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Groundwater from shallow hand-dug wells at an abandoned gold mine tailings dam was characterised for 
selected physicochemical parameters during dry and wet seasons of 2018 and 2019. Health risk exposure of 
the local population (adults and children) through ingestion and dermal exposure was assessed. Groundwater 
quality parameters were lower than international drinking water quality guidelines (p < 0.05). The parameters 
were significantly influenced by season of the year (As, Cl−, SO4

2−), nature (As, Cd, Cl−, Fe, NO3
−, SO4

2−), depth 
(Cd, Cl−, Fe, Ni, SO4

2−) and direction of the well (Cu, Cl−, Fe, NO3
−, Pb, SO4

2−) (p < 0.05) relative to the tailings 
dam. Groundwater did not pose non-carcinogenic risk due to studied trace elements. However, arsenic had 
the potential to cause medium to high cancer risk to the local population. We propose re-vegetation of the 
tailings dam, diversion of surface tailings drainage to a containment pond and the provision of continuous 
piped water supplies.
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INTRODUCTION

Groundwater is of excellent natural quality and conveniently available close to where it is 
required (Sujatha and Reddy, 2003). However, it is threatened by over-exploitation and pollution  
(Carrard et al., 2019). Groundwater quality is influenced by geogenic and anthropogenic processes 
(Javaid et al., 2020). It is naturally found in association with geologic minerals containing dissolved 
salts (Chacha et al., 2018). Human activities such as mining introduce contaminants into groundwater  
(Zhu et al., 2020).

Metalliferous mineral exploration and beneficiation leave behind large heaps of overburden material, 
waste rock and tailings rich in potentially toxic elements (PTEs) (Kiventerä et al., 2018). The nature 
of the PTEs in the waste streams depends on the mineralogy of the ore body and mineral recovery 
processes. Gold is naturally found mixed with varying proportions of other elements including 
Ag, As, Cu, Fe, Pb, S and Zn (Fomchenko and Muravyov, 2020), which eventually constitute mine 
tailings after extractive processes (Gitari et al., 2017). PTEs from mine tailings dams (MTDs) can be 
transported into the environment through runoff or by atmospheric dispersal. They can leach into 
groundwater as surface recharge. In the environment PTEs impact on the quality of air, water, soil 
and plants (Mohapatra and Kirpalani, 2017).

The establishment of human settlements without matching infrastructural development for water 
supply and wastewater treatment facilities, a seemingly common practice in small towns of low-
income settings, leaves people exploiting groundwater from shallow hand-dug wells (SHDWs) for 
potable use, and using make-shift sanitation facilities. The quality of groundwater from SHDWs is 
influenced by season of the year (Ganiyu et al., 2018), depth to water level (Chuang et al., 2019) and 
distance (Yan et al., 2017) relative to the source of contamination. Groundwater near mine sites was 
reported to be contaminated with PTEs (Kim et al., 2017; Singh and Kamal, 2017; Akoto et al., 2019). 
Reported MTD failures (Kossoff et al., 2014; Armstrong et al., 2019) demonstrate the importance of 
carefully planned post-mining waste management, and the associated public health effects.

The local population that relies on groundwater from SHDWs may be exposed to PTEs through 
dermal contact and oral routes. Human health problems associated with exposure to As, Cd, Ni and 
Pb include damage to body organs and systems, and cancer (Wuana and Okieimen, 2011; Jaishankar 
et al., 2014). Therefore, an understanding of the variation of groundwater quality in developing 
settlements near abandoned mine sites without centralised water supply systems is critical to public 
health.

Studies on groundwater quality in Zimbabwe appear focused on peri-urban and urban informal 
settlements (e.g., Ndoziya et al., 2019; Zingoni et al., 2005). No local studies were done to assess the 
quality of groundwater near abandoned mine sites and the associated potential human health risk to 
PTEs. Further, there are no published cases of ill-health associated with exposure to PTEs retraced 
to mine wastes for the local population. This is against a background where groundwater for potable 
use is rarely treated and monitoring boreholes (usually > 40 m deep) placed at active mine sites are 
not used for monitoring groundwater quality after mine operations have ceased.

In the current work we report an investigation of the potential contamination of groundwater from 
SHDWs near an abandoned gold MTD and the associated human health risks to PTEs by dermal 
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and oral exposure. The selected groundwater quality parameters 
assessed are those normally used in similar studies, naturally 
associated with gold ores and tailings, or have significant health 
effects. It was assumed that (i) groundwater from SHDWs had 
higher concentrations of PTEs than international drinking water 
quality guidelines, and (ii) the local population living near the 
MTD was at health risk due to PTEs in groundwater by oral and 
dermal exposure.

METHODS AND MATERIALS

Description of the study site

The study area was previously described (Kanda et al., 2019). 
Bindura town is found 60 km within the greenstone zone of 
the geology of Zimbabwe in the vicinity of the Great Dyke. The 
greenstone contains Fe, Au, Ni and Cu (Locmelis et al., 2010). 
The RAN ore channels consist of granodiorite stock that intrudes 
meta-sediments of the Mazowe formation (Shamvanian Group) 

constituting mainly quartz and plagioclase feldspar with biotite 
and actinolite (Kalbskopf, 2002). Gold mining operations in 
Bindura began in the early 1900s (RAN mine, Freda Rebecca) 
and nickel mining in mid-1900 (Trojan Nickel Mine). RAN mine 
was commissioned in 1921 and operated for 77 years. It was 
decommissioned without rehabilitation. The MTD (17°18’05’’S; 
31°19’49’’E) is located less than 30 m from newly established 
human settlements (Fig. 1).

The stability of the MTD is threatened by the development of gullies 
due to runoff exacerbated by illegal mineral exploration activities 
(Fig. 2d). Tailings are eroded from bare embankments by easterly 
winds in dry weather (Fig. 2b) towards human settlements and a 
primary school. In wet weather, runoff transports eroded tailings 
(Fig. 2a) into the ambient environment. The toe of the MTD is not 
designed to receive tailings drainage and channel it away. Surface 
runoff from elsewhere combines with that originating from the 
MTD and is transported downslope to a wetland.

Figure 1. Map of the study area showing the tailings dam and sampling sites

Figure 2. Authors’ photographs showing (a) surface runoff and (b) wind erosion during wet and dry seasons, and (c) developing human 
settlements using (d) shallow hand-dug wells at the abandoned RAN mine tailings dam 
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Sampling and sample analyses

Seven existing wells (either in use or not) within 75 m of the 
nearest toe of the MTD were purposively chosen for water 
sampling. Three new wells (N2, N7 and N9) were dug to depths 
until water appeared (3.4, 1.9 and 2.8 m, respectively), at chosen 
sites relative to the MTD and existing wells (Table 1). An existing 
reference well (REF) located 2 000 m from the MTD was included 
in the study.

Upon getting consent from house owners to take water samples for 
analysis (after explaining the purpose of the study), 2 groundwater 
samples (2 x 500 mL) were taken from each well once a month for 
3 consecutive months from September to November 2018 (dry 
season) and repeated from January to March 2019 (wet season). 
Samples for total PTE analyses were preserved with drops of 
ultra-pure conc. 65% HNO3 (pH < 2) to eliminate microbial 
activity (Hussain et al., 2019). Groundwater pH was determined 
on site for unacidified samples using a calibrated multi-parameter 
tester 35 (Eutech Instruments, USA). Other parameters were 
determined using standard methods for water analysis; SO4

2− 
(turbidimetry), NO3

- (Cd reduction) and Cl- (argentometry) 
(APHA, 2005). Groundwater samples were prepared and analysed 
for total recovery of PTEs following recommended procedures 
(USEPA, 2001). An acid-preserved groundwater sample (100 mL) 
was acid digested (HNO3/HCl; 2:1, 3 mL, v/v) over a hot plate 
(85°C) in a fumehood to 20 mL. Cooled digests were diluted to 
volume (50 mL) with reagent water and analysed for As, Cd, Cr, 
Cu, Ni and Pb by ICP OES (Spectro-Arcos FHS12).

Health risk assessment

The health risk assessment was done for ingestion and dermal 
contact exposure to PTEs in groundwater (USEPA, 1989; USEPA, 
2011) using Eqs 1–5. Parameters and input assumptions for 
exposure assessment to PTEs through ingestion and dermal 
pathways were obtained from literature (USEPA, 2011; Walpole et 
al., 2012; Al-Hwaiti et al., 2018; Haque et al., 2018; Mohammadi 
et al., 2019) (Table 2). The studied local group were adults and 
children. The average daily dose (ADD) of PTEs through ingestion 
and dermal contact was used to determine the human exposure 
dose to PTEs using Eqs 1 and 2 (see Table 1 for definition of 
variables in all equations):

ADDing
Cw Ir EF ED

Bw AT
�

� � �
�

                           (1)

ADDdermal
Cw SA ABS EF AF ED CF

Bw AT
�

� � � � � �
�

        (2)

The Hazard Quotient (HQ) and the Hazard Index (HI) were used 
to determine the potential non-carcinogenic health risks due to 
ingestion and dermal contact for the studied PTEs in groundwater 
from SHDWs using Eqs 3 and 4:

HQ ADD
RfD

=                                            (3)

 HI HQ�
��n 1

6
                                         (4)

The Target Cancer Risk (TCR) was used to determine the 
carcinogenic risk due to arsenic. This is the possibility of a human 
being to develop carcinogenic effects in a lifetime exposure 
(USEPA, 1989). The ADD and the oral cancer slope factor (SF) 
were used to compute the TCR for PTE i:

TCR ADD SF� �                                      (5)

Statistical analysis

A one-sample Student’s t-test was used to compare mean 
groundwater parameters against international drinking water 
quality guidelines (WHO, 2017). The effects of nature of well, 
direction, season (categorical variables), distance and depth 
(covariates) on the concentrations of PTEs were tested using 
generalized linear models (GLMs) with interaction terms for 
categorical variables. The proper distribution was determined 
by plotting observed deviance residuals against quantiles of the 
estimated distribution (Ben and Yohan, 2004). As a result, all GLMs 
were run with a Poisson error distribution (or a negative binomial 
distribution where residuals showed over-dispersion) combined 
with a log-link function. Type 1 log-likelihood ratios were used 
to analyse main effects. To counteract data over-dispersion and to 
adjust the statistics, the scale parameter was estimated by dividing 
the square root of the Pearson’s Chi-square statistic by the degrees 
of freedom (McCullagh and Nelder, 1989). Pairwise differences 
within each factor were analysed using a post-hoc test based on 
least-square means. Analyses were performed using the library 
MASS (Venables and Ripley, 2002) and car (Fox and Weisberg, 
2011) in R version 3.6.0 (R Core Team, 2019). A Spearman’s 
correlation analysis was run to examine the relationship among 
water quality parameters.

Table 1. Characteristics of shallow hand-dug wells around RAN mine tailings dam, NE Zimbabwe 

Well Direction from the 
tailings dam

Shortest distance from the toe of the 
tailings dam (m)

Depth to water 
(m)

Nature of hand-dug 
well

N1 NW 73 3.6 Existing

N2 NW 55 3.4 New

N3 W 12 2.1 Existing

N4 W 24 2.3 Existing

N5 W 42 2.7 Existing

N6 SW 29 2.2 Existing

N7 S 20 1.9 New

N8 S 15 1.6 Existing

N9 S 50 2.8 New

N10 SE 33 3.1 Existing

REF NE 2 000 3.2 Existing

Mean* 35.30±19.53 2.57±0.66

*excluding the reference well (REF)
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Figure 3. Target cancer risk due to oral exposure to arsenic in 
groundwater from shallow hand-dug wells

RESULTS

Variability of selected groundwater quality from  
shallow hand-dug wells

The variation of measured groundwater quality parameters from 
11 wells and their comparison with international drinking water 
quality guidelines are shown in Table 3. The lowest groundwater 
pH was recorded for N3 during the dry season. Excluding 
the reference, 80% of the groundwater wells (N3−N10) had 
significantly higher concentrations of SO4

2− during the dry season 
(p < 0.05). Similarly, the dry season had 40% of the wells having 
higher concentrations of Cl− than the wet season (p < 0.05). 
All wells (including the reference) had lower concentrations of 
NO3

− in groundwater during both seasons than the international 
guideline of 50 mg∙L−1 (p < 0.05). The concentrations of PTEs 
in groundwater were higher during the dry than wet season for 
arsenic (Wells N3−N5), Cd (N2, N4, N7), Cr (N1, N3, N4), Cu 
(N2, N6–N9), Fe (N4, N6, N7, N9), Ni (N3, N7) and Pb (N7)  
(p < 0.05).

Factors influencing the quality of groundwater from 
shallow hand-dug wells

The variations of overall groundwater quality parameters from 
SHDWs within a distance of 75 m from a MTD are presented 
in Tables 4, 5 and 6. Groundwater quality was influenced by the 
season of year (dry, wet) for As, Cl− and SO4

2−; nature of well 
(new, existing) for As, Cd, Cl−, Fe, NO3

− and SO4
2−; cardinal 

points direction for Cl-, Cu, Fe, NO3
−, Pb and SO4

2−; depth for 
Cd, Cl−, Cr, Fe, Ni and SO4

2−; and distance from the MTD for Cl−, 
Cr, Cu, Fe, Ni and SO4

2−) (p < 0.05). The interactions of factors 
that influenced groundwater quality were largely evident on the 
concentrations of SO4

2− and Cl−, and to some extent on NO3
−, Cu, 

Fe, and Ni (Table 6).

Correlation analysis

The correlations between PTEs and other measured groundwater 
quality parameters are shown in Table 7. The concentration 
of SO4

2− was positively correlated with all studied PTEs, except 

Pb, and negatively correlated with pH (p < 0.05), All PTE-pH 
correlations were negative and significant (p < 0.05), except for 
Pb. Ni and As had positive and significant correlations with other 
PTEs (p < 0.01).

Health risk assessment

The average daily dose (ADD) for children and adults in the study 
area shows their exposure to PTEs in groundwater from each 
well (Table 8). Well N10 and the reference had no values for the 
concentrations of PTEs. Overall, results show that children were 
more exposed to all the PTEs in groundwater than adults through 
both routes. Results show that the highest ADDs for each PTE 
from oral and dermal exposure to PTEs in groundwater at each 
well for children and adults occurred at N3 (Cr, Ni), N4 (Pb), N7 
(As, Cd) and N9 (Cu). All Hazard Quotient (HQ) and Hazard 
Index (HI) values for both exposure routes were less than one 
(< 1) and higher for children than adults. The target cancer risk 
(TCR) was determined only for arsenic (Fig. 3).

Table 2. Health risk assessment model parameters and input data to Equations 1–5

Parameter Unit Ingestion Dermal contact Reference

Concentration of PTE (Cw) mg∙L−1 From study From study This study

Ingestion rate (Ir) L∙d−1 2 adult, 1 child - USEPA (2011)

Exposed skin surface area (SA) cm2 - 5 700 adult, 2 800 child USEPA (2011)

Exposure frequency (EF) d∙yr−1 365 350 USEPA (2011)

Exposure duration (ED) yr 30 adult, 6 child 30 adults, 6 child USEPA (2011)

Adherence factor (AF) mg∙cm−2 - 0.07 adult, 0.2 child USEPA (2011)

Body weight (Bw) kg 60 adult, 15 child 60 adult, 15 child Walpole et al. (2012)

Dermal absorption factor in water 
(ABS)

- 0.03 (As), 0.001  
(each element)

USEPA (2011)

Averaging time for carcinogens 
(ATc)

D 25 550  (365 * 70) 25 550 (365 * 70) USEPA (2011)

Averaging time for non-carcinogens 
(ATn)

D 10 950 adult, 2 190 child 10 500 adult, 2 100 child USEPA (2011)

Reference dose for PTEi (RfDi) mg∙kg−1∙d−1 As: 0.0003, Cd: 0.0005, Cr: 0.003,
Cu: 0.04, Pb: 0.0014, Ni: 0.02

As: 0.000285, Cd: 0.000005,
Cr: 0.000075, Cu: 0.012; Ni: 

0.0054, Pb: 0.00042.

Al-Hwaiti et al. (2018); 
Haque et al. (2018); 

Mohammadi et al. (2019)

Oral cancer slope factor for PTE (SFi) kg∙d−1∙mg−1 As: 1.5 - Al-Hwaiti et al. (2018)
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Table 5. Variation of water quality parameters with depth of well and distance from the tailings dam

Factor SO4
2− Cl- Cd Cu Cl Cr Ni

Depth R −0.78 −0.63 −0.81 −0.85 −0.75 −0.78
R2 0.61 0.40 0.66 0.72 0.56 0.61

Distance R −0.83 −0.7 −0.79 −0.77 −0.79 −0.70
R2 0.69 0.49 0.62 0.59 0.6241 0.49

Significant (p < 0.05) regression results with at least 50% variation being explained by the model

Table 6. Generalized linear model results with negative binomial errors. Values are log likelihood ratios (LRT) with level of significance. 

Model SO4
2− Cl- NO3

− As Cd Cu Fe Cr Ni Pb
Season 1 109.9*** 358.97 *** 4.29*
Nature 7.24* 22.11*** 9.17 **** 9.83 * 9.83* 9.17*
Direction 100.92*** 20.16*** 5.13 *** 2.67* 10.18 *** 5.51*
Depth 151.97 *** 60.48*** 10.61 ** 10.01* 6.59* 6.1*
Distance 478.65*** 237.87*** 6.20* 29.39 *** 16.51*** 23.53***
Distance x direction 6.78*** 18.80*** 5.41** 4.84* 3.93* 5.66*
Distance x depth 119.26*** 49.46 **** 6.7**
Direction x depth 18.31*** 15.82***
Distance x season 14.69*** 14.90***
Direction x season 11.3*** 5.67*

*significant at p < 0.05; **significant at p < 0.001; ***significant at p < 0.0001

Table 7. Spearman’s correlation coefficient (r) of groundwater parameters at RAN mine

SO4
2− pH Cl− NO3

− As Cd Cu Fe Cr Ni
pH −0.55**
Cl- 0.55** −0.54**
NO3

- −0.06 0.30* −0.24
As 0.55** −0.50** 0.32* 0.18
Cd 0.32* −0.59** 0.33* −0.09 0.67**
Cu 0.43** −0.57** 0.32* 0.02 0.54** 0.09
Fe 0.48** −0.66** 0.34** 0.10 0.45** 0.20 0.60**
Cr 0.39* −0.49** 0.23 −0.30 0.43** 0.65** 0.24 0.56**
Ni 0.42** −0.54** 0.37* −0.08 0.63** 0.58** 0.58** 0.59** 0.76**
Pb 0.26 −0.16 0.26 0.52** 0.53** 0.56** 0.24 0.28 0.11 0.30

*significant at p < 0.05; **significant at p < 0.01

Table 8. Estimated average daily dose (ADD, mg∙kg−1∙d−1) of PTEs for adults and children through ingestion and dermal contact with groundwater 
from shallow hand-dug wells

Well As Cd Cr Cu Ni Pb

Adult Child Adult Child Adult Child Adult Child Adult Child Adult Child

Ingestion

N1 2.03 x 10-5 4.07 x 10-5 - - 8.33 x 10-6 1.67 x 10-5 2.67 x 10-6 5.33 x 10-6 - - - -

N2 - - 1.17 x 10-6 2.33x 10-6 - - 3.00 x 10-6 6.00 x 10-6 - - - -

N3 2.80 x 10-5 5.60 x 10-5 7.83 x 10-6 1.57 x 10-5 8.28 x 10-5 1.66 x 10-4 4.15 x 10-5 8.30 x 10-5 8.88 x 10-5 1.78 x 10-4 1.48 x 10-5 2.97 x 10-5

N4 2.33 x 10-5 4.67 x 10-5 1.52 x 10-5 3.03 x 10-5 3.38 x 10-5 6.77 x 10-5 3.20 x 10-5 6.40 x 10-5 2.45 x 10-5 4.90 x 10-5 3.22 x 10-5 6.43 x 10-5

N5 2.72 x 10-5 5.43 x 10-5 1.12 x 10-5 2.23 x 10-5 2.72 x 10-5 5.43 x 10-5 6.00 x 10-6 1.20 x 10-5 7.67 x 10-6 1.53 x 10-5 1.50 x 10-5 3.00 x 10-5

N6 9.00 x 10-6 1.80 x 10-5 1.00 x 10-6 2.00 x 10-6 - - 1.17 x 10-6 2.33 x 10-6 1.57 x 10-5 3.13 x 10-5 1.17 x 10-6 2.33 x 10-6

N7 5.10 x 10-5 1.02 x 10-4 1.92 x 10-5 3.83 x 10-5 5.83 x 10-5 1.17 x 10-4 2.25 x 10-5 4.50 x 10-5 3.10 x 10-5 6.20 x 10-5 1.98 x 10-5 3.97 x 10-5

N8 2.17 x 10-6 4.33 x 10-6 9.67 x 10-6 1.93 x 10-5 8.17 x 10-6 1.63 x 10-5 1.50 x 10-6 3.00 x 10-6 1.50 x 10-6 3.00 x 10-6 2.32 x 10-5 4.63 x 10-5

N9 4.00 x 10-5 8.00 x 10-5 4.00 x 10-6 8.00 x 10-6 1.68 x 10-5 3.37 x 10-5 7.07 x 10-5 1.41 x 10-4 1.78 x 10-5 3.57 x 10-5 1.37 x 10-5 2.73 x 10-5

Dermal contact

N1 1.17 x 10-7 6.55 x 10-7 - - 1.59 x 10-10 8.95 x 10-10 5.10 x 10-10 2.86 x 10-9 - - - -

N2 - - 2.23 x 10-10 1.25 x 10-9 - - 5.74 x 10-10 3.22 x 10-9 - - - -

N3 1.61 x 10-7 9.02 x 10-7 1.50 x 10-9 8.41 x 10-9 1.58 x 10-8 8.90 x 10-8 7.94 x 10-9 4.46 x 10-8 1.70 x 10-8 9.54 x 10-8 2.84 x 10-9 1.59 x 10-8

N4 1.34 x 10-7 7.52 x 10-7 2.90 x 10-9 1.63 x 10-8 6.47 x 10-9 3.63 x 10-8 6.12 x 10-9 3.44 x 10-8 4.69 x 10-9 2.63 x 10-8 6.15 x 10-9 3.45 x 10-8

N5 1.56 x 10-7 8.75 x 10-7 2.14 x 10-9 1.20 x 10-8 5.20 x 10-9 2.92 x 10-8 1.15 x 10-9 6.44 x 10-9 1.47 x 10-9 8.23 x 10-9 2.87 x 10-9 1.61 x 10-8

N6 5.17 x 10-8 2.90 x 10-7 1.91 x 10-10 1.07 x 10-9 - - 2.23 x 10-10 1.25 x 10-9 3.00 x 10-9 1.68 x 10-8 2.23 x 10-10 1.25 x 10-9

N7 2.93 x 10-7 1.64 x 10-6 3.67 x 10-9 2.06 x 10-8 1.12 x 10-8 6.26 x 10-8 4.30 x 10-9 2.42 x 10-8 5.93 x 10-9 3.33 x 10-8 3.79 x 10-9 2.13 x 10-8

N8 1.24 x 10-8 6.98 x 10-8 1.85 x 10-9 1.04 x 10-8 1.56 x 10-9 8.77 x 10-9 2.87 x 10-10 1.61 x 10-9 2.87 x 10-10 1.61 x 10-9 4.43 x 10-9 2.49 x 10-8

N9 2.30 x 10-7 1.29 x 10-6 7.65 x 10-10 4.30 x 10-9 3.22 x10-9 1.81 x 10-8 1.35 x 10-8 7.59 x 10-8 3.41 x 10-9 1.92 x 10-8 2.61 x 10-9 1.47 x 10-8
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DISCUSSION

Overall results show that groundwater had higher concentrations 
of contaminants during the dry than the wet season. This is 
consistent with earlier studies for the concentrations of Cl−, NO3

− 
and SO4

2− (Ganiyu et al., 2018) and NO3
− (Bexfield and Jurgens, 

2014). This could be attributed to change in the intensity of 
hydrochemical processes (e.g., evaporation, redox and mineral 
precipitation) in the dry season (Aladejana et al., 2020). Wells are 
over-exploited during the dry season to meet high water demand 
which is usually offset by rainfall during the wet season. This 
reduces groundwater recharge and lowers the water table (Guo 
et al., 2018). Further, it influences the direction and magnitude of 
the horizontal and vertical gradients that drive contaminants to 
wells, changing groundwater quality (Bexfileld and Jurgens, 2014; 
Mohapatra and Kirpalani, 2017).

The main source of NO3
− in groundwater was agricultural 

activities. This conclusion was also reached in a groundwater 
assessment study in Andhra Pradesh, India (Sunitha and Reddy, 
2019). Urban agriculture is associated with intensive use of 
artificial fertilisers on small pieces of land (Stewart et al., 2013). 
Nitrate causes methaemoglobinaemia, significant in children 
(WHO, 2017). High concentrations of SO4

2- in groundwater could 
be from the oxidation of sulphidic material in tailings. Leaching 
from tailings results in an increase of oxyanions (e. g. SO4

2−) in 
solution (Dold, 2014; Kim et al., 2017). Acidic pH (less than 6) 
recorded in Wells N3, N5 and N9 could result in dissolution of 
the redox-sensitive Fe (Gad et al., 2016). According to WHO 
(2017), drinking water quality has no health-based guideline 
values for pH, Fe, Cl− and SO4

2−. However, at some elevated 
concentrations, Fe, SO4

2− and Cl− influence the taste of water. 
The current study had groundwater of slightly acidic, neutral to 
slightly alkaline pH. This could be a result of either natural or 
enhanced neutralising potential by treatment of the mine tailings  
(Petronijević et al., 2020).

Groundwater sampled in open wells (25–30 m deep) during 
summer near an active coal mine in Dhanbad, India (Prasad et al., 
2014), had higher concentrations of Cd, Cr, Cu, Fe and Pb when 
compared to the current study. Coal mining is generally associated 
with acid mine drainage laden with PTEs which can leach deep 
into groundwater (Li et al., 2021). Zhuang et al. (2014) showed 
that well water from sources near a mining area of Dabaoshan, 
Guangdon, southern China, had higher concentrations of Cd, 
Cu and Pb than those found in the current study. Analysis of 
the hair of local residents showed higher concentrations of Cd 
and Pb than an unexposed population. However, comparison of 
the concentration of PTEs in groundwater from various studies 
may present challenges due to variations in mineral exploitation 
activities and duration, local climate and geology, soil and well 
characteristics. Nevertheless, comparing with the maximum 
allowable limit for drinking water quality guidelines allows water 
quality assessments and monitoring.

The area between the sector formed by NW and S directions 
within 75 m from the nearest MTD toe (135°) recorded the highest 
concentrations of contaminants in groundwater. Surface runoff 
erodes PTEs downslope to the south during the rainy season 
(Fig. 2a). In dry weather, long-range atmospheric deposition 
(Barandovski et al., 2015) accounts for PTE dispersal into open 
SHDWs (Fig. 2b) through the prevailing easterly winds (Kanda 
et al., 2019). High concentrations of SO4

2−, Cl−, Cd and Fe were 
recorded at relatively shallow wells. This is in agreement with 
observations made by Rajmohan et al. (2017) in a hydrochemical 
evaluation of 44 wells in the Ramganga Sub-Basin, India, for the 
same groundwater quality parameters. They attributed the higher 
concentrations in shallow wells (average 12 m) than in deep wells 
(average 35 m) to other sources of contamination than mineral 

dissolution alone. Dash et al. (2010) showed that salinity of 
groundwater was high at shallow groundwater depths.

The three new wells recorded higher concentrations of 
contaminants (except for SO4

2−) than existing wells. However, 
these wells were not of the same depth, distance and direction 
relative to the MTD, which all influence groundwater quality. The 
concentration of SO4

2− in groundwater was considered less prone 
to sorption, precipitation and geochemical reduction (Kim et al., 
2017). Erickson et al. (2018) observed that the concentration of As 
in groundwater from new wells was highly variable relative to that 
found when sampled months later. Although the concentrations 
of PTEs were lower than the drinking water quality guidelines 
(WHO, 2017), some (e.g. Cd and Pb) are cumulative poisons 
(Jaishankar et al., 2014) while Ni is considered carcinogenic 
(Wuana and Okieimen, 2011).

The negative and significant correlation of PTEs with pH  
(p < 0.05) may suggest that pH influences the concentration of 
PTEs in solution (Palansooriya et al., 2020). Generally, strong 
positive correlations among PTEs may suggest that they originate 
from the same source or have similar hydrochemical behaviour 
(Tepanosyan et al., 2017). However, further multivariate statistical 
analyses are needed for their source apportionment.

Health risk assessment data showed that both HQi and HI 
were less than one. This implies that there is no possibility that 
non-carcinogenic impacts may occur to the local population  
(USEPA, 2011). The use of PTE concentrations for the dry season, 
when concentrations of PTEs are maximum, to estimate health 
risk exposure may represent the worst-case exposure scenario. 
However, average values (dry and rainy season) may represent 
a more realistic exposure scenario. Although Cd and Ni are 
human carcinogens (IARC, 1993), they have no established oral 
carcinogenic slope factors for groundwater, and Pb is a probable 
carcinogen. The TCR values recorded for arsenic (10−4) in some 
wells indicate medium to high cancer risk levels (Grade V: 10−4,  
5 x 10−4) which require the willingness to invest in managing 
them (Li et al., 2017). According to Tepanosyan et al. (2017) if 
TCR or total TCR is less than 10−6 no carcinogenic risk is expected 
to health. Further, values greater than 10−4 suggest high risk  
(USEPA, 1989).

Limitations of the study

The use of the USEPA-recommended risk assessment model in 
local scenarios may introduce uncertainties. However, local values 
were used in the model where applicable. The model assumes 
continuous use of water from the same source in a year and does 
not indicate when potential risk symptoms may start to show. There 
were no established local background values for PTEs. A local 
reference point was used to provide background concentrations.

Concentrations of most PTEs were below the detection limit. 
Since groundwater quality is influenced by a number of changing 
local factors, our results may be interpreted with caution for 
generalisation to similar scenarios. However, they provide a basis 
for further monitoring and may influence relevant practices and 
policy for local authorities.

CONCLUSION

The study highlights the importance of monitoring abandoned 
mine sites and the ambient environment even years after mineral 
exploration activities have ended. It encourages the effective 
enforcement of urban councils’ by-laws for human settlement 
and environmental regulations that govern mining and waste 
disposal. The findings stress the importance of seasonality in 
similar studies as the population appears exposed to higher 
concentrations of potentially toxic elements during the dry than 
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the wet season. Although the concentrations of potentially toxic 
elements in groundwater placed no restriction for potable use 
and posed no significant non-carcinogenic health risks to the 
local population, arsenic poses medium to high cancer risk. We 
encourage municipalities of small towns in low-income settings 
to provide water and sewerage systems to new human settlements 
before habitation. We propose the establishment of vegetation 
on slopes of the MTD to reduce erosion by wind and runoff, and 
prevent the oxidation of pyrite and the mobility of PTEs. Eroded 
tailings material downslope of the tailings dam may be contained 
by silt-catchment paddocks. Further studies could be done to 
investigate the acid generating potential of the tailings and the 
potential human health risk to potentially toxic elements through 
inhalation for the local population.
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