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Abstract 

This paper proposes a manifold learning method for the automatic identification of the H-mode 

degrading and breakdown phases, and the MARFE occurrence for H-mode density limit 

disruptions at ASDEX Upgrade. The potentiality of the isometric feature mapping (ISOMAP) 

in dimensionality reduction has been exploited to achieve the 3D mapping of the high 

dimension operational space. The projection of test samples into the ISOMAP allows the 

monitoring of the H-mode density limit disruption through its characteristic phases and events 

making possible the automatic detection of their occurrence. 

Introduction 

At present days, the prediction of disruptions can be addressed to provide an alarm sufficiently 

far in advance to apply either effective disruption avoidance for discharge maintenance, or 

mitigation actions for preventing the machine to be damaged. Each type of disruption follows 

a sequence of events, i.e., its own path, until the discharge disrupts. Such path will serve as the 

physics basis for early disruption handling. This paper focuses on the detection of the key 

phases on disruptions provoked at ASDEX Upgrade by forcing a density limit in H-mode. In 

[1], four distinct operational phases are identified in H-mode density limit: stable H-mode, 

degrading H-mode, H-mode breakdown, L-mode. In [2], a 2D plasma-state boundary is 

proposed to detect the break-down of the H-mode as an early sensor for avoiding H-mode 

density limit (HDL) disruptions and recovering them to full performance. Furthermore, in HDL 

disruptions the plasma is strongly cooled from the edge and this is typically accompanied by a 

MARFE. In this paper, in view of developing an HDL disruption predictor, a Machine Learning 

(ML) algorithm is proposed to identify the starting of the degrading and breakdown phases and 

the MARFE formation in the X-point region. Among ML algorithms, an unsupervised 

nonlinear dimensionality reduction algorithm, the ISOMAP [3], has been investigated to map 

the high-dimensional operational space of the AUG - HDL disruptions into a 3D map. By 

projecting a test pulse into the ISOMAP it is possible to track its evolution throughout the 
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characteristic HDL chain of events. In particular, a criterion is proposed to automatically detect 

the beginning of the H-mode degrading and breakdown phases (tDG and tBD respectively) and 

the MARFE formation time (tM).  

Database 

The considered database consists of 26 disruptions coming from HDL dedicate experiments 

performed at AUG from 2011 to 2016. For each disruption, tDG, tBD and tM were manually 

identified. In this work, the data are featured by 14 plasma parameters: safety factor, internal 

inductance, plasma energy, feed forward gas puff rate, electron density from a peripheral DCN 

interferometer line of sight, Greenwald fraction, total input power. Moreover, to include the 

spatiotemporal information held by the plasma profiles, the mean value of the radiated power, 

from the foil bolometer horizontal camera, has been evaluated over the whole cords and among 

the upper, the core and the divertor chords separately. Finally, the electron temperature mean 

value from the ECE radiometer over inner, intermediate and outer channels have been included. 

Method and discussion 

The ISOMAP is a nonlinear technique that performs dimensionality reduction preserving the 

geodesic distance in a lower dimension. The geodesic distance matrix is estimated by first 

constructing a graph with Euclidean distances between neighbour points as edge weights, and 

then approximating the geodesic distance between all pairs of points by measuring the shortest 

path distance on the graph. Through eigenvalue decomposition of the geodesic distance matrix, 

the low dimensional embedding of the dataset can be attained. In this work, for sake of 

visualization, the mapping is displayed visualizing the three most relevant principal 

components (a1, a2, a3). Figure 1, lefts side, reports the 3D ISOMAP for the 14D HDL 

operational space defined by 20 pulses, where the samples has been coloured depending on 

their membership to the different phases. The phase from the flat-top of the plasma current 

beginning until the tDG is labelled as “stable” and coloured in green. The degrading of H-mode 

is orange, and the phase from tBD to the disruption time (tD) is red (labelled as breakdown). 

Instead, figure 1, right side, reports the 3D ISOMAP for the 14D HDL operational space defined 

by 17 pulses, where the colours identify the phase before (cyan) and after (magenta) the 

MARFE occurrence. Note that, the ISOMAP is an unsupervised algorithm, thus the information 

about the sample membership is not exploited during the algorithm training, it is just added to 

the low-dimensional display. For both mapping, the colouring highlights as the different HDL 

phases are quite separated.  

This paper proposes a best matching method to project into the ISOMAP test samples, thus not 
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Figure 1: 3D ISOMAP for the 14D HDL operational space. Left side, the samples has been coloured depending 

on their membership to the different phases: stable (green), degrading (orange) and breakdown (red). Right side, 

the colours identify the phase before (cyan) and after (magenta) the MARFE occurrence. 

belonging to the graph built during the ISOMAP training, in order to track the pulse evolution 

throughout the several HDL phases. As an example, Figure 2 left sides, shows the projection of 

the test pulse #33680 (in grey) on 2D MARFE-ISOMAP (plane a1, a2). The shade from light 

grey to black indicates the geodesic distance reduction of the samples from the closest MARFE. 

It has been noted that the pulse trajectory starts in the region free from MARFE (light grey), 

then reaches a region populated by MARFE affected samples, where geodesic distance falls 

down (black), and finally evolves progressively increasing the geodesic distance again (grey). 

The evolution of the pulse into the map suggests to use the ISOMAP for automatically 

identifying the MARFE formation time tM. Moreover, the same rationale can be implemented 

for identifying tDG and tBD, allowing us to plan avoidance actions reliably before the disruption 

occurrence. To this purpose, a function has been defined which provides the dissimilarity of 

each sample to the stating points tDG, tBD and tM represented in the mapping. When a test sample 

is projected into the map, the average of geodesic distance of its k neighbours from the starting 

points is evaluated, then the minimum average is assumed as the dissimilarity measure from the 

considered event. Figure 2, right side, reports the dissimilarity function (black line) from the 

MARFE occurrence for the test pulse #33680, and its minimum value match with the manually 

identified tM (red line). Therefore, for each staring time, an alarm criterion has been optimized 

based on a dissimilarity threshold value and a dissimilarity function time derivative. In 

particular, an alarm is triggered when the dissimilarity measure falls underneath an optimized 

threshold, or the dissimilarity function decreases faster than a speed limit. Figure 3 reports the 

difference between the automatically identified times and the manual detected ones (Δt=tauto-

tmanual), both for training (red circle) and test pulses (black circle). From the top to the bottom, 

the subplot refers to tDG, tBD and tM automatic detection. In each subplot, the horizontal dashed 

black lines report the shortest length, observed in the training set, of the phase following its 

own starting time. Six shots have been used as test for detecting tDG, tBD, and 9 shots for detecting 
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tM, for 2 of which no MARFE occurrence was manually detected. With the proposed method, 

no false Alarms were triggered for MARFE events, and only one starting event is missed for 

the degrading H-mode phase. 

 
Figure 2.  Left side: projection of the test pulse #33680 into the MARFE-ISOMAP (plane a1, a2), the shade from 

light grey to black indicate the geodesic distance reduction of the samples from the closest MARFE. Right side: 

dissimilarity function from the MARFE occurrence (black line), manually identified MARFE time (red line). 
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Conclusion 

The proposed ML method allows the automatic 

detection of the staring time, with deviations from 

the manually identified times, within 273 ms for 

the degrading H-mode phase, 248 ms for the H-

mode breakdown and 36 ms for the MARFE 

occurrence. One degrading H-mode starting time 

is missed, and no false alarms were triggered for 

MARFE events. A larger database is under 

construction to improve method generalization 

capability and to test false alarms on no HDL 

disruptions.  

Figure 3.  Difference between the automatically identified 

times and the manual detected ones for training (red circle) 

and test set (black circle) for the different HDL events. 
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