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Conventional methods for integrating the guiding-center equations [1] utilize high order inter-

polation of the electromagnetic field in space. In Ref. [2], a novel procedure for integration

of 3D guiding-center orbits was introduced in which high order interpolation of the electro-

magnetic field is replaced by a local linearization approach. In particular, the electromagnetic

field quantities Ak, Bk/ωc, ωc and Φ are independently approximated by continuous piecewise

linear functions. These field quantities are respectively the covariant components of the vector

potential and the normalized unit vector of the magnetic field, the cyclotron frequency and the

electrostatic potential. The local linearization is achieved by splitting the space into tetrahedral

cells. Specifically, each cell of a regular hexahedral grid in an arbitrary coordinate system is

split into six tetrahedral cells as shown in Fig. 1. Upon linear interpolation of the field quanti-

ties, this specific splitting realization preserves the symmetry of the electromagnetic field over

any of the coordinates if this coordinate corresponds to the symmetry direction. In particular, in

the case of an axisymmetric field, the toroidal symmetry of the field is preserved, resulting in

the preservation of the canonical (toroidal) angular momentum of the orbits.

As a result (details can be found in Ref. [2] and [3]), in each cell the guiding-center equations

of motion [1] can be transformed into a set of four linear ODEs with constant coefficients

dzi

dτ
= ai

lz
l +bi, (1)

where zi = xi (guiding-center position) for i = 1,2,3 and z4 = v‖ (parallel velocity).

This local linearization approach retains the Hamiltonian structure of the guiding-center equa-

tions. For practical purposes this means that the total energy, the magnetic moment and the

phase space volume are conserved. Furthermore, the approach reduces computational effort

and sensitivity to noise in the electromagnetic field.
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Figure 1: Splitting realization of a hexa-

hedron in arbitrary curvilinear coordinate

system (x1,x2,x3). The hexahedron (red)

is split into six tetrahedral cells. Spitting

is invariant over 120° rotations around

vertex 1.

Since the coefficients of the linear ODE set are

discontinuous at spatial cell boundaries, orbit in-

tersections with those boundaries must be com-

puted exactly when integrating particle trajectories.

In Ref. [2], the linear ODE set is solved numeri-

cally by the Runge-Kutta (RK) method and inter-

sections with cell boundaries are found by New-

ton’s method. Alternatively and more effectively, an

analytical solution of the ODE set in the form of a

polynomial series can be used where the intersec-

tions are known analytically up to the 4th polyno-

mial order. This is facilitated by the fact that the

field lines are straight within cells, and, in absence

of the cross-field drift, the exact solution of Eq. (1)

is a second order polynomial with respect to the or-

bit parameter τ . Consequently, the corrections in-

troduced by the cross-field drift scale with powers

of the Larmor radius. Hence, for electrons sufficient

accuracy is achieved already with the second order series in the orbit parameter. An additional

advantage of the series expansion is that various path integrals over dwell times in spatial cells

used within Monte Carlo procedures for the evaluation of velocity space moments of the distri-

bution function are known analytically.

The adverse consequence of above linearization is diffusive behaviour of orbits. In real space

coordinates, this behaviour is already a property of the field lines. Consequently, the method in

real space coordinates is only applicable to weakly perturbed toroidal fields such as tokamaks

with external 3D perturbations where the artificial diffusion can be made negligibly small by

moderate grid refinement. However, the artificial diffusion has been small even for essentially

3D fields when magnetic flux coordinates have been used in Ref. [3]. There, field-aligned sym-

metry flux coordinates have been used for a realistic stellarator configuration and non-aligned

symmetry flux coordinates have been used for a tokamak with perturbed axial symmetry.

It should be noted that artificial chaos of the field lines is fully avoided in general toroidal fields

if local magnetic coordinates are used [4, 5] in which the field lines are accurately described by

the interpolated cell mapping using bi-cubic splines. Since two of these coordinates are mag-

netic, B ·∇x1 =B ·∇x2 = 0, the piecewise linearization does not introduce any change to the field

line behaviour. However, the present orbit integration method cannot be applied as is because it
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needs the continuity of the field quantities which is violated by the piecewise linear represen-

tation at the “periodic” boundary between neighbouring local coordinate systems, x3 = const.

This is caused by the fact that straight lines in one coordinate system are not straight in the other

system due to the nonlinear coordinate mapping. Therefore, in the tetrahedra adjacent to the pe-

riodic boundary, the field quantities must be accurately interpolated over the “perpendicular”

(x1,x2) coordinates, and the equations of motion do not form a linear set (1) anymore. In these

cells, the original nonlinear guiding-center equations must be solved numerically.

The integration method has already been used in Ref. [3] for the application of collisionless

guiding-center orbits in an axisymmetric tokamak and a realistic three-dimensional stellara-

tor configuration. There, the method demonstrated stable long-term orbit dynamics conserving

invariants. Further, in the same publication, the method was applied to the Monte Carlo evalua-

tion of transport coefficients. There, the computational efficiency of the integration method was

shown to be an order of magnitude higher than with a standard fourth order RK integrator.

Since publication of Ref. [3], the integration method has furthermore been also applied to the

computation of fusion alpha particle losses in a realistic stellarator configuration. Fig. 2 shows

the confined fraction fc of 3.5 MeV fusion alpha particles as a function of the trace time. In

Fig. 2 (a) 1000 particles are traced for 1 s, whereas in Fig. 2 (b) 10000 particles are traced for

0.01 s. All guiding-center orbits are started from s = 0.6 with a homogeneous distribution of the

pitch parameter. The reference result is obtained by utilizing the “exact” guiding-center orbits

which are computed with an adaptive RK 4/5 integrator with a relative tolerance of 10−9 in

splined fields. The quasi-geometric integration method is performed with its Polynomial 4 and

adaptive RK 4/5 options and in addition three different settings for the grid size are examined,

namely Ns = Nϑ = Nϕ = 70, Ns = Nϑ = Nϕ = 100 and Ns = Nϑ = Nϕ = 200.

It could been shown that the inherent artificial chaos of the method, which is induced by the

linearization of the electromagnetic field, strongly scales with the particle’s Larmor radius.

Consequently, the quasi-geometric integration method is not suited to be used for tracing of

high-energetic 3.5 MeV fusion alpha particles for the slowing-down time of 1 s. Nevertheless,

for the trace time of 0.01 s the confined fraction results computed with the quasi-geometric

integration method and an appropriate choice of the grid size lie within the 95 % confidence

interval of the reference computation while showing a significant CPU speed-up. In particular,

the fastest sufficiently accurate method is GORILLA with the solution in form of a polynomial

series truncated at K = 2 and an angular grid size of Nϑ ×Nϕ = 100× 100. This method is

roughly 3 times faster than the fastest reference method, namely the adaptive RK4/5 integrator

with a relative tolerance of 10−6. The results for the confined fraction of this comparatively

short trace time could be used for an early classification into regular and chaotic orbit types
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within fusion alpha loss computations in a similar manner as in Ref. [6]

Figure 2: Confined fraction fc of 3.5 MeV fusion alpha particles as a function of the trace time in 3D stellarator

field configuration. (a) 1000 particles are traced for 1 s. (b) 10000 particles are traced for 0.01 s.

The guiding-center orbits are started from s = 0.6 with a homogeneous distribution of the pitch parameter. Orbits

are evaluated by GORILLA and the results of fc are compared to those obtained by exact guiding-center orbits

from the reference guiding-center orbit computation. In the case of GORILLA, the method (Polynomial or

Runge-Kutta) and the choice of the grid size are in accordance with the legend. Error bands at ±1.96σ around the

curve of fc obtained with the exact guiding-center orbits describe the 95 % confidence interval due to the Monte

Carlo error.

The numerical implementation of this method has been made publicly available on GitHub with

the name Guiding-center ORbit Integration with Local Linearization Approach (GORILLA);

see Ref. [7].
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