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Physics Insights from Neural
Networks
Researchers probe a machine-learning model as it solves physics problems in order to
understand how such models ‘‘think.’’

by Mario Krenn∗,‡

M achine-learning models based on neural net-
works are behind many recent technological ad-
vances, including high-accuracy translations of
text and self-driving cars. They are also increas-

ingly used by researchers to help solve physics problems
[1]. Neural networks have identified new phases of matter
(see QA: A Condensed Matter Theorist Embraces AI) [2], de-
tected interesting outliers in data from high-energy physics
experiments [3], and found astronomical objects known as
gravitational lenses in maps of the night sky (see QA: Paving
A Path for AI in Physics Research) [4]. But, while the results
obtained by neural networks proliferate, the inner workings
of this tool remain elusive, and it is often unclear exactly
how the network processes information in order to solve a
problem. Now a team at the Swiss Federal Institute of Tech-
nology (ETH) in Zurich has demonstrated a way to find this

Figure 1: Machine-learning tools can be applied to solve
challenging questions in physics. Now Raban Iten, Tony Metger,
and colleagues demonstrate a way for humans to investigate
which physical concepts the neural network discovered when it
derived its answer. (APS /Alan Stonebraker)
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information [5]. Their method could be used by human sci-
entists to see a problem—and a routing to solving it—in an
entirely new way.

A neural network is a computational tool whose operation
is loosely modeled on that of the human brain. The network
typically consists of multiple layers of connected artificial
neurons, which carry out calculations. The connections be-
tween neurons are weighted and those weights—which can
number in the millions to billions—form the tunable param-
eters of the network. The beauty of neural networks lies
in the fact that they don’t need to be programmed to solve
a task. Rather, they learn by example, adjusting their pa-
rameters such that the solutions they output improve over
time. For instance, to train a neural network to recog-
nize a face, the network is given many different pictures
of the same person. The network then learns to recognize
this face—changing the weights of the connections until its
“recognition quality” is sufficiently reliable. The trained
network can then match other pictures to the same per-
son without the user having to provide detailed information
about specific characteristics of the person’s face.

While neural networks can learn to solve enormously di-
verse tasks, the inner workings of these models are often
a black box. One way to understand what a network has
learned is to look at its weights. But doing that is typically
intractable because of their large number. This lack of under-
standing about how neural networks operate is particularly
unsatisfying in physics: the tool can solve challenging prob-
lems, yet we do not know what rules and principles it used
to produce the solutions. That is where the new result of
Raban Iten, Tony Metger, and colleagues comes in [5].

The team started out with a standard neural network
made up of seven layers. They then modified the network
in two crucial ways. First, they altered layer four—the mid-
dle layer of the network—so that it had fewer neurons than
the other layers, creating a so-called information bottleneck.
In one case, for example, they reduced the number of neu-
rons this layer contained from 100 to 2 (Fig. 1). (The input
and output layers for that case each also had two neurons).
In other cases, the altered layer had more neurons, but the
number was always less than 10. Second, they coded this al-
tered layer so that each of its neurons contained independent
information. The technique they adapted to do this coding
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is called disentanglement of variables and comes from the
field of computer vision [6, 7]. Going back to the face recog-
nition example, this modification means that one neuron in
the altered layer might contain the shape of the mouth and
another the size of the eyes. Together, the two modifications
mean that the final neural network, which the team named
SciNet, has a few-parameter layer in which each neuron
contains information about an independent property of the
problem being solved, making the network easier to study.
It is this layer that the team probed to investigate the net-
work’s internal workings.

To study the neural network, the team asked SciNet to
solve different physics problems, the most representative be-
ing an astronomical one. For this problem, SciNet was given
the angular coordinates of Mars and the Sun, which were
measured from Earth with respect to some fixed stars. The
neural network was then asked to predict the future posi-
tions of these celestial objects. After the training process,
the team looked at the weights associated with the two neu-
rons they had in layer four of the network to gain insight
into how SciNet solved the task. By analyzing the outputs of
the neurons in the middle layer, they found that SciNet per-
formed a coordinate transformation, changing the angles of
Mars so that they appeared to have been measured from the
Sun rather than from Earth. That means, impressively, that
SciNet switched from a geocentric to a heliocentric world-
view, without explicitly being told to do so.

The demonstration by the ETH team allowed them to un-
derstand how the neural network solved a variety of specific
tasks. But the result has wider importance. By understand-
ing the inner workings of neural networks, physicists could
use them to gain new insights and conceptual understand-
ing of a problem—not just the final answer. For example,
one could train SciNet to predict the outcomes of measure-
ments of a quantum system to see how the network links
the mathematical theory of quantum mechanics with reality.
Another exciting opportunity for SciNet is studying the rota-
tion curves of galaxies. Physicists still don’t understand why
the stars in galaxies spin faster than predictions indicate they

should for their visible mass, leading to the hypothesis that
there is some unknown “dark matter” mass in the Universe.
It would be fantastic to learn whether SciNet solves the prob-
lem by adding in hidden dark matter masses, modifying the
laws of gravity, or using an entirely different representation,
which astrophysicists could then interpret. SciNet’s answer
could help point researchers in new directions to solve this
long-standing, important problem.

This work therefore makes a step towards using machine-
learning models as a source of inspiration in science, helping
researchers find new ideas about physical problems and
augmenting human creativity. Hopefully—in a few years,
when these methods are better understood and are ap-
plied to unanswered scientific questions—they will lead to
new conceptual understanding and thereby accelerate the
progress of physics itself.

This research is published in Physical Review Letters.
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