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Rare thermal bubbles at the many-body localization transition from the Fock space point of view
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In this paper we study the many-body localization (MBL) transition and relate it to the eigenstate structure in
the Fock space. Besides the standard entanglement and multifractal probes, we introduce the radial probability
distribution of eigenstate coefficients with respect to the Hamming distance in the Fock space and relate the
cumulants of this distribution to the properties of the quasilocal integrals of motion in the MBL phase. We
demonstrate nonself-averaging property of the many-body fractal dimension Dq and directly relate it to the jump
of Dq as well as of the localization length of the integrals of motion at the MBL transition. We provide an
example of the continuous many-body transition confirming the above relation via the self-averaging of Dq in
the whole range of parameters. Introducing a simple toy model, which hosts ergodic thermal bubbles, we give
analytical evidences both in standard probes and in terms of newly introduced radial probability distribution
that the MBL transition in the Fock space is consistent with the avalanche mechanism for delocalization, i.e.,
the Kosterlitz-Thouless scenario. Thus, we show that the MBL transition can been seen as a transition between
ergodic states to nonergodic extended states and put the upper bound for the disorder scaling for the genuine
Anderson localization transition with respect to the noninteracting case.
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I. INTRODUCTION

Understanding the emergence of ergodicity in closed quan-
tum many-body systems is an active front of research [1–6].
Generic interacting systems are expected to thermalize under
their own quantum dynamics. Nevertheless, thermalization
may fail if the system is subjected to strongly quenched
disorder, giving arise to a new phase of matter dubbed as
many-body localized (MBL) [7–13].

The MBL phase is best understood in terms of an emergent
form of integrability, which is characterized by the existence
of an extensive set of quasilocal conserved quantities, which
strongly hinder thermalization in the system [14–16]. As a
consequence, the system has Poisson level statistic, area-law
entanglement, and the partial local structure of the initial state
is maintained under the evolution [9,10,17]. Instead at weak
disorder, the system is in an ergodic phase, meaning that
eigenstate thermalization hypothesis [1,2,4,6] (ETH) holds,
and therefore local observable thermalize. This implies that
the system is fully described in terms of few macroscopic
conserved quantities, i.e., energy and/or particles number.

A quantum phase transition, referred to as MBL transition
[9], is believed to separate an ergodic phase from an MBL
one. The MBL transition is a dynamical phase transition,
meaning that it occurs at the level of individual eigenstates
even at high energy density. In the last decade an enormous
effort, both numerically and theoretically [7,17–25], has been
made to understand the nature of this transition. Nevertheless,
only little is known about the MBL transition. Numerically,
the critical exponents associated with a putative second-order
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FIG. 1. (a) Representation in the Fock space (hypercube) of the
many-body Hamiltonian ĤMBL vs the Hamming distance. The blue
nodes represent the basis vectors, which are connected by ĤMBL.
(b) Cartoon picture of the radial probability distribution �(x) of an
eigenstate with respect to the same Hamming distance x as in the
panel (a) in the Fock space from the maximum of the wave func-
tion. In the ergodic/ETH phase �(x) = 1

2L

(L
x

)
with the maximum

at x = L/2, where most of the sites in the Fock space are. In the
MBL phase, �(x) is skewed on the left with the width ∼√

L. At the
critical point, �(x) is much broader and fluctuations are extensive
in L. (c) Pictorial representation of the rare thermal bubbles (in red),
lengths of which are highly fluctuating at the critical point. The spins
in red regions are entangled to each other (shown by many arrows),
while the spins away from these regions are considered to be frozen
(up or down). (d) Sketch of the jump of the entanglement entropy S
normalized by its ergodic value SPage and the fractal dimension Dq

across the MBL transition.
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type of the transition, are in disagreement with generic bounds
[17,26]. This incongruence could be due to the fact that the
system sizes analyzed using exact diagonalization techniques
are too small to capture the true asymptotic behavior.

Very recently, several theoretical works have doubted
the underline assumptions that the transition is of the sec-
ond order. Phenomenological renormalization group studies
suggest that the MBL transition could be of a Kosterlitz-
Thouless (KT) type [27–32]. This possible scenario is
properly predicted by a possible delocalization mechanism
called avalanche theory, which takes into account nonpertur-
bative effects possibly destabilizing the MBL phase [27,28].
Strictly speaking, the theory states that the presence of thermal
bubbles in the system due to unavoidable entropic arguments
is enough to destabilize the MBL phase if the localization
length ξloc settled by the disorder strength exceeds a finite
critical length. An immediate consequence of this mechanism
is that the MBL is characterized not by the divergence of the
correlation length, as one expects from the ordinary second-
order transition, but by a finite jump of the inverse localization
length across the transition [28,30].

A complementary interesting perspective is to characterize
MBL systems in the Fock space, see Fig. 1(a) for a picto-
rial representation. This paradigm is based on the original
idea of mapping a disordered quantum dot to a localization
problem in the Fock space [33], which has been developed
further recently [34]. This has been used to provide evidence
of the existence of an MBL transition by Basko, Aleiner, and
Altshuler in their seminal work [7]. Ergodicity is then defined
through the fractal dimensions Dq, which quantify the spread
of a state in the Fock space [35]. Ergodic states at infinite tem-
peratures are believed to behave like random vectors [36,37],
therefore they are spread homogeneously over the entire Fock
space and Dq = 1. Instead, nonergodic states cover only a
vanishing fraction of the Fock space, 0 � Dq < 1. A genuine
localization in the Fock space requires Dq = 0, though due to
the many-body nature of the problem is never reached at finite
disorder [17,38–43]. Thus, the MBL transition can be seen as
an ergodic to nonergodic transition in the Fock space, with
Dq = 1 in the ETH phase and Dq < 1 in the MBL phase.

In a recent paper [40], the behavior of Dq for a certain MBL
model has been inspected using extensive numerical calcu-
lations. The MBL transition was found to be characterized
by a jump in the fractal dimensions Dq at the critical point.
The aforementioned investigations lead to the indication of the
existence of an MBL transition. However, a clear connection
between the above two viewpoints is still missing.

In this work, we focus on the existence of the above
jump in the fractal dimensions and on its connection to the
avalanche theory, i.e., to the KT-type transition from another
perspective. Based on the breakdown of self-averaging for
Dq at the transition and on the recently developed relation of
Dq to the entanglement entropy [44], we show that the MBL
transition is consistent with the jump of Dq from Dq = 1 to
Dq < 1/2. The latter statement of the jump to Dq < 1/2 is an
observation based on numerics [40], which is in agreement
with the general bounds of the entanglement entropy in Ref.
[44]. In addition, we focus on the radial distribution of a

many-body eigenstate in the Fock space around its maximum,
relate it to the behavior of local integrals of motion [45], and,
thus, confirm the consistency of the KT scenario [28,30] for
the MBL transition, see Fig. 1 for an overall picture.

This paper is organized as follows. In Sec. II we introduce
the model and the indicators that we inspected numerically.
In particular, we study the inverse participation ratio of eigen-
state coefficients in the Fock space, from which we extract
the fractal dimensions and the radial probability of eigen-
state coefficients. Section III represents the numerical results
concerning the fractal dimensions and the radial probability
distribution. In Sec. IV we show our analytical considerations,
which underline the connection between the avalanche theory
and the observed jump in the fractal dimensions.

In Sec. V, we provide an example of an noninteracting
model with many-body filling, which is known to have a
delocalization-localization transition and characterized by a
diverging localization length at this transition. We show the
main difference of this model from the MBL transition, which
is believed to have a discontinuity in the inverse localiza-
tion length. Finally, we draw our conclusions and outlooks
in Sec. VI.

II. MODEL AND METHODS

We study the random quantum Ising model [45] with the
Hamiltonian

ĤMBL =
L∑
i

σ̂ x
i +

L∑
i

hiσ̂
z
i + V

L∑
i

Jiσ̂
z
i σ̂ z

i+1, (1)

of a spin chain of the length L with periodic boundary con-
ditions and the Pauli operators at site i given by σα

i for α ∈
{x, y, z}. hi and Ji are independent random variables uniformly
distributed in [−W,W ] and [0.8, 1.2], respectively. W is the
disorder and V = 1 is the interaction strengths.

In Ref. [45] under mild assumptions of the absence on
energy level attraction the existence of the MBL phase has
been established for sufficiently large, but finite W . Moreover,
numerically the critical disorder strength of the MBL transi-
tion has been identified as Wc ≈ 3.5 [46].

In the noninteracting limit of V = 0 the Hamiltonian,
Eq. (1), represents a system of uncoupled spins, which is
trivially localized in the sense that all eigenstates are product
states. In this limiting case, the Hamiltonian can be expressed
Ĥ = ∑

i εîτ
z
i through its integrals of motion τ̂ z

i = Ûiσ̂
z
i Û †

i
obtained from the original spins by a single-spin rotation

Ûi =
(

cos θi
2 − sin θi

2

sin θi
2 cos θi

2

)
, (2)

with sin θi = 1/

√
1 + h2

i and the single-spin energies εi =√
1 + h2

i . This example directly shows that the eigenstates

{|τ z〉} of ĤMBL with V = 0 are adiabatically connected to
the σz-basis product states |σ z〉 = ⊗i |σ z

i 〉 with σ z
i ∈ {−1, 1}

through local rotations
∏

i Ûi |σ z〉 = |τ z〉. In Ref. [45] it has
been shown that for V �= 0 and sufficiently large W , ĤMBL can
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still be diagonalized via a sequence of local rotations, which
adiabatically connect the eigenstates to the product states in
the σz basis.

Another useful perspective of the model Eq. (1) is to con-
sider it as an Anderson model on the Fock space. For this, one
can rewrite the Hamiltonian in the σz basis and associate the
first term in Eq. (1) to the hopping and the rest to the on-site
correlated disorder on a L-dimensional hypercube,

ĤMBL =
∑

σ z∼σ ′z
|σ z〉 〈σ ′z| +

∑
σ z

Eσ z |σ z〉 〈σ z| , (3)

where |σ z〉 stands for the configuration given by the vector
σ z of L values σ z

i = {+1,−1}, while σ z ∼ σ ′z means that
the corresponding vectors differ by a single spin flip. In this
representation the first sum in ĤMBL can be understood as the
Laplace operator on the hypercube as it connects spins config-
urations, which differ by one spin flip, and Eσ z = ∑

i hiσ
z
i +∑

i Jiσ
z
i σ z

i+1 are the diagonal energies. It is important to note
that the 2L diagonal entries {Eσ z} are strongly correlated
random variables since they are constructed only from 2L
random variables {hi} and {Ji}. Indeed, even though typical
fluctuations of the entries scales as

√
L, their level spacings

Eσ z − Eσ ′z are O(1) if σ z ∼ σ ′z.
This model should be distinguished from the quantum ran-

dom energy model (QREM) [47–49] for which the first two
terms in (1) or equivalently the last term in (3) are replaced
by z-diagonal entries {Eσ z}, which are independent identi-
cally distributed Gaussian random variables N (0,W 2L). The
QREM has an Anderson transition at Wc ∼ √

L log L (cf. Eq.
10.15 [50]) for which Dq = 0.

Ergodic properties of an eigenstate |E〉 of ĤMBL in Eq. (3)
can be quantified using the generalized inverse participation
ratio (IPRq)

IPRq =
2L∑
σ z

|〈σ z|E〉|2q
, (4)

which quantifies the spread of |E〉 over the Fock space.
Through the IPRq the fractal dimensions are defined as

Dq = log IPRq

(1 − q)L log 2
. (5)

Ergodic states at infinite temperature are characterized by
Dq = 1 since they extend over the entire Fock space
| 〈σ z|E〉 |2 ∼ 1/2L. In general, 0 < Dq < 1 corresponds to the
nonergodic (or multifractal) states, while the extreme case
Dq = 0 refers to the localized ones.

For a model similar to ĤMBL considered in [40] it has
been shown that in the ergodic phase (W < Wc) mid-spectrum
eigenstates show Dq = 1. Instead, in the MBL phase Dq < 1
and the fractal dimension experiences a jump at the critical
point. It is important to point out that due to the many-body
nature of the wave functions Dq > 0 [17,39,40,43] for any
finite values of W , even deeply in the MBL phase.

The last observation is closely related to the tensor prod-
uct structure of the Fock space and the Hamiltonian’s local
structure. Indeed, in the noninteracting limit (V = 0) spins are
decoupled, i.e., IPRV =0

q = ∏L
i IPR(i)

q and the one-site IPR(i)
q is

smaller than one

IPR(i)
q =

∑
σz∈{↑,↓}

|〈σz|τ z
i 〉|2q

< 1 . (6)

As a consequence, IPRV =0
q ∼ 2−(q−1)D0

qL+O(
√

L) decays expo-
nentially with the strictly positive exponent

D0
q = log IPR(i)

q

(1 − q) log 2
> 0 . (7)

This fractal exponent is self-averaging as it is the sum of
independent random variables and has fluctuations O(1/

√
L)

shown above in the exponent of the IPR [51]. At this point, it is
important to appreciate the difference between the MBL phase
of ĤMBL and the localized phase for the QREM. The first one
is characterized by a strictly positive fractal dimension, while
in the second one Dq = 0.

For a better understanding of the ergodicity properties from
the Fock space point of view, we define the radial probability
distribution �(x) [52] of an eigenstate |E〉 as

�(x) =
∑

d (σ z,σ z
0 )=x

|〈σ z|E〉|2, (8)

where the sum runs over the
(L

x

)
spin states {|σ z〉}, which differ

by x flips [i.e., at the Hamming distance d (σ z, σ z
0) = x] from

|σ z
0〉, which corresponds to the maximal eigenstate coefficient

maxσ z | 〈σ z|E〉 |2 = | 〈σ z
0|E〉 |2. The overbar indicates the av-

erage over disorder and a few mid-spectrum eigenstates.
Compared to the IPRq, �(x) gives more information and is

a good probe of the eigenstate’s local structure in the Fock
space. In particular, we can study the spread of �(x) by
defining the moments

X n =
∑

x

xn�(x), (9)

and the mean-square displacement of it

	X 2 = X 2 − X
2
. (10)

In the ergodic phase, the infinite-temperature wave func-
tion is spread homogeneously on the Fock space and �Erg.(x)
is given by a binomial distribution,

�p(L, x) =
(L

x

)
(1 − p)L−x px , (11)

with p = 1/2 and therefore X = L/2 and 	X 2 = L/4. In the
opposite limit of a strongly localized system, which can be
approximated by the noninteracting case (V = 0), �(x) is
still given by the binomial probability distribution Eq. (11),

however the value of p = sin2(θi/2) now strongly depends on
the disorder W as

p = 1

2
− |hi|

2
√

1 + h2
i

= 1

2
−

√
W 2 + 1 − 1

2W
. (12)

As expected, p  1/2 − W/4 → 1/2 as W → 0 like in the
ergodic phase, but for V = 0 it happens due to the system
localization in σ x basis, and p  1/(2W ) → 0 in the opposite
limit of W → ∞.
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(a) (b)
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FIG. 2. (a) The averaged bipartite entanglement entropy rescaled
by the Page value S/SPage (blue) and the averaged fractal di-
mension D2 (orange) versus the disorder strength W for ĤMBL.
Inset shows the discrete derivatives of the entanglement en-
tropy ∂S = 2(S(L) − S(L′))/(L − L′) log 2 [53] (blue) and ∂D2 =
− log (IPR2(L)/IPR2(L′))/(L − L′) log 2 (orange) with respect to the
system size L. (b) Variances of the entanglement entropy S (blue)
and of the − log IPR2 (orange) versus W . In both panels the vertical
dashed black line is a guide for eyes indicating the MBL transition.
Symbols shown in panel (b) correspond to different system sizes.
Next panels show disorder dependence of −log IPRq for (c) q = 2
and (d) q = 1/2 with the correspondingly rescaled W according
to the noninteracting limit (15). In both panels, the dashed blue
line show the corresponding noninteracting case V = 0. The inset
in (d) shows the ratio r statistics of the level spacings versus the
rescaled W .

Note that in the limit L → ∞ and in case pL, (1 − p)L →
∞ the binomial probability distribution in Eq. (11) can be
approximated by a Gaussian distribution with mean and the
variance given by

X = pL , 	X 2 = p(1 − p)L . (13)

III. RESULTS

In order to relate the ergodicity properties of the considered
system with the local structure of its eigenstates in the Fock
space, we focus on the behavior of the radial probability distri-
bution �(x) of mid-spectrum eigenstates of ĤMBL. However,
for sake of completeness we start our analysis by investigating
some standard MBL indicators, which quantify ergodicity in
the real and Fock space, such as bipartite entanglement en-
tropy and IPRq and compare their properties.

The entanglement entropy has been found to be a surround-
ing resource to test and quantify ergodicity in a system.

Figure 2(a) shows the half-chain bipartite entanglement
entropy S = −Tr[ρL/2 log ρL/2] (blue lines) of the reduced

density matrix ρL/2 of a mid-spectrum eigenstates of ĤMBL.
As expected, at weak disorder S shows the volume law,
S ∼ L, and flows towards the Page value SPage = L/2 log 2 −
1/2 [36], which is the value for states randomly drawn in
Fock space.

Instead, at strong disorder S has an area-law scaling, S ∼
O(1), and thus S/SPage ∼ 1/L tends to zero. The crossover
between the two behaviors occurring at Wc ≈ 3.5 indicates the
MBL transition.

The averaged fractal dimension D2 in Eq. (5) is also shown
in Fig. 2(a) (orange lines) and its behavior is consistent with
the one of S. In the ergodic phase D2 ≈ 1, while for W > Wc

the fractal dimension converges with L to a value, which is
strictly smaller than one (D2 < 1).

A few comments are in order: The finite-size flow of
S/SPage and D2 to unity with the increasing system size within
the ergodic phase and the stability in the localized phase.
The discrete derivatives ∂S = 2(S(L) − S(L′))/(L − L′) log 2
[53] and ∂D2 = − log (IPR2(L)/IPR2(L′))/(L − L′) log 2 in
the inset of Fig. 2(a) tend to converge to discontinuous func-
tions of W with increasing L, with zero value of ∂S and strictly
positive value of ∂D2 in the MBL phase. In addition, as clearly
seen from Fig. 2(a), both S/SPage and D2 deviate from their
ergodic values at the same disorder amplitude. At the critical
point the variance of the entanglement entropy 	S2, which
has been shown to be a useful probe for the transition [17,19],
diverges with L [blue lines in Fig. 2(b)]. In analogy with
S, we also inspect the variance of − log IPR2 = LD2 log 2,
which also diverges around the critical point [orange lines
in Fig. 2(b)].

The above observations give an indication of the following
scenario. The upper bound for the unaveraged S � D1L log 2
derived in [44] and the deviation of S from its ergodic Page-
value limit S = SPage at the same W as D2, is consistent with
the jump in Dq across the MBL transition from unity in the
ergodic phase to a certain positive value Dq < 1/2 in the MBL
phase. Moreover, the divergent fluctuations of Dq might lead
to the saturation of the above bound [44] at the transition push-
ing S to undergo the volume-to-area–law scaling transition
and Dq to experience a jump.

A. Fluctuations of the fractal dimension

To obtain more insights in Fig. 3 we analyze the behavior
of the fractal dimension fluctuations via the probability distri-
bution of D2 for several relevant values of W .

Deeply in the ergodic phase D2 tends to unity and its
fluctuations are exponentially suppressed with L, as dictated
by ETH at infinite temperature ([Figs. 3(a) and (b)]. In-
stead, in the localized phase [Fig. 3(d)], we expect D2 < 1/2
and self-averaging in the sense that 	D2

2 goes to zero with
increasing L. For the whole interval of W the variance is
shown in the inset of Fig. 3(a) and it demonstrates this decay
away the critical region 3 � W � 4. The self-averaging of Dq

in the MBL phase can be understood in its noninteracting
limit (V = 0), where the variance decay as the inverse of the
system size:

	D2
q =

∑
i 	(log IPR(i)

q )2

L2(1 − q)2 log2 2
∼ 1

L
. (14)
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(a) (b)

(c) (d)

FIG. 3. Probability distribution function ρ of the fractal dimen-
sion D2 for different disorder strength (a) W = 1, (b) W = 2.5,
(c) W = 3.25, and (d) W = 6. Different colors represent system sizes
L shown in the legend of panel (b). The inset shows the variance of
the fractal dimension versus W establishing the nonself averaging
property close to the MBL transition [	D2

2 ∼ O(L0)]. The vertical
black dashed line in (c) and (d) indicate the value D2 = 1/2.

On the contrary, in the critical region (W ≈ Wc), we find that
Dq is not self-averaging since its fluctuation does not decay
with L [inset of Fig. 3(a)] and the probability distribution is
stuck and not shrinking with increasing L [Fig. 3(c)].

At critical points of single-particle problems, self-
averaging is usually absent if Dq demonstrates a jump [35].
Its absence is far from being trivial in many-body prob-
lems and it provides another case for the jump of Dq at
the critical point. Summarizing, at the MBL transition Dq

might be characterized by a jump and it is not self-averaging.
This nonself-averaging and the relation between Dq and S
[44] might drive the simultaneous jump-like transitions in
S and Dq.

It is important to point out once again that Dq is strictly
positive due to the many-body nature of the problem. As a
consequence, the MBL transition cannot been considered as
an Anderson-localization transition in the Fock space with
Dq = 0 in the localized phase, but rather as a transition be-
tween an ergodic (Dq = 1) and a nonergodic extended (0 <

Dq < 1) phase. In order to reach a genuine localization tran-
sition in the Fock space one needs to rescale the disorder
strength with L. Naively, as a first approximation, one might
replace the Fock space on-site energies with independent dis-
tributed random variables with typical fluctuation ∼√

L as is
done for the QREM [54–58]. If this would be the case, the
Anderson transition would occur at WAT ∼ √

L log L also for
the quantum Ising model Eq. (1). Nevertheless, the Fock space
on-site energies are strongly correlated and they cannot be
approximated as independent random variables. Due to the

presence of these correlations (similar to [59]) we expect that
stronger disorder is needed to localize many-body states in the
Fock space.

In order to understand the correct scaling of WAT with L,
we rely on the exactly solvable noninteracting case (cV = 0)
providing the lower bound for Dq and then check numerically
if the same scaling works as well at strong disorder in the
interacting case. This comparison is motivated by the belief
[45] that interacting eigenstates in the MBL phase are adia-
batically connected to the ones of a noninteracting problem.
Consequently, we expect to rescale W with L in the same way
as in the noninteracting problem in order to have a genuine
localization in the Fock space. Straightforward calculations of
the single-spin IPR(i)

q = sin4 θi
2 + cos4 θi

2 in the noninteracting
model show that at large disorder W

D0
q ∼

⎧⎨⎩
W −2q q < 1/2,
logW

W q = 1/2,

W −1 q > 1/2.

(15)

Thus rescaling W ∼ L, we have IPRq ∼ O(1) for q > 1/2
and the system exhibits localization in the Fock space. In
Fig. 2(c) we plot −log IPR2 for V = 1, which is collapsed
after the rescaling W/L in agreement with the prediction of
the noninteracting calculation.

The last observation should be compared to the scaling
of W for the QREM, where WQREM ∼ √

L log L � L and
the random many-body energies are uncorrelated. However,
due to the limitation of system sizes achievable with exact
diagonalization techniques, it is important to notice that a
reasonable collapse of the curves in Fig 2(c) can also be
obtained by rescaling W/(

√
L log L). Thus, in order to draw

a distinction between the two scalings, we consider another
moment q = 1/2 for IPRq. The critical value for the QREM
is independent of q, while for the MBL model we expect a
different scaling with L for q � 1/2, as shown in Eq. (15).
Figure 2(d) clearly demonstrates the collapse of log IPR1/2 for
several L, by rescaling W with L log L in complete agreement
with the prediction of Eq. (15).

Recently, some works [60–62] claim that the critical point
for the MBL transition is L dependent and shifts as Wc ∼ L.
These claims are in conflict with our results for which the sys-
tem is already Anderson-localized in the Fock space (Dq = 0)
provided W ∼ L. Localization in the Fock space is a much
stronger breaking of ergodicity than the one defined using
local observables (ETH). Since we expect to have Dq = 1 in
a putative ergodic phase at infinite temperature, it implies that
the critical point of the MBL transition, if it scales with system
size, would have to scale slower than L (Wc/L → 0), which
rules out the prediction in Ref. [60–62].

Furthermore, we can argue a more strict bound on the
possible behavior of Wc with L (if any), by comparing ĤMBL

with a proper constructed QREM. As we discussed, our model
can be seen as an Anderson model on a hypercube with
2L sites and correlated random on-site energies given by
Eσ z = ∑

i hiσ
z
i + ∑

i Jiσ
z
i σ z

i+1. Statistically, Eσ z ’s have zero
mean and variance 	E2

σ z (W ) ∼ L. As first approximation one
replaces the Eσ z with Gaussian random variables with zero
mean and variance 	E2

σ z (W ) (see, e.g., [63]). Doing so, we
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have constructed a map between the original model ĤMBL and
the QREM, which is one to one.

From this perspective, the uncorrelated on-site disorder in
QREM can be expressed in terms of strings of σ̂ z operators

2L∑
σ z

Eσ z |σ z〉 〈σ z| =
L∑
k

∑
i1,..,ik

J (k)
i1,...,ik

σ̂ z
i1

· · · σ̂ z
ik
, (16)

with J (k)
i1,...,ik

= 1
2L

∑
σ z

Eσ zσ z
i1

· · · σ z
ik

with Eσ z ∼
N (0,	E2

σ z (W )).
As compared to the Hamiltonian ĤMBL, the constructed

QREM contains longer range interactions, which will strongly
break the integrability of the model. It is natural to ex-
pect that for a fix W the QREM will show an higher
degree of ergodicity compared with ĤMBL, i.e., rMBL(W ) �
rQREM(W ). As a result, we expect the following concatenate
inequalities [64]

Wc � WQREM ∼
√

L log L < WAT ∼ L (17)

imposing even stronger upper bound on the possible scal-
ing of the MBL transition with L, which is not consistent
with [60,61].

B. Radial probability distribution �(x)

In this section, we show that the radial probability distribu-
tion �(x) in Eq. (8) of mid-spectrum eigenstate coefficients
of ĤMBL in the Fock space gives more detailed information on
the wave function’s local structure in the Fock space compared
to IPRq. In addition, it can be related to the local integrals of
motion of ĤMBL [14–16,45].

We recall that at strong disorder, deep in the MBL phase,
the eigenstates {|E〉} of ĤMBL are believed to be adiabati-
cally connected to the noninteracting ones {|σ z〉} through a
sequence of quasilocal unitary operators,

|E〉 = Û |σ z
0〉 , (18)

defining the integrals of motions τ̂ z
i = Û σ̂ z

i Û † for which
[Ĥ , τ̂ z

i ] = 0.
Now, we use the above assumption to find the relation be-

tween the spread of the local integrals of motion {̂τ z
i } and the

moments of the probability distribution �(x). The Hamming
distance between two Fock-states |σ z〉 and |σ z

0〉 is given by

d (σ z
0, σ

z ) =
∑

i

(σ z
i − σ z

0,i )
2

4
, (19)

where σ z
i = 〈σ z|σ̂ z

i |σ z〉. The first moment of �(x, E ), Eq. (9),
for a certain eigenstate at energy E is given by

X (E ) =
∑

x

x�(x, E ) =
∑

σ

d (σ z, σ z
0)

∣∣〈σ z
∣∣Û ∣∣σ z

0

〉∣∣2
, (20)

where we use |E〉 = U |σ z
0〉. Thus,

X (E ) = L

2
− 1

2

∑
i

∑
σ z

σ z
i σ z

0,i

〈
σ z

0

∣∣Û †
∣∣σ z

〉〈
σ z

∣∣Û ∣∣σ z
0

〉
= L

2
− 1

2

∑
i

〈E |σ̂ z
i τ̂ z

i |E〉 . (21)

Averaging over disorder and energies E , we obtain

X = L

2
− 1

2

∑
i

〈E |σ̂ z
i τ̂ z

i |E〉 (22)

Similar calculations show that the variance in Eq. (10) of

�(x, E ), 	X 2(E ) = X 2(E ) − X (E )
2
, is given by

	X 2(E ) = 1

4

∑
i, j

〈
E

∣∣σ̂ z
i σ̂ z

j τ̂
z
i τ̂

z
j

∣∣E 〉 −
− 1

4

(∑
i

〈E |σ̂ z
i τ̂ z

i |E〉
)2

. (23)

Thus, both first cumulants, X and 	X 2, provide the mea-
sures of the distance between the local integrals of motion
{̂τ z

i } and the undressed operators {σ̂ z
i }. In particular, in

the MBL phase we expect a perturbative expansion τ z
i =

aα
i1
σ̂ α

i1
/
√

ξloc + bαβ
i1i2

σ̂ α
i1
σ̂

β
i2

+ · · · [65], where aα
i1

∼ e−|i−i1|/ξloc ,

bαβ
i1i2

∼ e−(|i−i1|+|i−i2|)/ξloc decay exponentially, with the local-
ization length ξloc providing the measure of the τ z

i operator
spread, and Latin letters run over site indices and Greek ones
are in {x, y, z}. The coefficient 1/

√
ξloc, with aα

i ∼ O(1), pro-
vides the normalization of the operator (τ z

i )2 = 1. Thus, X
gives the direct estimate for the localization length

X ∼ L

2

(
1 −

√
ξmin

ξloc

)
, (24)

where ξmin is an unimportant constant standing for some typ-
ical value of overlap (aα

i )2 of the operators τ z
i and σ z

i at the
same site. The main idea behind this formula is that from the
W dependence of X one can infer the one of the localization
length ξloc(W ) up to a prefactor.

Having elucidated the relation between the integrals of
motion and the radial probability distribution, we now present
the numerical results for �(x), X , and 	X 2. Figure 4(a)
shows �(x) for fixed system size L = 16 and several disorder
strengths. As expected, at weak disorder, �(x) is centered in
the middle of the chain, X = L/2, with fluctuations 	X 2 =
L/4 as shown in Figs. 4(b) and 4(c). In this case the shape of
�(x) is close to the one �Erg(x) of an ergodic system, Eq. (11)
with p = 1

2 . To quantify better the deviations of �(x) from
�Erg(x), we consider the Hellinger distance

Hg = 1√
2

√∑
x

(√
�(x) −

√
�Erg(x)

)2
, (25)

which is one of the common measures to quantify the distance
between two probability distributions. The inset in Fig. 4(a)
shows Hg as a function of W . In agreement with the IPRq

analysis, at weak disorder Hq tends to zero exponentially fast
with L, since the system is ergodic in the Hilbert space. At
strong disorder in the MBL phase, �(x) has a nonergodic
shape and it is skewed to the left with respect to its maximum,
meaning that X < L/2, Fig. 4(a), and Hg flows slowly with L
to its maximal value Hg = 1.

Both mean X/L and variance 	X 2/L normalized by
L in Figs. 4(b) and 4(c) demonstrate similar behavior to
the fractal dimension Dq and the normalized entanglement
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(a)

(b) (c)

FIG. 4. (a) Radial probability distribution �(x) of the eigenstate
coefficients in the Fock space, Eq. (8), for a fixed system size L = 16
and several disorder strengths W , ranging from the ergodic to the
MBL phase (see legend). The blue dashed line show the ergodic pre-
diction for �Erg(x) = 1

2L

( L
L/2

)
. Inset shows the Hellinger distance Hg,

Eq. (25), between �(x) and the ergodic one �Erg(x). (b) Mean X/L,
Eq. (9), and (c) variance 	X 2/L, Eq. (10), of �(x) as functions of W
for several L. Symbol and color code is shown in legend. The blue
and green dashed lines correspond to the ergodic and the noninter-
acting (V = 0) cases, respectively. The inset shows the deviation of
�(x) from a binomial form (11) via the ratio b = L	X 2/X (L − X ).

entropy S/L and its fluctuations shown in Figs. 2(a) and 2(b).
The quantity X/L decreases monotonically with W from its
ergodic value (blue dashed line) toward the noninteracting
one (green dashed curve). At W � Wc, X/L flows with L to-
wards the ergodic value X/L = 1/2, consistent with ξ−1

loc = 0
in Eq. (24). It shows the saturation with the system size in
the MBL phase at the strictly positive value (ξloc > ξmin). This
behavior is consistent with the finite jump in ξ−1

loc at the MBL
transition. The deviations of X/L and 	X 2/L in the MBL
phase from their noninteracting limits and the saturation of
these deviations with the system size are possibly related to
the partial melting of the ergodic bubbles (initially ergodic
active spins) in the avalanche scenario [28]. Indeed, our toy
model takes into account the noninteracting ergodic spins,
which are initially in resonance with each other and form the
ergodic bubbles, while the presence of the interaction may
make some the initially frozen spins to become active due to
the hybridization with these bubbles.

Close to the transition 	X 2/L exhibits a peak, which di-
verges with the system size, 	X 2 ∼ Lα , with α > 1. The latter
evidences a rather broad profile of �(x) going beyond the
binomial approximation, Eq. (11). The inset to Fig. 4(c) em-
phasizes this by showing that the ratio b = L	X 2/X (L − X )

is strictly larger than its binomial unit value and demonstrates
the same divergence with L as the variance 	X 2/L.

To sum up, in this section we have studied the radial
probability distribution �(x), which is directly related to the
local integrals of motions. In particular, the mean X of �(x)
can be used to define a localization length ξloc, Eq. (24). We
have shown that at weak disorder X → L/2 corresponding
to ξloc → ∞, while in the localized phase 0 < X/L < 1/2
giving finite ξloc > ξmin. At the transition the fluctuations 	X 2

diverge, which gives an evidence of a finite jump in X/L
and therefore in ξ−1

loc in the thermodynamic limit L → ∞.
The above finite jump in ξ−1

loc is consistent with the avalanche
theory of many-body delocalization [28] and therefore with
the KT-type scaling of the transition [29,30].

In the next section, we consider a simple toy model of
dilute ergodic “bubbles”, which explains the observed phe-
nomenon of the absence of Dq self-averaging, and helps us to
bridge the gap between Fock space structure of mid-spectrum
eigenstates, the avalanche theory, and the recent studies of
phenomenological renormalization groups of MBL transition.

IV. DILUTE ERGODIC BUBBLES APPROXIMATION

In this section we discuss random block Hamiltonian
consisting of noninteracting pieces, which is able to repro-
duce the numerical results described in the previous section.
Reference [28] proposes that nonperturbative effects, such as
rare thermal inclusions, which are unavoidable due to entropic
arguments, can destabilize the MBL phase provided their
density exceeds a certain critical value. As a consequence, an
abrupt finite jump of the localization length is expected at the
transition. Moreover, RG-studies [29,30] have shown that this
avalanche theory should lead to a KT-like scaling behavior
and the probability distribution P(�) of the size � of the largest
thermal bubble has a power-law fat tail leading to a diverging
variance.

With the aim to keep the toy model as simple as pos-
sible and avoid introducing further “fitting” parameters, we
approximate the system in terms of only two species of spins,
namely ρL active ergodic spins [66] and (1 − ρ)L noninter-
acting (frozen) spins. This approximation does not contain any
partially frozen/nonergodically active spins for simplicity. As
�(x) is not sensitive to the phases of the eigenstate’s coef-
ficients, and both ergodic and noninteracting limits of it are
given by the binomial distribution in Eq. (11), we approximate
the contributions of ergodic and frozen spins to the many-
body wave function as the noninteracting ones [Eq. (2)], with

sin2 θi
2 = 1

2 for ρL active spins and sin θi = 1/

√
1 + h2

i for the
remaining (1 − ρ)L frozen ones, as they are subject to strong
fields hi. Due to self-averaging of the noninteracting contribu-
tion (14) we describe it by the mean value of p, Eq. (12). In
this model, ρ plays the rote of the density of ergodic bubbles.

Within the above approximation, one can easily find �(x)
as follows. At a spin-flip distance x from the eigenstate maxi-
mum we take k spin flips of ergodic type and r − k of frozen
type. The number of such paths from the maximal configura-
tion point in the Fock space is given by

Nk,x =
(ρL

k

)(
(1 − ρ)L

x − k

)
, (26)
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where the first combinatorial factor counts the number of pos-
sible selection of k indistinguishable spin-flips of the ergodic
type out of ρL available ones, the second one counts the
number of possible r − k indistinguishable spin-flips of the
frozen type out of (1 − ρ)L available ones. The corresponding
wave function intensity averaged over hi will be

|ψk,x|2 = (
1
2

)ρL
px−k (1 − p)(1−ρ)L−x+k . (27)

The total number of selections for any k is given by

Nx =
x∑

k=0

Nk,x =
(L

x

)
. (28)

As a result, one can obtain the probability distribution �(x, ρ)
at the fixed ergodic spin density ρ

�(x, ρ) =
x∑

k=0

Nk,x|ψk,x|2

=
x∑

k=0

�1/2(ρL, k)�p((1 − ρ)L, x − k) (29)

which is simply given by the convolution of two binomial
distributions

�p′ (L′, x′) =
(

L′

x′

)
p′x′

(1 − p′)L′−x′
, (30)

one describing the ergodic bubble (p′ = 1/2) and the other the
remaining frozen spins with p′ = p < 1/2.

Due by the simple nature of the model, the IPRq is the
product of the IPRqs for the ρL ergodic spins and the (1 − ρ)L
frozen ones:

IPRq =
∑
x,k

Nk,x|ψk,x|2q =

=
(

1

2

)(q−1)ρL

[pq + (1 − p)q](1−ρ)L
, (31)

and thus the fractal dimensions, Eq. (5), take the form

Dq(ρ) = ρ + (1 − ρ)D0
q , (32)

with D0
q the fractal dimension of the noninteracting frozen

spins, which is a continuous function of W with Eqs. (7) and
(15). In this approximation any jump in the fractal dimension
Dq(ρ) is directly related to the jump in the bubble density ρ.

By using the Gaussian approximation Eq. (13) for the
binomial distribution Eq. (11), we can estimate the first and
second moment of �(x, ρ) in Eq. (29)

X ρ = L

2
− νεL, (33)

X 2
ρ =

[L

2
− νεL

]2

+ L

[
1

4
− νε2

]
, (34)

and

	X 2
ρ = X 2

ρ − X
2
ρ = L

[
1
4 − νε2

]
, (35)

where ε = 1/2 − p and ν = 1 − ρ � 1. These results hold for
fixed density ρ. For ρ = 0 and p given by (12), they coincide
with the noninteracting results shown in Figs. 4(b) and 4(c) as

green dashed lines, which show plots of Eqs. (33) and (35) for
these parameters.

We emphasize that at any fixed ρ the ratio b(ρ) =
L	X 2

ρ /X ρ (L − X ρ ) is strictly smaller then its binomial value
b in case 0 < ν < 1, ε �= 0, which contradicts the numerics
in the critical region [see the inset of Fig. 4(c)] as

X ρ

L

(
L − X ρ

) = L

[
1

4
− ν2ε2

]
(36)

is smaller than the one in Eq. (35). This observation underlines
the importance of the fluctuations of ρ and the corresponding
disorder average. Moreover, even the scaling of the maximum
of 	X 2 ∼ Lα , α > 1, from the exact numerics with L contra-
dicts (35) with fixed ρ.

In order to recover the observed behavior of b > 1 in
Fig. 4, it is crucial to take into account the nontrivial distri-
bution P(ρ) of the density of ergodic spins and perform the
average over it. After averaging Eqs. (32), (33), and (34) and
abbreviating∫ 1

0
ρP(ρ)dρ = ρ̄ ≡ 1 − ν̄,

∫ 1

0
ρ2P(ρ)dρ − (ρ̄)2 = σ 2

ρ ,

(37)

one straightforwardly obtains

D̄q = 1 − ν̄(1 − D0
q ) , (38)

X = L

2
− ν̄εL, (39)

	X 2 = σ 2
ρ ε2L2 + L

[
1
4 − ν̄ε2] . (40)

The properties of the probability distribution P(ρ) of
the density of ergodic spins can be extracted from the
Refs. [27–30]. According to these works the distribution
P(�i ) of the length �i of a single ergodic bubble is (stretch)-
exponential P(�i ) ∼ e−c�d

i , or power law P(�i ) ∼ �i
−α , α > 2

in the MBL phase depending on its type. In the thermal phase,
P(�i ) is sharply concentrated on the length scale L of the sys-
tem size and tends to a delta function for L → ∞, meaning the
entire system is ergodic. At the transition P(�i ) is a power-law
distributed ∼�

−αc
i with the critical exponent 2 � αc � 3 [28],

in order to have finite mean � ∼ L0 and diverging variance
as �2 ∼ L3−αc .

In our consideration we focus on the power-law probability
distribution and determine the power α independently. Due to
entropic reasons, the mean density ρ of the ergodic bubbles
has to be finite even in the MBL phase. This density can be
approximated by the sum of individual bubbles of lengths �i

normalized by the system size

ρ ≈
K∑

i=1

�i

L
, (41)

where K is a cut-off ensuring finite total length of order L
of the chain. In the simplest approximation of independent
identically distributed random �i one can apply the central
limit theorem to ρ.

In the MBL phase where the mean and the variance of the
length of a single ergodic bubble are finite, � ∼ L0, �2 ∼ L0,
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i.e., α > 3, and the number of bubbles scales as K ∼ L due to
the boundness of ρ = K�/L ∼ L0, one obtains the Gaussian
distribution of ρ with the variance decaying as

σ 2
ρ (W > Wc) = ρ̄2 − ρ̄2 ∼ 1

L
, (42)

consistent with self-averaging. This also immediately con-
firms the self-averaging of Dq via Eq. (32). In a ergodic phase,
the variance σρ (W < Wc) is exponentially small in L as ρ →
1. At the MBL transition self-averaging of ρ breaks down in
this model only if �2 → L3−αc diverges in the thermodynamic
limit, i.e., αc < 3. Due to the finite mean density

ρ =
K∑

i=1

�i

L
= K

L
max

(
L0, L2−αc

) ∼ L0 , (43)

the number of ergodic bubbles scales as K ∼ min(L, Lαc−1),
which puts the lower bound on αc > 1. The corresponding
scaling of the variance takes the form

σ 2
ρ (W  Wc) ∼ min

(
L0, L2−αc

)
, 1 < αc < 3 . (44)

The condition of 	X 2 scaling faster than L is in agreement
with the observations in Fig. 4(c), and requires αc < 3, which
ultimately leads to the decay of the variance with L, but slower
than L−1. As a consequence, both in the MBL phase and at the
transition the most significant contribution to 	X 2 in (40) is
given by the large fluctuations in ρ, cf. Eqs. (42) and (44).

The lack of self-averaging of Dq in Eq. (32) implies the
more restrictive condition αc � 2. This is consistent with
the finite mean � ∼ L0 of a single bubble, αc � 2, only at the
value αc = 2.

To summarize, in the ergodic phase ρ = 1 − ν goes to
unity exponentially ∼e−ηL and its variance has to decay also
at least exponentially and therefore 	X 2(W � Wc)  L/4, as
expected in the ergodic case. In the MBL phase ρ is finite and
the variance decays as 1/L [cf. Eq. (42)], which yields a linear
behavior of the mean X ∼ L [cf. Eq. (39)], and the variance
	X 2 ∼ L [cf. Eq. (40)]. At the transition, W = Wc, according
to Eq. (44), the variance of ρ is large compared to L−1 and,
thus, it provides the main contribution to 	X 2 ∼ L4−αc � L,
with 2 � αc � 3, i.e.,

	X 2/L ∼
⎧⎨⎩1/4 W < Wc,

L3−αc W = Wc,

< 1/4 W > Wc.

(45)

Finally, the constraint αc = 2 implies also that Dq is not self-
averaging at the transition.

Thus, we have shown that our numerical results can be
explained by considering a simple toy model of dilute ergodic
bubbles embedded into a sea of frozen clusters. In particular,
the divergence in 	X 2/L requires to describe the probability
distribution of the length of a typical ergodic bubble by a fat-
tailed power-law distribution, which has diverge fluctuations
at the transition,

	D2
q ∼ σ 2

ρ ∼
⎧⎨⎩e−ηL W < Wc,

L2−αc W = Wc,

L−1 W > Wc.

(46)

(a) (b)

FIG. 5. (a) Fractal exponent D2 and (b) its variance 	D2
2 for the

noninteracting Aubry-André model with the many-body fermionic
half-filling for several L vs the amplitude of the quasiperiodic po-
tential W . The vertical black dashed line points to the critical point
Wc = 2. The y axis of panel (b) has been rescaled to show that D2

is self-averaging (	D2
2 ∼ 1/L). The inset shows D2 for W > 2 as a

function of the localization length ξ−1
loc = logW/2.

V. CONTINUITY OF THE TRANSITION FOR
NONINTERACTING SYSTEMS

In the previous sections, we have considered numerically
the MBL transition from a Fock space perspective. We have
shown that it is could be characterized by a finite jump in
the fractal dimensions Dq, which are not self-averaging at the
critical point. This scenario is consistent with the avalanche
theory, which predict a KT-type scaling at the transition and
therefore a finite jump on the inverse localization length
ξ−1

loc . For a contrast, we now investigate the case in which
the system undergoes a delocalization-localization transition
with continuous ξ−1

loc , corresponding to the divergence of the
localization length at the transition, limW →Wc ξloc → ∞. Con-
cretely, we consider the noninteracting Aubrey-André model

ĤAA = −1

2

∑
i

ĉ†
i+1ĉi + h.c. + W

∑
i

hîc
†
i ĉi, (47)

where ĉ†
i (̂ci) is the fermionic creation (annihilation) opera-

tor at site i, hi = cos (2πβi + δ) is a quasiperiodic potential
with β = (

√
5 + 1)/2, and δ is a random phase uniformly

distributed in the interval [0, 2π ). This single-particle model
is known to have an Anderson transition at Wc = 2 between
extended (W < 2) and localized (W > 2) phases [67]. The
single-particle localization length at transition diverges as
ξloc ∼ 1/ logW/2. We consider noninteracting ĤAA with the
many-body fermionic filling and focus on multifractal struc-
ture of the Slater-determinant many-body wave functions in
the Fock space. For this reason, we take the model on L sites
in the chain at half-filling N = L/2, where N is the number
of particles, maximizing the Hilbert space dimension

(L
N

) ∼
2L/

√
L. Fixing the basis of bare fermions |n〉 = ∏

ni
(̂c†

i )ni |0〉
as the computational basis, with ni ∈ {0, 1}, we rewrite the
model ĤAA in a similar form as Eq. (3) and investigate the
ergodic properties of its eigenstates in the Fock space.

Figure 5(a) shows the fractal dimension D2 for the eigen-
states of ĤAA constructed as a Slater determinant of taken at
random N single-particle eigenstates. In the extended phase,
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W < 2, the fractal dimension tends to unity, meaning that the
typical eigenstate covers homogeneously the available Hilbert
space. Instead, in the single-particle localized phase W > 2,
D2 converges to a strictly positive value smaller than one. In
fact, we expect that IPR2 ∼ ( 1

ξloc
)L similarly to a noninteract-

ing spin chain Eq. (7), and as a consequence D2 ∼ log ξloc

close to the transition. Inset of Fig. 5(a) shows D2 as function
log ξloc giving an evidence of our prediction and therefore
the many-body D2 does not experience a jump across the
transition. Another important consequence is that D2 is self-
averaging as shown in Fig. 5(b), 	D2

2 ∼ 1/L, everywhere
including the transition. This self-averaging property should
be compared to the one observed in the MBL model, for which
the fractal dimensions are not self-averaging close to the MBL
transition.

VI. CONCLUSIONS

In this paper we have studied the MBL transition of a
chain of interacting spins from a Fock space point of view. In
addition to the standard diagnostic tools for ergodicity such as
fractal dimensions and entanglement entropy, we consider the
radial probability distribution of eigenstate coefficients with
respect to the Hamming distance in the Fock space from the
wave function maximum. We show that this radial probability
distribution gives important insights about the integrals of
motion of the problem and allows to extract the localization
length from the cumulants of the distribution.

Numerically we have found that both the fractal dimen-
sions and the radial probability distribution have strong
fluctuations at the critical point. The fractal dimensions at
the transition are not self-averaging and the probability distri-
bution is extremely broad. This divergence provides a rather
strong evidence of the existence of a possible jump of the
fractal dimensions as well as of the localization length across
the MBL transition.

Inspired by recent studies of renormalization group and
avalanche MBL theory, we explain our findings by introduc-
ing a simple spin toy model. This model hosts a finite density
of ergodic/thermal bubbles as well as frozen/localized spins.
The MBL transition occurs by tuning the density of the

ergodic bubbles. At the transition the probability distribution
of the bubble density is fat-tailed in agreement with the RG
studies. Using this simple model, we are able to explain our
numerical findings, and thus to bridge the gap between recent
studies of the nature of the MBL transition in the “real space”
and in the Fock space perspectives.

As a result, we show that the MBL transition can be seen
as a transition between ergodic states to nonergodic extended
states and we put an upper bound on the disorder scaling
for a genuine Anderson localized regime with respect to the
noninteracting case.

Finally, we provide an example of the many-body (non-
interacting) model with a continuous localization transition
showing the self-averaging of fractal dimensions in the whole
range of parameters. This model confirms the conjectured
relation between the nonself-averaging property of the fractal
dimensions and their finite jump at the localization transition.

As the next steps in this direction it would be interest-
ing to apply the developed tools to systems with few global
constraints (like particle number conservation) or the driven
systems undergoing the MBL transition in order to understand
the similarities of the nonself-averaging nature of the fractal
dimension and the moments of the radial distribution in such
models. Another possible direction might be to provide the
analytical arguments in favor of the scenario of the saturation
of the bound [44] at the transition with the following jump in
the fractal dimension to the value smaller than Dq < 1/2.
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