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Floods are among the natural hazards that have adverse effects on human lives, livelihoods, economies and 
infrastructure. Dry climates of southern Africa have, over the years, experienced an increase in the frequency 
of tropical cyclone induced floods. However, understanding the key factors that influence susceptibility to 
floods has remained largely unexplored in these dry climates. Therefore, this study sought to model flood 
hazards and determine key factors that significantly explain the probability of flood occurrence in the 
southern parts of Beitbridge District, Zimbabwe. To achieve these objectives, logistic regression was used to 
predict spatial variations in flood hazards following cyclone Dineo in 2017. Before spatial prediction of flood 
hazard, environmental variables were tested for multicollinearity using the Pearson correlation coefficient. 
Only two environmental variables, i.e., elevation and rainfall, were not significantly correlated and were 
thus used in the subsequent flood hazard modelling. Results demonstrate that two variables significantly 
(p < 0.05) predicted spatial variations in flood hazard in the southern parts of the Beitbridge District with 
relatively high accuracy defined by the area under the curve (AUC = 0.98). In addition, results indicate that 
~56 % of the study area is regarded as highly susceptible to floods. Given the projected increase in extreme 
events such as intense rainfall as a result of climate change, floods will be expected to correspondingly 
increase in these semi-arid regions. Results presented in this study underscore the importance of geospatial 
techniques in flood-hazard modelling, which is the key input in sustainable land-use planning. It can thus 
be concluded that spatial analytical techniques play a key role in flood early warning systems aimed at 
supporting and building resilient communities in the face of climate change–induced floods.
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INTRODUCTION

Floods are among the most frequent and costly natural disasters with regard to human and economic 
loss. Every year floods claim over 20 000 lives and adversely affect approximately 140 million people 
worldwide (Bach et al., 2010). Globally, floods affected 2.3 billion people and killed approximately 
157 000 between 1995 and 2015 (Formetta and Feyen, 2019). Annual global losses due to floods are 
approximately 20 billion USD (Wahlstrom and Guha-Sapir, 2015). In Africa, 20 000 people were 
killed and nearly 40 million were affected by floods between 1900 and 2006 (Mulugeta et al., 2007), 
while damages worth 4 billion USD were realized during the same period. In 2019, the second 
strongest ever recorded cyclone (Idai) in the Southern Hemisphere affected more than 1.5 million 
people in Mozambique, resulting in more than 600 deaths while over 1 600 persons were injured 
(Charrua et al., 2021). In Zimbabwe, Idai resulted in more than 340 deaths and 175 injuries with about  
51 000 people displaced and 270 000 people affected in Zimbabwe (Chatiza, 2019). Thus, flood hazard 
modelling could significantly reduce the loss of human lives, damage to property and infrastructure.

There is an imperative need for developing and/or adapting spatially explicit approaches in modelling 
floods, to enhance our understanding of flood evolution and to ameliorate the disastrous effects 
of floods (Pradhan, 2009). In recent years, geographic information systems (GIS) and remote 
sensing have been applied in the modelling and evaluation of natural hazards (Uddin et al., 2013). 
Advances in GIS, particularly its ability to integrate spatial data from various sources, have provided 
an opportunity for scientists to predict spatial variations in flood patterns and severity (Demir and 
Kisi, 2016). In particular, the coupling of remote-sensing data and field data in a GIS environment 
has been critical in flood assessment and vulnerability mapping. Emergency managers can employ 
airborne or satellite imagery to monitor the extent of disaster impact (Goodchild and Glennon, 2010) 
consistently and repetitively.

Previous attempts at modelling flood hazards have adopted several approaches. Such approaches 
include multi-criteria evaluation (Gazi et al., 2019; Gebre, 2015; Meyer et al., 2009; Rincón et 
al., 2018), probabilistic modelling approach (Apel et al., 2006; Budiyono et al., 2016), and neural 
networks (Kia et al., 2012; Paul and Das, 2014; Ruslan et al., 2013). Spatial logistic regression was 
applied in the Kelantan river basin, Malaysia, to map and delineate the flood-susceptible risk area 
(Pradhan and Lee, 2009)). Similarly, the model was used in spatial-temporal flood-risk modelling in 
semi-arid regions within the Limpopo Basin in Botswana (Kenabatho et al., 2008). Although these 
studies have improved our understanding of flood hazard extent and evolution, they predominantly 
rely on in situ measurements, which makes it difficult to predict flood hazards over fine spatial scales  
(Fang et al., 2013). Moreover, most of these studies are biased towards high-rainfall areas, based on the 

https://www.watersa.net
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


489Water SA 47(4) 488–497 / Oct 2021
https://doi.org/10.17159/wsa/2021.v47.i4.3787

notion that floods are prevalent in areas that receive high rainfall 
(Shankman et al., 2006). Studies on flood hazard modelling in 
semi-arid and arid areas, especially in southern Africa, are scanty, 
mainly due to inadequate rain gauge networks and data gaps in 
rainfall (Kenabatho et al., 2008). However, with the increase in the 
intensity of rainfall events induced by climate change, floods are 
becoming common in arid regions such as the Beitbridge District 
of southern Zimbabwe (Moses and Ramotonto, 2018). In light of 
this, this study sought to predict spatial variations in flood hazard 
as a first step towards identifying flood-prone areas in the district.

MATERIALS AND METHODS

Description of the study area

The study area is a semi-arid region located in the southern part 
of the Beitbridge District. The district has 15 wards and covers 
an estimated land area of 567.681 km2 at an average elevation 
of 580 m amsl. The average annual temperature in Beitbridge is 
23.0°C, and over the year the monthly average temperatures vary 
by 10.7°C. The rainfall averages 333 mm/year and the variation 
in the precipitation between the driest and wettest months is  
69 mm/year. The area is semi-arid and falls under Agro-Ecological 
Region 5; hence it has low agriculture potential (Chikodzi et al., 
2013). However, the study area is of ecological importance, with 
vital wildlife corridors (Tchakatumba et al., 2019). Figure 1 shows 
the study area, highlighting the key settlements, rivers and ward 
boundaries in the southern part of Beitbridge District, Zimbabwe.

Field data collection

In this study, GPS-based fieldwork was carried out from 15 August 
to 2 September 2017 to determine flooded and non-flooded 
areas. In the field, geographic coordinates of sampled areas 
were captured together with flood conditions using a handheld 
Garmin GPS with an overall positional accuracy level of ≤5 m. 

To demarcate the flooded and non-flooded areas, the study made 
observations of signs of previous flooding, such as debris on trees 
and flood marks on buildings, and recorded their coordinates. In 
addition, the study consulted local communities on previously 
flooded and non-flooded areas in the respective wards. This 
exercise yielded flooded and non-flooded points that were further 
validated and complemented an inundation map derived from 
the Moderate Resolution Imaging Spectroradiometer (MODIS) 
imagery acquired on 16 February 2017 (Amarnath and Rajah, 
2016). The date coincided with the peak flood period in the study 
area. The MODIS image was downloaded from the MODIS Rapid 
Response System (https://earthdata.nasa.gov/). A total of 413 
points were recorded using the above-mentioned exercises and 
these were subsequently integrated with environmental variables 
to derive a flood hazard map of the study area.

Environmental variables

Table 1 provides an overview of the environmental variables 
used in predicting flood hazards in the study area. These include 
distance from water bodies, elevation, land-use/land-cover, 
rainfall, slope, soil depth, vegetation, vertical channel height and 
wetness index.

Data processing

A digital elevation model (DEM) was used to calculate flow 
direction, flow accumulation, and drainage density. Furthermore, 
the drainage network and catchment segmentation were extracted 
and some compound indices were calculated to provide further 
hydrological model input (Maathuis and Wang, 2006). Flow 
accumulation estimates the amount of water that is available for 
runoff that concentrates and accumulates in river channels (Roy 
and Mistri, 2013). The flow accumulation data were used in defining 
watershed boundaries and stream networks (Mutelo et al., 2013).

Figure 1. Location of the southern part of Beitbridge District, Matabeleland South Province, Zimbabwe
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Slope

The slope was calculated as a percentage with a pixel size of 30 m 
using Eq. 1:

Slope HYP DFDX DFDY� � �� �100 30/                  (1)

where:

HYP = the hypotenuse, DFDX = change in the horizontal direction 
and DFDY = change in the vertical direction. SLOPEPCT is the 
output map name of the slope map in percentages.

Wetness index

The wetness index shows the degree of wetness in an area. The 
wetness index was computed using the Integrated Land and Water 
Information System (ILWIS) considering the slope gradient 
(Beven and Kirkby, 1979) and the contributing area from DEM-
hydroprocessing using Eq. 2:

w A� � �ln tan( / �                                      (2)

where: w = wetness index, A = contributing area, ß = slope 
(radians) and tan (ß) = tangent of the slope (ß).

The wetness index provides the spatial distribution and zones of 
saturation (flooded areas) or runoff generation areas (Wu et al., 
2016). The wetness index has been widely used to understand 
spatial scale effects on hydrological processes and to predict 
observed patterns of saturated areas (Panjabi et al., 2020).

Vertical channel distance

The DEM was used to derive the height of each place in the study 
area above or below the nearest channel bed level. The channel 
base elevations were interpolated to form a channel height 
layer that, if subtracted from the DEM, produces the vertical 
distance to the closest channel of each location in the study area 
(Murwira et al., 2005). To do this, a segment map of all rivers was 

converted to a point map. In the ILWIS environment, elevation 
values were then assigned to the point map of rivers using the 
map value command. The point map was then interpolated to 
get a channel height layer of the study area using the universal 
Kriging interpolation technique. Lastly, the channel height layer 
was subtracted from the DEM to produces the vertical channel 
distance.

Satellite image processing

Satellite rainfall

In this study, Climate Hazards Group Infrared Precipitation with 
Station (CHIRPS) rainfall data were used to determine the amount 
of rainfall received in the study area during the flooding event. 
CHIRPS is a land-only climatic database of precipitation, made 
available in early 2014. The image of 16 February 2017 recorded 
maximum rainfall and was used only for flood modelling, but the 
study used the rainfall CHIRPS images for the whole flood period 
from 11–17 February 2017. A 30 m resolution image covering the 
study area was downloaded from the CHIRPS website (ftp://ftp.
chg.ucsb.edu/pub/org/chg/products/CHIRP/daily/2017/). The date 
coincided with Tropical Cyclone Dineo which passed over Southern 
Africa, with the maximum precipitation recorded on 16 February, 
which was thus the day considered for flood hazard modelling. 
The CHIRPS satellite rainfall products perform better than other 
products due to high spatio-temporal resolution (Hordofa et al., 
2021) Rainfall was chosen as it is the key driver of riverine floods 
across the globe.

Land use and land cover

The Sentinel-2 land cover prototype map of Africa 2016 was 
accessed from http://2016africalandcover20m.esrin.esa.int. Prior 
to analysis, that data was projected to the same coordinate system 
as the study area to harmonize the datasets. The land-use and 
land-cover classes used in this study were tree cover areas, shrubs 

Table 1. A summary of the environmental variables used in this study

Dataset Source Relevance in flood modelling

Elevation SRTM (30 m)
https://earthexplorer.usgs.gov/

Areas of low elevation are prone to flooding compared to 
areas of high elevation (Araújo et al., 2019; Samela et al., 2016).

Vegetation ESACCI-LC-L4-LC10-Map-20m-P1Y-2016-v1.0
http://2016africalandcover20m.esrin.esa.int/

The area with sparse vegetation is prone to flooding unlike 
the area with dense vegetation (Bhat et al., 2019; Džubáková 
et al., 2015; Sharma and Sharma, 2009).

Slope DEM (filter operations) The steepness of an area determines the speed of water flow 
(Martínez-De La Torre et al., 2019).  

Wetness index DEM (compound indices) Wet areas are likely to generate more floods than dry 
areas (antecedent moisture) (Kundzewicz, 2003; Sood and 
Smakhtin, 2015).

Rainfall Chirps rainfall
ftp://ftp.chg.ucsb.edu/pub/org/chg/products/
CHIRP/daily/2017/

The amount of precipitation received determines flood 
severity (Lian et al., 2013; Santos and Fragoso, 2016; Zhai et 
al., 2018).

Soil depth FAO soil database
http://www.fao.org/soils

Soil depth is a proxy of water that can be infiltrated into the 
soil (Bittelli, 2010; Fischer et al., 2019; Rahimy, 2012).

Vertical channel height DEM and river elevation The vertical channel height influences flooding through quick 
stream overflow (Tiwari et al., 2017).

Distance from water bodies Euclidean distance from a river Areas close to rivers are more likely to be flooded than those 
further away (Budiyono et al.,  2016; Death et al., 2015). A river 
map is needed to calculate the distances from rivers. The 
Euclidian distance was used because floods are influenced by 
distance to large-scale open-water bodies.

Land-use/land-cover S2 prototype map
http://2016africalandcover20m.esrin.esa.int

Land-use/land-cover types which increase surface runoff are 
more likely to induce flooding than those which restrain surface 
runoff (Apollonio et al., 2016; Zhao et al., 2020; Rahimy, 2012). 

ftp://ftp.chg.ucsb.edu/pub/org/chg/products/CHIRP/daily/2017/
ftp://ftp.chg.ucsb.edu/pub/org/chg/products/CHIRP/daily/2017/
http://2016africalandcover20m.esrin.esa.int
https://earthexplorer.usgs.gov/
http://2016africalandcover20m.esrin.esa.int/
ftp://ftp.chg.ucsb.edu/pub/org/chg/products/CHIRP/daily/2017/
ftp://ftp.chg.ucsb.edu/pub/org/chg/products/CHIRP/daily/2017/
http://www.fao.org/soils
http://2016africalandcover20m.esrin.esa.int
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and grasslands, sparse vegetation, plantations, bare areas, built-
up areas and water surfaces. Table 2 illustrates the legend for the 
Sentinel-2 prototype map for Africa adopted in this study. The 
land-use and land-cover management of the area is also one of the 
primary concerns in flood hazard mapping (Mousavi et al., 2019).

The land use only reflects the current use of the land, the pattern  
and type of use, which relates to soil stability and infiltration.  
Shashe River is considered to be one of the locations most 
vulnerable to flooding within the Limpopo Basin in Zimbabwe 
today. This is confirmed by the participatory land-use plan 
regarding the Shashe study area prepared by Murwira et al. 
(2006). Land cover such as vegetation, permanent grasslands 
and plantations restrains the surface runoff, hence reducing the 
chance of flooding (Sun et al., 2017). However, land-cover types 
such as buildings, roads, and informal settlements decrease the 
penetration capacity of the soil and increase the water runoff, 
which enhances flooding (Ouma and Tateishi, 2014). In the 2019 
rainfall season, flash floods were experienced in Beitbridge town, 
mainly in the Dhulivadzimu suburb. According to the information 
collected by Mpho (2007), areas in the Limpopo Basin are 
regularly affected by flash floods during the rainy season.

Soils and soil depth data

Soil properties affect the evolution of runoff and should be 
considered as an important factor in flood hazard modelling. The 
chance of flood hazard increases with a decrease in soil infiltration 
capacity which causes an increase in surface runoff (Bombino et 
al., 2019). Soil texture has a large impact on flooding because it 
determines the rate at which water drains through saturated soil; 
water moves more freely through sandy soils than it does through 
clay soil. The soil data for the study was classified using the legend 
from the World Reference Base (WRB) spatial soil database. 
The area is dominated by Chromic luvisols and Eutric leptosols. 
Luvisols are characterised by high activity clays, high base status 
and the clay content increases at 60 cm depth. Leptosols are thin 
or with many coarse fragments (Morand, 2013).

Flood inundation area mapping

The Modis NDVI image was used to determine the flood 
inundation area. To detect water from the MODIS image, water 
mask index values were adopted from Nharo et al. (2019) and 
implemented in a GIS. Specifically, water pixels were extracted 
from the blue band using a threshold reflectance value of 154, 
180–200 in the green band and less than 200 in the red band. To 
produce the flood extent map, the following algorithm was used: 
Flood = IFF (water > 0.5, 1, 0). The IFF command was used to 
produce a binary map that shows flood areas with a value of 1 and 
areas without flood with a value of 0, using a condition operation 
that states that if the water is greater than 0.5 this means there is a 
flood. A binary map was then produced with 1 indicating an area 
with water and 0 the opposite. Next, the binary map was converted 
to a point map that uses a Bool domain, to specify the colour for 
true and false points of floods before being integrated with field 
data. The map value function in ILWIS was used to append the 
values of the environmental variables to the point map.

Testing for multicollinearity

Prior to analysis, the environmental variables were tested for 
correlation using the ‘corrplot’ function in R. The corrplot 
function creates a graphical display of a correlation matrix, 
highlighting the most correlated variables (Wei, 2009). The 
correlation matrix is reordered according to the correlation 
coefficients using the ‘hclust’ method. Correlation coefficients 
describe the strength and direction of an association between 
variables (Schober and Schwarte, 2018). The correlation matrix 
in Fig. A1 (Appendix) illustrates that all variables were not highly 
correlated (r < 0.81). Therefore, all the variables were used in the 
preliminary prediction of flood hazard before the non-significant 
predictors were excluded from the final model.

Flood hazard modelling

Logistic regression was used to model flood hazards using the 
eight environmental variables together with field data. We used 
70% of our data to calibrate a model and the remaining 30% 
was used for validation. Prior to developing the final model, we 
assessed the significance of each variable to the model. Variables 
that did not significantly predict flood occurrence (p > 0.05) were 
removed. This was done to reduce the complexity of the model 
and enhance parsimony. The final logistic regression model was 
then computed using two variables i.e., elevation and rainfall. 
These two variables significantly predicted the flood hazard at a 
95% confidence interval in the study area.

The final spatial logistic regression model took the form:

p a b x b x a b x b x� � � � � �exp( ) / ( exp( ))1 1
1

2
2

2 1
1

2
21          (3)

where: p is the probability of flooding, a1 and a2 are regression 
constants, b1 and b2 are the slopes for the environmental variable, 
and x1 and x2 are the environmental variables (e.g. elevation and 
rainfall). Table 3 illustrates the variables in Eq. 3, elevation and 
rainfall, with the p-value for the constant showing the level of 
significance.

Using the final logistic regression model (Eq. 3), a continuous 
probability map was generated. The map was classified into 4 
flood hazard classes, which are ‘low,’ ‘moderate’, high’ and ‘very 
high’ based on thresholds shown in Table 4.

Model validation

The flood hazard model was validated using ground control 
points of the flooded and non-flooded areas collected during the 
field visits. Using this data, the flood hazard model was validated 
using the ‘area under the curve’ (AUC). AUC measures how well 
predictions are ranked, rather than their absolute values. Figure 
A2 (Appendix) shows the ROC curve showing the AUC value. 

Table 2. Legend of Sentinel-2 prototype map of Africa

Value Label Red Green Blue

1
2
4
5
7
8
10

Tree cover areas
Shrubs and grasslands
Plantations
Sparse vegetation
Bare areas
Built-up areas
Water surfaces

0
255
255

0
255
195

0

160
180
255
220
245
20
70

0
0

100
130
215

0
200

Table 3. Variables in Equation 3, the p-value for the constant is shown 
in brackets

Variable B Constant Level of significance 
(P-value)

Elevation −0.004 2.264 0.000 (0.000)

Rainfall 0.004 −1.338 0.000 (0.001)

Table 4. Flood hazard classes and thresholds used to classify hazard 
maps

Hazard class Threshold

Low hazard <0.25

Moderate hazard 0.25–0.50

High hazard 0.5–0.75

Very high hazard >0.75
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The AUC  is classification-threshold-invariant (Zelenina and 
Prata, 2019). It measures the quality of the model’s predictions. 
The model diagnostics and validation were performed with the 
receiver operating characteristics (ROC) curve and a k-fold 
cross-validation procedure (Ciocan et al., 2020). A k-value of 10 
was used to assess the goodness of fit of the model. The cross-
validation procedure was repeated k times with 70% calibration 
dataset and 30% validation dataset; k = 10 was chosen because it 
is adequate for models using a relatively large dataset – this study 
uses 413 points (Coelho et al., 2013). Finally, a bootstrapped 
cross-validation procedure was used to calculate the AUC. AUC 
was 0.984 suggesting that the model developed here had relatively 
high predictive power.

RESULTS

Figure 2 illustrates the spatial variations in flood hazard across the 
study area. It can be observed that flood hazard decreases with 
increasing distance from rivers. In addition, most of the wards are 
highly susceptible to flooding with a p > 0.5 probability of flooding.

Figure 3 shows that Wards 13 and 14 have the largest area under a 
very high hazard class, which covers approximately 116 km2 and 
112 km2, respectively. Overall, 77.4% of the study area is deemed 
flood-prone, as virtually all the wards fall between the moderate 
to very high hazard classes. In contrast, only 22.6% of the area 
falls under the low hazard class. Low hazard areas are particularly 
predominant in Wards 5, 7, 8 and 10.

Figure 3. Spatial variation in flood hazard classes across the study site

Figure 2. The spatial variation of flood probability in the southern part of the Beitbridge area
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Figure 4 illustrates the proportion of area under each ward that 
is susceptible to floods. Wards 13 and 14 have the largest area 
that is susceptible to floods while Wards 1, 2, 3 and 4 have the 
largest area under high hazard. Wards 5, 7, 8 and 10 seem to be 
less susceptible to flood hazards.

DISCUSSION

The main goal of this study was to predict spatial variations in flood 
hazards as a first step towards identifying flood-prone areas in 
the Beitbridge District. The results indicate that the area is highly 
susceptible to floods, with a greater proportion of approximately 
55.8% falling within the high to very high hazard classes. This is 
not normally expected of arid and semi-arid areas like Beitbridge, 
which receives erratic rainfall ranging from 180 to 420 mm per year 
(Moyo, and Love, 2006). However, given projections of extreme 
rainfall events as a result of climate change, floods are likely to 
increase in these semi-arid regions. This is in line with studies 
that project an increase in climate-related extreme events such as 
floods (Easterling et al., 2000). Beitbridge received almost all of its 
expected rainfall within 1 week in the 2017–2018 rainfall season 
(Nyikahadzoi, 2021). Due to climate change, the spatial distribution 
of rainfall in the semi-arid regions, particularly the Limpopo 
Province, has high levels of uncertainty (Shewmake, 2011). Thus, 
this study provides important insights into flood hazard modelling 
in the southern parts of Beitbridge District, Limpopo Basin.

The findings of this research show that elevation and rainfall 
significantly (p < 0.05) predicted flood hazard in southern parts 
of Beitbridge District; model accuracy was indicated by an 
AUC of 0.984. Previous studies on flood hazard modelling have 
demonstrated the importance of elevation and rainfall in flood 
prediction and flood risk mapping (Ouma and Tateishi, 2014; 
Samanta et al., 2018). As Beitbridge is a low-lying area, it is not 
surprising that elevation is a key variable in predicting flood 
hazards and the area also receives erratic heavy rainfalls which 
trigger floods. The study is consistent with the findings of Dapper 
(2011), who observed that rainfall and elevation are the greatest 
contributing factors in flood generation. Thus, this study also 
emphasizes the importance of elevation and rainfall in predicting 
the flood hazard in the southern parts of the Beitbridge District. 
These results also concur with Madamombe (2014), who identified 
the same factors to be relevant for predicting flood hazards in 
Tsholotsho District, Zimbabwe. Similarly, Shafapour Tehrany et 
al. (2017) applied bivariate probability and logistic regression in 
flood modelling in arid regions of Saudi Arabia and identified the 

terrain information and rainfall as the most significant factors in 
flood generation. In contrast, a study by Nharo et al. (2019) found 
the distance from rivers predicted flood hazards better than other 
factors in the Zambezi Basin. Murwira and Schmidt-Murwira 
(2005) also considered the distance from river networks as the 
significant factor which explains flooding in Muzarabani.

This study emphasises the need for flood hazard modelling in 
arid to semi-arid regions as these have been given less attention 
compared to humid areas. This study suggests that these dry 
regions could be even more susceptible to flooding than previously 
thought. Moreover, this study highlights a variation from some of 
the flood modelling studies (for example, by Grek and Zhuravlev, 
2020) since flood hazard modelling is more common in humid, 
high-rainfall environments.

CONCLUSIONS AND RECOMMENDATIONS

The main objective of the study was to predict flood hazards in 
the southern parts of the Beitbridge District. The development 
of a flood hazard map for the southern parts of the Beitbridge 
District was carried out in a GIS environment. The general 
conclusion that can be drawn from the study is that the elevation 
and rainfall significantly (p < 0.05) predict flood hazards for the 
study area. The results demonstrated two complementary flood 
hazard maps which represent a useful combined tool to visually 
understand which areas could be most affected by floods (Poretti 
and Amicis, 2011). The approach presented is an effective method 
of hazard mapping and delimitation of flood-prone zones in the 
study area. The results of this study give insights into priority 
areas for flood management. Spatial analytical techniques used 
in this study enhance the ability of disaster risk management 
in the Limpopo Basin to provide rural communities with early 
warning of extreme flood events (Asante et al., 2007). However, 
the flood hazard maps show the predicted spatial distribution of 
flood hazard occurrences and do not give information regarding 
its temporal probability (Shafapour et al., 2019). The study 
successfully predicts spatial variations in flood hazard as a first 
step towards identifying flood-prone areas in the southern part of 
Beitbridge District. Future studies should explore other methods 
beyond the logistic regression used to simulate flood hazards 
in the study area. A particular challenge for this model is the 
application to semi-arid regions because of high variability in 
rainfall, sparse network of rain gauges and potential data quality 
problems. However, it will be useful if future studies could use 
ensemble and hybrid models to model flood hazards.

Figure 4. Area of wards under moderate to very high flood hazards
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Figure A1. The correlation matrix depicted all variables used for correlation analysis

Figure A2. The ROC curve for flood hazard modelling calibrated using all the predictor variables

APPENDIX


