly decreasing

in td. To see this, note that

∂V d
1,pd

∂td
=
∂pd
∂td

V d
1,1−

∂pd
∂td

V d
1,0 + (1− pd)

∂V d
1,0

∂td
< 0,

where the above inequality holds since ∂pd/∂td > 0, V d
1,1 <V

d
1,0 and ∂V d

1,0/∂td < 0 according to (47).

Following this observation, suppose that td = tr. Then, we can show that V d
1,pr

< c/λ implying that

td < tr. To see this, recall from (39) that under probabilistic encouragement design we have:

V r
1,pr

= prV
r
1,1 + (1− pr)V r

1,0 =
c

λ
,

where superscript r refers to the probabilistic encouragement design. Therefore, to prove that

V d
1,pr

< c/λ, it is enough to show that

V d
1,0 <V

r
1,0⇔

(
3

4
+

1

4
e−2λtr

)(
R− c

λ

)
<

3λ+ 2γr
2(2λ+ γr)

(
R− c

λ

)
.

Using the fact that γr = 1/tr and further simplifying the above inequality, we need to show:

1− (1 + 2λtr)e
−2λtr > 0,

which always holds for tr > 0. This completes the proof of part (ii).

Part (iii). We first calculate the expected lead time of the contest when the principal discloses

partial progress with a delay of length td. Denote by T dk,l,t the expected lead time of the contest
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when one agent has obtained k successes and the other one has obtained l successes from any time

t onward under a design with delay. Consider any time t when the first success arrives. Then, the

expected lead time of the contest from t can be expressed as follows:

T d1,0,t =

∫ t+td

t

[
λ(τ − t) +λ

(
τ − t+

1

2λ

)]
e−2λ(τ−t)dτ +

(
td +

1

λ

)
e−2λtd =

3

4λ
+

1

4λ
e−2λtd , (48)

where we use the fact that the laggard quits once the principal discloses progress td periods after

its arrival. Using the above expression, the ex-ante expected lead time of the contest is:

T d0,0,0 =

∫ ∞
0

2λ

(
t+

3

4λ
+

1

4λ
e−2λtd

)
e−2λtdt=

1

4λ
e−2λtd +

5

4λ
. (49)

Recall that the expected lead time of the contest under probabilistic encouragement design is given

by 1
4λ
e−2λtr + 5

4λ
. Part (iii) of the theorem follows from Part (ii) where we show that td < tr. �

B. Additional Results

Proposition B1. When the principal is budget-constrained and commits to full information dis-

closure, there exists a unique symmetric equilibrium in which both agents exert full effort until the

first success arrives. After that, the laggard quits and the leader puts full effort until the end.

Proof of Proposition B1: Incentive compatibility conditions (13) and (15) show that an agent

with one success finds it optimal to put full effort until the end. Given this observation, we have

V1,1 = 1
2
(R− c/λ)< c/λ. Immediately, from IC condition (17), it can be concluded that the laggard

quits. Using this observation, we obtain V1,0 =R− c/λ and V0,0 = 1
2
(R− 2c/λ)≥ 0. Therefore, IC

condition (19) is satisfied as V1,0−V0,0 = 1
2
R> c/λ. �

Proposition B2. When the principal is budget-constrained, and commits to probabilistic encour-

agement design with a flexible reward according to Rt = (2 +pt)c/λ where pt = λt/(1 +λt) if t < tr,

and Rt =R for t≥ tr, an agent who has not achieved a success exerts full effort until she obtains her

first success, or her opponent obtains her second success, or the principal discloses the opponent’s

partial progress. An agent who has achieved one success exerts full effort until the end.

Proof of Proposition B2: In the proof of Proposition 6, we already show that V1,pr = c/λ for

t≥ tr. Using (9), we obtain V0,pr = 0 for t≥ tr and hence (36) is binding. Also for t < tr and with

a flexible reward Rt = (2 + pt)c/λ, it is easy to verify from (32) that V1,p = c/λ. Therefore, (36)

is binding implying that an agent with no success finds it optimal to exert full effort. Finally, the

reward structure is such that (35) is slack for t < tr. Therefore, an agent with one success puts full

effort at all times.

Notice that agents’ and principal’s combined surplus is the same across any design with the same

equilibrium and the same expected lead time for the principal. Therefore, the principal’s surplus is

maximized when the agents’ surplus is minimized. Since this design gives V0,p = 0 and V1,p = c/λ to

the agents before and after obtaining a success, we conclude that our probabilistic encouragement

design with flexible reward minimizes the expected reward of the contest. �
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B.1. Discounting

In this section, we extend Proposition 1 and Theorem 1 to the case where the principal and the

agents discount future payoffs at rate r > 0. Generalizations of other results follow in a similar

fashion and are available upon request from the authors.

B.1.1. First-Best Contract with Observable Effort and Discounting

Proposition B3. There exists an individually rational “first-best” contract that induces full effort

at all times with the minimum required compensation of 2c
2λ+r

+ 4λc(3λ+r)

(2λ+r)3
to agents.

Proof of Proposition B3: Each agent incurs a flow cost of c while working during the contract.

Given this, consider the state when both agents have already achieved one success. Then, each

agent’s expected cost in such a contract from any time t is given by:∫ ∞
t

2λ

(∫ τ

t

ce−r(s−t)ds

)
e−2λ(τ−t)dτ =

c

2λ+ r
.

Next, consider the state of the game with a leader and a laggard. Then, each agent’s expected cost

from any time t can be expressed as follows:∫ ∞
t

[
λ

∫ τ

t

ce−r(s−t)ds+λ

(∫ τ

t

ce−r(s−t)ds+
c

2λ+ r
e−r(τ−t)

)]
e−2λ(τ−t)dτ =

c(3λ+ r)

(2λ+ r)2
.

Finally, each agent’s ex-ante expected cost is given by:∫ ∞
0

2λ

(∫ t

0

ce−rsds+
c(3λ+ r)

(2λ+ r)2
e−rt

)
e−2λtdt=

c

2λ+ r
+

2λc(3λ+ r)

(2λ+ r)3
.

Multiplying the above value by 2 gives us the first-best cost of the principal. �

B.1.2. Full Information Disclosure with Flexible Reward and Discounting

Theorem B1. Under full information disclosure, a flexible-reward contest with R2,0 = c(2λ+r)

λ2
and

R2,1 = c(3λ+r)

λ2
induces both agents to exert full effort at all times with the first-best expected reward

of 2c
2λ+r

+ 4λc(3λ+r)

(2λ+r)3
.

Proof of Theorem B1: Consider a flexible-reward contest with R2,0 = 2c/λ and R2,1 = 3c/λ

where the principal commits to disclose any success upon its arrival. Let us fix agent −i’s effort

x−ik,l,t = 1 for all k, l, and t and find conditions under which agent i optimally chooses xik,l,t = 1

for all k, l, and t. Consider the state of the game where both agents have already achieved one

success. The Bellman equation and the corresponding HJB for agent i’s problem can be expressed

as follows:

V1,1 = max
x1,1
{x1,1(λR2,1− c)dt+ (1−λx1,1dt−λdt− rdt)V1,1}

⇒ 0 = max
x1,1
{x1,1 (λR2,1− c−λV1,1)− (λ+ r)V1,1} , (50)
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where we use the fact that the winner receives R2,1 in this state of the game. From (50), we can

derive that x1,1 = 1 is optimal if and only if R2,1−V1,1 ≥ c/λ. Next, consider the state of the game

with a leader and a laggard. The Bellman equation and the corresponding HJB for the leader’s

problem (which we assume to be agent i) can be written as:

V1,0 = max
x1,0
{x1,0(λR2,0− c)dt+λV1,1dt+ (1−λx1,0dt−λdt− rdt)V1,0}

⇒ 0 = max
x1,0
{x1,0 (λR2,0− c−λV1,0) +λ (V1,1−V1,0)− rV1,0} , (51)

where we use the fact that the winner receives R2,0 in this state of the game. From (51), we can

derive the IC constraint for the leader which tells us that x1,0 = 1 is incentive compatible if and

only if R2,0 − V1,0 ≥ c/λ. Similarly, we can express the Bellman equation and the corresponding

HJB for the laggard’s problem (assuming to be agent i) as follows:

V0,1 = max
x0,1
{x0,1(λV1,1− c)dt+ (1−λx0,1dt−λdt− rdt)V0,1}

⇒ 0 = max
x0,1
{x0,1 (λV1,1− c−λV0,1)− (λ+ r)V0,1} , (52)

which implies that exerting full effort for the laggard is optimal if and only if V1,1 − V0,1 ≥ c/λ.

Finally, before the arrival of any success, the continuation value of each agent is given by:

V0,0 = max
x0,0
{x0,0(λV1,0− c)dt+λV0,1dt+ (1−λx0,0dt−λdt− rdt)V0,0}

⇒ 0 = max
x0,0
{x0,0 (λV1,0− c−λV0,0) +λ (V0,1−V0,0)− rV0,0} . (53)

From (53), exerting x0,0 = 1 is incentive compatible for each agent if and only if V1,0−V0,0 ≥
c

λ
.

We now verify that the proposed flexible-reward schedule in Theorem B1 satisfies all of the

above IC constraints and spends the minimum first-best expected reward. We know that V1,1 = c/λ

is the minimum required continuation payoff to incentivize the laggard to put full effort. From

(50), we know that V1,1 =
λR2,1−c
2λ+r

. Thus, the principal has to specify a reward R2,1 = c(3λ+r)

λ2
in

order to satisfy V1,1 = c/λ. Given these values, the IC constraint R2,1−V1,1 ≥ c/λ is satisfied. Also,

plugging in the value of V1,1 = c/λ into (52), we obtain that V0,1 = 0 and so the IC constraint

for the laggard is binding. Next, we know that V1,0 = c/λ is the minimum required continuation

payoff to motivate the agents to exert effort from the beginning. Plugging in this value into (51),

R2,0 = c(2λ+r)

λ2
is needed to satisfy the HJB. It follows that the IC constraint for the leader is satisfied

as R2,0 − V1,0 ≥ c
λ
. Finally, given V1,0 = c/λ and V0,1 = 0, we conclude by (53) that V0,0 = 0 which

shows that the last IC constraint V1,0−V0,0 = c
λ
−0 = c

λ
is binding. Therefore, full effort is incentive

compatible at all times.
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To calculate the expected reward of the contest with flexible reward, note that when both agents

have already obtained one success, the expected reward of the contest with discounting is given by∫ ∞
t

2λ

[
c(3λ+ r)

λ2
e−r(τ−t)

]
e−2λ(τ−t)dτ =

2c(3λ+ r)

λ(2λ+ r)
.

When there is a leader and a laggard, the expected reward can be computed as follows:∫ ∞
t

λ

[
c(2λ+ r)

λ2
+

2c(3λ+ r)

λ(2λ+ r)

]
e−(2λ+r)(τ−t)dτ =

c

λ
+

2c(3λ+ r)

(2λ+ r)2
.

Finally, the ex-ante expected reward of the contest is given by:∫ ∞
0

2λ

[
c

λ
+

2c(3λ+ r)

(2λ+ r)2

]
e−(2λ+r)tdt=

2c

2λ+ r
+

4λc(3λ+ r)

(2λ+ r)3
.

�
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