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Introduction

Edge localized modes (ELMs) [1] are quasiperiodic magnetohydrodynamic (MHD) insta-

bilities that routinely appear in H-mode plasmas, driven by large edge pressure gradients and

current densities. They expel particles and heat towards the first wall, reducing the lifetime of

plasma-facing components and could limit the performance of future fusion devices [2]. Thus,

a detailed understanding of ELM control and mitigation techniques is needed.

Recent experimental observations have revealed that ELMs interact strongly with the energetic-

ion population at the plasma edge. Fast-ion loss detector (FILD) measurements have shown

energetic-ion losses [3] and acceleration [4] during ELMs. The impact that this interaction be-

tween fast-ions and ELMs may have on the ELM itself, and its implications towards the de-

velopment of a robust ELM control technique, is still unknown. Therefore, to understand the

interaction between ELMs and fast-ions, the kinetic effects of energetic-ions should be included

in non-linear MHD models of ELMs. In this work, the non-linear hybrid kinetic-MHD code

MEGA [5] has been applied for an ASDEX Upgrade (AUG) plasma to investigate the interplay

between ELMs and fast-ions.

1 Simulation set up

The MEGA code is a hybrid-MHD code in which the MHD and fast-ion dynamics are cou-

pled through the energetic-ion current density in the MHD momentum equation. MEGA solves

the full MHD equations starting from an initial equilibrium. The δ f method [6–8] is used to

solve the kinetic equation of fast-ions, adopting the drift kinetic description and including Fi-

nite Larmor Radius (FLR) effects [9].
∗See the author list of H. Meyer et al., Nucl. Fusion 59, 112014 (2019).
†See the author list of B. Labit et al., Nucl. Fusion 59, 086020 (2019).
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The equilibrium profiles and geometry are taken from the AUG discharge #33616 at 7.2

s [10], as shown in figure 1a. The equilibrium reconstruction is performed with the CLISTE

code [11], which takes into account the measured kinetic profiles. In these MEGA simulations,

the resistivity is given by η(T ) = η0 (T/T0)
−3/2, where T0 = 2Te,0 = 6.6 keV is the temperature

at the magnetic axis and η0 = 10−7Ωm ≈ 20ηSpitzer is the central resistivity. The viscosity

follows the same profile, which leads to a constant magnetic Prandtl number, Prm = 10. The

particle and perpendicular thermal diffusivity are given by an ad-hoc profile to mimic the edge

transport barrier [12]. The parallel thermal diffusivity is given by χ‖ = χ‖0 (T/T0)
5/2, with

χ‖0 = 3.6×105 m2s−1. The profiles of these parameters are shown in figure 1b.

Figure 1: Initial kinetic profiles

(a). Resistivity (black), perpen-

dicular (blue) and parallel (red)

thermal diffusivities (b).

The initial fast-ion distribution is an off-axis anisotropic

slowing down distribution. The realistic off-axis part of the

fast-ion distribution is considered in the energetic particle pres-

sure profile, which is pEP = βEP
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βEP = 0.01 the ratio between fast-ion and magnetic pres-

sures, ΨN the normalized poloidal flux, ΨN0 = 0.55 the cen-

ter of the off-axis and σΨN = 0.3 the spatial width. The

anisotropic slowing down component of the distribution is given

by f (v,Λ)= 1
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, with Λ=

µB0
E the pitch angle variable, ∆v = 0.05vA the distribution width

in velocity space, vA = 4.4× 106 ms−1 the Alfvén velocity at

the magnetic axis, Λ0 = 0.5 the pitch angle for the distribution

peak and ∆Λ = 0.2 the distribution width.

The number of grid points is NR×Nφ ×Nz = 512×16×512.

The toroidal angle ranges from 0 to 2π/n, with n = 10 in this

paper. The number of computational particles for the kinetic model is 1.8×106.

2 Simulation results

Hybrid kinetic-MHD simulations of ELMs were performed to clarify the mechanism behind

the interaction between ELMs and fast-ions. In figure 2, the time evolution of the energy of the

n = 10 mode is shown for different values of the NBI injection energy. The temporal evolution

of the ELM crash changes significantly with and without fast-ions and depends on the energetic-

particles energy at fixed fast-ion pressure. The linear growth rate of the mode decreases as we

increase Ebirth, as seen in the inserted figure 2. The mode evolution is hardly affected by fast-ions

when Ebirth > 90 keV, and for lower values of Ebirth the mode energy takes larger values.
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Figure 2: Time evolution of n = 10 mode en-

ergy and linear growth rate vs Ebirth. The case

without fast-ions (blue) is shown as well.

The presence of fast-ions affects the ballooning

mode structure, and their effects depend on the en-

ergy of the particles. In figures 3a and 3b, the bal-

looning structures with and without fast-ions in the

poloidal plane are compared. In the presence of en-

ergetic particles, the ELM ballooning structures are

sheared. In figures 3c and 3d, the fast-ion pressure

in the poloidal plane is shown for Ebirth = 30 keV

and Ebirth = 60 keV. The figures indicate that the ELM affects the fast-ion population at the

edge, redistributing them according to the ballooning mode structure. The ELM induced fast-

ion transport and loss observed in the simulations depends on Ebirth as well.

Figure 3: Top row shows pres-

sure perturbation for Ebirth =

30 keV (a) and for the natu-

ral ELM case (b). Bottom row

shows the fast-ion pressure pro-

file for Ebirth = 30 keV (c) and

Ebirth = 60 keV (d).

To understand the interaction mechanism between the ELMs

and fast-ions, the dynamics of fast-ions must be analyzed in

the phase-space of energetic-ions. In figures 4a and 4b, the

power transfer and weight of the particles are shown for Ebirth =

30 keV, selecting the particles that have the largest energy

exchange
[
µ = (8.5−9.5)×10−16J/T

]
. The power transfer is

Ph = ∑l wl
dEl
dt [13], with wl = Vlδ f the weight of the l-th par-

ticle, Vl the phase-space volume, δ f the fast-ion distribution

perturbation and dEl
dt the time derivative of the kinetic energy of

the l-th particle. If Ph < 0 (> 0), then energetic-ions are giving

(gaining) energy to (from) the wave. In the figures, the black

lines represent the resonance condition ωn− nωφ − pωθ ≈ 0.

As the phase-space structures fall along resonance lines [here,

p ∈ (14−20)], the interaction between ELMs and fast-ions is

resonant. The particles redistribute in the phase-space along

E ′ = E− ωn
n Pφ in figure 4b, which is a constant of motion.

A preliminary estimation of an efficient interaction between

ELMs and fast-ions in ITER machine has been performed. For

the standard H-mode of ITER [15], the energetic-ion orbit width normalized by the perpendic-

ular wavelength of an n = 10 edge ballooning mode [14] is qρ‖/λ⊥ ∼ 0.4−0.8 for NBI driven

fast-ions and fusion born α particles, whereas for AUG, qρ‖/λ⊥ ∼ 1−2. Here, ρ‖ =
mhv‖
qhB is the

parallel Larmor radius of the particles. This means the orbits would intersect the localization

region of the mode; therefore, energetic particles and ELMs could interact with each other.
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3 Conclusions

Figure 4: Power transfer (a) and

weight (b) at t = 0.08 ms for

Ebirth = 30 keV. The resonances

(black lines) are labeled by the

bouncing harmonic p in (a) and

E ′ (white lines) are shown in (b).

In this work, the ELM crash has been successfully simulated

with MEGA including fast-ion effects. An impact of the ener-

getic particles on the ELM was observed, including the linear

growth rate, saturated mode energy and ballooning structure.

The interaction between energetic particles and ELMs is pre-

dominantly resonant and is weakened as the energy of fast-ions

increases due to the larger orbit widths. Finally, a simple anal-

ysis based on the comparison between the energetic-ion orbit

width and the ballooning mode wavelength suggests that there

could be a significant interaction between ELMs and fast-ions

in ITER standard H-mode plasmas.
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