Use of Product Quality Review to Evaluate Quality and Process Capability: A Case Study of Ibuprofen in a Model Tablet Manufacture

SARAH VUGIGI*1, CHRISTIAN MSHILA² AND IKONI OGAJI³

 ¹Department of Pharmaceutical Chemistry & Pharmaceutics, School of Pharmacy, Kabarak University, P.O. Private Bag Kabarak-20157, Kenya.
 ²Elys Chemical Industries Ltd., P.O. Box 40411-00100, Nairobi, Kenya.
 ³Department of Pharmaceutics and Pharmaceutical Technology, University of Jos, P M B 2084-930001, Jos, Plateau State, Nigeria.

Product quality review in the pharmaceutical industry is a regulatory requirement comprising periodic evaluation of licensed pharmaceutical products to verify consistency of the manufacturing process and appropriateness of specifications. In this study, product quality and process capability in the manufacture of ibuprofen tablets were evaluated. A quality review of 39 batches produced in the year 2019 was conducted. Components for review included starting materials, critical in-process controls, finished product results, non-conformances, deviations and quality relevant product complaints. Control charts and statistical analysis were used to trend results and compute process capability indices. Starting materials, in-process controls and finished product results complied with quality specifications. Process capability indices for tablet weight, size, dissolution and assay were greater than 1.0. The study showed that the established quality attributes of ibuprofen tablets were consistently produced and it was concluded that the manufacturing process was controlled and sufficient to assure reproducible outcomes.

KEY WORDS: Capability, pharmaceutical, process, product, quality, review.

INTRODUCTION

Product Quality Review (PQR) is a requirement mandatory in Good Manufacturing Practices (GMP) that involves periodic evaluation of all licensed pharmaceutical products by the manufacturer. The aim of this evaluation is to verify consistency of existing processes the appropriateness of current and specifications for both starting materials and finished products in order to highlight any trends and to identify product and improvements process [1-4]. Pharmaceutical GMP guidelines require that all finished products should be reviewed annually for quality standards to determine the need for change in specification or manufacturing process of a

drug product [5-7]. The review consists of a comprehensive report that covers all critical elements of the product life cycle. The report includes, but not limited to, list of manufactured batches, starting materials which are used for the product, equipment qualification, critical in-process controls, finished product results, failed batches, deviations, all process and analytical method changes, quality related complaints and recalls [8].

The PQR data is interpreted and evaluated by use of control charts to identify existing trends [9-12]. Statistical analysis is performed to determine process capability indices. The assumption is that the data is normally distributed, where \bar{x} , σ , USL and LSL represent mean, standard deviation

*Author to whom correspondence may be addressed. Email: svugigi@kabarak.ac.ke.

(SD), upper specification limit and lower specification limit, respectively. The mean and SD are used to determine the upper and lower control limits (UCL and LCL) which establish whether a process is out of control. Process capability index, C_p, measures spread of the process data within specification limits whereas C_{pk} the measures centring of data and acceptability of the manufacturing process [13-15]. A process is capable when C_p and C_{pk} values are greater than one (>1.0) and almost all measurements fall within specification limit. A process capability study identifies specification inappropriate limits. highlights variability in process and assists manufacturers to take the required corrective actions to ensure compliance to quality standard.

Periodic quality reviews are usually prepared as a regulatory requirement and for internal consumption by the individual companies. There has not been much independent work in literature on PQR despite it being an important tool for product quality improvement. Furthermore, information on evaluation of PQR reports to identify areas of product and process improvement is limited. Product quality review and process performance evaluation entails application of engineering statistics to manufacturing processes.

In this study, product quality and process capability in the manufacture of ibuprofen 200 mg tablets by Elys Chemical Industries Ltd., Kenya, were evaluated by conducting quality review of the product for the year 2019. Ibuprofen is a nonsteroidal antiinflammatory drug (NSAID) used widely as an analgesic and antipyretic. It has poor aqueous solubility and drug dissolution may be a rate limiting step in oral bioavailability [16-18]. The production process of ibuprofen tablets comprises granulation, blending, compaction, coating of tablet cores and packing of the finished product.

EXPERIMENTAL

Data collection

Product quality review of ibuprofen tablets was conducted for 39 batches which were produced in the year 2019. Ibuprofen tablets contain ibuprofen BP, maize starch, potassium sorbate, polyvinylpyrrolidone, gum acacia. sucrose. calcium talc. carbonate, methyl paraben sodium, propyl paraben sodium, erythrosine pink dye, titanium dioxide and carnauba wax. Data on product quality attributes across the manufacturing process and after sales noncompliances were collected and evaluated. Quality control test results for all batches of active ingredient (drug substance) and excipients were collected and reviewed for compliance with standard quality specifications. Parameters that were evaluated for raw materials included solubility, assay, optical rotation, sulphated ash, loss on drying (LoD), microbial purity and pH. In-process and finished product data on critical quality attributes such as weight of tablet, disintegration time, dissolution and assay were collated for all batches and examined relative to standard specification. In addition, information on significant deviations, non-conformances, change controls, quality related product stability records, product complaints, recalls performed during this period, corrective and preventive actions and qualification status of equipment that were used in the production process were evaluated and documented.

Data treatment and analysis

The data was subjected to statistical analysis by computation of mean, standard deviation, UCL, LCL and plotting the results. X-bar and histogram charts were used to monitor the process mean and distribution of data. The process capability indices C_p , C_{pku} , C_{pkl} and C_{pk} were computed using a literature protocol [19].

Where:

$$\begin{split} &\text{UCL} = \bar{x} + 3\sigma; \qquad \text{LCL} = \bar{x} - 3\sigma \\ &\text{C}_{p} = \frac{\text{USL} - \text{LSL}}{6\sigma}; \qquad \text{C}_{pku} = \frac{[\text{USL} - \bar{x}]}{3\sigma} \\ &\text{C}_{pkl} = \frac{[\bar{x} - \text{LSL}]}{3\sigma} \\ &\text{C}_{pk} = \min\left\{\frac{\text{USL} - \bar{x}}{3\sigma}, \frac{\bar{x} - \text{LSL}}{3\sigma}\right\} \end{split}$$

RESULTS

Active pharmaceutical ingredient (Ibuprofen BP) review

Twenty-two batches of ibuprofen drug substance were received in year 2019. The batches complied with standard specification for the parameters that were tested including description of powder, particle size, identification and solubility. A summary of quality control test results for quantifiable specification parameters is shown in Table 1. All the batches complied with the standard specification for ibuprofen. Analysis of assay results using X-bar control chart to monitor variability is shown in Figure 1. All data values were within the specification limits.

Excipients review

All excipients that were used in production of Ibuprofen tablets (Table 2) conformed to the respective preset quality standards. These materials complied with specification for identification, solubility, assay, optical rotation, sulphated ash, LoD, microbial purity and pH, as applicable.

Table 1: Analytical results for ibuprofen raw material and their trending (n = 22)

	Optical rotation $(-0.05^{\circ} \text{ to } +0.05^{\circ})$	LoD (<0.5%)	Sulphated ash (<0.1%)	Assay (98.5-101.0%)
Minimum	0.00	0.02	0.02	99.45
Maximum	0.00	0.30	0.09	100.71
Average	0.00	0.07	0.05	100.04

Figure 1: X-Bar chart for assay of ibuprofen active pharmaceutical ingredient (n=22).

In-process controls (core tablets)

Table 3 shows the in-process analysis results (lowest and highest values within a batch) of all batches of ibuprofen tablets that were manufactured during this period.

Quality parameters that were tested complied with preset specifications. The weight of the core tablet, friability, and disintegration time ranged from (249–270 mg), (0.03–0.79%) and (17–108 sec), respectively.

Ingredient	Number	Quality parameters					
	of batches						
Maize starch	13	Solubility, identification, pH, LoD, microbial					
		contamination, sulphated ash, oxidizable substances.					
Potassium sorbate	1	Solubility, acidity/alkalinity, aldehydes, heavy metals,					
		LoD, assay.					
Talc	2	Solubility, identification, acidity/alkalinity, water-soluble					
		substances, loss on ignition, microbial contamination.					
Gum acacia	1	Solubility identification starch dextrin and agar tanning					
Sum dedend	•	LoD microbial contamination					
Sucrose	18	Description solubility identification appearance of					
Buerose	10	solution conductivity colour value specific optical					
		rotation sulphites reducing sugars I oD microbial					
		contamination					
Calcium	2	Description solubility identification solubility					
carbonate	2	chlorides sulphates barium LoD assay					
Mothyl norohon	1	Solubility identification opposence of solution pH					
	1	solution, dentification, appearance of solution, p11,					
	2	chiorides, surprises, neavy metals, water, assay.					
Propyl paraben	2	Solubility, identification, appearance of solution, pH,					
sodium	_	chlorides, sulphates, heavy metals, water, assay.					
Erythrosine pink	6	Chlorides, sulphates, water insoluble matter, arsenic, lead,					
		mercury.					
Titanium dioxide	1	Solubility, identification, appearance of solution, acidi					
		alkalinity, water-soluble substances, barium, iron, assay.					
Carnauba wax	2	Solubility, identification, appearance of solution, acid					
		value, melting point, saponification value, total ash value.					

 Table 2: Analysis results of excipients used in production of ibuprofen tablets

Table 3: In-process quality data of ibuprofen core tablets

Parameter	Average weight (247.6-273.6 mg)		Frial (<1.	oility 0%)	Disintegration time (<15 min)		
	Low (mg)	High (mg)	Low (%)	High (%)	Low (sec)	High (sec)	
Minimum	249.00	265.00	0.03	0.13	17	23	
Maximum	255.00	270.00	0.18	0.79	58	108	
Ā	252.51	267.51	0.10	0.28	22	48	
σ	1.30	1.24	0.05	0.11	0.08	0.25	
UCL	256.41	271.23	0.25	0.60	0.45	1.23	
LCL	248.62	263.80	N/A	N/A	N/A	N/A	

Key: \bar{x} =mean; σ =standard deviation; UCL & LCL=upper & lower control limits; N/A=Not applicable.

Finished pharmaceutical product (ibuprofen coated tablets)

Statistical analysis of ibuprofen coated tablets results for the two-sided specification parameters (assay, weight, length and thickness) using X-bar control charts to monitor process variability is shown in Figure 2. All values for each of these parameters for all batches fell within the control limits. Similarly, results for the other quality attributes (disintegration, friability, moisture content and dissolution) were within specification limits as presented in Table 4. The mean, standard deviation, upper and lower specification limits, upper and lower control limits are

presented. All the data values were within the preset specification limits.

Figure 2: X-bar charts for the assay, weight, length and thickness of ibuprofen coated tablets (n=39). UCL and LCL = upper control limit and lower control limit.

43 Vugigi et al. East Cent. Afr. J. Pharm. Sci. 24 (2021)

Parameter	Weight (0.444 g±10%)	DT (<60 min)	Friability (<1.0%)	Length (10.0±0.2 mm)	Thickness (6.3±0.2 mm)	Moisture (1-5%)	Dissolution (> 85%)	Assay (95-105 %)
Minimum	0.4154	10.1	0.08	9.89	6.36	1.36	95.30	99.02
Maximum	0.4295	27.87	0.31	9.97	6.46	2.39	104.42	103.8
Ā	0.4221	15.08	0.20	9.94	6.40	1.89	100.52	101.4
σ	0.0034	3.81	0.052	0.020	0.03	0.28	2.15	0.92
UCL	0.4324	26.07	0.35	9.99	6.48	2.73	NA	104.2
LCL	0.4119	NA	NA	9.88	6.32	1.05	94.08	98.73
USL	0.4884	60.0	1.0	10.2	6.5	5.0	NA	105
LSL	0.3996	NA	NA	9.8	6.1	1.0	85.0	95.0
Cpku	6.49	3.97	5.16	4.30	1.25	3.71	NA	1.27
Cpkl	2.21	NA	NA	2.24	3.72	1.06	2.41	2.35
Ср	4.35	NA	NA	3.27	2.48	2.39	NA	1.81
Cpk	2.21	N/A	N/A	2.24	1.25	1.06	N/A	1.27

Table 4: Quality data for the finished ibuprofen coated tablets

Key: DT=Disintegration Test; NA=Not applicable; $\bar{x} =$ mean; $\sigma =$ standard deviation; UCL and LCL = upper control limit and lower control limit; USL and LSL = upper specification limit and lower specification limit; C_p , C_{pku} , C_{pkl} and C_{pk} = process capability indices.

Process capability indices review (coated tablet)

The capability indices (C_p and C_{pk}) obtained for the evaluated parameters were greater than 1. The lowest value of C_p and C_{pk} was 1.81 (assay) and 1.06 (moisture content), respectively. Figure 3 presents histogram chart with normal distribution overlay of assay results showing low spread and centering of values within specification limits; with \bar{x} (101.49%), σ (0.92), C_p (1.87) and C_{pk} (1.27).

Equipment qualification, batch failures, deviations, investigations, change controls, stability and product complaints review

Critical equipment that were used in production of ibuprofen tablets were

reviewed and found to be in qualified state. There was no out of specification result on starting materials, in-process controls and the finished product. One deviation related to equipment failure was observed during this period. This incident was investigated following the standard procedure in place handling deviations. for Subsequent corrective and preventive actions were implemented. No changes were made to the manufacturing process. product formulation or analysis procedures. Stability studies for the finished product were carried out as per the existing stability There were monitoring program. no product recalls or quality related complaints reported on ibuprofen tablets over the POR duration.

Figure 3: Assay results for ibuprofen coated tablets represented with a histogram and normal distribution overlay.

DISCUSSION

Poor quality drugs may result in serious health implications, including treatment failure [20-22]. Consequently, the pharmaceutical manufacturing industry is stringently regulated to ensure consistent production of quality products. Periodic PQR is a regulatory requirement that provides sufficient evidence of GMP compliance in the pharmaceutical industry. The findings of this annual product quality review evaluation suggest that the manufacturing process of ibuprofen tablets is capable of consistently producing tablets within the established that are specifications. The X-bar control charts demonstrated that product variability is under control. The process capability indices verify consistency of the process and appropriateness of specifications for starting materials and finished both products.

All the batches of ibuprofen tablets that were manufactured by Elys Chemical industries Ltd., Kenya, in the year 2019 complied with the standard quality specification. The results were within the upper and lower control limits indicating that the process of manufacture is in control. This may be attributed to adherence to GMP requirements by the manufacturer. Pharmaceutical ingredients adequately controlled through are а standard procedure for qualification of vendors to minimize the risk of noncompliance. In addition. consistent manufacture of pharmaceutical products can result from the engagement of personnel that are qualified and appropriately trained to perform the production activities. Furthermore, capability of processes could be credited to validated equipment, manufacturing process and method of analysis. This ensures process consistency and quality control results that are accurate and reproducible.

Capability process indices, C_p and C_{pk} for two-sided specification parameters that were tested (tablet weight, tablet size, water content and assay) were greater than 1.0 indicating that the manufacturing process is capable of producing tablets that are within the specified limits and is operating close to the process mean. However, a C_{pk} value of > 1.33 is desirable as this gives sigma level of 4 and provides better centering of the process and unlikely that any item will be outside the specification limits [13]. The C_{pk} value for moisture content for the finished product in this review was 1.06 (mean value 1.78%, LSL 1%, USL 5%, C_p 2.39). The test values exhibited low dispersion but it may be appropriate to of consider revision the current specification limit to 0.5 - 4 % in order to enhance the C_{pk} value. This proposal will translate the C_p and C_{pk} values to 2.09 and 1.66, respectively. The review will improve the centering of values relative to the specification limit and avoid the risk of obtaining non-compliant result. The proposed change should be evaluated for any product quality related risks and executed following a standard change control procedure. It is noteworthy to highlight the observation that was made on assay results for the finished product, where the values of C_p and C_{pk} were 1.87 and 1.27, respectively.

Despite all values being within the specification limits, the mean (101.49%) was close to UCL (105%) indicating that the values were not sufficiently centered. It was also noted that the assay values for all batches ranged between 99.02% and 103.88%, with UCL of 104.25%. As such, there is a possibility that a data value could fall out of the USL, and hence, a potential risk of batch failure. This observation was investigated expansively and the cause of the drift identified as a titration error arising from difficulty in identification of the endpoint during quality control testing of the product. Consequently, a more accurate pharmacopoeial method (highand performance liquid chromatography) has now been adopted for analysis of this product.

This study demonstrates the necessity of PQR evaluation and statistical computation of capability indices for critical process parameters and quality attributes of a pharmaceutical product. The evaluation is vital in identifying the level of process performance, potential quality risks and detects trends which can also be investigated and corrected to minimize failure thus improving quality and the robustness of the manufacturing process. Product quality review is powerful tool for out-of-control detecting variables, appropriateness of specifications and capability of the manufacturing process as has been shown in previous PQR studies [14, 15]. The capability indices are useful for improvement of both process and laboratory analytical performance.

It is therefore important for all pharmaceutical manufacturers to perform regular PQRs as required by GMP regulation and embrace statistical data evaluation techniques and process control in order to minimize or eliminate instances of nonconformity to quality standards. Further, the national DRAs are required to ensure that regulatory obligations are being through regular and stringent met inspections of manufacturing sites. The inspectors should ensure that PQR is performed in a timely manner, the report is accurate, comprehensively evaluated and recommendations are implemented promptly. A well conducted PQR provides essential quality data across the whole product life cycle and could be adopted by government policy makers and nongovernmental organisations as a tool for performing risk-based desk assessments for pregualification pharmaceutical of

REFERENCES

- [1] N. Sanjeevaiah and S. Munaga. Int. J. Med. Res. 2(4), 2017, 1–10.
- [2] K.M. Vora, J. Shah and M. Maheshwari. J. Global Trends Pharm. Sci. 6(1), 2015, 2345–2350.
- [3] D.N. Manjunath, T. Shailesh and M.P. Gowrav. Int. J. Res. Pharm. Sci. 11(2), 2020, 1862–1869.
- [4] T.S. Maddirala, T. Shailesh, S.H. Kumar, M.P. Gowray and H.V. Gangadharappa. Drug Invention Today 13(4), 2020, 558–562.
- [5] Pharmaceutical Inspection Cooperation Scheme. Guide to Good Manufacturing Practice for Medicinal Products PE 009-14 Part I, 2018.
- [6] U.S. Food and Drug Administration. 21CFR211.180. Accessed 16 September 2020 at: <u>https://www.accessdata.fda.gov/scr</u> <u>ipts/cdrh/cfdocs/cfcfr/CFRSearch.c</u> <u>fm?fr=211.180.</u>

manufacturing sites for emergency procurement of pharmaceutical products.

CONCLUSION

In this study, annual POR of ibuprofen tablets manufactured by Elvs Chemical Industries Ltd. in the year 2019 was conducted. Analysis of data captured by the pharmaceutical quality system at the manufacturing site verified the suitability of specifications for existing both pharmaceutical ingredients and finished product and repeatability of the current manufacturing process. Evaluation of critical product quality parameters and process capability indices showed that the established quality attributes of ibuprofen tablets were consistently produced. It was concluded that the manufacturing process was controlled and capable of producing tablets that are within the established specification limits.

- [7] World Health Organization. GMP for Pharmaceutical Products: Main Principles. WHO Technical Report Series No. 986, Annexure 2, 2014. Geneva, 2014.
- [8] K.M. Vora, J.S. Shah and D.G. Maheshwari. Int. J. Recent Sci. Res. 6(4), 2015, 3336–3341.
- [9] Y. Kotlyar. Geartechnology. November/December 2014, 78–85. Accessed 16 September 2020 at: <u>https://www.geartechnology.com/a</u> <u>rticles/1114/Application_of_Statist</u> <u>ical_Process_Capability_Indices_i</u> <u>n_Gear_Manufacturing/.</u>
- [10] M. Glodek, S.M. Liebowitz, R. McCarthy, G. McNally, C.A. Oksanen and G. Millili. Process Robustness – A PQRI White Paper. Pharm. Eng. 26(5), 2006, 1-11.
- [11] D.Y. Peng, R. Lionberger, A. Viehmann, K. Iyer and L. Yu. Pharm. Eng. 35(3), 2015, 59–74.
- [12] V. Chopra, M. Bairagi, P. Trivedi and M. Nagar. J. Pharm. Sci. 66(2), 2012, 98–115.

- [13] PharmOut. Process Capability white paper, 2016. Accessed September 1, 2020. at: <u>https://www.pharmout.net/downloa</u> <u>ds/white-paper-processcapability.pdf.</u>
- [14] M. Kharbach, Y. Cherrah, Y. Heyde and A. Bouklouze. Annales Pharmaceutiques Françaises 75(6), 2017, 446–454.
- [15] S.R. Raj, N.V. Gupta and G. Ravi. Asian J. Pharm. Clin. 10(4), 2017, 341–346.
- [16] A. García-Arieta, J. Gordon and H. Potthast. J. Pharma. Sci. 104(8), 2015, 2429–32.
- [17] I.E. Shohin, J.I. Kulinich, GF.Vasilenko, and G.V Ramenskaya. Indian J. Pharm. Sci. 73(4), 2011, 443–446.

- [18] J.C. Rivera-Leyva, M. García-Flores, A. Valladares-Méndez, L.M. Orozco-Castellanos, M. Martínez-Alfaro. Indian J. Pharm. Sci. 74(4), 2012, 312–318.
- [19] P.N. Newton, M.D. Green and F.M. Fernández. Trends Pharmacol. Sci. 31(3), 2010, 99–101.
- [20] S. Ongoagchai, M. Harun-Or-Rashid and J. Sakamoto. Qual. Assur. J. 14(1–2), 2011, 9–17.
- [21] R.M. Haleem, M.Y. Salem, F.A. Fatahallah and L.E. Abdelfattah. Saudi Pharm. J. 23(5), 2015, 463–469.
- [22] N. Kumar and A. Jha. Eur. J. Pharma. Med. Res. 2(7), 2015, 370– 374.