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In fusion devices, the fast-ion population plays a crucial role in the plasma performance as it

provides one of the primary sources of plasma heating. It is therefore of vital interest to predict

the behaviour and the possible confinement losses of such particles with tested and validated

models [1–3]. The standard approach, based on the Forward Monte Carlo method (FMC) [4, 5],

often suffers of poor statistics and low accuracy when analyzing small target domains of inter-

est, wasting a large amount of resources for markers that do not contribute to the fast-ion loss

signal. As a remedy, with the Backward Monte Carlo (BMC) algorithm [6–8], the probability

of a marker reaching a specific area is tracked backwards in time starting at the region of inter-

est. The calculation of the probability involves an iterative process in which, during every step,

points in phase-space are advanced according to their forward equations of motion and the sta-

tistical spread from the Monte Carlo collision operator taken into account deterministically. In

the present work, we propose a novel 5D guiding-center BMC-based scheme for simulation of

fast-ion losses, integrated into the Monte Carlo orbit-following code ASCOT [4, 5]. The escape

probability obtained with the BMC-scheme is used as information for importance sampling of

the initial distribution of markers mitigating the artificial diffusion error that was shown previ-

ously in [8] and at the same time solving the statistics problem of the standard FMC scheme.

Backward Monte Carlo method

Discretizing time as the regularly spaced ordered set {0,∆t, ...,m∆t, ...,M∆t}, the function

Φ is used to describe the probability of a particle at phase-space position zzz and time index m

to reach the target domain Ω during a time interval τ ∈ [m∆t,M∆t]. The probability Φ can be

evaluated formally with the following recursive formula [8]

Φ(zzz,m−1) =
∫

Rd
Φ

(
ϕ

∆t,(m−1)∆t(zzz,rrr),m
) exp

[
−rrr2/2

]
(2π)d/2 drrr, (1)

where (zzz, t) 7→ (ϕ∆t,t(zzz,R), t+∆t) is the particle integrator map combining both the Hamiltonian

motion ϕ
∆t,t
UUU (zzz) and the collisional contribution, evaluated with the Euler-Maryama scheme

ϕ
∆t,t
CCC (zzz,R) = zzz+K(zzz, t)∆t +ΣΣΣ(zzz, t) ·R

√
∆t, (2)
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where K(zzz, t) and ΣΣΣ(zzz, t) are the guiding center friction and diffusion coefficients [9, 5], and R∼

N (0,I) is a random variable following a standard multivariate distribution. In the numerical

implementation of the BMC scheme, a 5D phase-space mesh is constructed to represent the

probability Φ. Since the particle push-forward map is continuous, the function Φ is represented

as a linear interpoland Φ(zzz,m) = ∑i Φm
i Λi(zzz). Eq. (1) is then discretized by integrating the

stochastic part numerically with a Gauss-Hermite quadrature

Φ
m−1
i = π

−1/2
∑
k

wk ∑
j

Φ
m
j Λ

j(ϕ∆t
i (
√

2rk)), (3)

where rk and wk are the standard nodes and weights for the Gauss-Hermite integration of the

type
∫

∞

−∞
exp(−r2) f (r)dr ≈ ∑k wk f (rk). Fast-ion loss signals are then computed as an integral

of the source distribution weighted with the event probability of hitting the target domain Ω in

the given time interval [0, t]

I(Ω, t) =
∫

S
(
zzz′
)

E
[
P(zzzτ ;Ω, t) | zzz0 = zzz′

]
dzzz′, (4)

In principle, the BMC scheme could be used directly in (4). In the present work, it is adopted

for performing importance sampling of the source distribution to improve the statistics of an

existing FMC simulation.

Test cases for the new algorithm

the BMC scheme is applied to an AUG H-mode discharge where the fast-ion source (fig. 1)

is introduced by means of the neutral beam injector (NBI) system. In particular, the magnetic

and kinetic profiles correspond to the shot AUG33143 with the beams Q7 and Q8 produced

by the BBNBI code [10], assuming an energy of 93 keV and power of 2.5 MW for each beam.

1 1.5 2 2.5

R [m]

-1.5

-1

-0.5

0

0.5

1

1.5

z
 [
m

]

0

0.5

1

1.5

2

2.5

3

10
21

BBNBI

AUG

NBI #8

NBI #7

#ions/m2

a)

-2 -1 0 1 2

R [m]

-2

-1

0

1

2

z
 [
m

]

0

0.5

1

1.5

2

2.5
10

21

BBNBI

AUG

NBI #8

NBI #7

#ions/m2

b)

Figure 1: Initial distribution of beams Q7 and

Q8 projected onto the toroidal (a) and toroidal

(b) cross sections.

For this example, the target domain is set to a

small subset of the wall near the divertor. The

target hit probability is computed with both

the BMC and FMC schemes, with different

total integration time. The result is illustrated

in Fig. 2. Where BMC manages to produce a

meaningful-appearing evolution for the prob-

ability backwards in time, FMC seems to pro-

duce only Monte Carlo noise, i.e., insuffi-

cient statistics. The benefits of the new BMC-

IS method are made apparent by the hit rate

statistics in Table 1.
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Figure 2: Comparison of the probability from BMC and FMC for different total times T . Time

step is ∆t = 1×10−6 s with 100 sub-cycles. Grid size is 64 nodes in all dimensions. The illus-

trated quantity is the mean value of Φ over the φ , p‖ and p⊥ dimensions.

Mesh elements T=2×10−5s T=1×10−4s T=5×10−4s

FMC — 10 10 11

BMC-IS 325 485 188 86

BMC-IS 645 920 853 829

BMC-IS 1285 1909 1101 1097

Table 1: Number of recorded hits as a function of the total simulation times T for FMC and

BMC-IS, using 105 input markers. Major time step is ∆t = 1×10−6 s with 100 sub-cycles.

While the FMC manages only a few hits to the target, the BMC-IS provides a significantly larger

number of recorded hits. These results are likely to improve if irregular meshes mimicking the

field lines and the shape of the target domain are adopted.

In order to check quantitatively the consistency of the BMC scheme, the probability matrix

has been computed for different mesh sizes and then compared to a FMC simulation using

markers on a few common nodes. Figure 3 shows the resulting mean error of each mesh re-

finement after 5 major time steps with respect to the benchmark FMC solution. The error is

consistently reduced by increasing the mesh density, indicating that the probability from the

BMC calculation converges consistently towards the reference solution.

Summary and conclusions

This paper introduced a novel Backward Monte Carlo scheme to improve statistics in simu-

lations of fast-ion losses, especially to small targets. The method was implemented within the
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Figure 3: Convergence test for the BMC scheme.

ASCOT suite of codes and tested in realistic AUG configurations using NBI particle distribu-

tions. In the test cases considered, the approximate target hit probability from the fast Backward

Monte Carlo calculation was used to perform importance sampling of the initial marker pop-

ulation. Using the re-sampled markers in Forward Monte Carlo simulations then significantly

improved the statistics of target hits in comparison to not using the information from the Back-

ward Monte Carlo calculation. These encouraging results are anticipated to improve further if

irregular meshes, that adapt to target and plasma geometry, are explored.
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