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A cerebellar internal model calibrates a feedback
controller involved in sensorimotor control
Daniil A. Markov 1, Luigi Petrucco 1,2, Andreas M. Kist 1,3 & Ruben Portugues 1,2,4✉

Animals must adapt their behavior to survive in a changing environment. Behavioral adap-

tations can be evoked by two mechanisms: feedback control and internal-model-based

control. Feedback controllers can maintain the sensory state of the animal at a desired level

under different environmental conditions. In contrast, internal models learn the relationship

between the motor output and its sensory consequences and can be used to recalibrate

behaviors. Here, we present multiple unpredictable perturbations in visual feedback to larval

zebrafish performing the optomotor response and show that they react to these perturba-

tions through a feedback control mechanism. In contrast, if a perturbation is long-lasting, fish

adapt their behavior by updating a cerebellum-dependent internal model. We use modelling

and functional imaging to show that the neuronal requirements for these mechanisms are

met in the larval zebrafish brain. Our results illustrate the role of the cerebellum in encoding

internal models and how these can calibrate neuronal circuits involved in reactive behaviors

depending on the interactions between animal and environment.
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The interaction between animals and their surroundings
changes constantly, due to changes in the environment and
due to processes such as development, growth or injury, which

modify the body of the animal. Nevertheless, fine motor control is so
important that evolution has provided animals with mechanisms to
produce precise behavior in these changing conditions. The task of
adapting behavior to the changing environment can be solved in two
ways. One way is to react to these changes through a feedback control
mechanism, which ensures that the goal of a behavioral act is
achieved under a variety of conditions. A second option is for the
animal to learn the new environmental conditions, namely the
association between its behavior and the sensory feedback, and to
adjust its behavioral program in the long-term. This second
mechanism is only possible if the change in conditions lasts and can
therefore be predicted.

Many stimulus-driven behaviors result in the effective cancellation
of the stimulus that evoked them. Examples include the optokinetic
reflex (OKR)1, in which retinal slip evokes eye motion that sets this
slip to zero. If the stimulus is monitored constantly, a feedback
control loop with well-tuned parameters may provide an appropriate
mechanism for performing the task of setting the stimulus to zero2.
This happens online, so feedback controllers are limited by the time
delay required for sensory processing, which in the case of visual
feedback is estimated to be between 100 and 300 ms3–7. If the pro-
cessing of sensory information is long with respect to the duration of
the motor action, the current state of the body will change drama-
tically by the time the feedback signal starts to influence the motor
command. As a result, the feedback signal will implement an inap-
propriate correction based on out-of-date sensory information8.

To overcome this limitation of feedback motor control, the brain
can encode internal models of different parts of the body and/or of
different aspects of the external world9–11. These models monitor the
sensorimotor transformation performed by the body during move-
ment and learn a forward or an inverse transfer function of this
transformation either to predict sensory consequences of a motor
command (forward models), or to provide an appropriate feedfor-
ward command to reach a desired sensory state (inverse models).
Such models can predict that, for example, if we lift an arm a certain
distance, we will experience a certain proprioceptive feedback of this
motion (forward model), or that we need to send a certain motor
command in order to lift an arm a certain distance (inverse model). If
the transfer function changes in a long-term manner, the model
updates, leading to motor learning. It is widely believed that internal
models for motor control exist in the central nervous system and that
in vertebrates, the cerebellum plays a major role in encoding
them8,12–16, although how exactly this is done is not well understood.

In this study, we investigate the interplay between feedback
controllers and internal models and the role of the cerebellum in
encoding them. We make use of the larval zebrafish optomotor
response (OMR)17, a behavior shared by many animals18,19, by
which they turn and move in the direction of perceived whole-
field visual motion. The OMR can be defined in terms of a
feedback control mechanism as a locomotor behavior that tries to
set the optic flow to zero, thus stabilizing the animal with respect
to its visual environment; in this framework, the OMR is similar
to the OKR as both of these behaviors effectively cancel the sti-
mulus that evoked them.

As larvae, zebrafish swim in bouts that comprise several full tail
oscillations and last around 350ms, separated by quiescent periods
called interbouts20. When zebrafish, or any other animal, move
forward, they experience the visual scene coming towards them.
Previous work has shown that larval zebrafish swimming in a closed-
loop experimental assay react to perturbations in this visual
feedback21–23. Specifically, if a larva receives less feedback than
normally, it swims for longer, as if trying to compensate for this lack
of feedback by increasing its bout duration. This reaction happens on

the time scale of individual bouts21, so we call this phenomenon
“acute reaction”. A hypothesized mechanism of acute reaction is that
fish use an internal representation of expected sensory feedback, and
if the actual feedback does not meet this expectation, they adapt their
behavior to minimize this discrepancy21. This postulates that fish use
forward internal models to compute predicted sensory feedback from
motor commands during acute reaction. In a subsequent study, it
was further proposed that these predictive computations occur in the
cerebellum22.

Here, we employ behavioral tests and modeling to demonstrate
that acute reaction to unexpected perturbations can be implemented
by a simple feedback controller, without internal models. The state of
this feedback controller can be adjusted if the animal experiences a
long-lasting, and therefore predictable, perturbation in sensory
feedback. Crucially, loss-of-function experiments have shown that an
intact cerebellum was necessary for this recalibration but not for the
functioning of the feedback controller itself. We used functional
imaging in animals performing adaptive optomotor locomotion to
determine whether neuronal requirements of this hypothesis are met
in the larval zebrafish brain. Our results illustrate the role of the
cerebellum in encoding internal models, which can calibrate existing
neuronal circuits according to predictable features of the
environment.

Results
Unexpected perturbations in visual reafference result in acute
behavioral reaction. When an animal, such as larval zebrafish,
moves in a given direction, it naturally experiences optic flow in
the opposite direction (Fig. 1a). We will refer to the swimming-
elicited velocity of the optic flow as visual reafference (Fig. 1b). To
investigate how perturbations in visual reafference affect ongoing
behavior, we took advantage of the previously developed closed-
loop experimental assay21,22 (Fig. 1c and Supplementary
Movie 1). In this assay, head-restrained zebrafish larvae swim in
response to forward whole-field visual flow, such as a forward
moving grating, a behavior known as the OMR. A high-speed
camera captures this behavior, and the fictive larvae velocity is
inferred from the tail motion (see “Closed-loop experimental
assay in head-restrained zebrafish larvae” section in Methods). To
provide fish with visual reafference, this estimated velocity can be
subtracted from the initial stimulus velocity such that the larvae
experience the sensory consequences of their own swimming
(Fig. 1c, d and Supplementary Movie 1). Importantly, the trans-
formation that determines how estimated swimming velocity
translates to reafference is under experimental control, which
allows us to introduce perturbations in reafference and to study
how the animals react to these perturbations.

In the first set of experiments, we aimed to characterize the
acute reactions of zebrafish larvae to a variety of different
perturbations and to determine whether these reactions can result
from a feedback control mechanism. We used three distinct
perturbations in reafference to probe the space of possible
behavioral reactions (Fig. 2a and Supplementary Movie 1). The
first reafference condition, which has been previously used21,22,
we call gain change. It corresponds to changing the gain of the
experimental closed-loop, such that larvae receive more or less
visual reafference upon swimming (Fig. 2ai). Note that a gain of 0
corresponds to open-loop and a gain of 1 to the freely-swimming
condition, referred hereafter as the normal reafference condition
(respectively, red and blue shaded bars in Fig. 2a). The gain
change tests how behavior depends on the amount of reafference
that larvae receive upon swimming (e.g., covered distance or
reached velocity). The second condition we call lag, and this
corresponds to introducing an artificial temporal delay between
the behavior of the larva and the reafference it experiences
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(Fig. 2aii, top). In the shunted lag version of this condition, the
reafference is set to zero when the larvae stop swimming (Fig. 2aii,
bottom). The lag tests how behavior depends on the temporal
relationship between the bout and its related reafference. The
final reafference condition, gain drop, corresponds to dividing the
first 300 ms of a bout into four 75 ms segments and setting the
reafference to zero during one or more of these segments
(Fig. 2aiii). The gain drop tests whether perturbations in
reafference lead to the same behavioral reactions regardless of
when they occur within the bout.

Individual wild-type larvae were exposed to 15 s trials during
which a grating moved in a caudal to rostral direction at 10mm/s
(Fig. 1d). Larvae responded by performing swimming bouts and the
reafference conditions were randomized on a bout-by-bout basis.
Perturbation-induced changes in bout and subsequent interbout
duration are presented in Fig. 2c, d (black data points).

For all types of reafference conditions, the bout duration
increased when the overall reafference was less than normal
(Fig. 2c). This was particularly noticeable for the very low gains 0
and 0.33 (Fig. 2ci), under the lag and shunted lag conditions
(Fig. 2cii–ciii) and under the gain drop conditions where more
than one bout segment had gain 0 (Fig. 2civ). Interestingly, the
observed increase in bout duration was close to linear as a
function of the lag and, as expected, it did not show a significant
difference between the lag and shunted lag cases, as these two
conditions were identical during the bout. Finally, under the gain
drop condition, the mean bout duration was differentially
prolonged depending on what bout segment had a perturbed
reafference. Overall, a segment with a gain of 0 had a larger effect
on increasing the bout duration the earlier it occurred within the
bout: compare for example the cases for gain profiles 0111 and
1110 (gray triangles in Fig. 2civ).

Fig. 1 Closed-loop experimental assay to study optomotor behavior in larval zebrafish. aWhen a larval zebrafish swims forward with respect to its visual
environment (left), the environment moves backwards with respect to the fish (right). Variables expressed in motor coordinates, such as tail movement
and resulting position or velocity of the swimming larva, are presented in green. Variables expressed in sensory (visual) coordinates, such as observed
position or velocity of the visual environment, are presented in magenta. This color-code is used throughout the figures. b Change in position and velocity
of a swimming fish with respect to its visual environment (left) and of the environment with respect to the swimming fish (right). In all figures, decrease of
environment position and velocity along the y-axis means that fish progresses forward with respect to the environment. Swimming-elicited change in
environmental velocity is referred hereafter as visual reafference, in contrast with externally-generated changes in velocity, referred as exafference.
c Behavioral rig (left) and schematics of the closed-loop experimental assay (right) used to induce OMR and to provide visual reafference to the fish. Scale
bar: 1 mm. d Raw data recorded during one experimental trial. b, d vertical shaded bars indicate swimming bouts.
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The effects on the interbout duration are displayed in Fig. 2d.
Decreasing the gain initially resulted in shorter interbouts (gain
0.66–2) although further decreases reversed this tendency to the
extent that interbouts at gain 0 were longer than those at gain 1
(Fig. 2di). Under the lag conditions, the mean interbout duration
increased with longer lag in the non-shunted setting only
(Fig. 2dii–diii). This demonstrates that the duration of a bout
and a subsequent interbout can be independently influenced by
different aspects of the reafference. Explicitly, insufficient
reafference in the beginning of the bout, present in both lag

settings (red triangles in Fig. 2aii), increases the bout duration
(Fig. 2cii–ciii), whereas excessive reafference after the bout end,
only present in a non-shunted lag setting (blue triangle in Fig. 2aii),
lengthens the interbouts (Fig. 2dii). Under the gain drop
conditions, the interbout duration decreased if the preceding
bout had a gain drop (Fig. 2div). In contrast with the results for
mean bout duration, interbouts were affected more when the gain
was dropped in segments closer to the end of the bout: compare
for example the cases for gain profiles 0011 and 1100 (gray
triangles in Fig. 2div).
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In summary, these results demonstrate that larval zebrafish
acutely react to unexpected perturbations in visual reafference in
an intricate way. Bout duration is prolonged if the reafference is
insufficient or delayed compared to the normal reafference
condition, and reafference during the early segments of swim-
ming bouts has more influence over the bout duration. On the
other hand, larvae prolong the interbout duration if they receive
excessive reafference during or after the preceding bout, with
reafference during late bout segments having more influence.

Acute reaction is implemented after a sensory processing delay.
We hypothesized that this acute reaction is implemented by a feed-
back controller, which must rely on a relatively slow measurement of
the controlled variable (see “Introduction” section). Therefore, this
acute reaction should be implemented only after a sensory processing
delay. To identify the time that larval zebrafish need to react to
unexpected perturbations in reafference, we analyzed the temporal
dynamics of the tail beat amplitude in the form of bout power within
individual bouts in different reafference conditions (Fig. 2e; see
“Behavioral data analysis” section for details).

Comparing the mean bout power profiles across different
reafference conditions revealed that, when the reafference was
perturbed from the very beginning of a bout (as in gain change,
lag and shunted lag conditions), larvae reacted by increasing the
tail-beat amplitude only 220 ms after the bout onset (Fig. 2ei–eiii).
However, if the change in the reafference was introduced once the
bout had already started (as in the gain drop condition with gain
profiles 1000, 1100), the deviation in the respective mean bout
power was observed only around 220 ms after the start of the
perturbation (blue triangles in Fig. 2eiv).

We conclude that larval zebrafish react to perturbations in visual
reafference with a delay of 220ms. This result prompted us to define
two periods within bouts: an initial stereotyped ballistic period lasting
220ms and a subsequent reactive period. An unexpected change in
reafference condition (regardless of whether the change occurs during
the ballistic or the reactive period), can only affect the tail-beat
amplitude during the reactive period (Fig. 2e). Such a prominent
sensory processing delay suggests that the OMR is implemented by a
feedback controller. Finally, we note that the delay duration is
consistent with processing time of visual feedback information in
other species3–7.

Acute reaction can be implemented by a feedback controller
that integrates the optic flow. To confirm that acute reaction is
implemented by a feedback controller, we took a simulation

approach, which involved designing such a controller and testing its
performance under the aforementioned perturbations in reafference.

The main rationale of the designed model derives from the
definition of the OMR in terms a feedback control mechanism, as
a locomotor behavior that tries to keep perceived optic flow at
zero. If optic flow is constant, an animal moving in discrete bouts
cannot achieve this goal at all possible points in time. Instead, it
can stabilize its position on average by integrating the optic flow
in time, estimating displacement with respect to the visual
environment over a time window and performing bouts whenever
the integrated signal reaches a threshold.

Following this reasoning, we designed a feedback controller
consisting of three parts: a sensory part, a sensory integration part
and a motor output generation part (Fig. 2b). The sensory part
instantaneously combines forward and backward grating velocity
with independent excitatory and inhibitory weights, respectively.
This weighted sensory input is then integrated in time by a
velocity integrator. The output of this integrator can be
interpreted as a metric of motivation to swim, which we refer
to as sensory drive. This sensory drive is then fed into a motor
output generator that produces a motor command when it
reaches a threshold. As zebrafish larvae swim in discrete bouts,
the model contains a motor integrator that integrates the motor
command in time and inhibits the motor output generator, which
eventually leads to the termination of the bout. The output of the
motor integrator can be interpreted as a metric of “tiredness” that
encapsulates possible peripheral or central mechanisms for bout
termination, such as muscle fatigue or modulation of the
locomotor central pattern generator. Effectively, the motor
integrator ensures that bouts have finite length even when the
sensory drive to continue swimming is very high. Finally, to
ensure that bouts last for some minimum time once started in
cases when the sensory drive becomes low immediately after bout
onset (for example, if the gain of the closed-loop is very high and
the fish receives a lot of reafference), we introduced a self-
excitation loop to the motor output command generator (see
“Feedback control model of acute reaction” section in Methods for
further details; see also Supplementary Fig. 1a for formal
mathematical description of the model).

We fit the model with a set of parameters such that it generated
bouts and interbouts of realistic duration in response to forward
moving grating in the normal reafference condition (Supplemen-
tary Fig. 1a; for distributions of obtained parameter solutions see
Supplementary Fig. 1b).

Furthermore, the behavior of the model under different
perturbations in reafference reproduced the findings presented

Fig. 2 Acute reaction to unexpected perturbations in visual feedback can be implemented by a feedback controller. a Reafference conditions used to
induce acute reaction: gains (i), lags (ii), and gain drops (iii). Vertical shaded bars indicate swimming bouts, blue and red bars indicate normal reafference
and open-loop conditions, respectively. Red triangles indicate insufficient reafference in the beginning of the bout, blue triangle indicates excessive
reafference after the bout offset. Gain drop conditions (aiii) are labeled by four digits indicating the gain during the corresponding bout segments (e.g.,
condition 1100 has normal reafference during the first 150ms of the bout but no reafference for the next 150ms). b Feedback control model of acute
reaction. White squares depict mathematical operations performed by respective nodes: integration, rectification, saturation, and thresholding. Magenta
and green traces represent input and output of the model, orange traces represent output of respective nodes. Seven small Greek letters and thr denote
eight parameters of the model; Δt denotes sensory processing delay of 220ms. c, dMean bout duration (c) and interbout duration (d) as a function of gain
(i), lag (ii), shunted lag (iii) and gain drop profile (iv) for larvae (black) and the model (cyan). To obtain data for one larva, bout and interbout durations were
averaged within each reafference condition. Mean ± SEM across larvae/models is shown; N= 100. Gray triangles in civ and div indicate two gain drop
conditions, in which the gain was set to 0 during the same number of 75 ms segments of a bout but the behavior was modified differently depending on
what bout segment had a perturbed reafference. e Bout power profile as a function of gain (i), lag (ii), shunted lag (iii) and gain drop profile (iv), averaged
within each reafference condition in each larva. Median across larvae is shown. Dotted lines indicate bout onsets, dashed lines separate ballistic and
reactive periods. Thick horizontal black lines above the plots indicate time points, at which bout power depends on reafference condition (Kruskal–Wallis
test, p < 0.05/220, where 220 is the total number of tested time points). Blue triangles indicate that if perturbation in reafference was introduced after the
bout had already started (as in gain drop conditions 1000 and 1100), the deviation in the respective mean bout power starts only around 220ms after the
start of the perturbation.
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in Fig. 2c, d, including the increased motor output in response to
decreased or delayed reafference, the difference in reaction of
interbout duration to shunted and non-shunted lags, and
different reactions under the gain drop condition depending on
which bout segment had a perturbed reafference (Fig. 2b–d, cyan
data points) (see “Discussion” for details on how these subtleties
of acute reaction can be explained by the model). Therefore, acute
reaction to perturbed reafference can be implemented by a
feedback control mechanism that relies on temporal integration
of the optic flow.

Larval zebrafish are able to integrate the optic flow. To test the
main assumption of this model, namely, the existence of the
temporal integration of the optic flow in the larval zebrafish brain,
and to gain some further insight into its biological implementa-
tion, we performed whole-brain functional imaging in head-
restrained larvae expressing GCaMP6s in all neurons24, while
they were performing the OMR in a custom-built light-sheet
microscope (Fig. 3a and Supplementary Movies 2 and 3).

After segmenting the imaged brains into regions of interest
(Fig. 3b) (ROIs, N= 24,677 ± 4,811, mean ± SEM across six
imaged larvae) (see “Functional imaging data analysis” section
in Methods for details), we observed ROIs that increased their
fluorescence at the onset of the moving grating (sensory ROIs; see
gray triangle in Fig. 3c) or when the larvae were performing bouts
(motor ROIs; see black triangle in Fig. 3c; see also Supplementary
Movie 2). Analysis of the mean grating-triggered or bout-
triggered fluorescence (Fig. 3d, e) revealed that the activity of a
vast majority of detected ROIs was either sensory-related, or
motor-related (respectively, 48 ± 5% and 50 ± 4%, mean ± SEM
across imaged larvae, N= 6). Motor ROIs were located
predominantly in the hindbrain and in the nucleus of the medial
longitudinal fascicle in the midbrain, and sensory ROIs were
mostly present in the hindbrain, midbrain, and diencephalic
regions, including the inferior olive, dorsal raphe and surround-
ing reticular formation, optic tectum, pretectum, and thalamus
(Fig. 3f, see also Supplementary Fig. 2 for anatomical reference).

As one of the main assumptions of the model is the existence of
optic flow-integrating ROIs, we determined whether some of the
identified sensory ROIs display properties of sensory integrators
(Fig. 3g–i). To this end, we fitted a leaky integrator model to the
fluorescence trace of each sensory ROI and estimated their
integration time constants (see “Functional imaging data analysis”
section for details). We found that the time constants followed a
continuous distribution and varied greatly across sensory ROIs
(mean= 2.1 ± 0.3 s; SD= 0.9 ± 0.1 s; Q1= 1.6 ± 0.2 s; Q2 (median) =
2.1 ± 0.2 s; Q3= 2.5 ± 0.4 s; mean ± SEM across larvae; see inset in
Fig. 3i). Fluorescence traces of sensory ROIs with short time
constants increased faster after the grating onset and decayed faster
when the grating stopped moving compared to ROIs with longer
time constants (see Fig. 3g, h for activity of two example sensory
ROIs in one trial and averaged across trials, respectively, and see
Fig. 3i for trial-average activity of all sensory ROIs). ROIs with short
and long time constants were located in distinct brain regions. ROIs
with short time constants were located predominantly in the optic
tectum and in the inferior olive, whereas ROIs with longer time
constants occupied the dorsal raphe with surrounding reticular
formation and aforementioned diencephalic regions (Fig. 3j, see also
Supplementary Fig. 2 for anatomical reference). This spatial
distribution was significantly consistent across imaged larvae
(Supplementary Fig. 2, see “Functional imaging data analysis” section
for details).

We conclude that certain regions of the larval zebrafish brain
(dorsal raphe, pretectum, and thalamus) integrate the velocity of
the moving grating in time, and could therefore compute the

sensory drive that evokes the OMR (as shown also for other
experimental paradigms by refs. 25,26). This provides an
important substrate for the feedback controller-based mechanism
of acute reaction presented in Fig. 2.

Larval zebrafish adapt their behavior in response to a long-
lasting perturbation in visual reafference. We next hypothesized
that the role of the cerebellum is to update the state of the neu-
ronal controller of the OMR if the relationship between the
behavior and the resulting sensory consequences changes in a
consistent and predictable manner, and can therefore be captured
in an internal model. To test this hypothesis, we first developed a
long-term adaptation experimental assay, in which zebrafish
larvae performed the OMR and experienced a long-lasting and
consistent perturbation in visual reafference. The paradigm
consisted of 240 trials that were grouped into four phases: cali-
bration, pre-adaptation, adaptation, and post-adaptation (Fig. 4a;
see “Experimental protocols” section for details). Animals were
randomly divided into two experimental groups: normal-
reafference control and lag-trained. Lag-trained animals
received a constantly lagged reafference during the adaptation
phase (225 ms non-shunted lag; Fig. 4a, red trace). Importantly,
this assay allows to monitor both acute reaction to unexpected
perturbation in reafference (immediately after the perturbation is
presented to a naïve larva) and potential long-term behavioral
changes (after the larvae experiences the perturbation for some
time).

We analyzed the duration of first bouts in each trial, as the first
bout should not depend on the putative short-term sensorimotor
memory accumulated during the current trial, and should
therefore reflect potential long-term changes in the OMR
circuitry more clearly than subsequent bouts. As expected, naïve
lag-trained larvae acutely reacted to unexpected lag in reafference
by increasing their bout duration in the beginning of the
adaptation phase (dark-blue arrows in Fig. 4b–d). However, by
the end of the adaptation phase, the magnitude of the acute
reaction had decreased substantially so that their bout duration
became less distinguishable from the normal-reafference control
group that was never exposed to perturbed reafference (cyan
arrows in Fig. 4b, c, e). This indicates that the circuitry underlying
the OMR and its acute reaction to perturbed reafference was
recalibrated during long-term exposure to a novel reafference
condition. This interpretation is confirmed by a prominent
decrease in the bout duration of lag-trained animals observed
during the post-adaptation phase, referred to as the “after-effect”
(orange arrows in Fig. 4b, c, f).

When we analyzed the modulation of the tail-beat amplitude
within individual bouts during the experiment, we confirmed our
previous observations presented in Fig. 2e. Thus, acute reaction to
lagged reafference in the beginning of the adaptation phase
occurred only after a considerable sensory processing delay
(Fig. 4g; compare black and dark-blue traces in Fig. 4gii, acute
reaction is indicated by magenta arrows). On the other hand, tail-
beat amplitude during the initial ballistic period was not
modulated during acute reaction (Fig. 4g, h). Since the tail-beat
amplitude during the ballistic period does not depend on the
current reafference, it can be used as a readout of the homeostatic
state of the neuronal controller that determines how forward
motion of the grating is transformed into optomotor behavior. If,
according to the proposed hypothesis, this state updates during
the long-term adaptation, one could expect that the ballistic
power would change during the long-term exposure to a novel
reafference condition. As predicted by the hypothesis, we
observed that the ballistic bout power during the post-
adaptation phase was indeed significantly larger than during the
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pre-adaptation phase (Fig. 4g, compare black and orange traces,
increase in ballistic power is indicated by black arrows).
Interestingly, this metric of long-term adaptation did not depend
on the reafference condition presented during the adaptation
phase (Fig. 4j; see “Discussion” section).

These results demonstrate that larval zebrafish are able not
only to acutely react to unexpected perturbation in reafference
but also to adapt their behavior in the long-term if this
perturbation is persistent. The long-term adaptation includes a
decrease in magnitude of the acute reaction during the adaptation

Fig. 3 Larval zebrafish are able to integrate the optic flow. a Light-sheet microscope combined with a behavioral rig used in the whole-brain functional
imaging experiments. b Spatial distribution of detected ROIs from six larvae. Color indicates percentage of larvae with ROIs in the corresponding voxel
of the reference brain. b, f, j Maximum dorsoventral or lateral projections are shown: ro rostral direction, l left, r right, c caudal, d dorsal, v ventral; fb
forebrain, mb midbrain, hb hindbrain (see Supplementary Fig. 2 for anatomical reference); scale bars: 100 µm. Dotted black curves outline the dorsal
rostrolateral midbrain that was blocked from the scanning laser by the eye-protecting screens. Colored circles indicate location of example ROIs shown in
the figure, images on the right show their shape (scale bar: 10 µm). c Z-scored fluorescence of sensory and motor example ROIs in one trial. b–f Magenta
and green colors represent sensory and motor ROIs, respectively. Vertical shaded bars indicate bouts. Gray triangle indicates the response of the sensory
ROI to the grating motion, black triangle indicates the response of the motor ROI after the first bout onset. d Average grating-triggered and bout-triggered
fluorescence of example ROIs presented in c. d, h Shaded areas represent SEM across triggers. e Average grating-triggered and bout-triggered
fluorescence of all sensory and motor ROIs pooled from all imaged larvae. f Spatial distribution of sensory and motor ROIs. f, j color indicates percentage of
larvae with ROIs from respective functional group in the corresponding voxel of the reference brain, color map is the same as in b. g Z-scored fluorescence
of two sensory ROIs in one trial: one with short integration time constant and one with long. b, g–j Blue and red colors represent sensory ROIs with short
and long time constants, respectively. h Average grating-triggered fluorescence of example ROIs presented in g. i Average grating-triggered fluorescence
of all sensory ROIs. Inset shows distribution of time constants of sensory ROIs (mean ± SEM across larvae). j Spatial distribution of all sensory ROIs with
short and long time constants.
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period and a consequent after-effect. In addition, the tail-beat
amplitude during the ballistic period is increased during long-
term adaptation.

Long-term adaptation, but not acute reaction, is impaired after
PC ablation. Our hypothesis predicts that long-term adaptation
depends on cerebellar output, whilst acute reaction is imple-
mented by a cerebellum-independent mechanism. To test this
prediction, we generated a transgenic line expressing

nitroreductase (Ntr) in all cerebellar Purkinje cells (PCs), which
allows targeted pharmaco-genetic ablation of PCs by treating the
larvae with metronidazole (Fig. 5a; see “Targeted pharmaco-
genetic ablation of PCs” section for details). To validate efficiency
of the ablation protocol, we acquired confocal stacks of 11 larvae
before and after ablation. In all Ntr+ larvae we observed swelling,
disappearance and a decrease in the number of PC nuclei, as well
as aggregation of the neuropil into puncta with complete loss of
the characteristic filiform structure. This demonstrates that even

Fig. 4 Larval zebrafish adapt their behavior in response to a long-lasting perturbation in visual reafference. a Four phases of the long-term adaptation
protocol: calibration, pre-adaptation, adaptation, and post-adaptation. Two groups were tested: normal-reafference control (N= 103) and lag-trained larvae
(N= 100), who received lagged reafference during the adaptation phase (red trace). b Tail traces from eight trials in a lag-trained fish. Dotted lines show when
the grating was moving forward. Vertical shaded bars indicate first swimming bout in each trial. Blue arrow indicates increase of first bout duration in the
beginning of the adaptation phase (acute reaction), cyan arrow indicates decrease of bout duration by the end of the adaptation phase (reduction of acute
reaction), and orange arrow indicates decrease of bout duration in the post-adaptation phase (after-effect). c First bout duration in each trial (mean ± SEM
across larvae). d–f Quantification of acute reaction (d) and long-term adaptation effects: reduction of acute reaction (e) and the after-effect (f). Each dot
represents first bout duration in one fish, averaged across ten trials and normalized by subtracting the value from the pre-adaptation phase (d, f) or from the
first ten trials of the adaptation phase (e). d–jMedian and interquartile range across larvae are shown, n.s. p≥0.05, *p < 0.05, **p < 0.01 (d 7.92 × 10−21, e 1.25
× 10−6, f 0.02, h 0.88, i 6.66 × 10−22, j 0.27; Mann–Whitney U-test with two-tailed alternative). Red dots represent example fish shown in b. g First bout power
profile in different experimental phases of normal-reafference control (i) and lag-trained larvae (ii), averaged within blocks of ten trials in each larva. Dashed
lines separate ballistic and reactive periods. Thick horizontal colored lines indicate time points, at which mean bout power is different from the pre-adaptation
level (Wilcoxon signed rank test, p < 0.05/220, where 220 is the total number of tested time points). Black arrows indicate increase of ballistic power during the
experiment. h–j Quantification of the change in mean bout power during the experiment: acute reaction of ballistic bout power (h), of reactive bout power (i),
and the after-effect in ballistic bout power (j). Each gray dot represents the area below the first bout power curve in one fish, computed over its respective bout
period, averaged across ten trials and normalized by subtracting the value from the pre-adaptation phase.
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though some of the PCs remained after ablation, their normal
functioning in the circuit was impossible due to destruction of
their dendritic trees (Supplementary Fig. 3).

After confirming the efficiency of the ablation protocol, we probed
its behavioral consequences. PC-ablated fish were still able to perform
the OMR and to acutely react to perturbations in visual reafference.
When we probed the responses of PC-ablated zebrafish larvae in the
acute reaction paradigm (Fig. 2), we found that responses to all the
perturbations (gain, lag, shunted lag, gain drop) were still present after

the ablation of PCs (Supplementary Fig. 4). This was also the case
when tested in the long-term adaptation paradigm, where naïve PC-
ablated larvae were still able to react acutely to unexpected lag in the
reafference in the beginning of the adaptation phase (blue arrows in
Fig. 5b, c). In fact, the magnitude of the acute reaction to lag was even
higher in PC-ablated larvae compared to the treatment control group
(Fig. 5c).

On the other hand, long-term adaptation was significantly
impaired after PC ablation. The reduction of the acute reaction

Fig. 5 Long-term adaptation, but not acute reaction, is impaired after PC ablation. a Experimental flow of PC ablation experiments. b First bout duration
in each trial of the long-term adaptation experiment in treatment control larvae (i N= 85 and 85 for normal-reafference control and lag-trained groups,
respectively) and PC-ablated larvae (ii N= 83 and 90). Solid lines and shaded areas represent mean ± SEM across larvae. b–e Blue arrows indicate acute
reaction, cyan arrows indicate reduction of acute reaction, and orange arrow indicates the after-effect. c–e Quantification of acute reaction (c) and long-
term adaptation effects: reduction of acute reaction (d) and the after-effect (e). Each gray dot represents first bout duration in one fish, averaged across ten
trials and normalized by subtracting the baseline value obtained during the pre-adaptation phase (c, e) or during the first 10 trials of the adaptation phase
(d). c–e, g Black and red lines represent median and interquartile range across larvae. f, Mean bout power profiles of the treatment control (i) and PC-
ablated groups (ii). from pre-adaptation and post-adaptation phases of the experiment. First bout power profiles were averaged within respective blocks of
ten trials in each larva. Colored curves and shaded areas represent median and interquartile range across larvae. Dotted lines indicate bout onsets, dashed
lines separate ballistic and reactive periods. Thick horizontal orange lines indicate time points at which mean bout power during the post-adaptation trials is
different from the baseline pre-adaptation bout power (Wilcoxon singed rank test, p < 0.05/220, where 220 is the total number of time points, two-tailed
alternative). Black arrows indicate increase of ballistic power during the experiment. Data from normal-reafference control and lag-trained animals were
pooled together as no effect of reafference condition on increase in ballistic bout power was observed (Fig. 4j). g Quantification of the change in mean
ballistic bout power during the experiment. Each gray dot represents area below the first bout power curve in one fish, computed over the ballistic period,
averaged across ten trials and normalized by subtracting the baseline value obtained during the pre-adaptation phase. c–e, g n.s. - p≥ 0.05, *p < 0.05,
**p < 0.01 (c: treatment control: 8.83 × 10−7, PC-ablated: 1.52 × 10−14, lag-trained: 0.18 × 10−2; d treatment control: 0.046, PC-ablated: 0.61, lag-trained:
0.35; e treatment control: 0.47, PC-ablated: 0.58, lag-trained: 0.45; g 0.68 × 10−2; Mann–Whitney U-test with two-tailed alternative).
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(light-green arrows in Fig. 5b, d) was absent in PC-ablated lag-
trained animals. Thus, by the end of the adaptation phase, their
bouts were still significantly longer than in the PC-ablated normal-
reafference control group and longer than their own bouts during
the pre-adaptation phase (Fig. 5b). Furthermore, the after-effect was
also absent in PC-ablated larvae (Fig. 5bii). Although this effect was
clearly observed in the treatment control group (orange arrow in
Fig. 5b), it was not statistically significant in both groups (Fig. 5e).
Finally, the increase in ballistic bout power (black arrow in Fig. 3f)
was significantly less prominent in PC-ablated animals compared to
the treatment controls (Fig. 5f, g).

Taken together, these results demonstrate that PC ablation
does not reduce the acute reaction to unexpectedly perturbed
visual reafference but does impair the long-term adaptation to a
consistently perturbed reafference condition. This is consistent
with the hypothesis that the neuronal controller involved in
reactive optomotor swimming does not require an intact
cerebellum for its functioning, but that its state can be modulated
by a cerebellar internal model.

Activity of a subpopulation of PCs can represent the output of
an internal model. After observing that the long-term behavioral
adaptation to consistently perturbed reafference is a cerebellum-
dependent process, we set out to determine whether the output of
the cerebellum contained functional features of a recalibrating
internal model. To this end, we performed functional imaging of
PC activity in zebrafish larvae expressing GCaMP6s in all PCs27

while they were performing long-term adaptation in a custom-
built light-sheet microscope (Fig. 6a). The experimental protocol
was modified from the one described in Fig. 4a by shortening the
adaptation phase from 210 trials to 50 trials and prolonging the
post-adaptation phase from 10 trials to 50 trials (Fig. 6b). This
was done to ensure stable recordings of the PC activity during the
whole experiment, and to follow the cell activity for a longer time
after the adaptation.

We first divided lag-trained larvae into two groups referred to
as adapting and non-adapting (Fig. 6c) based on the magnitude of
the reduction of acute reaction during the adaptation phase.
Larvae that decreased their bout duration during the adaptation
phase by at least 40 ms were considered adapting. We verified
that despite the small sample size (8, 8, and 9 larvae in the
normal-reafference control, lag-trained non-adapting and lag-
trained adapting groups, respectively), the shorter adaptation
phase and the microscope excitation light, the long-term
adaptation effects were still detectable (Supplementary Fig. 5).
Lag-trained adapting larvae acutely reacted to presentation of
lagged reafference in the beginning of the adaptation phase (blue
arrows in Supplementary Fig. 5biii, ci), reduced the magnitude of
the acute reaction by the end of the adaptation phase (light-green
arrows in Supplementary Fig. 5biii, cii), and demonstrated a clear
after-effect in the beginning of the post adaptation phase (orange
arrow in Supplementary Fig. 5biii, ciii). It is important to note that
non-adapting lag-trained animals not only failed to exhibit long-
term adaptation (Supplementary Fig. 5bii, cii-iii), but also showed a
barely detectable acute reaction (Supplementary Fig. 5bii, ci).
Therefore, the more correct label for this group would be “not
reacting to changes in visual feedback”. We use the term “non-
adapting” for convenience.

After confirming that the long-term adaptation effects were
detectable in lag-trained adapting larvae and not in other
experimental groups, we turned to analyzing the activity of ROIs
in the cerebellum (N= 366 ± 19 ROIs, mean ± SEM across all 25
imaged larvae; see “PC functional imaging data analysis” section
for details). The activity of two example ROIs in several trials
sampled from different phases of the experiment is presented in

Fig. 6di, and their location within the cerebellum is presented in
Fig. 6a. We first computed the first-bout-triggered response in
each trial by averaging the bout-triggered fluorescence of each
ROI (Fig. 6dii) in a 1.2 s window after the first bout onset
(Fig. 6diii). Then, we measured how much the bout-triggered
response changed during four crucial transitions in the experi-
mental protocol by computing the following four criteria for each
ROI (Fig. 6div):

1. Criterion 1: how much the bout-triggered response
increased in response to unexpected presentation of lagged
reafference to a naïve larva.

2. Criterion 2: how much the response increased during the
adaptation phase, while the lag-trained animals were
adapting to a novel reafference condition.

3. Criterion 3: how much the response increased when the
reafference condition was switched back to normal.

4. Criterion 4: how much the response increased during the
post-adaptation phase, while the animals were adapting
back to the original reafference condition.

We used these criteria to assign a 4-digit ternary barcode to
each ROI (Fig. 6dv; see “PC functional imaging data analysis”
section). Each digit corresponds to one of the criteria and can take
one of three values: “+” (increase of bout-triggered response),
“−” (decrease), or “0” (no change). Thus, for example, barcode
0-0+ assigned to ROI 1 in Fig. 6d means that this ROI did not
change its bout-triggered response in the beginning of the
adaptation phase, decreased the response during the adaptation
phase, did not change the response in the beginning of the post-
adaptation phase, and increased the response back during the
post-adaptation phase. In contrast, ROI 2 was assigned with a
barcode +0–, as it increased its response when lagged reafference
was first introduced, did not significantly change during the
adaptation phase, and decreased the response when
the reafference condition was set back to normal and during
the rest of the post-adaptation phase.

We aimed to find activity profiles that were significantly
enriched in lag-trained adapting larvae compared to the other two
groups, because these activity profiles might reflect the output of a
recalibrating internal model. To this end, we divided all ROIs into
clusters based on their barcodes. We found that the only cluster
that contained significantly higher fractions of ROIs in lag-
trained adapting fish was the 0-0+ cluster (9.3 ± 5.4%
(33.8 ± 19.2 out of 334.2 ± 28.2 ROIs) in lag-trained adapting
fish, 0.2 ± 0.2% (1.0 ± 0.9 out of 386.3 ± 40.1 ROIs) in lag-trained
non-adapting fish and 0.9 ± 0.3% (3.6 ± 1.5 out of 381.8 ± 33.3
ROIs) in normal-reafference control fish, mean ± SEM across
larvae; Fig. 6e). ROI 1 from Fig. 6d belongs to this cluster.

The bout-triggered responses of these ROIs gradually
decreased during the adaptation phase (negative criterion 2)
and increased back to the original level during the post-
adaptation phase (positive criterion 4) (Fig. 6f). Such an activity
profile is similar to the expected output of a putative internal
model, which monitors the motor-to-sensory transformation rule
and gradually recalibrates if a long-lasting and therefore learnable
change in this rule occurs.

To test whether activity of the 0-0+ ROIs could be explained
simply by motor activity of the larvae, which was different across
groups by design, we modeled an artificial ROI, which linearly
encodes motor activity (motor regressor) for each fish and
processed it in exactly the same way as we processed the real ROIs
(Supplementary Fig. 6a). As expected, bout-triggered responses of
the motor regressors were markedly similar to the behavior of the
larvae (Supplementary Fig. 6b, c), showing an acute increase in
response to unexpected presentation of lagged reafference (dark-
blue arrows in Supplementary Fig. 6a–c). However, this acute
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reaction was not observed in response profiles of 0-0+ ROIs
(Supplementary Fig. 6d). Moreover, we were able to find ROIs
whose activity actually showed an acute reaction and was in
general similar to the motor regressor (Supplementary Fig. 6e, see
also activity profile of the ROI 2 shown in Fig. 6d in blue. This
ROI is an example of such motor-related ROIs). Therefore, the

observed dynamics of bout-triggered responses of 0-0+ ROIs
cannot be explained by a motor component.

ROIs belonging to this functional cluster were located
predominantly in the medial cerebellum of lag-trained adapting
larvae (Supplementary Fig. 7—top row). However, when we
randomly sampled the same number of ROIs, we observed a
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qualitatively similar spatial distribution (Supplementary Fig. 7—
bottom row) suggesting that 0-0+ ROIs represent a distributed
population of PCs without apparent spatial organization.

In summary, we have found that the only type of PCs that was
significantly enriched in lag-trained adapting larvae was 0-0+.
These ROIs gradually decreased their bout-triggered activity
while the animals were adapting to a novel reafference condition
and gradually returned back to baseline when the condition was
switched back to normal. This activity profile cannot be explained
by motor activity of behaving larvae and rather represents the
output of a recalibrating internal model of the motor-to-sensory
transformation rule.

Long-term adaptation is accompanied by a decrease in time
constants of sensory integration. In our last experiment, we
aimed to test if ROIs with functional properties of internal models
also exist outside the cerebellum. To achieve this goal, we imaged
whole-brain activity of animals performing long-term adaptation
and performed the same analysis as in Fig. 6 (computing 4-digit
barcodes). We found only insignificant fraction of 0-0+ ROIs
without any apparent spatial organization in all the experimental
groups (normal-reafference control, N= 12, lag-trained non-
adapting, N= 13, and lag-trained adapting, N= 6). It is impor-
tant to note that the transgenic line that we use for whole-brain
imaging has very poor expression in PC layer, which explains lack
of 0-0+ ROIs identified in this experiment. In line with results of
the ablation experiment (Fig. 5), this suggests that the major role
in long-term adaptation belongs to the cerebellum.

We then aimed to understand the effects that a recalibrating
internal model may have on the feedback controller involved in
OMR. It was proposed that one action of the cerebellum is to
modify the time constant of the oculomotor neuronal integrator
in the brainstem during eye movements28,29. We therefore tested
if, similarly, the time constants of the optomotor integrator were
modified during long-term adaptation. Just as we did in Fig. 3, we
identified sensory and motor ROIs, and estimated time constants
of all sensory ROIs in blocks of ten trials. We then computed the
difference between time constants in the end and the beginning of
the adaptation phase (Fig. 7a). We observed that lag-trained
larvae had fewer sensory ROIs that increased their time constant
compared to the normal-reafference control group, and more
ROIs that decreased their time constant compared to the other
two groups. Therefore, successful long-term adaptation appears
to be associated with a decrease in time constants of a sub-
population of sensory ROIs. These ROIs with decreasing time
constants were evenly distributed across brain regions involved in
sensory integration identified in Fig. 3 (the dorsal raphe with its
surrounding reticular formation and diencephalic regions such as
the pretectum) (Fig. 7b).

Discussion
In this study, we propose that the OMR and its acute reactions to
unexpected perturbations in reafference are implemented by a
feedback control mechanism. This contradicts the previously
proposed internal-model-based mechanism suggesting that fish
use an internal representation of expected reafference and adapt
their behavior if the actual reafference does not meet this
expectation21–23. In those studies, the behavioral changes in
response to perturbed reafference were termed “adaptive loco-
motion”, highlighting that larvae actually adapt their behavior
when they experience a sudden unexpected perturbation. The
term “adaptation” implies that something in the brain has
changed during this process. Here, we use the term “reactive
locomotion” to emphasize that we believe these behavioral
changes represent reactions of a simple feedback controller
without any changes in the underlying circuitry.

The proposed mechanism represents a straightforward imple-
mentation of the OMR definition in a control loop. The OMR
therefore stabilizes the animal’s position with respect to its visual
environment using a feedback controller that tries to keep the
integrated optic flow at zero. We were surprised to find that
implementing this simple definition in a circuit not only results in
swimming behavior similar to that of real larvae (compare Sup-
plementary Fig. 1a with Fig. 1d) but also closely reproduces the
acute reactions to all tested perturbations in reafference (Fig. 2c,
d). The model suggests that bout and interbout duration is
determined by the interplay between the two variables computed
by the controller: sensory drive and “tiredness”. Sensory drive
accumulates while the grating moves forward and can be inter-
preted as motivation to swim. In the model, an increased sensory
drive leads to longer bouts and shorter interbouts. On the other
hand, larval zebrafish rarely perform bouts that are longer than
500 ms. This is implemented in the model by a motor integrator,
whose output can terminate the bouts and prolong subsequent
interbouts. For convenience, we refer to the output of the motor
integrator as a metric of “tiredness” although it encapsulates
multiple reasons for bout termination.

Although the model is clearly a simplification, we believe that
its core principles represent the sensory-motor transformation
underlying control of bout and interbout duration because this
interplay between sensory drive and “tiredness” can explain all
the subtleties in observed acute reactions. Thus, high gains
decrease sensory drive during bouts which results in shorter bouts
and longer interbouts (Fig. 2ci–di). On the other hand, very low
gains result in increased sensory drive, which significantly pro-
longs the bouts (Fig. 2ci). If the bouts are very long, the effect of
high “tiredness” starts to dominate over high sensory drive, and
as a result, the interbouts following these long bouts would be
longer despite high sensory drive. This explains the peculiar

Fig. 6 Activity of a subpopulation of PCs can represent the output of an internal model. a Light-sheet microscope combined with a behavioral rig used for
PC imaging. Inset shows location of two example ROIs shown in d. Scale bar: 100 µm; ro rostral direction, l left, r right, c caudal. b Modified long-term
adaptation protocol. c First bout duration in each trial in normal-reafference control larvae (N= 8), lag-trained non-adapting larvae (N= 8), and lag-trained
adapting larvae (N= 9), mean across larvae is shown. d Imaging data processing flow shown for two example ROIs (see details in text). di Z-scored
fluorescence in five trials. Vertical shaded bars indicate first swimming bout in each trial. dii First-bout-triggered fluorescence. diii First-bout-triggered
responses in each trial. Thick lines represent box-filtered responses, with a filter length of nine trials. div Four criteria that represent change in bout-
triggered responses during important transitions of the experimental protocol. dv Criteria converted into 4-digit ternary barcodes. dvi First-bout-triggered
fluorescence averaged across respective blocks of ten trials. e Clustering of ROIs using barcodes. ei Barcodes of all ROIs pooled from imaged larvae. eii
Within-fish fractions of ROIs assigned to different clusters. Only clusters containing, on average, at least 2% of ROIs in at least one experimental group are
shown. Magenta rectangles indicate 0-0+ cluster, which was the only cluster that was significantly enriched in lag-trained adapting larvae (*p= 0.011;
Kruskal–Wallis test). fi (top), First-bout-triggered responses of all 0-0+ ROIs pooled from lag-trained adapting larvae. fi (bottom), First-bout-triggered
responses of 0-0+ ROIs, averaged within each lag-trained adapting larva. Solid line and shaded area represent mean ± SEM across larvae. fii First-bout-
triggered fluorescence of 0-0+ ROIs, averaged across respective blocks of ten trials and across ROIs within each lag-trained adapting larva. Colored lines
and shaded areas represent mean ± SEM across larvae.
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V-shaped trend in interbout duration as a function of gain
(Fig. 2di).

In the case of lagged reafference, bouts are prolonged due to
increased sensory drive in the beginning of the bout when there is
no reafference (i.e., no slowing down of the grating) (Fig. 2cii–ciii).
In addition, the model explains why the interbouts are prolonged
only in the non-shunted lag setting but not in the shunted one
(Fig. 2dii–diii). In the non-shunted setting, the grating continues
to move backwards after the bout offset, so the sensory drives
continues to decrease, which leads to prolonged interbouts
(Fig. 2dii). In the shunted setting, however, the grating returns to
forward motion immediately after the bout offset, so the interb-
outs are not prolonged (Fig. 2diii).

Finally, the model explains why perturbations in reafference
during early bout segments have more influence over the bout
duration, whereas perturbations late in the bout affect the sub-
sequent interbout more (Fig. 2civ–div). The reason is that the
influence of “tiredness” and sensory drive over the final motor
output changes throughout the course of a bout. Since the
“tiredness” accumulates during the bout, it starts to affect the
output more strongly and to dominate over the sensory drive by
the end of the bout. Simply, if the fish is tired, it does not matter
how much swimming drive it may have. As a result, in the
beginning of the bout, while the fish is not yet tired, an increase in
sensory drive effectively prolongs the bout. If, however, sensory
drive is increased late in the bout, it does not prolong the bout as
much because by then, the bout duration is almost completely
determined by the increasing “tiredness”. In this case, the
“tiredness” by the end of the bout will be less than if the

reafference was perturbed early in the bout, so the interbout
duration will decrease more.

In order for this theoretical mechanism to work in real larvae,
they must be able to integrate the optic flow to compute the
sensory drive. Our whole-brain functional imaging experiments
revealed that the process of sensory integration of the forward
visual motion indeed takes place in several brain regions
including the pretectum (Fig. 3j and Supplementary Fig. 2). An
increasing body of work suggests that the pretectum plays a
crucial role in whole-field visual processing and visuomotor
behaviors in larval zebrafish30–34. It has been shown that pretectal
neurons integrate monocular direction-selective inputs from the
two eyes and drive activity in the premotor hindbrain and mid-
brain areas during optomotor behavior31. Together with recent
evidence from different experimental paradigms25,26, the present
study demonstrates that the pretectum is involved not only in the
binocular integration of sensory inputs, but also in temporal
integration that can underlie accumulation of the sensory drive.

The proposed feedback control mechanism of reactive opto-
motor locomotion can therefore be mapped onto the larval zeb-
rafish brain (Fig. 7c, d). The sensory part of the feedback
controller starts with direction-selective velocity sensors.
Direction-selectivity can be observed in the brain already at the
level of retinal ganglion cells in vertebrates35,36, including zeb-
rafish larvae37,38. The velocity integrator can correspond to the
pretectum, which receives projections from the contralateral
direction-selective retinal ganglion cells31,39,40. Finally, the pre-
tectal neurons (velocity integrators) send anatomical projections
to premotor areas in the hindbrain and to the nucleus of the

Fig. 7 A cerebellar internal model calibrates a feedback controller involved in sensorimotor control. a Probability distribution of differences in time
constants of sensory ROIs (end of adaptation—beginning of the adaptation). Histograms were smoothed using a kernel function with width of 0.1 s. Dotted
lines denote mean probability values, shaded areas denote SEM across larvae (normal-reafference control, N= 12, lag-trained non-adapting, N= 13, and
lag-trained adapting, N= 6). b Anatomical location of sensory ROIs that decreased their time constants by more than 0.4 s (see Supplementary Fig. 2 for
anatomical reference). c Schematic diagram of the feedback controller that can implement acute reaction to unexpected perturbations in reafference.
Cerebellar internal model monitors the efference copies of motor commands and resulting sensory consequences and learns their transfer function. It
calibrates some intrinsic parameters of the controller according to consistent environmental features that can be learned by an internal model. The wavy
line denotes the teaching signal used by the internal model to learn the transfer function. The dotted orange arrows denote potential influence of the
cerebellum over the feedback controller (modification of time constants of sensory integration, as suggested by a, and/or parameters of the pre-motor
circuits). d Mapping of the crucial functional nodes involved in acute reaction and long-term adaptation onto the larval zebrafish brain. See details in
the text.
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medial longitudinal fascicle33,41,42. As these regions both dis-
played motor-related activity in our experiments (Fig. 3f and
Supplementary Fig. 2), we hypothesize that they correspond to
the premotor parts of the controller. In essence, this study sug-
gests that the major role of the pretectum in visuomotor beha-
viors is computing the sensory drive, or motivation, to perform a
motor action34. This predicts that motor output of the fish should
increase in response to increased activity of pretectal neurons,
and vice versa, although more studies would be required to
address this prediction.

Finally, our loss-of-function experiments have demonstrated
that, in contrast with previous predictions21–23, acute reaction
was not reduced after ablation of the PCs (Fig. 5b, c and Sup-
plementary Fig. 4). Consequently, the neuronal controller
involved in reactive optomotor behavior does not require intact
cerebellum for its functioning.

In the present study, we demonstrate that larval zebrafish are
able to gradually adapt their behavior in response to a long-
lasting perturbation in reafference (Fig. 4), and that this process is
cerebellum-dependent (Fig. 5). This is consistent with the view of
the cerebellum as a neuronal substrate of internal
models8,12–16,43.

The notion that the cerebellum is not involved in online cor-
rections of the movements in response to wrong sensory feed-
back, but is involved in learning relations between movements
and their feedback in order to adapt the behavior in a predictive
manner, has been already proposed in the cerebellar literature44.
In two studies15,16, humans with impaired cerebellar function
were able to update the motor program during a reaching task
after the feedback of their movements was perturbed by the
experimenters. However, they were not able to update their
feedback estimation after the adaptation session, indicating that
the cerebellum is involved in acquiring and updating a forward
internal model. In our long-term adaptation experiments, a
similar process has taken place. During long-lasting exposure to
consistently perturbed reafference, animals with an intact cere-
bellum may have recalibrated their forward models to reduce
their expectations, making them consistent with the new envir-
onmental condition.

In this study, we took advantage of the zebrafish larvae’s
accessibility for functional imaging to monitor this process of
recalibration in the cerebellum during motor learning. We have
identified a subpopulation of PCs that gradually decreased their
responses while the animals were adapting to insufficient reaf-
ference, and increased their responses back to the original level
while the animals were getting used to the original condition after
the adaptation. This activity profile is similar to the expected
output of a recalibrating internal model, with the bout-triggered
activity in this population corresponding to a putative “expected
visual feedback” signal.

Although this study provides direct evidence of internal models
in the cerebellum, the exact processes that take place in the cer-
ebellum of adapting animals remain unclear. Since functional
imaging provides only a coarse view about how motor, sensory,
and expectation-related signals are represented in PCs, future
electrophysiological investigations are required to address these
questions. Nevertheless, the fact that we observed sensory-related
activity in the inferior olive (Fig. 3f, j) indirectly suggests that the
cerebellum in larval zebrafish acts as a forward model during the
OMR, and the highly sensory nature of PCs’ complex spikes that
directly result from action potentials in the inferior olive45 was
also reported recently27. Inferior olive activity is believed to
convey a teaching signal to the PCs46,47 that updates the internal
models in the cerebellum9,48 by modifying synaptic weights in the
cerebellar circuitry49,50. Since the teaching signal must be
expressed in the same coordinates as the output of the internal

model, the sensory nature of the teaching signal suggests that the
cerebellar internal model involved in our experiments is forward
in nature, although this distinction is likely to be more subtle.

However, in a recent study43, also conducted on larval zebra-
fish performing OMR in response to a moving grating, calcium
activity of PCs was related to predicting the next trial. This
suggests that in a different experimental setting, cerebellum may
be involved in encoding an internal model of the environment
rather than of interaction between oneself and the environment,
consistently with older work in cats51. This seeming contradiction
reinforces the view of the cerebellum as a neuronal learning
machine52 whose beautiful architecture enables it to model an
inconceivable number of patterns in an inconceivable variety of
contexts53.

One interesting result of this study is that bout power during
the initial ballistic period of the bouts did not depend on the
current reafference condition: the magnitude of the first several
tail oscillations is fixed regardless of what sensory input the fish
receives (Fig. 2e). This means that the behavior during this bal-
listic period is pre-determined by the state of the neuronal con-
troller that converts information about moving grating into
optomotor behavior. However, if larval zebrafish are exposed to a
long-lasting perturbation in reafference, the magnitude of the
initial tail oscillations increases (Fig. 4g), and we show that this
process is cerebellum-dependent (Fig. 5f, g). This means that the
cerebellum can influence the state of the neuronal controller of
the OMR, and if the internal model in the cerebellum updates, the
state of the controller updates as well (Fig. 7c, d).

Unexpectedly, the increase in ballistic bout power was observed
not only in the lag-trained group but also in the normal-
reafference control group, which never experienced perturbed
reafference (Fig. 4j). This can be explained by the fact that what
we call the normal reafference condition in the closed-loop
experiments may in fact differ from the real sensory feedback that
larval zebrafish perceive upon free unrestrained swimming bouts.
For example, the reafference presented by the projector always
lags slightly behind the tail movements due to the software pro-
cessing delay. In addition, the way by which we computed the
swimming velocity from the tail movements may only approx-
imate the real velocity that the fish would have reached if it were
freely swimming. Finally, in our closed-loop experiments, head-
restrained larvae did not receive any vestibular and lateral line
sensory feedback. Therefore, even though the normal reafference
condition was calibrated to closely match the visual real-life
conditions, it was inevitably different from the total sensory
feedback received by freely swimming larvae. Future experiments
involving translation of the long-term adaptation experiment to
the freely-swimming environment would be required to identify
whether this disparity underlies observed recalibration of the
neuronal controller of the OMR.

The exact pathway by which the cerebellum affects the circuitry
involved in OMR remains unclear. One possibility is that it acts
upon the premotor parts of the circuit, as cerebellar projection
neurons send their output to the nucleus of the medial long-
itudinal fascicle and to the hindbrain42. In this scenario, the
cerebellum would recalibrate the motor parts of the controller
during the long-term motor adaptation, so that fish would behave
differently in response to the same sensory drive. Another pos-
sibility is that the cerebellum recalibrates the sensory parts of the
OMR circuitry during the adaptation. It was proposed for the case
of the eye movements that the action of the cerebellum is to
modify the time constant of the oculomotor neuronal integrator
in the brainstem28,29. Similarly, in the case of the OMR adapta-
tion, the role of the cerebellar internal model might be to fine-
tune the time constant of the optic flow integrator in the pre-
tectum. In this study, long-term adaptation to perturbed visual
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feedback was associated with a change in integration time con-
stants of sensory ROIs (Fig. 7a), demonstrating plausibility of this
hypothesis. This influence can be mediated by anatomical pro-
jections from the cerebellum to the pretectum, which have been
described in zebrafish54. More generally, it may be that the
recalibration does not in fact happen at a unique point in the
circuitry, but that the cerebellum is able to undergo synaptic
changes that support the homeostatic recalibration of function
within a circuit, after this has been driven away from its stable
point by perturbations in reafference55.

As mentioned in the introduction, stimulus-driven behaviors can
be naturally understood in the framework of feedback controllers,
where the behavior results in cancellation of the stimulus that evokes
it. It is natural to believe that though our study pertains to the OMR
in larval zebrafish, the principle may very well extend to other
stimulus-driven behaviors and even to more abstract yet predictable
relationships between behavior and the environment56, such as
situations involving reward57 or social interactions58.

In conclusion, our results demonstrate the role of cerebellar
internal models in calibrating the neuronal circuits involved in
reactive motor control. This process ensures that the circuit is
well-tuned in the sense that the animal’s behavior has the
required effect on its sensory environment.

Methods
Experimental model
Zebrafish husbandry. All experiments were conducted on larval zebrafish (Danio
rerio) at 6–8 days of post-fertilization (dpf) of yet undetermined sex. All animal
procedures were performed in accordance with approved protocols set by the Max
Planck Society and the Regierung von Oberbayern (Protocol number 55-2-1-54-
2532-82-2016).

Both adult fish and larvae were maintained at 28 °C on a 14/10 h light/dark
cycle, unless otherwise specified. Adult zebrafish were housed in a zebrafish facility
system with constantly recirculating water with a daily 10% exchange. The system
fish water was deionized and adjusted with synthetic salt mixture (Instant Ocean)
to 600 µS conductivity, with the pH value adjusted to 7.2 using NaHCO3 buffer
solution. The water was filtered over bio-filters, fine-filters, and carbon filters and
UV-treated during recirculation. Adult zebrafish were fed twice a day with a
mixture of Artemia and flake feed.

To obtain larvae for experiments, one male and one female (in some cases, three
male and three female) adult zebrafish were placed in a mating box in the
afternoon and kept there overnight. The embryos were collected in the following
morning and placed in an incubator that was set to maintain the above light and
temperature conditions (Binder, Germany). Embryos and larvae were kept in
94 mm Petri dishes at a density of 20 animals per dish in Danieau’s buffer solution
(58 mM NaCl, 0.7 mM KCl, 0.4 mM MgSO4, 0.6 mM Ca(NO3)2, and 5 mM HEPES
buffer) until 1 dpf and in fish water from 1 dpf onwards. The water in the dish was
changed daily.

Zebrafish strains. Purely behavioral experiments were conducted using wild-type
Tupfel long-fin (TL) zebrafish strain or transgenic Tg(PC:epNtr-tagRFP) line that
was used for PC ablation (see below).

Efficiency of PC ablation was evaluated using the progeny of Tg(PC:epNtr-
tagRFP) zebrafish outcrossed to fish expressing GCaMP6s in PC nuclei and RFP in
PC somata (Tg(Fyn-tagRFP:PC:NLS-GCaMP6s))27. This allowed evaluating effects
of the ablation protocol on the morphology of both cell nuclei and somata. These
larvae were homozygous for nacre mutation, which introduces a deficiency in mitfa
gene that is involved in development of melanophores59. As a result, homozygous
nacre mutants lack optically impermeable pigmented spots on the skin, which
enables brain imaging without invasive preparations.

Whole-brain functional imaging experiments were conducted using transgenic
zebrafish strain with pan-neuronal expression of GCaMP6s
(Tg(elavl3:GCaMP6s))24. PC functional imaging experiments were conducted using
zebrafish that expressed GCaMP6s specifically in PCs (Tg(PC:-GCaMP6s))27. In
both cases, the animals were also homozygous for nacre mutation.

A Z-stack of larval zebrafish reference brain used for anatomical registration of
the whole-brain functional imaging data was previously acquired in our laboratory
by co-registration of 23 confocal z-stacks of zebrafish brains with pan-neuronal
expression of GCaMP6f (Tg(elavl3:GCaMP6f))60, homozygous for nacre mutation.
For anatomical registration of PC functional imaging data, the red channel of one
confocal stack of Tg(Fyn-tagRFP:PC:NLS-GCaMP6s) was used as a reference.

Targeted pharmaco-genetic ablation of PCs. To perform targeted ablation of PCs,
we employed Ntr/MTZ pharmaco-genetic approach that has been successfully used

in zebrafish61–63. This method is based on treating the animals expressing
nitroreductase (Ntr) in a cell population of interest with prodrug metronidazole
(MTZ). Ntr converts MTZ into a cytotoxic DNA cross-linking agent leading to
death of cells of interest. To this end, we generated a transgenic line that expressed
enhanced Ntr (epNtr)63 under the PC-specific carbonic anhydrase 8 (ca8) enhancer
element64. epNtr fused to tagRFP was cloned downstream to the aforementioned
enhancer and a basal promoter. This construct (abbreviated as PC:epNtr-tagRFP)
was injected into nuclei of single cell stage TL embryos heterozygous for nacre
mutation, at a final concentration of 20 ng/µl together with 25 ng/µl tol2 mRNA.
Larvae showing strong RFP expression in PCs were raised to adulthood as founders
and outcrossed to TL fish to gain a stable line.

Ablation-induced changes in behavior were tested using the progeny of a single
founder. The embryos obtained from a PC:epNtr-tagRFP+/− fish outcrossed to a
TL fish were screened for red fluorescence in the cerebellum at 5 dpf, and 10 RFP-
positive (PC:epNtr-tagRFP+/−) and 10 RFP-negative (PC:epNtr-tagRFP−/−) larvae
were kept in the same Petri dish to ensure subsequent independent sampling. At
18:00, most of the water in the dish was replaced with 10 mM MTZ solution in fish
water, and larvae were incubated in this solution overnight in darkness for 15 h.
The next morning at 9:00, animals were allowed to recover in fresh fish water. The
next day, behavior of 7 dpf MTZ-treated larvae was tested in a respective
behavioral protocol. After the experiment, the animals were screened for red
fluorescence once again to reassess their genotype after mixing positive and
negative larvae in one Petri dish. PC:epNtr-tagRFP−/− and PC:epNtr-tagRFP+/−

siblings constituted treatment control and PC ablation experimental groups,
respectively.

Efficiency of the PC ablation protocol was evaluated using progeny of
Tg(PC:epNtr-tagRFP) fish outcrossed to Tg(Fyn-tagRFP:PC:NLS-GCaMP6s) fish,
homozygous for nacre mutation. These larvae underwent the same ablation
protocol, and z-stacks of their cerebella in RFP and GFP channels were acquired
under the confocal microscope (LSM 700, Carl Zeiss, Germany) before and after
the ablation (at 5 and 7 dpf, respectively). To quantify structural segregation of the
PCs induced by ablation, we first masked the cerebellum in each confocal stack
using the pipra software65. Next, we computed the local entropy as a non-reference
metric of tissue inhomogeneity66. It was computed across the whole stack in radii
of 7 µm using the entropy implementation in scikit-image67. We then averaged all
entropy values inside of the cerebellar masks to gain an entropy estimate in bits for
each stack. We hypothesized that maintaining the anatomical structure suggests a
high entropy, whereas a structural collapse caused by ablation decreases the
entropy. As expected, we observed that Ntr+ fish displayed lower entropy values
within the cerebellum compared to Ntr− control fish after metronidazole treatment
(Supplementary Fig. 3d).

Closed-loop experimental assay in head-restrained zebrafish larvae. All
experiments were conducted using head-restrained preparations of 6–8 dpf zeb-
rafish larvae, similar to ref. 21. For behavioral experiments, each larva was
embedded in 1.5% low melting point agarose (Invitrogen, Thermo Fisher Scientific,
USA) in a 35 mm Petri dish. For functional imaging experiments, larvae were
embedded in 2.5% agarose in custom 3D-printed plastic chambers (Form 2,
Standard Clear Resin V4, Formlabs, USA), with glass coverslips sealed on the front
and left sides of the chamber using grease, at the entry points of the frontal and
lateral laser excitation beams, and the agarose around the head was removed with a
scalpel to reduce scattering of the beams (see “Light-sheet microscopy” section).
After allowing the agarose to set, the dish/chamber was filled with fish water and
the agarose around the tail was removed to enable unrestrained tail movements
that were subsequently used as behavioral readout.

A dish/chamber with an embedded larva was then placed onto the screen of the
custom-built behavioral or functional imaging rig (Figs. 1c, 3a, and 6a). In the
behavioral rig, the screen with the dish was illuminated from below by an infrared
(IR) light-emitting diode (LED) (not shown in Fig. 1c). A square black-and-white
grating with a spatial period of 10 mm was projected onto the screen by a
commercial digital light processing (DLP) projector (ASUS, Taiwan). Larvae were
imaged through a macro objective (Navitar, USA) and an IR-pass filter with an IR-
sensitive camera (Pike, Allied Vision Technology, Germany, or XIMEA, Germany)
at 200 frames per second. The functional imaging rig was built in a similar way,
with the two differences:

1. IR LED illuminating the screen with the chamber was directed from above
(not shown in Figs. 3a and 6a) and the image was reflected on a hot mirror
to reach a camera (XIMEA, Germany).

2. DLP projector used to provide visual stimulation (Optoma, USA) was
mounted with a red-pass filter to avoid bleed-through of the green
component of the visual stimulus in the light collection optics.

Stimulus presentation and tail tracking were controlled by the open-source,
integrated system for stimulation, tracking and closed-loop behavioral experiments
(Stytra)68. Larvae were presented with the grating moving in a caudal to rostral
direction at 10 mm/s. Experiments were performed in closed-loop (similar to
ref. 21), as described below. Before starting an experiment, two anchor points
enclosing the tail were manually selected. The tail between the anchor points was
automatically divided into eight equal segments, and the angle of each segment
with respect to the longitudinal reference line was measured by Stytra in real time.
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The cumulative sum of the segment angles (measured in radians) constituted the
final tail trace (top green trace in Fig. 1d). Sliding standard deviation of the tail
trace with a time window of 50 ms was computed in real time, referred to as vigor.
Vigor is a parameter that is close to zero when larvae do not move their tail and
increases when they do, and can be therefore used to estimate the forward velocity
that a head-restrained larva would have reached if it was freely swimming. To
compute estimated velocity, the vigor was multiplied by a factor that was optimized
during the initial calibration phase of each experiment (see “Experimental
protocols” section) so that that the median estimated velocity during a typical bout
was 20 mm/s (bottom green trace in Fig. 1d), which corresponds to a freely
swimming condition. Swimming bouts were automatically detected in real time by
comparing current estimated fish velocity with a set threshold of 2 mm/s. To
provide behaving larvae with visual reafference, the estimated velocity was
subtracted from the initial grating velocity during detected bouts (bottom magenta
trace in Fig. 1d). As a result, larvae could experience the sensory consequences of
their own swimming, despite being head-restrained. The initial and actual
presented grating velocities, tail trace, vigor, estimated fish velocity, reafference
condition (see below), and a binary variable denoting whether the fish was
performing a bout or not at each acquisition frame constituted the raw data saved
after each experiment (Fig. 1d).

Importantly, such closed-loop assay enables the experimenters to control and
manipulate the reafference that animals receive when they swim and hence to study
how perturbations in reafference affect behavior. The reafference perturbations
used in this study can be grouped into three distinct categories (Fig. 2a):

1. The first type of perturbation, which has been previously used in the
literature21,22, is called gain change. In the closed-loop experimental assay,
the gain parameter was used as a multiplier that converts the estimated
swimming velocity of the larva into presented reafference. Therefore, the
actual forward velocity of a swimming larva was proportional to gain. If the
gain was set to zero, the tail movements had no influence over the grating
speed, so larvae did not receive any reafference. This reafference condition
was therefore referred to as the open-loop condition. If the gain was 1, the
median velocity of the larva during a typical bout was 20 mm/s, referred to
as the normal reafference condition. The gain values used in the
experiments included 0, 0.33, 0.66, 1, 1.33, 1.66, and 2.

2. The second type of perturbation was called lag¸ and this corresponds to
delaying the reafference with respect to the bout onset. When the lag was
greater than zero, normal visual reafference with gain 1 was presented with a
certain delay after the bout had started. The lag values used in the
experiments included 0 ms lag (corresponds to the normal reafference
condition), 75, 150, 225, 300 ms, and infinite lag (i.e., reafference never
arrives after the bout onset, which is equivalent to the open-loop condition).
In the shunted lag version of this condition, the reafference was set to 0
upon termination of the bout.

3. The third type of perturbation was called gain drop, and this corresponds to
dividing the first 300 ms of a bout into four 75 ms segments and setting the
gain during one or more of these segments to zero. Gain drop conditions
were labeled using four-digit barcodes, where each digit represents the gain
during a corresponding bout segment. For example, the gain profile 1100
denotes that the gain during bout segments 3 and 4 (i.e., from 150 to 300 ms
after the bout onset) was set to zero, and during the rest of the bout, it was
set to one. Gain drop conditions used in the experiment included 1111
(normal reafference condition), 0111, 0011, 0001, 0000, 1110, 1100,
and 1000.

No combinations of reafference conditions were used, e.g., if the gain was
different from 1, the lag was automatically set to 0 ms, or if the lag was greater than
0 ms, the gain was set to 1, and in both cases the gain drop was set to the
normal 1111.

Note that reafference conditions listed above and presented in Fig. 2a are
redundant. For example, the gain drop profile 0011 is exactly the same as 150 ms
shunted lag, or gain 0 is exactly the same is infinite lag. Reafference conditions are
presented in a redundant way to highlight that infinite lag makes a logical sense at
the end of the list of lag conditions, and gain 0 makes a logical sense in the
beginning of the gains list. The exact non-redundant list of all reafference
conditions (18 conditions in total) is presented below:

● normal reafference (gain 1, 0 ms lag, and gain drop 1111);
● open-loop (gain 0 or infinite lag);
● gains: 0.33, 0.66, 1.33, 1.66, 2 (0 ms lag and gain drop 1111);
● lags and shunted lags: 75, 150, 225, and 300 ms (gain 1);
● gain drops: 1110, 1100, 1000 (0 ms lag).

Experimental protocols
General structure of experimental protocols. All experimental protocols used in this
study had a similar general structure. Each protocol consisted of trials. Each trial
consisted of a 15 s presentation of the grating moving in a caudal to rostral
direction at 10 mm/s, preceded and followed by 7.5 s periods of the static grating

(30 s in total, see top magenta trace in Fig. 1d). Trials were grouped into four
phases, unless otherwise specified (Fig. 4a):

1. Calibration phase (trials 1:10). During this phase, the multiplier defining
how vigor is converted into estimated fish velocity was automatically
calibrated so that the median velocity during an average swimming bout was
20 mm/s. Reafference condition during this phase was set to normal. This
calibration was implemented to equalize velocity estimation across fish. In
addition, during this phase, larvae were able to get used to the experimental
environment and bring their swimming behavior to a stable level. All
parameters recorded during this phase were not analyzed in this study.

2. Pre-adaptation phase (trials 11:20). During this phase, reafference condition
was set to normal. This phase was used to record the baseline level of
behavior, before any perturbations in reafference were introduced.

3. Adaptation phase (trial numbers depend on particular experimental
protocol, see below). During this phase, larvae experienced perturbations
in visual reafference.

4. Post-adaptation phase (last ten trials unless otherwise specified). During this
phase, reafference condition was again set to normal. This phase was
introduced to measure how the adaptation phase affected the baseline
behavior.

Acute reaction protocol. This experiment was designed to probe the space of acute
reactions to different unexpected perturbations in reafference and to test whether a
feedback control mechanism can implement these reactions. The adaptation phase
of the protocol consisted of 210 trials, and reafference condition for each bout
performed during this phase was randomly selected from the list of 18 possible
reafference conditions (see above; see also Fig. 2a). Bouts performed during other
experimental phases were not included in the analysis.

Whole-brain functional imaging protocol. The protocol started with 2 min of no
visual stimulation (projector presenting a black square) to record spontaneous
activity. This was followed by a calibration phase, a pre-adaptation phase and an
adaptation phase (40 trials). Post-adaptation phase was omitted. In four out of six
imaged larvae, the calibration phase was omitted because behavior under the light-
sheet setup was less consistent than under purely behavioral rigs, and calibration of
the swimming velocity often failed due to insufficient number of bouts performed
during this phase. For these larvae, the multiplier defining how vigor converts into
estimated swimming velocity was set manually to a value resulting from successful
calibration in one of the other two larvae. During the adaptation phase, reafference
condition for each bout was randomly set to either normal or open-loop. In
addition, two 350 ms pulses of reverse grating motion (rostral to caudal direction)
at 10 mm/s were presented during each static grating period (5 and 10 s after the
grating stopped moving). Responses to these pulses were not analyzed in this study.
Furthermore, the difference in bout-triggered responses between normal reaffer-
ence and open-loop condition was also not analyzed.

Long-term adaptation protocol. This experiment was designed to test if larval
zebrafish can adapt their behavior in response to a long-lasting and consistent
perturbation in reafference. The adaptation phase of the protocol consisted of 210
trials, and reafference condition for all bouts performed during this phase was set
to 225 ms lag (Fig. 4a). This reafference condition was chosen because it elicited
robust acute reaction (Fig. 2cii). In normal-reafference control larvae, reafference
condition during the whole experiment (including the adaptation phase) was set to
normal.

PC functional imaging protocol. Experimental protocol used for PC functional
imaging experiment was a modified version of the long-term adaptation experi-
ment (Fig. 6b). The adaptation phase was shortened from 210 trials to 50 trials to
ensure stable recordings from PCs throughout the whole experiment. Such
shortening was possible because long-term adaptation effects could already be
observed after 50 trials of adaptation (Fig. 4c). On the other hand, the post-
adaptation phase was prolonged from 10 trials to 50 trials to allow larvae to bring
their behavior back to the original level after the adaptation.

Behavioral data analysis. Analysis of the behavioral data was performed in
MATLAB (MathWorks, USA).

Recorded tail traces were z-scored and interpolated together with the grating
speed traces to a common time array with a sampling period of 5 ms. For each
swimming bout automatically detected by Stytra during the experiment, individual
tail flicks were detected. One tail flick was defined as a section of the tail trace
between two adjacent local extrema, with the magnitude greater than 0.14 rad and
the duration not greater than 100 ms. Automatically detected onsets and offsets of
the bouts were then corrected to coincide in time with the beginning of the first tail
flick and the end of the last flick, respectively.

Only bouts that occurred while the grating was moving forward were
considered for further analysis. For each bout, its duration and duration of the
subsequent interbout was measured. If a bout was the last in a trial, the
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corresponding interbout duration was not computed. All bouts that were shorter
than 100 ms or had a subsequent or preceding interbout shorter than 100 ms were
excluded from the analysis as potential tail tracking artifacts.

If there was at least one block of ten consecutive trials without any bouts, this
animal was excluded from analysis. This was done because lack of reliable
optomotor response might have indicated some damage caused during handling or
the embedding procedure, or some severe behavioral or sensory deficits. The final
numbers of included animals are listed below:

● Acute reaction experiments: 100 TL larvae (wild-type experimental group),
28 Tg(PC:epNtr-tagRFP)−/− larvae (treatment control group), and 39
Tg(PC:epNtr-tagRFP)+/− larvae (PC ablation group);

● Long-term adaptation experiments:

○ normal-reafference control animals: 103 TL larvae, 85 Tg(PC:epNtr-
tagRFP)−/− larvae, and 83 Tg(PC:epNtr-tagRFP)+/− larvae,

○ lag-trained animals: 100 TL larvae, 85 Tg(PC:epNtr-tagRFP)−/− larvae,
and 90 Tg(PC:epNtr-tagRFP)+/− larvae.

To analyze the temporal dynamics of the tail beat amplitude within individual
bouts, a parameter termed bout power was computed as described below. A 1.1-
second-long section of the tail trace (cumulative sum of eight tail segment angles
measured in radians, see Closed-loop experimental assay in head-restrained
zebrafish larvae in Methods above) was selected for each bout, starting from 100 ms
before the onset of that bout. The values of the tail trace after the bout offset were
replaced with zeros to exclude subsequent bouts that could occur within this time
window. In addition, the median baseline value computed for the 100 ms window
before the bout onset was subtracted from the section. Resulting sections of the tail
trace were then squared and referred to as bout power, measured in squared
radians.

To present the results of acute reaction experiments, we averaged the metrics
obtained for each bout (its duration, subsequent interbout duration and power
profiles) across bouts within each reafference condition in each larva. Bout and
interbout duration are presented as mean ± SEM across larvae. Bout power profiles
are presented as median across larvae.

To identify the time points, at which mean bout power depended on reafference
condition, we used Kruskal–Wallis test (significance level 5%; Bonferroni correction for
the total number of 220 tested time points). According to the test results, the bout
power curves were then divided into ballistic and reactive periods (from 0 to 220ms
after the bout onset and from 220ms onward, respectively) and the areas below the
curves within these two periods were measured for each bout for each larva.

To present the results of the long-term adaptation experiments, we analyzed the
aforementioned parameters only for the first bout in each trial. First bout duration
in each trial is presented as mean ± SEM across larvae. To quantify the effects
observed in the long-term adaptation experiments (acute reaction, reduction of
acute reaction and the after-effect), we divided all trials of the protocol into blocks
of ten and computed the mean value of respective parameter within each block. We
then computed the differences between two corresponding blocks: acute reaction:
first ten adaptation trials minus pre-adaptation trials, reduction of acute reaction:
last ten adaptation trails minus first ten adaptation trials, after-effect: post-
adaptation trials minus pre-adaptation trials. These quantifications are presented as
median and interquartile range across larvae. To determine statistical significance
of the observed differences between experimental groups, we used Mann–Whitney
U-test with a two-tailed alternative with significance level of 5%.

In the long-term adaptation experiments performed under the light-sheet
microscope, the lag-trained animals were sub-divided into adapting and non-
adapting based on the reduction of acute reaction. Therefore, the more correct label
for this group would be “not reacting to changes in visual feedback”. We use the
term “non-adapting” for convenience. If the first bout duration averaged across the
last ten trials of the adaptation phase was less than that for the first ten trials of the
adaptation phase by at least 40 ms, this lag-trained larva was considered adapting.
To determine statistical significance of the long-term adaptation effects in lag-
trained adapting larvae, we used Mann–Whitney U-test with a one-tailed
alternative (with significance level of 5%) because the alternative hypothesis was
already known from the main long-term adaptation experiment.

Feedback control model of acute reaction. To test whether acute reaction can be
explained by a simple feedback controller that does not involve computation of
expected sensory reafference (i.e., forward internal models), we developed a model
that does not perform these computations (Fig. 2b) and tested its ability to adapt its
output to perturbations in reafference (Fig. 2c).

The model was developed and tested in MATLAB (MathWorks, USA). The
input of the model was the current velocity of the moving grating, and the output
was a binary variable representing swimming velocity of the model. For simplicity,
we did not set out to model individual tail flicks and approximated the swimming
behavior of the zebrafish larvae by a binary motor output that equaled 20 mm/s
when the model was swimming and 0 otherwise. This was possible due to the
discrete nature of zebrafish swimming behavior at larval stage. Since in this study

we mainly focused on duration of bouts and interbouts, this simplification did not
limit the ability to compare the model behavior with behavior of the real larvae.

To design the model, we used the results of the acute reaction experiment as a
starting point (Fig. 2c–e). Thus, since larval zebrafish reacted to changes in visual
stimulus with a fixed delay of 220 ms (Fig. 2e), the input of the model at a given
time point was the grating velocity 220 ms before that point. We then assumed that
forward motion of the grating should have a positive influence on the motor
output, whereas reverse motion should have a negative influence. This assumption
was based on the fact that if the grating was moving forward during a bout (as
under open-loop or low gain conditions), this bout was significantly longer than
under normal reafference condition, when the grating was moving backwards
(compare cases for high and low gains in Fig. 2ci). To implement this notion in the
model, the input signal was split into forward and backward components by
positive and negative rectification. This was performed by two respective nodes of
the model: forward and reverse velocity sensors. Rectified signals were then
recombined together with independent positive and negative weights (ωf and ωr ,
respectively). We then proceeded from the fact that when a larval zebrafish was
presented with a forward moving grating, it performed a swimming bout only after
a certain latency period (for example, see Figs. 1d and 4b), suggesting that it
integrates sensory evidence of the forward grating motion in time until the level of
integrated signal reaches a motor command threshold. We therefore introduced a
leaky velocity integrator (VI) that integrated recombined output of the velocity
sensors with a time constant τs . Output of the VI can be interpreted as motivation
or sensory drive to swim because it increases with longer or faster forward motion
of the stimulus, decreases with backwards motion, and drives activity in the motor
part of the controller (see below). Activity of the VI was not allowed to be less than
0 (no sensory drive) or greater than 1 (maximum sensory drive). The sensory drive
was then fed forward to the motor output generator (MOG), and this process can
be interpreted as translation of the sensory input signal into motor coordinates.
Accordingly, activity of the MOG was called motor drive. Whenever the motor
drive reached a threshold thr, it activated the motor command generator (MCG),
and the output of the model was set to 20 mm/s instead of 0. To ensure that the
swimming bouts performed by the model do not last forever, we introduced a leaky
motor integrator (MI) that integrated the output of the MCG in time with an input
weight ωm and a time constant τm. Output of the MI can be interpreted as a metric
of “tiredness” that encapsulates possible reasons for bout termination even when
high sensory drive incites to continue swimming. This is the case, for example,
under open-loop reafference condition, when the grating is moving forward and
the sensory drive accumulates even though fish swims and tries to reduce the
sensory drive. To implement the inhibitory influence of this “tiredness” on the
motor output of the model, the MI inhibited the MOG with a weight ωi , thus
reproducing a self-evident fact that the longer a bout had been so far, the sooner it
would stop. In simple words, if the model was “tired” it had less motor drive to
continue swimming, even if the sensory drive was strong. Activity of the MI was
not allowed to be greater than 1 (maximum “tiredness”), and it could not inhibit
the MOG below 0 (motor drive could not be negative). Finally, to ensure that bouts
can last for some time once started in cases when the sensory drive to continue
swimming becomes too low immediately after bout onset (for example, under high
gain conditions when larvae receive a lot of reafference), we introduced a self-
excitation loop to the MCG with a weight ωs (see Supplementary Fig. 1a for formal
mathematical description of the model).

Therefore, in total, the model had eight parameters. The input and output of the
model, as well as activity of its nodes in an example trial with normal reafference
are presented in Supplementary Fig. 1a.

To evaluate the ability of the model to acutely react to different perturbations in
reafference, it was tested in a shorter version of the acute reaction experimental
protocol. The protocol was shortened to save the computation time required for
fitting the model. One trial consisted of 300 ms of static grating followed by 9.7 s of
the grating moving in a caudal to rostral direction at 10 mm/s. The reafference
condition of the first bout was always normal, and the reafference condition of the
second bout was chosen from a list of 18 reafference conditions used in the acute
adaptation experiment (see Closed-loop experimental assay in head-restrained
zebrafish larvae in Methods above). If the model initiated a third bout, the trial was
terminated, and the duration of the second bout and subsequent interbout
constituted the final output of the model in that trial. If the model did not initiate
the third bout, the final output of the model in that trial was not computed.

The parameters of the model were fitted to training datasets obtained for each
larva that participated in the acute reaction experiment (N= 100) using a custom-
written genetic algorithm. To obtain the training datasets, 18 arrays of bout
durations and 18 arrays of interbout durations were generated for each larva, each
array corresponding to one reafference condition. Average values of randomly
selected 50% from each array constituted the training datasets, the remaining 50%
were used as test datasets. Distributions of resulting parameter solutions are
presented in Supplementary Fig. 1b.

The optimization algorithm minimized the mean absolute error (absolute
difference between the output array of the model and a training dataset, normalized
by the training dataset) and resulted in sets of the model parameters, each
optimized to fit one larva. To present the results, mean ± SEM of the final output
arrays of models across all sets of parameters, and of the test datasets across all
larvae were computed (Fig. 2c, d).
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Light-sheet microscopy. Functional imaging experiments were employed in this
study for two purposes: to test the main assumption of the feedback control model
(the existence of the sensory integration in the larval zebrafish brain) and to test
whether activity of PCs can represent the output of an internal model. Respectively,
there were two types of functional imaging experiments: whole-brain imaging
experiments and PC imaging experiments. Both were performed using a custom-
built light-sheet microscope (Figs. 3a and 6a).

For the whole-brain imaging (Fig. 3a), a beam coming from a 473 nm laser
source (modulated laser diodes, Cobolt, Sweden) was split with a dichroic mirror
and conveyed to two orthogonal scanning arms. Each scanning arm consisted of a
pair of galvanometric mirrors (Sigmann Electronik, Germany) that allowed vertical
and horizontal scanning of the beam, a line diffuser (Edmund Optics, USA), a scan
lens (Thorlabs, USA), a paper screen to protect the fish eyes from the laser, a tube
lens (Thorlabs, USA), and a low numerical aperture objective (Olympus, Japan).
The emitted fluorescence was collected through a water immersion objective
(Olympus, Japan) mounted on a piezo (Piezosystem Jena, Germany), band-pass
filtered (AHF Analysentechnik, Germany), and focused on a camera (Orca Flash
v4.0, Hamamatsu Photonics K.K., Japan) with a tube lens (Thorlabs, USA).

The piezo, galvanometric mirrors, and camera triggering were controlled by a
custom-written Python program. The light-sheets were created by horizontal
scanning of the laser beams at 800 Hz. The light-sheets and the collection objective
were constantly oscillating along the vertical axis with a saw tooth profile of
frequency 1.5 Hz and amplitude of 250 µm. At each oscillation, 35 camera frames
were acquired at equally timed intervals, with an exposure time of 5 ms. The
resulting volumetric videos had a voxel size of 0.6 × 0.6 × 7 µm, and a sampling rate
of 1.5 Hz per volume.

For the PC imaging experiments, the frontal scanning arm was removed because the
whole cerebellum could be illuminated using only the lateral beam (Fig. 6a). The
sampling rate was increased to 4 or 5Hz due to smaller volume of imaging.

Larvae were continuously illuminated with the excitation blue light throughout
the entire imaging sessions, which could potentially interfere with the behavior.
However, behavior performed under the light-sheet microscope was overall
comparable with the behavior performed in the behavioral rigs. Thus, for example,
normal reafference control larvae performed, on average, 12.1 ± 0.4 bouts per trial
in the behavioral rigs and 13.5 ± 3.0 under the light-sheet microscope (mean ± SEM
across larvae), and the shape of the bouts was similar (compare Figs. 3c, 6di and
Supplementary Fig. 6a with Figs. 1d, 4b). Furthermore, acute reaction and long-
term adaptation effects were also present under the light-sheet and comparable
with the behavioral rigs (compare Fig. 6c and Supplementary Fig. 5 with Fig. 4c–f).

Functional imaging data analysis. Behavioral data acquired during the imaging
experiment were analyzed as described in “Behavioral data analysis” section. This
section describes analysis of the imaging data.

Whole-brain functional imaging data analysis. To analyze the functional imaging
data, we first preprocessed them in Python following the methods presented in ref. 32.
To correct the data for motion artifacts and potential drift, they were aligned to an
anatomical reference generated by averaging the first 1000 frames of each plane. For
each volume in time, the translation with respect to the reference volume was computed
by cross-correlation using the register_translation function from the scikit-image Python
package67. Before the alignment, the reference volume and volumes to be registered
were passed through a Sobel filter after a Gaussian blur (with the standard deviation of
3.3 voxels) to emphasize image edges over absolute pixel intensity. Volumes for which
the computed shift was larger than 15 voxels (generally due to large motion artefacts
caused by vigorous tail movements of the embedded fish) were discarded and replaced
with NaN values. For subsequent registration of the imaging data to a common
reference brain (see below), a new anatomical stack was computed for each animal by
averaging the first 1000 frames of the aligned planes.

To segment the imaged volume into regions of interest (ROIs), a “correlation
map” was computed, where each voxel value corresponded to the correlation
between the fluorescence time-trace of that voxel and the average trace of eight
adjacent voxels in the same plane. Then, based on the correlation map, individual
ROIs were segmented in each plane with the following iterative procedure.
Growing of each ROI was initiated from the voxel with the highest intensity in the
correlation map among the ones still unassigned to ROIs, with a minimum
correlation of 0.3 (seed). Adjacent voxels were then gradually added to the growing
ROI if eligible for inclusion. To be included, adjacent voxels’ correlation with the
average fluorescence time-traces of all voxels assigned to the ROI up to that point
had to exceed a set threshold. The threshold for inclusion was 0.3 for the first
iteration and increased linearly as a function of distance to the seed, up to a value of
0.35 at 3 µm distance. Additional criteria for minimal and maximal ROI area
(9–28 µm2) ensured that the ROIs matched approximately the size of neuron
somata. After segmentation, the fluorescence time-trace of each ROI was extracted
by summing fluorescence of all voxels that were assigned to that ROI during
segmentation.

Subsequent analysis steps were performed in MATLAB (MathWorks, USA). To
de-noise the traces, a low-pass Butterworth filter with a cutoff frequency of 0.56 Hz
was applied to each trace. This frequency corresponds to the half-decay time of the
calcium indicator GCaMP6s expressed by the imaged larvae (1.8 s69), and

fluorescence oscillations at frequency higher than that were unlikely to result from
biological events. In addition, to correct for potential slow drift, the drifting
baseline of each trace was computed by applying a low-pass Butterworth filter with
a cutoff frequency of 3.3 mHz; and this baseline was then subtracted from the trace.
The traces were then z-scored for subsequent analysis.

The strategy of subsequent analysis was aimed to identify velocity integrators
within the larval zebrafish brain and included two steps.

The first step was aimed to identify ROIs that responded to the forward moving
grating. Since this stimulus reliably triggers swimming behavior, it was important
to disambiguate ROIs with responses to the forward moving grating from ROIs
with motor-related activity. To this end, we computed the average grating- and
bout-triggered fluorescence for each trace. To do this, we selected 5 s long sections
of the trace, starting from one second before the respective trigger. To avoid
contamination of triggered responses by activity resulting from other events, we
only considered triggers that did not have any other triggers in the preceding
second, and if another trigger occurred within the selected time window, all
fluorescence values after this another trigger were replaced with NaN values. In
addition, we subtracted the baseline, defined as mean fluorescence before the
trigger within the selected time window, from each triggered trace. We then
computed the average traces and SEM across corresponding triggers for each trace.
To identify ROIs with sensory-related and motor-related activity (referred hereafter
as sensory and motor ROIs), we first computed the mean values of average grating-
triggered fluorescence within the time window from 0 to 4 s after the grating onset,
and of average bout-triggered fluorescence within the time window from 0 to 2 s
after the bout onsets. Obtained values were referred to as sensory and motor scores.
To estimate the probability of observed scores to result from chance, we then
divided each trace into 84 sections, each 23 second-long, randomly shuffled the
sections 1000 times and computed sensory and motor scores for each shuffling to
build null-distributions of the scores. If the actual score was greater than 95th
percentile of the respective null-distribution, it was considered significant. ROIs
were defined as sensory if they had a significant sensory score. If in turn, an ROI
had a significant motor score and a non-significant sensory score, it was defined as
a motor ROI. This additional criterion for definition of a motor ROI was
introduced because almost all sensory ROIs continued to increase their grating-
triggered fluorescence during swimming bouts. As a result, many sensory ROIs had
a significant motor score, so this parameter alone could not be used to define
motor ROIs.

The second step was aimed to identify whether some of the sensory ROIs
integrate sensory evidence of the forward moving grating in time. To this end, we
fitted a leaky integrator model to the fluorescence traces of sensory ROIs by
iterating over a range of time constants from 0.5 to 10 s, with 0.5 s steps (sampling
period duration), and identifying the time constant resulting in the highest
correlation between the model and the actual trace. The leaky integrator trace was
additionally convolved with a GCaMP6s kernel, modeled as an exponential
function with a half-decay time of 1.8 s69. Note that testing time constants shorter
than 0.5 s was not possible due to relatively low sampling rate (2 Hz). Therefore, if
a given ROIs had an estimated time constant of 0.5 s, the true value of the time
constants lies between 0 and 0.5 s. ROIs with short time constants (≤1.5 s) were
referred as sensors, whereas ROIs with longer time constants were called
integrators.

To compare the location of ROIs assigned to the aforementioned functional
groups across larvae and to present the ROIs in the context of gross larval zebrafish
neuroanatomy, the imaging data was registered to a common reference brain using
the free Computational Morphometry Toolkit70. To this end, affine volume
transformations were computed to align the anatomical stacks from each larva to
the reference brain. Computed transformations were then applied to each ROI to
identify its coordinates in the reference space. To present the final ROI maps,
binary stacks with ROIs of a given functional group were summed across larvae,
and the maximum projections along dorsoventral and lateral axis were computed.
In addition, to identify the anatomical regions with experiment-related activity, the
regions annotated in the Z-Brain atlas71 were registered to our reference brain
using the same procedure.

If an ROI was assigned to one of the three aforementioned functional groups
(sensors, integrators, or motor ROIs), it was referred to as active ROI. To determine
whether anatomical location of active ROIs was consistent across larvae, we first
formulated a null-hypothesis for each ROI. The hypothesis stated that active ROIs
that spatially overlap with this ROI in a population of larvae (i.e., ROIs that occupy
the very same anatomical region in the brain) are equally likely to be either sensors,
or integrators, or motor ROIs. According to this null-hypothesis, the probability of
a given active ROI to be assigned to any functional group is 1/3. We then tested this
null-hypothesis for each ROI against the one-tailed alternative that a given ROI was
more likely to be assigned to its actual functional group than to the other two
groups with a significance level of 5%. Rejection of the null-hypothesis can be
interpreted as that in the brain region corresponding to this ROI, the probability of
finding active ROIs of the same functional group in a population of larvae is greater
than that of finding active ROIs of the other two groups. To test the null-
hypothesis, we first calculated the number of larvae that had any active ROIs
overlapping with the original ROI and the number of larvae that had an
overlapping ROI assigned to the same functional group as the original ROI. Then,
the probability of this observation given the null-hypothesis was inferred using
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maximum likelihood estimation. If this probability was less than 5%, the null-
hypothesis was rejected and the anatomical region corresponding to the original
ROI was concluded to be consistent across larvae.

PC functional imaging data analysis. PC functional imaging data was pre-processed
in Python. Before entering data in the analysis pipeline, data was previewed blindly
with respect to experimental condition and behavioral performance. Data that
showed any sign of drifting during the whole duration of the experiment were
discarded, to avoid any confounding effect in the subsequent analysis. After this
selection, N= 25 larvae were kept out of the original 50 (N= 8 normal-reafference
control larvae and N= 17 lag-trained larvae). Lag-trained larvae were further sub-
divided into adapting (N= 9) and non-adapting (N= 8) as described in “Beha-
vioral data analysis” section.

Compared with the whole-brain data, cerebellum imaging data were smaller
and PC labeling was sparser, so this dataset was better suited for signal extraction
using Suite2p72. Suite2p was used for plane-wise alignment of the data and ROIs
segmentation; after these steps, the raw extracted fluorescence was used in
subsequent analyses, bypassing the spike deconvolution part of the Suite2p
pipeline. Parameters used for the extraction were the Suite2p default values for 2p
detection, except for expected cell size and temporal resolution that were adjusted
according to the imaging settings. Manual curation was performed on each fish,
blindly with respect to experimental group and behavioral performance, to exclude
artifactual ROIs segmented from the skin visible in the imaging.

Subsequent analysis steps were performed in MATLAB (MathWorks, USA).
We first modeled a motor regressor by convolving the binary variable representing
whether the fish was performing a bout or not at each acquisition frame with a
GCaMP6s kernel, modeled as an exponential function with a half-decay time of
1.8 s69 (Supplementary Fig. 6a). This regressor was processed in the same way as
fluorescence traces of real ROIs, as described below.

To correct for potential slow drift, each trace was passed through a high-pass
Butterworth filter with a cutoff frequency of 3.3 mHz. The traces were then z-
scored for subsequent analysis.

Subsequent analysis steps are illustrated in Fig. 6d. We first computed the first-bout-
triggered fluorescence for each trace in each trial by selecting 2.2 s-long sections of the
trace, starting from 1 s before the first bout. The baseline, defined as mean fluorescence
before the first bout onset within the selected time window, was subtracted from each
triggered trace. We then computed first-bout-triggered responses by averaging the
triggered traces within the time window from 0 to 1.2 s after the first bout onsets. These
responses were then averaged within the block of ten trials, similarly to the first bout
duration (see “Behavioral data analysis” section).

We used these averaged responses to define the four criteria for each trace,
which represented how much the responses have changed during important
transitions of the experimental protocol.

1. Criterion 1 was computed as the difference between the first ten trials of the
adaptation phase and ten trials of the pre-adaptation phase.

2. Criterion 2 was computed as the difference between the last ten trials and
the first ten trials of the adaptation phase.

3. Criterion 3 was computed as the difference between the first ten trials of the
post-adaptation phase and the last ten trials of the adaptation phase.

4. Criterion 4 was computed as the difference between the last ten trials and
the first ten trials of the post-adaptation phase.

Obtained criteria were converted into 4-digit ternary barcodes, each digit
corresponding to one criterion and can take values “+”, “0”, or “−”, using the following
bootstrapping procedure. For each trace we computed a null-distribution of criteria
under the assumption that observed changes in bout-triggered responses were not
related to transitions in the experimental protocol. Thus, to build the null-distributions,
the trials (excluding the calibration phase) were randomly shuffled 100,000 times, and
criterion 1 was computed in each shuffling repetition. If a given criterion was greater
than the 97.5th percentile of the null-distribution for that ROI, the corresponding
criterion was replaced with “+”, if it was less than the 2.5th percentile, it was replaced
with “−”, and otherwise with “0”. This allowed us to assign 4-digit barcodes to each
ROI, and all ROIs were categorized into clusters based on these barcodes. We have
verified that the key finding of this experiment (namely that the only cluster
significantly enriched in the lag-trained adapting group was 0-0+) was not sensitive to
which exact percentiles were used during bootstrapping.

To identify activity profiles with different occurrences across experimental
groups, we computed the fractions of ROIs assigned to each cluster within each
larva. Statistical significance of observed differences in fractions was determined
using Kruskal–Wallis test (significance level 5%).

To compare the location of ROIs across larvae, the imaging data was registered to a
common reference cerebellum similarly to the whole-brain imaging data (see above). To
present the final maps of 0-0+ ROIs, we first applied 3D Gaussian blur with standard
deviation of 1 µm to the binary stacks with these ROIs. The stacks were then summed
across larvae, and the maximum projections along the dorsoventral axis were
computed. 0-0+ ROIs were detected more frequently in the medial cerebellum
(Supplementary Fig. 7—top row). To estimate whether such spatial segregation could
have resulted from chance, we randomly sampled the same number of ROIs in each
larva, computed the maps as described above, repeated this 100 times, and computed
the final maps by averaging across 100 iterations.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data generated in this study have been deposited in the zenodo73. Source data are
provided with this paper.

Code availability
All Python and MATLAB code used to acquire and analyze data used in current study is
available in the zenodo repository74.
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