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Abstract 

Purpose: To systematically study and predict the therapeutic targets and signaling pathways of 
Hippocampus (HPC) against chronic kidney disease (CKD) using network pharmacology.  
Methods: By combining database mining, literature searching, screening of disease targets, and 
network construction, the effects of various components of HPC on several proteins related to CKD 
were predicted and the active compounds were screened. Genes related to the selected compounds 
were linked using the SEA database. The correlation between CKD and genes was determined using 
OMIM, DisGenNet, and GeneCards databases. Pathway-enrichment analyses of overlapping genes 
were undertaken using online databases. 
Results: A total of 144 compounds in HPC were identified. Analyses of clusters suggest that the active 
components of HPC and the target genes against the inflammation caused by CKD were due to 10 
compounds and 25 genes. Metascape results showed that these HPC targets are related to CKD 
inflammation. 
Conclusion: The active components of HPC and the target genes against CKD inflammation are 
involved in multiple signaling pathways, such as AGE-RAGE, TLR, TNF, and NF-κB. This work provides 
scientific evidence to support the clinical use of HPC against CKD. 
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INTRODUCTION 
 
Chronic kidney disease (CKD) is caused by a 
reduced glomerular filtration rate or kidney 
damage. Increasingly, CKD has become a 
severe public health problem worldwide [1,2]. 

CKD is not only closely related to cardiovascular 
disease, diabetes and other diseases, but also 
associated with the increase in mortality and 
medical care costs. Therefore, early detection 
and treatment of CKD can reduce economic 
costs, the burden of advanced kidney disease, 
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and the morbidity and mortality of non-
communicable infections. 
 
Hippocampus, also called seahorse, is a 
collective name for small marine fishes of the 
Syngnathidae family. Hippocampus species have 
been used in tonics in traditional Chinese 
medicine (TCM) formulations. Steroids, metals, 
amino acids, polypeptides, nucleic acids, 
minerals, and fatty acids have been isolated from 
Hippocampus-based TCM formulations [3,4]. 
According to the theory of TCM, the formula 
containing Hippocampus materials can nourish 
the kidney and strengthen the yang. Network 
pharmacology has been applied to marine-based 
drugs [5]. Network pharmacology provides a new 
method to understand the interaction between 
active components and the related targets of 
marine-based drugs. However, the mechanisms 
by which these formulation components affect 
inflammation and interact or antagonize each 
other at molecular and network levels are not 
clear. 
 
In this paper, the active components of HPC and 
the target genes against CKD inflammation were 
systematically studied by using network 
pharmacology. The anti-inflammatory effect of 
HPC on CKD can be used to provide 
bioinformatics data for subsequent clinical and 
basic research on CKD. 
 
METHODS 
 
Building a database of chemical components 
 
The studies in the literature were searched by 
using the keywords of “seahorse” and 
“Hippocampus” [6]. The databases used for 
these searches were CNKI (www.cnki.net/), 
Wanfang (www.wanfangdata.com.cn/index.html), 
Google Scholar (https://scholar.google.com) and 
Chemistry Database (www.organchem.csdb.cn).  
Using these two keywords, 148 components 
were documented from the literature of the 
previous 20 years. The molecular formula of 
each compound was obtained with PubChem 
(https://pubchem.ncbi.nlm.nih.gov) or 
Chemspider (www.chemspider.com) Then, 
ChemDraw software was employed to draw the 
structure. SwissADME (www.swissadme.ch) was 
used to predict ADME parameters. The molecule 
editor within PubChem, a simplified molecular-
input system (SMILES), was employed to screen 
for the most important components of HPC. 
 
Screening of active compounds 
 
Considering the cost, length, and complexity of 
drug development, it is crucial to recognize the 

bioavailability and potential of drugs. The oral 
bioavailability (OB), “druglikeness”, 
gastrointestinal tract (GIT) absorption, and ability 
to cross the blood brain-barrier (BBB) are 
essential parameters for drug discovery [7,8]. 
 
Oral bioavailability is the fractional extent of a 
drug dose that finally reaches the therapeutic site 
of action [9]. Druglikeness denotes how 
“druglike” a substance is concerning properties 
such as solubility, stability, bioavailability. In 
general, compounds (and their analogs) 
screened according to bioavailability are more 
likely to be used as candidate compounds. Due 
to the existence of the blood-brain barrier, there 
are still huge challenges to drugs used in the 
treatment of brain diseases [10]. Bioavailability is 
a complex physiologic process affected by 
several factors. 
 
In the present study, the main active components 
of HPC were screened based on druglikeness, 
GIT absorption, and the ability to cross the BBB. 
Firstly, the chemical structure of each compound 
was drawn using Chemdraw and introduced into 
SwissADME, and the typical values of SMILES 
were obtained. The screening criterion for GIT 
absorption was defined as “High”. The ability to 
cross the BBB was defined as “Yes”. 
Druglikeness (using the Lipinski Rule of Five) 
was defined as “Yes, 0 violation”. The screening 
results were based on the potentially active 
components of HPC. 
 
Selective compounds of HPC and target 
genes 
 
Drugs can affect organisms through targeted 
interactions. Currently, network pharmacology is 
an efficient approach to decipher the mechanism 
of drug action [11]. In the process of drug 
development, the first step is to accurately 
identify and verify drug-target interactions. 
Simultaneously, this interaction can help to 
explain the underlying biological mechanism of 
action. 
 
In the SwissADME database, according to the 
selected useful compounds based on SMILES, 
the similarity ensemble approach (SEA; 
http://sea.bkslab.org) was used to ascertain the 
approximate targets of the active components of 
HPC. 
 
Four publicly available databases: GeneCards v5 
(https://www.genecards.org), DisGeNet 7 
(www.disgenet.org) [12], DrugBank 5.1.7 
(www.drugbank.ca) and OMIM (https://omim.org) 
were searched, and the target genes associated 
with CKD, only Homo sapiens proteins linked to 
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CKD and the kidney disease online website were 
selected. Venn diagrams were used to identify 
and visualize the overlapping genes between 
compounds and CKD target genes using a free 
data-analysis platform (www.bioinformatics. 
com.cn). 
 
Network construction and analyses 
 
Drug–target networks and disease–target 
networks can be used to identify the active 
components and the potential targets, elucidate 
the mechanism of action, and ascertain the 
efficacy [13]. After screening the active 
components of HPC using SwissADME and 
obtaining the SEA target, the “connection” 
between the drug and the target was identified. 
Information on the targets of HPC and CKD-
related diseases was obtained by eliminating the 
repeated targets. The targets were transformed 
into a “Gene Symbol” format. The target results 
were inputted into a database for searching 
interacting genes/proteins (https://string-db.org). 
The interaction between the compounds and the 
overlapping genes was obtained. The interaction 
network was visualized and analyzed through 
Cytoscape 3.7.0 (https://cytoscape.org). 
Cytoscape is an open-source bioinformatics 
platform in which “nodes” represent compounds 
and genes or proteins, and “edges” illustrate 
interactions between compounds and genes [14]. 
By setting the “degree value” of compounds or 
genes, the key active components and critical 
genes of HPC against CKD were screened out 
and identified using the topology of the network. 
The degree value of a compound or target 
indicates the number of connection points of the 
compound or gene in the network. 
 
To study the network further, the molecular 
complexity detection (MCODE) plugin was 
introduced to generate clusters. MCODE can 
detect regions of dense connections which 
represent the molecular complexes in large 
protein–protein interaction (PPI) networks [15]. 
MCODE could identify the main centers of HPC 
and CKD by setting a “k-core”. However, the 
node with the highest score could be found, 
which was called a “seed” (denoted as a square). 
The seed could be a key target for this cluster.  
 
Analyses of pathway enrichment of 
overlapping genes using the Gene Ontology 
(GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) database 
 
The related pathways of HPC against CKD were 
analyzed using R and RGui 4.0.0 (R Project for 
Statistical Computing, Vienna, Austria; 
https://www.r-project.org) with a graphical user 

interface. The critical target for import was 
prepared in the early stage. Key targets were 
imported into Metascape (https://metascape.org) 
[6]. There were 639 entries found in total. In each 
category, including biological process (BP), cell 
component (CC), molecular function (MF), the 
top-20 entries were found (p < 0.05). The latest 
data on pathway-enrichment analysis were from 
the KEGG database. The cutoff p -value was 
0.05. Sixty-five pathways were selected, and the 
first 10 were chosen. 
 
RESULTS 
 
Potential active components of HPC 
 
Four SwissADME models were selected to 
screen the active components of HPC: 
bioavailability, druglikeness, crossing the BBB, 
and GIT absorption. All selected components 
followed Lipinsky’s Rule of Five. A literature 
search identified 148 compounds in HPC. The 
SwissADME screening results of these 148 
compounds showed that 59 compounds had 
good activities (Figure 1). 
 

 
 
Figure 1. Network pharmacology flow chart 
 

 
Figure 2: Overlapping genes between 654 Chronic 
kidney disease (CKD) inflammation-related genes and 
56 active compounds-related genes 
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Target genes associated with 59 compounds 
or CKD 
 
After deletion of duplicated values, 395 target 
genes were obtained from the 59 compounds in 
SEA. Interestingly, the 395 target genes were 
related to only 34 compounds. By searching the 
databases of Online Mendelian Inheritance in 
Man (OMIM), GeneCards, DisGeNet, and 
Drugbank, 654 target genes with a high 
correlation with CKD were screened. The Venn 
diagram showed that these 654 CKD-related 
genes matched the target of the 395 compounds, 
and 56 overlapping genes could be identified 
(Figure 2). These 395 compound targets were 
the targets of 34 out of 59 compounds. 
 
Network construction of drug-component 
targets 
 
According to the pharmacokinetic evaluation of 
HPC and screening using the SEA database, the 
species were “Homo sapiens”, and the related 
targets of 59 compounds were found. There were 
16 HS, 464 QT, 75 TS, 2525 ZFS, and 117 ZT. 
After deleting duplicate values, 393 targets 
remained (two targets were independent and 
were deleted). Among these 393 targets, ZFS 
had the highest proportion (131 targets). The 
target with the lowest proportion was HS 
(Supplementary Information). 
 
To find out how HPC works against CKD, the 
compound-target (C-T) network was constructed 
by using 393 targets and 59 components (Figure 
3). These active components were associated 
with multiple target points. They resulted in 3182 
associations between 59 active components and 
393 target points. On the average, each 
component had 81 target points, and the average 
composition of each target was 1.37. 
 

 
 
Figure 3: Component-target network of HPC. Different 
colors and shapes represent other components. The 
larger the node, the higher the degree of freedom 
value of the predicted targets by SEA Search Server 
 

Construction of a PPI network 
 
Based on four gene databases (DisGeNet, 
OMIM, GeneCards, and DrugBank), there were 
654 candidate target points related to CKD. 
These verified gene IDs were inputted into the 
STRING database, the species chosen were 
Homo sapiens, and the confidence score was set 
at 0.9. The Tab Separated Values (TSV) file was 
exported, the network was built in the TSV file, 
and imported into Cytoscape 3.7.0. There were 
4886 sides and 654 nodes in the PPI network for 
CKD (Figure 4). The closer the node was, the 
more purple it was; the larger the node, the 
higher the degree of freedom. These findings 
suggested that these genes were closely related 
to other genes in the PPI network, and may have 
an important role in CKD. The 15 proteins with 
the highest degree of freedom were PIK3CA, 
PIK3R1, STAT3, APP, MAPK1, IL6, SRC, AKT1, 
C3, PTPN11, HRAS, JAK2, FN1, JUN, RELA. 
Their values of degree of freedom were 111, 92, 
87, 75, 73, 71, 71, 71, 69, 68, 66, 64, and 63 
respectively. 

 
Figure 4: Protein-protein interaction (PPI) network of 
Chronic kidney disease (CKD) 
 
PPI network of HPC targets and CKD targets 
 
56 overlapping genes in HPC–CKD targets were 
found, and two redundant genes were removed. 
The PPI network comprised 54 nodes and 332 
edges (Figure 5). For these 54 target genes, 
Cytoscape 3.7.0 and STRING 11.0 were used to 
create a PPI network for HPC–CKD with a 
confidence cutoff of 0. 9. Among them, the top-
10 gene proteins with the highest values were 
interleukin (IL)6, vascular endothelial growth 
factor (VEGF)4, toll-like receptor (TLR)4, JUN, 
proto-oncogene c-Fos (FOS), transcription factor 
p65 (RELA), IL2, TLR2, estrogen receptor 
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(ESR)1 and peroxisome proliferator-activated 
receptor gamma (PPARG). 
 

 
 
Figure 5: Protein-protein interaction (PPI) network 
linking 54 target genes related to CKD 
 
Cluster analyses of the PPI network for HPC–
CKD 
 
The PPI network for HPC–CKD (k-core = 2) 
using the MCODE plugin of Cytoscape revealed 
two cluster networks (Figure 6, Table 1). In 
cluster 1, there were 19 nodes and 122 edges, 
and the score was 13.556. TLR2/IL1 receptor-
like protein was the seed node of cluster 1, which 
showed high expression in peripheral-blood 
leukocytes (especially monocytes), bone marrow, 
and the spleen. Cluster 2 had six nodes and 11 
edges, and its score was 4.4. Toll-like receptors 
are receptors of the innate immune system 
responsible for recognizing pathogen-related 
molecular patterns. Toll-like receptor 2 is the 
most mixed TLR receptor and can realize the 
most diverse pathogen-related ways. Toll-like 
receptor 2 is involved mainly in the inflammatory 
response and innate immune biological 
processes. 
 
Analysis of pathway enrichment of 
overlapping genes using GO and KEGG 
databases 
 
Through analyses of pathway enrichment using 
GO and KEGG databases, the main targets were 
classified into different functional modules. 
Metascape was employed to analyze the 
signaling pathways regulating CKD-related 
targets, and the results were visualized with R to 
determine the biological importance of the main 
targets. The cutoff value was set to 0.05. Results 

showed that the function of multiple targets was 
closely related to CKD occurrence. Through the 
GO enrichment analysis of the above network, 
639 GO entries were obtained, the top 20 of 
each category were selected (Figure 7), and the 
Molecular Function (MF) is shown in Figure 8. 
 
To further verify that certain biological processes 
associated with target proteins were related to 
the inflammation observed in CKD, sixty-five 
pathways (0.05 of p-value cutoff) were analyzed 
using the KEGG database. The results showed 
that multiple signaling pathways including AGE-
RAGE, TLR, and tumor necrosis factor (TNF) 
were related to the targets (Figure 8). 
 

 
 
Figure 6: HPC-CKD PPI network. In the HPC-CKD 
PPI network, the MCODE algorithm study the 
discovered clusters. The seed nodes of each group 
are representing as a square 
 

 
 
Figure 7: GO Enrichment-BP and CC 
 

 
 
Figure 8: GO Enrichment-MF and Pathway analysis 
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         Table 1: Clusters of HPC-CKD PPI network 
 

Cluster Score Node Edge Gene IDs 

1 13. 556 19 122 
APP, IL2, VDR, SELE, STAT1, TNFRSF1A, IL6, 
TLR2, ESR1, NR3C1, AR, NFKB1, RELA, NOS3, 
HIF1A, VEGF, MMP3, FOS, JUN

2 4. 4 6 11 NOS2, TLR4, ELANE, PPARG, ALOX5, MMP2 
 

DISCUSSION 
 
Due to the complexity of human biology, 
predicting the effects of drugs on human health is 
challenging. A single target gene rarely regulates 
a particular disease. Instead, there is multiple-
level interference of interacting networks related 
to molecular targets, pathways, cells, and tissues 
[16]. Marine animal-derived medicines are part of 
traditional Chinese medicine. The active 
components of marine animal-derived medicines 
are complex, and it is difficult to clarify the 
mechanism of action for the treatment of 
diseases. Network pharmacology provides a new 
approach to study the action mechanism of multi-
component formulations. Here, the potential 
bioactive substances related to the important 
targets of CKD were searched from HPC by 
using network pharmacology. Through data 
mining, literature searching, disease target 
screening, and network construction, the effects 
of HPC components on several CKD-related 
proteins were predicted. Figure 9 shows the 
pathway interaction analysis of the component-
target network, and the results revealed that 
HPC was an essential candidate for the 
treatment of CKD. 
 

 
 
Figure 9: Hippocampus drug composition - kidney 
disease inflammation target - pathway network 
 
The active components of HPC could act on 
target proteins through various metabolic 
pathways. Paeonol from HPC could be employed 
as an anti-endotoxin in CKD. Two possible 

mechanisms of action of paeonol from HPC are: 
(i) inhibit TLR4 expression and phosphorylation 
of proteins in the nuclear factor-kappa B (NF-κB) 
signaling pathway, and (ii) restrain the activity of 
DNA-binding proteins by activating the TLR4-NF-
κB signaling pathway [17]. The target genes of 
paeonol (JUN, E-selectin, RELA, STAT1, and 
IL2) are also involved in the AGE-RAGE 
signaling pathway during diabetic complications, 
and may have therapeutic roles in CKD. Himaya 
and colleagues found that paeonol isolated from 
Hippocampus species inhibited activation of BV-
2 microglia and RAW264.7 macrophages 
induced by lipopolysaccharide, thereby inhibiting 
mitogen-activated protein kinase and NF-κB 
signaling pathways [18]. Nuclear factor-kappa B 
is a pleiotropic family of transcription factors that 
regulate inflammation, immunity, as well as the 
apoptosis, proliferation and differentiation of 
cells. Nuclear factor-kappa B has been shown to 
be activated in kidney diseases in experimental 
animals [19]. Pharmacologic methods can 
regulate the NF-κB signaling pathway. The active 
compounds in Hippocampus-based formulations 
can elicit an anti-inflammatory effect of 
androstane-4-ene-3,17-dione (ZT2) steroids by 
inhibiting the transactivation of NF-κB-dependent 
genes. Therefore, the active components of 
Hippocampus-based formulations have 
therapeutic impacts on the inflammation caused 
by CKD. Cluster analyses demonstrated that 
TLR2 and TLR4 were the central genes in the 
main cluster. Toll-like receptors on renal cells 
contribute to an innate immune response to renal 
infection, and participate in lupus nephritis [20]. 
PPI network not only revealed the relationship 
between HPC and CKD-related targets, but also 
demonstrated the potential targets from a more 
objective perspective than that obtained by a 
clustering technique. Besides, pathway-
enrichment analyses showed that all targets 
interacted with the active components of HPC. 
Finally, pathway-enrichment analysis showed 
that the bioactive components of HPC could be 
expressed through multiple signaling pathways 
such as AGE-RAGE, TLR, and TNF to aid the 
regulation of CKD. 
 
CONCLUSION 
 
The active components of Hippocampus (HPC) 
and the target genes against the inflammation 
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caused by chronic kidney disease (CKD) have 
been successfully investigated using network 
pharmacology. The findings show that the active 
components and the target genes include 10 
compounds and 25 genes, respectively. The anti-
inflammatory effect of HPC on CKD may involve 
multiple signaling pathways, such as AGE-
RAGE, TLR, TNF, and NF-κB. This work 
provides scientific evidence to support the clinical 
use of HPC against CKD. 
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