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Abstract

Climate change is expected to increase the likelihood of drought events, with
severe implications for food security. Unlike other natural disasters, droughts have
a slow onset and depend on various external factors, making drought detection
in climate data difficult. In contrast to existing works that rely on simple relative
drought indices as ground-truth data, we build upon soil moisture index (SMI)
obtained from a hydrological model. This index is directly related to insufficiently
available water to vegetation. Given ERA5-Land climate input data of six months
with landuse information from MODIS satellite observation, we compare different
models with and without sequential inductive bias in classifying droughts based on
SMI. We use PR-AUC as the evaluation measure to account for the class imbalance
and obtain promising results despite a challenging time-based split. We further
show in an ablation study that the models retain their predictive capabilities given
input data of coarser resolutions, as frequently encountered in climate models.

1 Introduction

Drought is one of the most widespread and frequent natural disasters in the world, with profound
economic, social, and environmental impacts [10]. Unlike other natural hazards, droughts are a
gradual process, often have a long duration, cumulative impacts, and widespread extent [2]. Climate
change is expected to increase the area and population affected by soil moisture droughts and also
the probability of extreme drought events comparable to the one of 2003 across Europe [24, 23].
Therefore, it is a critical scientific task to understand better possible changes in drought frequency and
intensity under varying climate scenarios [11]. Drought is commonly classified into four categories:
meteorological, agricultural, socioeconomic, and hydrological. In this study, we focus on agricultural
drought since it has a considerable impact on human population evolution [16]. Agricultural droughts
can be quantified as a “deficit of soil moisture relative to its seasonal climatology at a location” [26].
A low Soil Moisture Index (SMI) in the root zone is a direct indicator of agricultural drought and
inhibits vegetative growth, directly affecting crop yield and therefore food security [10]. The physical
processes involved in drought depend on complicated interactions among multiple variables and
are spatiotemporally highly variable. This behavior makes droughts hard to predict, classify, and
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Figure 1: Left: Time-lagged Spearman correlation between the selected ERA5-Land input variables
and the target variable SMI over 24 months. Right: Time series of SMI from 1981-2018 from the
Helmholtz dataset. The shaded area shows the standard deviation across different locations. Red
dotted lines show the split points for the time-based split into k folds, and the green dashed line
shows the binarization threshold for drought events. Shown above is the frequency of the positive
class (drought events) per fold.

understand [2]. However, recently, machine learning (ML)-based methods have demonstrated their
ability to capture hydrological phenomena well, e.g., rainfall-runoff [12] and flood [14]. ML has
also been applied to drought detection but relied on relative indices as labels due to the lack of
ground truth data [1, 25, 8]. Using such statistically derived labels can lead to unreliable detection
of droughts in climate model projections and, accordingly, an inaccurate estimation of the impacts
of future climate change [29]. Therefore, we compare several ML algorithms in their ability to
classify droughts based on agriculturally highly relevant soil moisture. A future goal is to provide an
ML-based drought classification for climate projections under various scenarios. While we do not yet
operate on climate model output from the Coupled Model Intercomparison Project (CMIP6) [7], in
this work, we nevertheless showcase that drought classification is possible with the variables available
in the output of CMIP6 climate projections, and thus it is promising to further pursue the goal.

2 Data Preparation

Low soil moisture levels depend on various meteorological input variables and the soil type. Re-
trieving accurate SMI ground-truth data is therefore complicated: Spatially-continuous soil moisture
data on a resolution smaller than 0.25 degree is only available from satellite observations or model
simulations. Satellite observations are exclusively available for recent years, include only the top few
centimeters of the soil, and have data gaps due to unfavorable data retrieval conditions such as snow
or dense vegetation [6]. Therefore, we select modeled SMI data as the ground-truth label. Due to
SMI data availability, the selected experiment region is Germany. The data is limited to January 1981
to December 2018 by the availability of an overlapping period from both ERA5-Land and the SMI
data. All datasets used in this study are freely available.

The target variable SMI is derived from the German drought monitor uppermost 25cm of soil data as
SMI labels [30], which is generated by the hydrological model system based on data from about 2,500
weather stations [22, 13]. Figure 1 shows the SMI distribution over time and the chosen binarization
threshold.

We use monthly time-series of 12 selected variables from the ERA5-Land reanalysis, e.g., pressure,
precipitation, temperature (see Table A1). We selected ERA5-Land due to its higher resolution
compared to ERA5 (9 km vs. 31 km) and its consequently better suitability for land applications [19].
To isolate the causal effects on SMI and avoid short-cut learning, we do not include potential
confounding factors such as evaporation, runoff, and skin temperature. We also deliberately restrict
the input variables to those commonly available in the latest generation of climate models to enable
the transfer of the trained models to data directly obtained from climate model simulations.

Land use and vegetation type data based on the MODIS (MCD12Q1) Land Cover Data is used as an
input feature, represented as soil type fractions [9].
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Interpolation and Label Derivation Drought is an extreme weather event. Extreme events occur
at the tail of variable distributions. Thus, we chose a classification setting with the tail of the SMI
distribution as labels instead of a regression setting. The input data is re-gridded to the ERA5-
Land regular latitude-longitude grid (0.1◦ × 0.1◦ ≈ (9km)2). In this paper, we follow the drought
classification from the German and U.S. drought monitors [27, 30] using an SMI threshold of 0.2.

Dataset Split As seen in Figure 1, the SMI values for the same location exhibit a noticeable but
declining correlation for lags up to 6 month. A simple random split over data points could therefore
lead to data leakage, where memorizing SMI values from training and simple interpolation can lead
to erroneously good results. Thus, we opt for a modified k-fold time-series split. First, we evenly
determine k − 1 split times to create k time intervals. For the kth split, we train on folds {1, . . . , k},
validate on fold k + 1 and test on k + 2. This split enables us to better assess parameter stability over
time, mimicking increasing climate projection length. We decide to use k = 5 as a good compromise
between a sufficient number of folds for a robust performance estimate and large enough folds with
multiple years of data to account for seasonal and interannual effects. Figure 1 shows the resulting
folds separated by red dotted lines. Note that the drought sample availability (positive class) varies
between folds from 12% to 28%.

3 Methodology

We frame drought classification as a binary classification problem given climate, land use as well
as location data. Since the memory-effect [18] is suspected of playing an essential role in the
development of droughts, we frame the problem as a sequence classification: The models use a
window of the last k months of climate input data for the current location to predict the drought label
at the current time step. In addition to the climate variables, we also provide a positional and seasonal
encoding as input features: For the positional encoding, we directly use the latitude & longitude grid
values. A 2D circular encoding considers the seasonality based on the month of the year (month).
s =

[
cos

(
2π · month

12

)
; sin

(
2π · month

12

)]
, where [·; ·] denotes the concatenation. Besides using the

location as an input feature, we do not explicitly include inductive biases for spatial correlation. Due
to missing values and a non-rectangular shape of the available data area, simple grid-based methods
such as a 2D-CNN are not directly applicable. The exploration of methods for irregular spatial data,
such as those described in [4], will be a focus of future work.

Addressing Imbalanced Data In the entire dataset, examples for the drought class account for 18%
of the total samples. We address this class imbalance by adding class weights proportional to the
inverse class frequency during training and using an appropriate metric, PR-AUC, during evaluation.

Input Sequence Length The determination of a suitable sequence length is based on the Spearman
correlation of the climate variables and the target SMI variable and the lagged correlation of the
SMI variable, as both shown in Figure 1. Cyclical and non-cyclical decaying dependencies are
considered, and both are indeed observed. Therefore, we select a window size of six months for
our models, which in line with the period commonly used on monthly mean data by other drought
indices such as the Standardized Precipitation Index (SPI) [17], and the Standardized Precipitation
Evapotranspiration Index (SPEI) [29].

Models We investigate support vector machines (SVMs) (M1) with linear kernels as well as an MLP
model which receives the flattened window as a single large vector as input (M2), which we denote
by dense. To investigate whether an explicit inductive bias for sequential data is beneficial, we also
include two main sequence encoders to obtain a representation of the input sequence for the sequence
prediction. The cnn model (M3) applies multiple 1D convolutional layers before aggregating the
input sequence to a single vector representation by average pooling. The lstm model (M4) uses
multiple LSTM layers and the final hidden state as the sequence representation. For both sequence
encoders, the drought classification is obtained by a fully connected layer on top of this representation.

Experimental Setup We use sklearn [21] for the SVM, and implement the other models in
tensorflow [28]. To reflect the considerable class imbalance, we choose the area under the precision-
recall curve (PR-AUC) as evaluation measure, which does not neglect the model’s performance for
the minority/positive class, i.e., droughts. For hyperparameter optimization we use ray tune [15]
with random search instead of grid search due to its higher efficiency [3]. The best hyperparameters
are selected per fold according to validation PR-AUC on the fold’s validation data, and we report test
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Figure 2: Left: Results on PR-AUC of the different models on the test dataset across five different ran-
dom seeds for drought classification using a window of six months. Right: Ablation study:Inference
on models trained on high resolution given input with decreasing resolution. Evaluation on five
different random seeds using a window of six months.

results of the corresponding model trained across five different random seeds. The climate variables
of the dataset are normalized to [0, 1].

4 Results and Discussion

Model Comparison The resulting architectures were selected based on the validation PR-AUC on
the second fold to account for a large variety of drought causes in the training data. The resulting
hyperparameters are listed in Table A3. The results are shown in Figure 2, and Table A4. We observe
that the PR-AUC is larger than the class frequency of the positive class indicating that the models
indeed learned a non-trivial relation between the input variables and the target. The results for the F1
score can be found in Figure A3 with F1 scores larger than 0.5. Moreover, the performance varies
for different folds, highlighting the challenging setting of a time-based split, where distributions
can differ between different folds. There is no clear winner between the architectures: all models
except the linear SVM perform comparable across folds. In particular, we do not observe a significant
difference between models with an explicit inductive bias for sequential data. Since the utilized SMI
data describes only the uppermost 25cm of the soil, the suspected memory effect might be more
prominent in deeper soil layers. Our initial data analysis supports this, with the correlation of the
input variables with the target being strongest close in time, cf. Figure 1.

Ablation: Coarsening the Data Resolution As an important future application of our models is on
simulated climate data from climate models, we investigate further how the performance is affected
by changing the resolution from the original 0.1◦ to a coarser spatial resolution. The horizontal
resolution of CMIP6 models varies from around 0.1◦ to 2◦ in the atmosphere [5]. Given the regional
restriction of our input data, we restrict the ablation study to a range of 0.1◦-1.0◦ with 0.1◦ steps.
The architecture performing best on 0.1◦ is used in inference to calculate the results on the coarser
resolutions without re-training.

On the right-hand side of Figure 2 we visualize the results of the resolution ablation. In general, we
observe a negative correlation between resolution and performance. The LSTM architecture is most
affected by this but also generally shows the noisiest results overall. Overall, the models trained on
0.1◦ input data show satisfactory performance when applied to coarser input data without dedicated
training. This promising result indicates that it is possible to predict drought events under varying
future climate scenarios with models trained on fine-grained drought labels.

5 Summary and Outlook

We summarize our contributions as follows: (1) We are the first to compare several ML models in
their capability of classifying agricultural drought in a changing climate based on soil moisture index
(SMI). We use ground truth data from a hydrological model and intentionally restrict the climate
input variables to those available in the newest generation of CMIP6 climate models. We also include
land use information. (2) We provide an ablation study regarding a transfer to coarser input data
resolution, demonstrating that the model capabilities are transferable to lower resolution when trained
in higher resolution.
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In future work, we plan to use climate model output as input data for our algorithm to produce
drought estimates under varying future scenarios. This will facilitate the transfer from learning on
real input data to input data obtained from simulations. Apart from feeding the location information
encoded as an additional input feature to the model, we plan to add location-aware models motivated
by the strong regional correlation of the input variable as seen in Figure A4. Additionally, we plan to
investigate other ground truth labels, e.g., SMAP [20] and expand the study region globally.

Overall, we consider our study as an important step towards machine learning-based agricultural
drought detection. With our intentional restriction to variables available in climate models, we pave
the way towards application on simulated data, thus facilitating the investigation of agricultural
droughts in a changing climate.
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Appendix

Figure A1: The first row displays the overall approach for classifying agricultural droughts by using
a thresholded soil moisture index (SMI) from a hydrological model as ground truth labels per grid cell.
Sequential input per location (6 months) are 35 input variables. The middle row shows the data split.
We use a modified k-fold time-series split. The lower row displays the training and evaluation right
and the hyperparameter optimization left as described in Section 3. The best hyperparameters are
selected on the validation data. Due to the high imbalance in the dataset, for the evaluation, we use
the area under the precision-recall curve (PR-AUC) metric to also focus on the model’s performance
in correctly identifying the minority/positive class (drought). The evaluation results are reported on
the test part of a split across five different random seeds.

Figure A2: Data examples for 1 month. Left: ERA5 input variable example "pressure" Right: Target
variable: Binarized SMI
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Table A1: Overview of the variables used in this study. Native resolution of SMI: 4x4l, ERA5-Land:
9km, MODIS land use: 500mx500m

source variable description unit

Helmholtz SMI soil moisture index topsoil (top25cm) via UFZ Drought Monitor -
ERA5-Land u10, v10 wind (u + v component at 10m) ms−1

tp total precipitation m
sp surface pressure Pa
t2m temperature K
ssrd surface solar radiation downwards Jm−2

d2m dewpoint temperature K
ssr surface net solar radiation Jm−2

str surface net thermal radiation Jm−2

lai_lv, lai_hv leaf area index high + low vegetation m2m−2

strd surface thermal radiation downwards Jm−2

MODIS land use class water, evergreen needleleaf forest, Evergreen Broadleaf forest, De-
ciduous Needleleaf forest, Deciduous Broadleaf forest, Mixed for-
est, Closed shrublands, Open shrublands, Woody savannas, Savannas,
Grasslands, Permanent wetlands, Croplands, Urban and built up, Crop-
land Natural vegetation mosaic, Snow and ice, Barren or sparsely
vegetated, Cropland

Fraction

self-derived positional encoding latitude longitude grid degree
self-derived seasonal encoding 2D circular encoding of the month degree

Table A2: Soil condition classification based on SMI according to [27, 30].

SMI soil condition

(0.2, 0.3 ] abnormally dry
(0.1, 0.2 ] moderate drought
(0.05, 0.1 ] severe drought
(0.02, 0.05] extreme drought
(0, 0.02] exceptional drought

Table A3: The Hyperparameters resulting from the random search for binary drought classification.
type HPO fold hidden lr dropout activation batchnorm batch size

LSTM 2 16, 32 1.18e-4 0.1 softplus False 2208
3 96, 96 1.00e-4 0.2 relu False 96
4 32, 48, 128 2.15e-5 0.0 softplus True 2592

CNN 2 128, 176, 224, 240 3.53e-5 0.1 softplus False 32
3 112, 176 2.40e-5 0.2 softplus False 64
4 16, 96, 128 1.29e-2 0.1 ReLu True 448

Dense 2 32, 48, 96 3.36e-2 0.1 relu False 769
3 48, 208, 208, 208 1.66e-2 0.2 softplus True 192
4 80, 192 1.02e-5 0.2 ReLu True 800
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Table A4: Results on the test dataset across five different random seeds for drought classification
using a window of six months.

Macro F1 PR-AUC
mean std mean std

model test fold

dense 3 0.5340 0.0724 0.2640 0.0950
4 0.5212 0.0359 0.2234 0.0148
5 0.6424 0.0272 0.6106 0.0170

lstm 3 0.5722 0.0176 0.2986 0.0236
4 0.5096 0.0494 0.2614 0.0168
5 0.6648 0.0311 0.6708 0.0138

cnn 3 0.5976 0.0101 0.3914 0.0050
4 0.4766 0.0189 0.2624 0.0235
5 0.5650 0.0520 0.5854 0.0480

SVM 3 0.5642 0.0352 0.2150 0.0150
4 0.4858 0.0154 0.1704 0.0210
5 0.4772 0.1437 0.3432 0.0508
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Figure A3: Left: Results on F1 Score of the different models on the test dataset across five different
random seeds for drought classification using a window of six months. Right: Ablation study:
Inference on models trained on high resolution given input with decreasing resolution. Evaluation on
five different random seeds using a window of six months.
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Figure A4: Time-lagged Spearman autocorrelation for the SMI target variable at the same location.
The shaded area shows the standard deviation of the Spearman correlation across all analyzed
locations.
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