Supporting Crystallographic Information

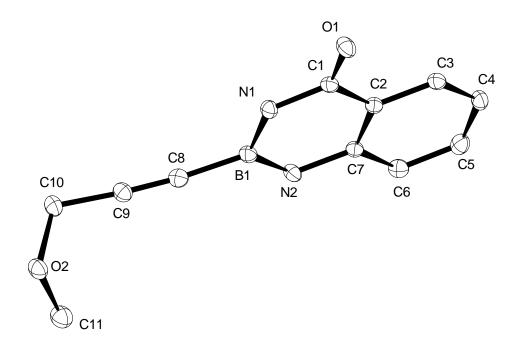


Figure S1. Structure of compound 22 in the solid state; arbitrary numbering.

X-ray Crystal Structure Analysis of Compound 22. $C_{11} H_{11} B N_2 O_2$, $Mr = 214.03 g \cdot mol^{-1}$, colorless prism, crystal size 0.163 x 0.138 x 0.090 mm³, monoclinic, space group $P2_1/c$, a = 7.4918(2) Å, b = 15.6775(5) Å, c = 9.0919(3) Å, $\beta = 92.3000(10)^{\circ}$, V = 1067.01(6) Å³, T = 100(2) K, Z = 4, $D_{calc} = 1.332 g \cdot cm^3$, $\lambda = 1.54178$ Å, $\mu(Cu-K\alpha) = 0.747 mm^{-1}$, Gaussian absorption correction ($T_{min} = 0.92$, $T_{max} = 0.95$), Bruker-AXS Kappa Mach3 APEX-II diffractometer with FR591 rotating Cu-Anode, $5.628 < \Theta < 71.430^{\circ}$, 32168 measured reflections, 2053 independent reflections, 1908 reflections with $I > 2\sigma(I)$, $R_{int} = 0.0306$.

The structure was solved by direct methods and refined by full-matrix least-squares against F^2 to $R_I = 0.033$ [$I > 2\sigma(I)$], $wR_2 = 0.092$, 154 parameters. The hydrogens at N1 and N2 were found and refined the other hydrogens were refined using a riding model, S = 1.065, residual electron density 0.2 (0.92 Å from N2)/ -0.2 (0.81 Å from N2) e · Å⁻³. **CCDC- 2083795**.

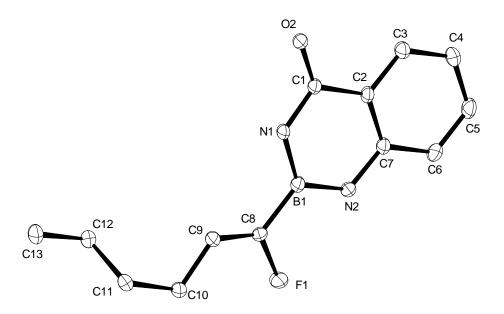


Figure S2. Structure of compound 47d in the solid state; arbitrary numbering scheme.

X-ray Crystal Structure Analysis of Compound 47d. C_{13} H_{16} B F N_2 O, Mr = 246.09 g·mol⁻¹, colorless needles, crystal size $0.24 \times 0.06 \times 0.05$ mm³, triclinic, space group P1, a = 5.0306(9) Å, b = 9.5904(19) Å, c = 13.414(3) Å, $\alpha = 99.42(2)^{\circ}$, $\beta = 98.56(2)^{\circ}$, $\gamma = 101.383(13)^{\circ}$, V = 614.8(2) Å³, T = 100(2) K, Z = 2, $D_{calc} = 1.329$ g·cm³, $\lambda = 0.71073$ Å, $\mu(Mo-K\alpha) = 0.094$ mm⁻¹, Gaussian absorption correction ($T_{min} = 0.99$, $T_{max} = 1.00$), Bruker-AXS Kappa Mach3 APEX-II diffractometer with FR591 rotating Mo-anode, $2.954 < \Theta < 33.101^{\circ}$, 11152 measured reflections, 4469 independent reflections, 3207 reflections with $I > 2\sigma(I)$, $R_{int} = 0.0452$.

The structure was solved by direct methods and refined by full-matrix least-squares against F^2 to $R_I = 0.053$ [$I > 2\sigma(I)$], $wR_2 = 0.146$, 172 parameters. The hydrogens at N1 and N2 were found and refined the other hydrogens were refined using a riding model, S = 1.049, residual electron density 0.4 (0.71 Å from C12)/ -0.3 (0.65 Å from C1) e · Å⁻³. **CCDC- 2083794**.

Supporting Spectroscopic Information

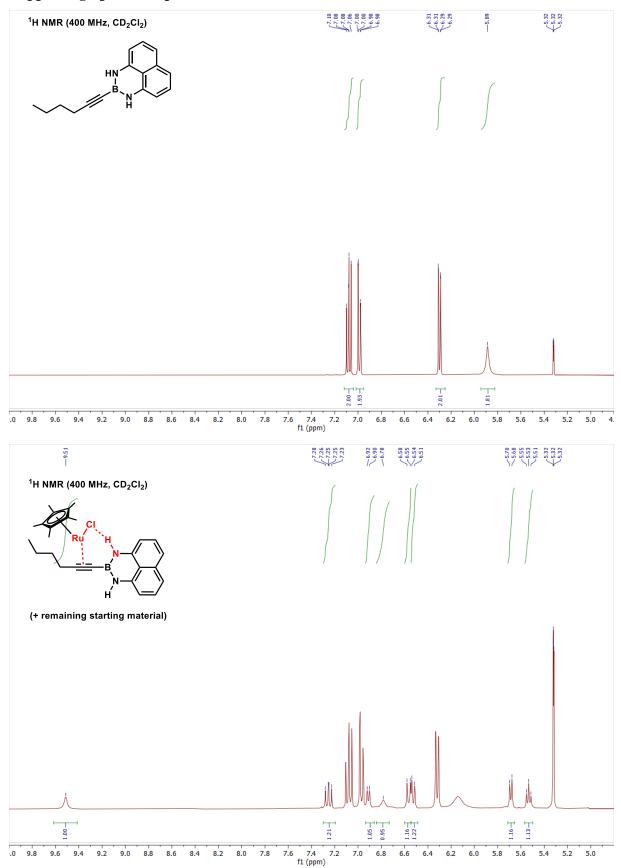



Figure S3. ¹H NMR spectra of the –B(dan) substrate 1d and the derived ruthenium complex 3

Figure S4. Temperature-dependence of the ¹H NMR spectrum (CDCl₃) of compound **4**: only a slight deshielding of the –NH signals is observed but no second signal set, as expected if two tautomeric forms of the heterocylic ring were present in solution

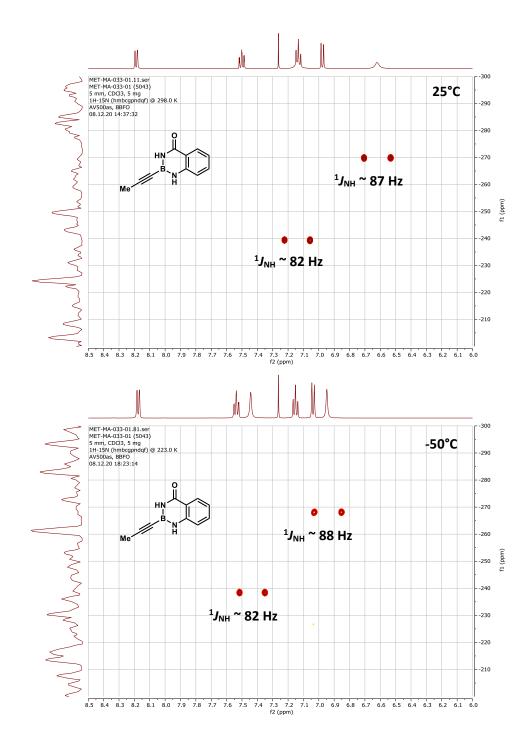
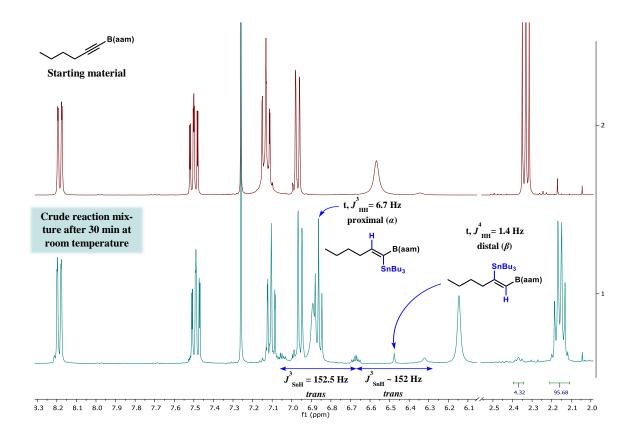



Figure S5. ¹H-¹⁵N HSQC experiments at 25°C and -50°C

Figure S6. ¹H NMR spectra (CDCl₃) of model substrate **1e** and the resulting crude reaction mixture comprising the *alpha,trans*-addition product **2e** as the major component

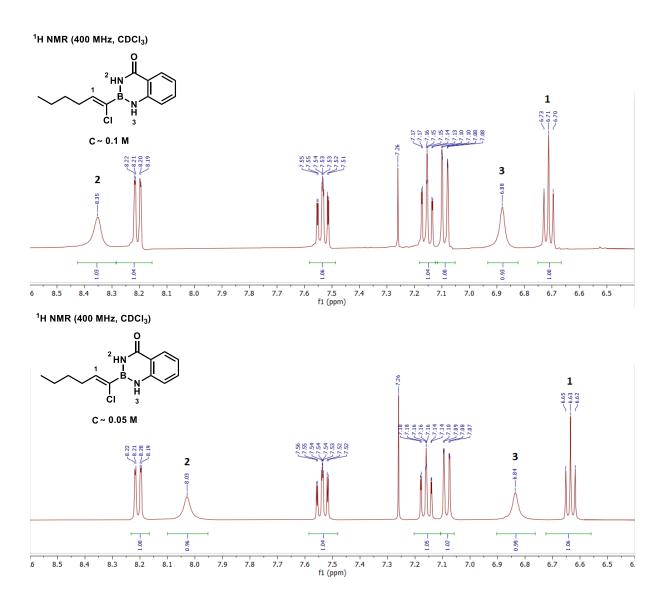


Figure S7. ¹H NMR spectrum of compound 47c at two different concentrations

Table S1. Compilation of characteristic NMR data of boron capped alkynes $nBu\mathbb{C}_{\beta} = \mathbb{C}_{\alpha} - BX_2$

-BX ₂	δ N <u>H</u>		δCα	δCβ	Δδ C	δΒ
	(ppm) ^a		(ppm) ^b	(ppm) ^b	(ppm)	(ppm)
-B(pin)	-		76.6	105.2	28.6	23.5
-B(dan)	5.77		79.8	105.2	25.4	21.6
-B(aam)	6.56	7.12	78.5	107.9	29.4	21.7
HN HN HN HN HN HN HN HN HN	-	7.19	79.4	110.3	30.9	22.8
Me N H	6.62	-	79.6	109.9	30.3	23.1
Me N N N N N N N N N N N N N N N N N N N	-	-	80.1	112.8	32.7	24.1
HN H	6.62	7.07	78.2	108.5	30.3	21.7
HN F	6.60	7.18	78.5	108.3	29.8	21.4
a determined by 1 H NMR; b determined by 1 H- 13 C HMBC NMR experiments.						

General Information

Techniques. Unless stated otherwise, all reactions were carried out under Argon in flame-dried glassware using Schlenk techniques, employing double-line argon-vacuum manifolds. Analytical thin layer chromatography (TLC) was performed using pre-coated polyester sheets (40 x 80 mm) POLYGRAM® SIL G/UV₂₅₄ (0.20 mm silica gel 60 with fluorescent indicator). Visualization of the developed chromatogram was performed by UV absorbance (254 nm) and/or TLC stains (KMnO₄, p-anisaldehyde, phosphomolybdic acid). Flash chromatography was performed using Merck Geduran silica gel 60 (40 – 63 μ m) with the indicated solvent systems.

Chemicals. The following solvents and organic bases were purified by distillation over the indicated drying agents and were transferred under Ar: THF (Mg/anthracene); pentane, hexane, toluene (Na/K); CH₂Cl₂ (CaH₂); MeOH (Mg, stored over 3 Å MS). DMF, DMSO, 1,4-dioxane, MeCN and pyridine were dried by an adsorption solvent purification system based on molecular sieves. All other commercially available compounds (ABCR, Acros, Alfa Aesar, Aldrich, Fluka, STREM, TCI) were used as received, unless otherwise noted. *n*Bu–BPin, *n*Bu–BF₃K and *n*Bu–BF₃NBu₄ were prepared according to literature procedures. Commercial Bu₃SnH is stabilized with 0.05% of 3,5-di-*tert*-butyl-4-hydroxytoluene, which was not removed in any of the reactions described herein. The following catalysts were prepared according to the cited literature: [Cp*Ru(CH₃CN)₃]PF₆, Cp*RuCl₂]n, and [Cp*RuCl₄.

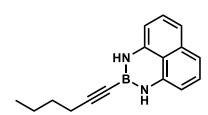
Instrumentation. NMR spectra were recorded on Bruker AV 300, AV 400, AV 500 or AVIII 600 spectrometers in the solvents indicated. Chemical shifts (δ) are reported in ppm relative to TMS; coupling constants (J) are given in Hz. Multiplets are indicated by the following abbreviations: s = singlet, d = doublet, t = triplet, q = quartet, quint = quintuplet, hex = hexuplet, sept = septuplet, m = multiplet. The abbreviation br indicates a broad signal. ^{11}B , ^{13}C , ^{19}F and ^{119}Sn spectra were recorded in $\{^{1}H\}$ -decoupled manner and the values of the chemical shifts are rounded to one decimal point. Signal assignments were established using HSQC, HMBC, COSY, NOESY and other 2D experiments. ^{11}B NMR spectra were referenced to external BF3·OEt2, ^{19}F NMR spectra were referenced to external CFCl3, and ^{119}Sn NMR spectra were referenced to external SnMe4.

Mass spectra were measured using the following devices: MS (EI): S-3 Finnigan MAT 8200 (70 eV), ESI-MS: Bruker ESQ3000, accurate mass determinations: Bruker APEX III FT-MS (7 T magnet) or MAT 95 (Finnigan).

IR spectra were recorded on an Alpha Platinum ATR spectrometer (Bruker) at ambient temperature, wavenumbers (\tilde{v}) are given in cm⁻¹.

Optical rotations were measured with an A-Krüss Otronic Model P8000-t polarimeter at a wavelength of 589 nm. The values are given as specific optical rotation with exact temperature, concent n (c in g/100 mL) and solvent.

Additional Information. Carbon centers directly bound to boron were often not observed in the corresponding ¹³C NMR spectra due to line broadening but could usually be determined via HMBC experiments. Moreover, in the case of alkyne-B(aam) starting materials, even the signal of the distal (in regard of boron atom) alkynyl C-atom could, sometimes, not be observed directly by ¹³C NMR and was also determined via HMBC experiments.

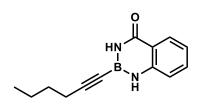

For clarity, Sn–H couplings of the olefinic protons were omitted in the multiplet analysis but are given in brackets (averaged over $^{117/119}$ Sn). The of α - and β -isomer refer to the product containing the tributyltin unit proximal or distal to the boron atom respectively. Unless stated otherwise, the isomer ratio of the purified material was identical to that observed in the 1 H NMR of the crude product.

Substrates

General Procedure for the Prepa n of Boron-Capped Alkynes. A flame-dried Schlenk flask was charged with the selected alkyne (10 mmol) and THF (20 mL) under argon atmosphere. The resulting solution was cooled to -78° C before a solution of *n*-butyllithium (1.6 M in hexane, 6.25 mL, 10 mmol) was added dropwise to the vigorously stirred mixture. After 1 h at -78° C, triisopropyl borate (2.3 mL, 10 mmol) was added dropwise, causing the appearance of a white suspension. After stirring for 2 h at -78° C, a solution of hydrogen chloride in diethyl ether (2 M, 5.25 mL, 10.5 mmol) was introduced, leading to the formation of a clear solution. The dry ice bath was removed and stirring was continued for 30 min while the solution reached room temperature. The mixture was transferred into a round bottom flask (rinsing with *tert*-butyl methyl ether) and concentrated under reduced pressure at a bath temperature of 40°C. The residue was suspended in *tert*-butyl methyl ether and the suspension filtrated through a plug of Celite. The obtained filtrate was concentrated under reduced pressure to yield the crude alkynyl boronate which was immediately used in the next step (diisopropyl alkynyl boronates are prone to polymerization upon standing).

The crude alkynyl boronate was dissolved in toluene (50 mL) and anthranilamide (1.36 g, 10 mmol) was added. The mixture was stirred at 110°C in an open flask for 3h (at this point, ¹H NMR of an aliquot usually showed full conversion). The mixture was cooled to room temperature and concentrated under reduced pressure. The residue was washed with pentane and dried under high vacuum to give analytically pure compound. Alternatively, the crude product was purified by flash chromatography.

2-(Hex-1-yn-1-yl)-2,3-dihydro-1*H***-naphtho**[**1,8-***de*][**1,3,2**]**diazaborinine** (**1d**). Prepared



Chemical Formula: C₁₆H₁₇BN₂ Molecular Weight: 248,14

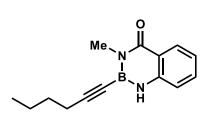
analogously from 1-hexyne (1.15 mL, 821 mg, 10.00 mmol) and 1,8-diaminonaphthalene (instead of anthranilamide) as a colorless solid (1.77 g, 71%). This compound turned into a deep purple solid upon storage, even though 1 H NMR does not indicate significant degradation. 1 H NMR (400 MHz, CDCl₃): δ (ppm) 7.09 (dd, J = 8.4, 7.2 Hz, 2H), 7.01 (dd, J = 8.3, 1.1 Hz,

2H), 6.28 (dd, J = 7.4, 1.1 Hz, 2H), 5.77 (brs, 2H), 2.31 (t, J = 7.0 Hz, 2H), 1.60-1.52 (m, 2H), 1.51-1.41 (m, 2H), 0.95 (t, J = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 140.9, 136.4, 127.6, 119.9, 117.9, 105.8 (observed in HMBC experiment), 105.2, 30.6, 22.1, 19.5, 13.7; ¹¹B NMR (128 MHz, CDCl₃): δ (ppm) 21.6; IR (neat): \tilde{V} (cm⁻¹) 3411, 3380, 2954, 2923, 1860, 2191, 1597, 1505, 1404, 1331, 1195, 1166, 1068, 817, 758; HRMS (ESI): calcd. for C₁₆H₁₈BN₂ [M+H]⁺: 249.1558, found 249.1560.

2-(Hex-1-yn-1-yl)-2,3-dihydrobenzo[d][1,3,2]diazaborinin-4(1H)-one (1e). Prepared ac-

Chemical Formula: C₁₃H₁₅BN₂O Molecular Weight: 226,09

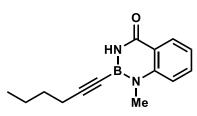
cording to this procedure from 1-hexyne (2.30 mL, 1.64 g, 20.00 mmol). This product was obtained as a colorless solid without flash chromatography (4.29 g, 95%). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.18 (ddt, J = 8.0, 1.5, 0.7 Hz, 1H), 7.50 (ddd, J = 8.1, 7.3, 1.6 Hz, 1H), 7.13 (ddd, J = 8.1, 7.2, 1.0 Hz, 1H), 7.12 (brs, 1H), 6.97 (ddd, J = 8.1, 1.1, 0.5 Hz, 1H), 6.56 (brs,


1H), 2.33 (t, J = 7.0 Hz, 2H), 1.61-1.52 (m, 2H), 1.51-1.40 (m, 2H), 0.95 (t, J = 7.3 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 166.1, 144.2, 134.0, 129.3, 122.1, 119.3, 117.4, 108.0 (observed in HMBC experiment), 30.4, 22.1, 19.5, 13.7; ¹¹B NMR (128 MHz, CDCl₃): δ (ppm) 21.7; IR (neat): \tilde{V} (cm⁻¹) 3255, 2960, 2932, 2902, 2870, 2197, 1609, 1517, 1357, 1261, 758, 472; HRMS (EI): calcd. for C₁₃H₁₅BNO [M]⁺⁺: 226.1272, found 226.1274.

2-(Hex-1-yn-1-yl)-1,3-dimethyl-2,3-dihydrobenzo[d][1,3,2]diazaborinin-4(1H)-one (1f)

Chemical Formula: C₁₅H₁₉BN₂O Molecular Weight: 254,14 Prepared analogously from 1-hexyne (1.15 mL, 821 g, 10.00 mmol) and *N*-methyl-2-(methylamino)benzamide (instead of anthranilamide) as a colorless solid (847 mg, 33%). 1 H NMR (400 MHz, CDCl₃): δ (ppm) 8.34 (dd, J = 8.2, 1.7 Hz, 1H), 7.59 (ddd, J = 8.4, 7.2, 1.6 Hz, 1H), 7.22-7.13 (m, 2H), 3.52 (s, 3H), 3.41 (s, 3H), 2.45 (t, J = 7.0 Hz, 2H), 1.70-1.56

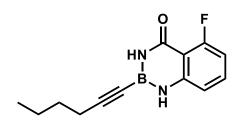
(m, 2H), 1.59- 1.44 (m, 2H), 0.97 (t, J = 7.3 Hz, 3H); 13 C NMR (101 MHz, CDCl₃): δ (ppm) 166.6, 145.6, 133.4, 129.7, 121.7, 119.9, 114.2, 112.8, 35.5, 33.0, 30.6, 22.2, 19.8, 13.7; 11 B NMR (128 MHz, CDCl₃): δ (ppm) 24.1; IR (neat): \tilde{V} (cm⁻¹) 2958, 2933, 2864, 2197, 1647, 1604, 1488, 1474, 1389, 1354, 1170, 754; HRMS (EI): calcd. for C₁₅H₁₉BN₂O [M] + : 254.1585, found 254.1588.


2-(Hex-1-yn-1-yl)-3-methyl-2,3-dihydrobenzo[d][1,3,2]diazaborinin-4(1H)-one (1g). Pre-

Chemical Formula: C₁₄H₁₇BN₂O Molecular Weight: 240,11 pared analogously from 1-hexyne (1.15 mL, 821 mg, 10.00 mmol) and 2-methylaminobenzamide (instead of anthranilamide) as an off-white solid (1.48 g, 62%). 1 H NMR (400 MHz, CDCl₃): δ (ppm) 8.27- 8.20 (m, 1H), 7.47 (ddd, J = 8.1, 7.2, 1.6 Hz, 1H), 7.12 (ddd, J = 8.2, 7.2, 1.1 Hz, 1H), 6.98-6.91 (m, 1H), 6.62 (brs, 1H), 3.37 (s, 3H), 2.38 (t, J = 7.0 Hz, 2H), 1.67-

1.55 (m, 2H), 1.54- 1.42 (m, 2H), 0.96 (t, J = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 166.9, 143.1, 133.2, 129.4, 121.9, 119.4, 116.9, 109.9, 32.5, 30.6, 22.1, 19.6, 13.7; ¹¹B NMR (128 MHz, CDCl₃): δ (ppm) 23.1; IR (neat): \tilde{V} (cm⁻¹) 3316, 1957, 2192, 1628, 1612, 1424, 1314, 763, 701; HRMS (ESI): calcd. for C₁₄H₁₇BN₂ONa [M+Na]⁺: 263.1326, found 263.1324.

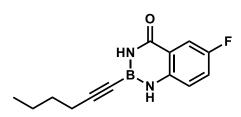
2-(Hex-1-yn-1-yl)-1-methyl-2,3-dihydrobenzo[d][1,3,2]diazaborinin-4(1H)-one (1h). Pre-



Chemical Formula: C₁₄H₁₇BN₂O Molecular Weight: 240,11 pared analogously from 1-hexyne (1.15 mL, 821 mg, 10.00 mmol) and 2-amino-*N*-methylbenzamide (instead of anthranilamide) as a colorless solid (1.86 g, 77%). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.27 (ddd, J = 7.7, 1.8, 0.6 Hz, 1H), 7.62 (ddd, J = 8.9, 7.2, 1.8 Hz, 1H), 7.19 (brs, 1H), 7.24-7.13 (m, 1H), 3.47 (s, 3H), 2.38 (t, J = 7.0 Hz, 2H), 1.64- 1.54 (m, 2H), 1.54-

1.42 (m, 2H), 0.96 (t, J = 7.3 Hz, 3H); 13 C NMR (101 MHz, CDCl₃): δ (ppm) 165.7, 146.5,

134.0, 129.7, 121.7, 120.1, 114.6, 110.3, 35.1, 30.5, 22.1, 19.7, 13.7; 11 B NMR (128 MHz, CDCl₃): δ (ppm) 22.8; IR (neat): $\tilde{\nu}$ (cm⁻¹) 3182, 3077, 2933, 2199, 1660, 1605, 1482, 1392, 1316, 1283, 770, 634; HRMS (ESI): calcd. for $C_{14}H_{17}BN_2NaO$ [M+Na]⁺: 263.1326, found 263.1326.


5-Fluoro-2-(hex-1-yn-1-yl)-2,3-dihydrobenzo[d][1,3,2]diazaborinin-4(1H)-one (1i). Pre-

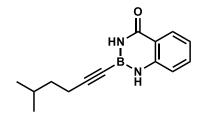
Chemical Formula: C₁₃H₁₄BFN₂O Molecular Weight: 244,08 pared analogously from 1-hexyne (0.57 mL, 411 mg, 5.00 mmol) and 2-amino-6-fluorobenzamide (instead of anthranilamide) as a colorless solid (825 g, 68%). ¹H NMR (400 MHz, CDCl₃): δ (ppm) ¹H NMR (400 MHz, CDCl₃) δ 7.40 (td, J = 8.2, 5.4 Hz, 1H), 7.11 – 7.04 (m, 1H), 6.83 – 6.72 (m, 2H), 6.62 (m, 1H), 2.32 (t, J = 7.0 m, 2H), 0.94 (t. J = 7.3 Hz, 3H); ¹³C NMR (101 MHz)

Hz, 2H), 1.59-1.51 (m, 2H), 1.50-1.39 (m, 2H), 0.94 (t, J = 7.3 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 163.6 (d, J = 3.5 Hz), 163.6 (d, J = 263.0 Hz), 146.4 (d, J = 3.0 Hz), 134.3 (d, J = 11.5 Hz), 113.3 (d, J = 4.0 Hz), 109.6 (d, J = 22.6 Hz), 109.0(d, J = 7.5 Hz), 108.5, 30.4, 22.1, 19.5, 13.7; ¹⁹F NMR (282 MHz, CDCl₃): δ (ppm) –109.9, ¹¹B NMR (128 MHz, CDCl₃): δ (ppm) 21.7; IR (neat): \tilde{V} (cm⁻¹) 3315, 3199, 1960, 2201, 1625, 1519, 1359, 1194, 1050, 775, 459; HRMS (ESI): calcd. for C₁₃H₁₄BFN₂ONa [M+Na]⁺: 267.1075, found 267.1075.

6-Fluoro-2-(hex-1-yn-1-yl)-2,3-dihydrobenzo[d][1,3,2]diazaborinin-4(1H)-one (1j). Pre-

Chemical Formula: C₁₃H₁₄BFN₂O Molecular Weight: 244,08 pared analogously from 1-hexyne (0.57 mL, 411 g, 5.00 mmol) and 2-amino-5-fluorobenzamide (instead of anthranilamide) as a colorless solid (939 g, 77%). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.89-7.81 (m, 1H), 7.24 (ddd, J = 8.9, 7.8, 3.0 Hz, 1H), 7.18 (brs, 1H), 6.96 (dd, J = 8.9, 4.3 Hz, 1H), 6.60 (brs, 1H), 2.33 (t, J = 7.0 Hz, 2H), 1.62-

1.52 (m, 2H), 1.51-1.39 (m, 2H), 0.94 (t, J = 7.3 Hz, 3H); 13 C NMR (101 MHz, CDCl₃): δ (ppm) 165.3 (d, J = 2.5 Hz), 158.0 (d, J = 241.4 Hz), 140.6 (d, J = 2.0 Hz), 121.9 (d, J = 24.1 Hz), 120.3 (d, J = 7.0 Hz), 118.9 (d, J = 7.5 Hz), 114.6 (d, J = 23.6 Hz), 108.3, 30.4, 22.1, 19.5, 13.7; 19 F NMR (282 MHz, CDCl₃): δ (ppm) $^{-1}$ 20.4, 11 B NMR (128 MHz, CDCl₃): δ (ppm) 21.4; IR (neat): \tilde{V} (cm⁻¹) 3414, 3288, 2924, 2859, 2205, 1645, 1494, 1199, 1175, 825, 760, 715, 666; HRMS (ESI): calcd. for C₁₃H₁₄BFN₂ONa [M+Na]⁺: 267.1075, found 267.1073.

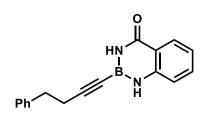

2-(Prop-1-yn-1-yl)-2,3-dihydrobenzo[d][1,3,2]diazaborinin-4(1H)-one (4). Prepared analo-

Chemical Formula: C₁₀H₉BN₂O Molecular Weight: 184,01

gously from preformed propynyllithium (460 mg, 10.00 mmol) as a yellowish crystalline material after recrystallization form toluene (419 mg, 23%). 1 H NMR (400 MHz, CDCl₃): δ (ppm) 8.23-8.13 (m, 1H), 7.55-7.46 (m, 1H), 7.17 (brs, 1H), 7.16-7.08 (m, 1H), 6.98 (d, J = 8.1 Hz, 1H), 6.61 (brs, 1H), 1.99 (s, 3H); 13 C NMR (101 MHz, CDCl₃): δ (ppm) 166.2, 144.2, 134.0,

129.3, 122.2, 119.2, 117.4, 103.4 (observed in HMBC experiment), 4.9; 11 B NMR (128 MHz, CDCl₃): δ (ppm) 21.7; IR (neat): \tilde{v} (cm⁻¹) 3271, 3196, 2208, 1609, 1517, 1357, 749, 474; HRMS (ESI): calcd. for C₁₀H₁₀BN₂O [M+H]⁺: 185.0881, found 185.0881.

2-(5-Methylhex-1-yn-1-yl)-2,3-dihydrobenzo[d][1,3,2]diazaborinin-4(1H)-one (6). Pre-

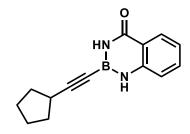


Chemical Formula: C₁₄H₁₇BN₂O Molecular Weight: 240,11

pared analogously from 5-methyl-1-hexyne (962 mg, 10.00 mmol) as a colorless solid (2.11 g, 88%). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.22-8.15 (m, 1H), 7.50 (ddd, J = 8.1, 7.2, 1.6 Hz, 1H), 7.14 (brs, 1H), 7.13 (ddd, J = 8.1, 7.2, 1.1 Hz, 1H), 6.97 (dd, J = 8.2, 1.1 Hz, 1H), 6.59 (brs, 1H), 2.33 (t, J = 7.4 Hz, 2H), 1.80-1.64 (m, 1H), 1.48 (q, J = 7.3 Hz, 2H), 0.93 (d, J = 6.6 Hz,

6H); 13 C NMR (101 MHz, CDCl₃): δ (ppm) 166.2, 144.2, 133.9, 129.3, 122.1, 119.3, 117.4, 108.1, 37.3, 27.4, 22.3, 17.8; 11 B NMR (128 MHz, CDCl₃): δ (ppm) 21.8; IR (neat): $\tilde{\nu}$ (cm⁻¹) 3293, 3200, 2949, 2870, 2201, 1611, 1485, 1356, 1260, 884, 757, 473; HRMS (EI): calcd. for $C_{14}H_{17}BN_2O$ [M]^{+*}: 240.1428, found 240.1432.

2-(4-Phenylbut-1-yn-1-yl)-2,3-dihydrobenzo[d][1,3,2]diazaborinin-4(1H)-one (8). Pre-

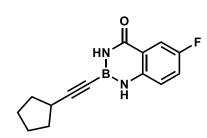

Chemical Formula: C₁₇H₁₅BN₂O Molecular Weight: 274,13

pared analogously from 4-phenyl-1-butyne (1.41 mL, 1.30 g, 10.00 mmol) as a colorless solid (1.01 g, 37%). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.19 (dd, J = 7.9, 1.6 Hz, 1H), 7.50 (ddd, J = 8.6, 7.3, 1.6 Hz, 1H), 7.38-7.29 (m, 2H), 7.29-7.21 (m, 3H), 7.13 (ddd, J = 8.1, 7.2, 1.1 Hz, 1H), 7.09 (brs, 1H), 6.96 (dd, J = 8.1, 1.1 Hz, 1H), 6.54 (brs, 1H), 2.90 (t, J = 7.5

Hz, 2H), 2.63 (t, J = 7.5 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 166.1, 144.1, 140.2, 134.0, 129.3, 128.7, 128.6, 126.7, 122.2, 119.3, 117.4, 106.8, 34.7, 22.0; ¹¹B NMR (128 MHz, CDCl₃): δ (ppm) 21.5; IR (neat): \tilde{V} (cm⁻¹) 3233, 3023, 2199, 1608, 1518, 1359, 1259, 1192,

868, 819, 755, 691, 473; HRMS (ESI): calcd. for $C_{17}H_{15}BN_2ONa$ [M+Na]⁺: 297.1170, found 297.1169.

2-(Cyclopentylethynyl)-2,3-dihydrobenzo[d][1,3,2]diazaborinin-4(1H)-one (10a). Pre-



Chemical Formula: C₁₄H₁₅BN₂O Molecular Weight: 238,10

pared analogously from cyclopentylacetylene (1.16 mL, 942 mg, 10.00 mmol) as an off-white solid (1.88 g, 79%). 1 H NMR (400 MHz, CDCl₃): δ (ppm) 8.21-8.15 (m, 1H), 7.50 (ddd, J = 8.2, 7.3, 1.6 Hz, 1H), 7.15 (brs, 1H), 7.13 (td, J = 7.7, 1.0 Hz, 1H), 7.02-6.93 (m, 1H), 6.60 (brs, 1H), 2.73 (quint, J = 7.6 Hz, 1H), 2.06-1.91 (m, 2H), 1.82-1.73 (m, 2H), 1.73-1.64 (m, 2H), 1.64-1.56 (m, 2H); 13 C NMR (101 MHz, CDCl₃): δ (ppm)

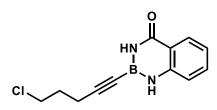
166.3, 144.3, 134.0, 129.3, 122.1, 119.1, 117.4, 112.3, 33.8, 31.0, 25.3; 11 B NMR (128 MHz, CDCl₃): δ (ppm) 21.8; IR (neat): $\tilde{\nu}$ (cm⁻¹) 3270, 2942, 2862, 2184, 1612, 1516, 1356, 1258, 757, 471; HRMS (ESI): calcd. for C₁₄H₁₅BN₂ONa [M+Na]⁺: 261.1170, found 261.1168.

2-(Cyclopentylethynyl)-6-fluoro-2,3-dihydrobenzo[d][1,3,2]diazaborinin-4(1H)-one

Chemical Formula: C₁₄H₁₄BFN₂O Molecular Weight: 256,09

(10b). Prepared analogously from 1-hexyne (0.58 mL, 471 g, 5.00 mmol) and 2-amino-5-fluorobenzamide (instead of anthranilamide) as a yellow solid material (1.11 g, 87%). 1 H NMR (400 MHz, CDCl₃): δ (ppm) 7.85 (dd, J = 8.9, 3.1 Hz, 1H), 7.23 (ddd, J = 8.9, 7.9, 3.0 Hz, 1H), 7.16 (brs, 1H), 6.95 (dd, J = 8.9, 4.3 Hz, 1H), 6.59 (brs, 1H), 2.73 (p, J = 7.5 Hz, 1H), 2.03-1.92 (m, 2H), 1.81-1.72 (m, 2H), 1.72-1.63 (m,

2H), 1.63-1.55 (m, 2H); 13 C NMR (101 MHz, CDCl₃): δ (ppm) 165.3 (d, J = 3.0 Hz), 157.9 (d, J = 241.4 Hz), 140.6 (d, J = 2.0 Hz), 121.8 (d, J = 24.1 Hz), 120.2 (d, J = 7.0 Hz), 118.9 (d, J = 7.5 Hz), 114.6 (d, J = 23.6 Hz), 33.8, 30.9, 25.3; 19 F NMR (282 MHz, CDCl₃): δ (ppm) –120.5, 11 B NMR (128 MHz, CDCl₃): δ (ppm) 21.9; IR (neat): \tilde{V} (cm⁻¹) 3414, 3284, 2948, 2869, 2198, 1646, 1494, 1200, 822, 759, 715, 665; HRMS (EI): calcd. for C₁₄H₁₄BFN₂O [M]⁺⁺: 256.1178, found 256.1177.

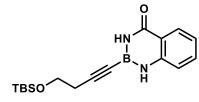

2-(Cyclohexylethynyl)-2,3-dihydrobenzo[d][1,3,2]diazaborinin-4(1H)-one (12). Prepared

Chemical Formula: C₁₅H₁₇BN₂O Molecular Weight: 252,12

analogously from cyclohexylacetylene (1.31 mL, 1.08 g, 10.00 mmol) as an off-white solid material (2.12 g, 84%). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.22-8.14 (m, 1H), 7.50 (ddd, J = 8.2, 7.2, 1.6 Hz, 1H), 7.14 (brs, 1H), 7.18-7.08 (m, 1H), 6.97 (d, J = 8.2 Hz, 1H), 6.60 (brs, 1H), 2.55-2.44 (m, 1H), 1.89-1.80 (m, 2H), 1.80-1.68 (m, 2H), 1.60-1.43 (m, 3H), 1.42-1.22 (m, 3H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 166.1, 144.2, 133.9,

129.3, 122.1, 119.3, 117.4, 112.0, 32.4, 30.0, 25.9, 24.9; ¹¹B NMR (128 MHz, CDCl₃): δ (ppm) 21.8; IR (neat): $\tilde{\nu}$ cm⁻¹) 3293, 3206, 2915, 2844, 2193, 1612, 1515, 1484, 1258, 886, 757, 471; HRMS (EI): calcd. for C₁₅H₁₇BN₂O [M]⁺⁺: 252.1428, found 252.1431.

2-(5-Chloropent-1-yn-1-yl)-2,3-dihydrobenzo[d][1,3,2]diazaborinin-4(1H)-one (14). Pre-

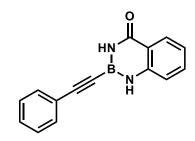


Chemical Formula: C₁₂H₁₂BCIN₂O Molecular Weight: 246,50

pared analogously from 5-chloro-1-pentyne (1.06 mL, 1.03 g, 10.00 mmol) as an off-white solid (2.08 g, 85%). 1 H NMR (400 MHz, CDCl₃): δ (ppm) 8.23-8.15 (m, 1H), 7.51 (ddd, J = 8.2, 7.3, 1.6 Hz, 1H), 7.21 (brs, 1H), 7.14 (ddd, J = 8.1, 7.3, 1.0 Hz, 1H), 7.02-6.96 (m, 1H), 6.67 (brs, 1H), 3.69 (t, J = 6.3 Hz, 2H), 2.54 (t, J = 6.9 Hz, 2H), 2.03 (p, J = 6.7 Hz,

2H); 13 C NMR (101 MHz, CDCl₃): δ (ppm) 166.1, 144.1, 134.0, 129.3, 122.2, 119.4, 117.5, 105.5, 43.6, 31.0, 17.2; 11 B NMR (128 MHz, CDCl₃): δ (ppm) 21.6; IR (neat): \tilde{V} (cm⁻¹) 3314, 3221, 2203, 1612, 1484, 1260, 759, 473; HRMS (ESI): calcd. for $C_{12}H_{12}BClN_2ONa$ [M+Na]⁺: 269.0623, found 269.0621.

2-(4-(tert-Butyldimethylsilyloxy)but-1-yn-1-yl)-2,3-dihydrobenzo[d][1,3,2]diazaborinin-

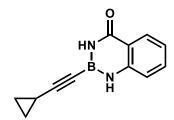

Chemical Formula: C₁₇H₂₅BN₂O₂Si Molecular Weight: 328,29

4(1*H***)-one (16).** Prepared analogously from 4-(*tert*-butyl-dimethylsiloxy)-1-butyne (3.10 mL, 2.77 g, 15.00 mmol) without flash column chromatography as a colorless solid (4.56 g, 93%). 1 H NMR (400 MHz, CDCl₃): δ (ppm) 8.19 (ddd, J = 8.0, 1.5, 0.7 Hz, 1H), 7.50 (ddd, J = 8.1, 7.2, 1.6 Hz,

1H), 7.14 (ddd, J = 8.2, 7.2, 1.1 Hz, 1H), 7.12 (brs, 1H), 7.00-6.94 (m, 1H), 6.57 (brs, 1H), 3.79 (t, J = 6.9 Hz, 2H), 2.55 (t, J = 6.9 Hz, 2H), 0.92 (s, 9H), 0.10 (s, 6H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 166.0, 144.1, 134.0, 129.3, 122.2, 119.4, 117.4, 104.8, 61.6, 26.0, 24.3, 18.5, -5.1; ¹¹B NMR (128 MHz, CDCl₃): δ (ppm) 21.6; IR (neat): \tilde{V} (cm⁻¹) 3373, 3214, 2952, 2927,

2855, 2210, 1648, 1613, 1522, 1094, 831, 776, 748; HRMS (ESI): calcd. for C₁₇H₂₅BN₂O₂SiNa [M+Na]⁺: 351.1671, found 351.1666.

2-(Phenylethynyl)-2,3-dihydrobenzo[d][1,3,2]diazaborinin-4(1H)-one (18). Prepared anal-

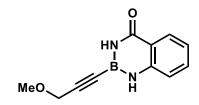


Chemical Formula: C₁₅H₁₁BN₂O Molecular Weight: 246,08

ogously from preformed (phenylethynyl)lithium (1.08 g, 10.00 mmol) as a yellowish solid material (956 mg, 39%). 1 H NMR (400 MHz, CDCl₃): δ (ppm) 8.25-8.19 (m, 1H), 7.57-7.51 (m, 3H), 7.42-7.34 (m, 3H), 7.31 (brs, 1H), 7.17 (ddd, J = 8.1, 7.3, 1.0 Hz, 1H), 7.08-7.00 (m, 1H), 6.75 (brs, 1H); 13 C NMR (101 MHz, CDCl₃): δ (ppm) 166.1, 144.1, 134.1, 132.4, 129.8, 129.4, 128.7, 122.4, 121.9, 119.4, 117.5, 104.9 (observed in

HMBC experiment); ¹¹B NMR (128 MHz, CDCl₃): δ (ppm) 22.1; IR (neat): $\tilde{\nu}$ (cm⁻¹) 3405, 3305, 3234, 2186, 1660, 1513, 1482, 1269, 1148, 754, 685, 469; HRMS (ESI): calcd. for C₁₅H₁₁BN₂ONa [M+Na]⁺: 269.0857, found 269.0855.

2-(Cyclopropylethynyl)-2,3-dihydrobenzo[d][1,3,2]diazaborinin-4(1H)-one (20). Prepared

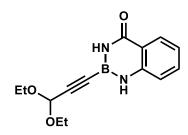


Chemical Formula: C₁₂H₁₁BN₂O Molecular Weight: 210,04

analogously from cyclopropylacetylene (0.85 mL, 661 mg, 10.00 mmol) as a colorless solid (944 mg, 45%). 1 H NMR (400 MHz, CDCl₃): δ (ppm) 8.21-8.14 (m, 1H), 7.53-7.44 (m, 1H), 7.15-7.10 (m, 1H), 7.11 (brs, 1H), 6.96 (d, J = 8.2 Hz, 1H), 6.58 (brs, 1H), 1.43-1.31 (m, 1H), 0.95-0.84 (m, 2H), 0.87-0.78 (m, 2H); 13 C NMR (101 MHz, CDCl₃): δ (ppm) 166.1,

144.2, 133.9, 129.3, 122.1, 119.3, 117.4, 110.6, 9.2, 0.4; 11 B NMR (128 MHz, CDCl₃): δ (ppm) 21.6; IR (neat): \tilde{V} (cm⁻¹) 3395, 3384, 3285, 2197, 1646, 1611, 1517, 1483, 1354, 1259, 760, 738; HRMS (ESI): calcd. for C₁₂H₁₁BN₂ONa [M+Na]⁺: 233.0857, found 233.0856.

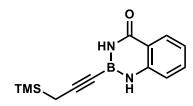
2-(3-Methoxyprop-1-yn-1-yl)-2,3-dihydrobenzo[d][1,3,2]diazaborinin-4(1H)-one (22).


Chemical Formula: C₁₁H₁₁BN₂O₂ Molecular Weight: 214,03

Prepared analogously from methyl propargyl ether (0.84 mL, 700 mg, 10.00 mmol) as an off-white solid (696 mg, 33%). 1 H NMR (400 MHz, CDCl₃): δ (ppm) 8.23-8.16 (m, 1H), 7.52 (ddd, J = 8.1, 7.2, 1.6 Hz, 1H), 7.21 (brs, 1H), 7.16 (ddd, J = 8.2, 7.2, 1.1 Hz, 1H), 7.00 (d, J = 8.1 Hz, 1H), 6.69 (brs, 1H), 4.21 (s, 2H), 3.44 (s, 3H); 13 C NMR (101 MHz, CDCl₃): δ

(ppm) 165.9, 143.9, 134.1, 129.4, 122.4, 119.5, 117.5, 101.5, 60.4, 58.2; ¹¹B NMR (128 MHz,

CDCl₃): δ (ppm) 21.8; IR (neat): \tilde{v} (cm⁻¹) 3334, 3184, 2205, 1658, 1614, 1521, 1486, 1179, 1093, 904, 771, 472; HRMS (ESI): calcd. for $C_{11}H_{11}BN_2O_2Na$ [M+Na]⁺: 237.0806, found 237.0804.


2-(3,3-Diethoxyprop-1-yn-1-yl)-2,3-dihydrobenzo[d][1,3,2]diazaborinin-4(1H)-one (24).

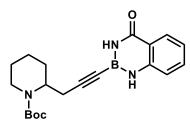
Chemical Formula: C₁₄H₁₇BN₂O₃ Molecular Weight: 272,11 Prepared analogously from propargylaldehyde diethyl acetal (1.00 mL, 897 mg, 7.00 mmol) as a yellow solid material (1.20 g, 63%). 1 H NMR (400 MHz, CDCl₃): δ (ppm) 8.23-8.16 (m, 1H), 7.52 (ddd, J = 8.1, 7.2, 1.6 Hz, 1H), 7.21 (brs, 1H), 7.16 (ddd, J = 8.2, 7.3, 1.1 Hz, 1H), 7.02-6.95 (m, 1H), 6.70 (brs, 1H), 5.35 (s, 1H), 3.79 (dq, J = 9.4, 7.1 Hz, 2H), 3.64 (dq, J = 9.4, 7.0 Hz, 2H), 1.27 (t, J = 7.1 Hz, 6H); 13 C

NMR (101 MHz, CDCl₃): δ (ppm) 165.7, 143.8, 134.1, 129.4, 122.6, 119.5, 117.6, 100.1, 91.3, 61.4, 15.2; ¹¹B NMR (128 MHz, CDCl₃): δ (ppm) 21.6; IR (neat): \tilde{v} (cm⁻¹) 3271, 2927, 2224, 1612, 1519, 1485, 1360, 1180, 1046, 1005, 803, 761, 475; HRMS (ESI): calcd. for C₁₄H₁₇BN₂O₃Na [M+Na]⁺: 295.1224, found 295.1228.

2-(3-(Trimethylsilyl)prop-1-yn-1-yl)-2,3-dihydrobenzo[d][1,3,2]diazaborinin-4(1H)-one

Chemical Formula: C₁₃H₁₇BN₂OSi Molecular Weight: 256,19 (26a). Prepared analogously from trimethyl(propargyl)silane (0.60 mL, 449 mg, 4.00 mmol) as a colorless solid (742 mg, 72%). 1 H NMR (400 MHz, CDCl₃): δ (ppm) 8.22-8.14 (m, 1H), 7.49 (dd, J = 1.6, 0.9 Hz, 1H), 7.12 (ddd, J = 8.2, 7.2, 1.1 Hz, 1H), 7.11 (brs, 1H), 7.00-6.93 (m, 1H), 6.52 (brs, 1H), 1.66 (s, 2H), 0.16 (s, 9H); 13 C NMR (101 MHz,

CDCl₃): δ (ppm) 166.3, 144.3, 133.9, 129.3, 122.0, 119.2, 117.3, 106.7, 9.0, -1.9; ¹¹B NMR (128 MHz, CDCl₃): δ (ppm) 21.9; IR (neat): \tilde{v} (cm⁻¹) 3328, 3260, 2954, 2199, 2168, 1649, 1613, 1521, 1487, 1357, 1249, 843; HRMS (EI): calcd. for C₁₃H₁₇BN₂OSi [M]⁺⁺: 256.1198, found 256.1197.


6-Fluoro-2-(3-(trimethylsilyl)prop-1-yn-1-yl)-2,3-dihydrobenzo[d][1,3,2]diazaborinin-

Chemical Formula: C₁₃H₁₆BFN₂OSi Molecular Weight: 274.18

4(1*H***)-one (26b).** Prepared analogously from trimethyl(propargyl)silane (0.82 mL, 620 mg, 5.52 mmol) and 2-amino-5-fluorobenzamide (instead of anthranilamide) as a pale yellow solid material (1.06 g, 70%). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.84 (dd, J = 8.9, 3.1 Hz, 1H), 7.22 (ddd, J = 8.8, 7.8, 3.0 Hz, 1H), 7.17 (br s, 1H), 6.95 (dd, J = 8.8, 4.3

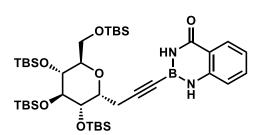
Hz, 1H), 6.57 (br s, 1H), 1.66 (s, 2H), 0.15 (s, 9H); 13 C NMR (101 MHz, CDCl₃): δ (ppm) 165.4 (d, J = 2.8 Hz), 157.8 (d, J = 241.4 Hz), 140.7 (d, J = 1.9 Hz), 121.8 (d, J = 24.1 Hz), 120.2 (d, J = 7.3 Hz), 118.8 (d, J = 7.5 Hz), 114.5 (d, J = 23.6 Hz), 106.9, 9.0, -1.9; 19 F NMR (282 MHz, CDCl₃): δ (ppm) -120.7; 11 B NMR (128 MHz, CDCl₃): δ (ppm) 21.7; IR (neat): $\tilde{\nu}$ (cm⁻¹) 3290 (br), 2957, 2194, 2173, 1659, 1598, 1520, 1498, 1340, 1251, 850; HRMS (ESI): calcd. for C₁₃H₁₅BFN₂OSi [M-H]⁻: 273.1036, found 273.1036.

tert-Butyl 2-(3-(4-oxo-3,4-dihydrobenzo[d][1,3,2]diazaborinin-2(1H)-yl)prop-2-yn-1-yl)

Chemical Formula: C₂₀H₂₆BN₃O₃ Molecular Weight: 367,26

piperidine-1-carboxylate (28). Prepared analogously from *tert*-butyl 2-(prop-2-yn-1-yl)piperidine-1-carboxylate (1.12 g, 5.00 mmol)⁸ as a colorless solid material (1.43 g, 78%). [α]_D²⁰ = +4.5° (c = 1.21, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.21-8.14 (m, 1H), 7.50 (ddd, J = 8.2, 7.2, 1.6 Hz, 1H), 7.13 (ddd, J = 8.1, 7.2, 1.0 Hz, 1H), 7.12 (brs, 1H), 7.01-6.94 (m, (m, 1H), 4.08-3.96 (m, 1H), 2.81-2.70 (m, 1H), 2.58 (dd, J = 7.8,

1H), 6.67 (brs, 1H), 4.52-4.47 (m, 1H), 4.08-3.96 (m, 1H), 2.81-2.70 (m, 1H), 2.58 (dd, J = 7.8, 2.9 Hz, 2H), 1.87-1.78 (m, 1H), 1.71-1.59 (m, 4H), 1.46 (s, 9H), 1.52-1.41 (m, 1H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm)b 166.1, 155.2, 144.2, 134.0, 129.3, 122.1, 119.3, 117.4, 104.6, 79.9, 49.5, 39.3, 28.6, 27.3, 25.3, 21.1, 18.8; ¹¹B NMR (128 MHz, CDCl₃): δ (ppm) 21.6; IR (neat): \tilde{V} (cm⁻¹) 3257, 2944, 2212, 1680, 1651, 1613, 1488, 1416, 1266, 1162, 875, 759, 478; HRMS (ESI): calcd. for C₂₀H₂₆BN₃O₃Na [M+Na]⁺: 390.1959, found 390.1960; IR (neat): \tilde{V} (cm⁻¹) 3291, 2954, 2932, 2875, 2207, 1657, 1614, 1512, 1486, 1109, 734, 700, 503;


(R)-2-(5-(tert-Butyldiphenylsilyloxy)-4-(triethylsilyloxy)pent-1-yn-1-yl)-2,3-dihydro-

Chemical Formula: C₃₄H₄₅BN₂O₃Si₂ Molecular Weight: 596.73

benzo[*d*][1,3,2]diazaborinin-4(1*H*)-one (30). Prepared analogously from (*R*)-5-((*tert*-butyldiphenylsilyl)oxy)-4-(triethylsilyloxy)-1-pentyne (1.36 g, 3.00 mmol)⁶ as a yellow wax (1.62 g, 91%). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.20 (dd, J = 8.0, 1.6 Hz, 1H), 7.74-6.63 (m, 4H), 7.51 (ddd, J = 8.5, 7.2, 1.6 Hz, 1H), 7.47-7.34 (m, 6H),

7.18-7.10 (m, 1H), 7.07 (brs, 1H), 6.95 (dd, J = 8.2, 1.1 Hz, 1H), 6.50 (brs, 1H), 3.98-3.87 (m, 1H), 3.65 (qd, J = 10.1, 5.6 Hz, 2H), 2.75 (dd, J = 17.0, 5.4 Hz, 1H), 2.55 (dd, J = 17.0, 5.8 Hz, 1H), 1.07 (s, 9H), 0.94 (t, J = 8.0 Hz, 9H), 0.58 (q, J = 8.1 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 166.0, 144.1, 135.8, 135.7, 133.9, 133.5, 133.5, 129.9, 129.3, 127.9, 127.8, 122.1, 119.3, 117.4, 104.8, 71.4, 67.0, 27.0, 25.8, 19.4, 7.0, 5.0; ¹¹B NMR (128 MHz, CDCl₃): δ (ppm) 21.5. HRMS (ESI): calcd. for C₃₄H₄₅BN₂O₃Si₂Na [M+Na]⁺: 619.2954, found 619.2963.

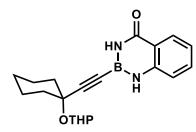
$2-(3-(2,3,4,6-Tetra-O-(tert-butyldimethylsilyl)-\alpha-D-glucopyranosyl) prop-1-yn-1-yl)-2,3-(2,3,4,6-Tetra-O-(tert-butyldimethylsilyl)-\alpha-D-glucopyranosyl) prop-1-yn-1-yl)-2,3-(2,3,4,6-Tetra-D-(tert-butyldimethylsilyl)-2,3-(2,3,4,6-$

Chemical Formula: C₄₀H₇₅BN₂O₆Si₄ Molecular Weight: 803,20

dihydrobenzo[d][1,3,2]diazaborinin-4(1H)-one (32).

Prepared analogously from 3-(2,3,4,6-tetra-*O*-(*tert*-butyldimethylsilyl)- α -*D*-glucopyranosyl)-1-propyne (357 mg, 0.54 mmol)⁷ as a colorless solid (387 mg, 89%). [α]_D²⁰ = +16.3° (c = 0.78, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.22-8.15 (m, 1H), 7.51 (ddd, J = 8.1, 7.2, 1.6 Hz, 1H), 7.14 (ddd, J = 8.1, 7.2, 1.1 Hz, 1H),

7.04 (brs, 1H), 6.99-6.92 (m, 1H), 6.53 (brs, 1H), 4.01 (td, J = 7.7, 7.2, 2.0 Hz, 1H), 3.90-3.80 (m, 3H), 3.79-3.72 (m, 3H), 2.61 (dd, J = 7.3, 1.7 Hz, 2H), 0.94 (s, 9H), 0.91 (s, 9H), 0.89 (s, 9H), 0.89 (s, 9H), 0.14 (s, 6H), 0.13 (s, 6H), 0.10 (s, 3H), 0.08 (s, 3H), 0.06 (s, 6H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 166.0, 144.1, 134.0, 129.4, 122.2, 119.4, 117.4, 104.8, 78.0, 74.7, 71.0, 70.5, 69.0, 62.6, 26.3, 26.1, 26.1, 25.9, 22.8, 18.5, 18.5, 18.3, 18.1, -3.4, -3.9, -3.9, -4.5, -4.6, -4.8, -4.8, -5.1; ¹¹B NMR (128 MHz, CDCl₃): δ (ppm) 21.6; IR (neat): \tilde{V} (cm⁻¹) 2952, 2928, 2886, 2856, 2206, 1661, 1252, 1086, 831, 774; HRMS (ESI): calcd. for C₄₀H₇₅BN₂O₆Si₄Na [M+Na]⁺: 825.4688, found 825.4696.


2-(Cyclohex-1-en-1-ylethynyl)-2,3-dihydrobenzo[d][1,3,2]diazaborinin-4(1H)-one (34).

Chemical Formula: C₁₅H₁₅BN₂O Molecular Weight: 250,11

Prepared analogously from 1-ethynyl-1-cyclohexene (1.18 mL, 1.06 g, 10.00 mmol) as a colorless solid material (1.46 mg, 58%). 1 H NMR (400 MHz, CDCl₃): δ (ppm) 8.19 (dd, J = 8.0, 1.6 Hz, 1H), 7.50 (ddd, J = 8.6, 7.3, 1.6 Hz, 1H), 7.14 (brs, 1H), 7.14 (ddd, J = 8.1, 7.2, 1.1 Hz, 1H), 6.98 (dd, J = 8.1, 1.0 Hz, 1H), 6.60 (brs, 1H), 6.32 (tt, J = 3.8, 1.7 Hz, 1H), 2.24-2.10 (m, 4H), 1.73-1.56 (m, 4H); 13 C NMR (101 MHz, CDCl₃):

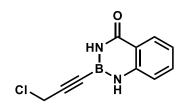
δ (ppm) 166.0, 144.2, 139.0, 134.0, 129.3, 122.2, 120.2, 119.4, 117.4, 107.1, 28.9, 26.0, 22.2, 21.4; 11 B NMR (128 MHz, CDCl₃): δ (ppm) 22.1; IR (neat): \tilde{V} (cm⁻¹) 3274, 3189, 2930, 2859, 2822, 2170, 1616, 1515, 1483, 1259, 754, 474; HRMS (EI): calcd. for C₁₅H₁₅BN₂O [M]⁺⁺: 250.1272, found 250.1275.

2 - ((1 - ((Tetrahydro - 2H - pyran - 2 - yl)oxy) cyclohexyl) + (1 - ((Tetrahydro - 2H - pyran -

Chemical Formula: C₂₀H₂₅BN₂O₃ Molecular Weight: 352,24

azaborinin-4(1*H***)-one (35).** Prepared analogously from 2-((1-ethynylcyclohexyl)oxy)tetrahydro-2*H*-pyran (1.04 g, 5.00 mmol)⁹ as a colorless solid material (856 mg, 49%). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.19 (dd, J = 8.0, 1.5 Hz, 1H), 7.52 (ddd, J = 8.5, 7.2, 1.6 Hz, 1H), 7.21 (brs, 1H), 7.18-7.11 (m, 1H), 7.00 (dd, J = 8.1, 1.1 Hz, 1H), 6.67 (brs, 1H), 5.16 (dd, J = 5.0, 3.1 Hz, 1H), 4.04-3.94 (m, 1H), 3.58-3.48 (m,

1H), 2.11-2.02 (m, 1H), 1.95-1.84 (m, 2H), 1.79-1.68 (m, 4H), 1.67-1.52 (m, 8H), 1.36-1.22 (m, 1H); 13 C NMR (101 MHz, CDCl₃): δ (ppm) 166.0, 144.0, 134.0, 129.3, 122.4, 122.3, 119.4, 117.5, 107.7, 95.7, 63.4, 39.7, 38.5, 32.2, 25.5, 25.3, 25.2, 23.3, 23.2, 23.2, 20.3; 11 B NMR (128 MHz, CDCl₃): δ (ppm) 21.8; IR (neat): $\tilde{\nu}$ (cm⁻¹) 3247, 2931, 2857, 2201, 1643, 1619, 1524, 1486, 1361, 1019, 986, 755, 475; HRMS (ESI): calcd. for C₂₀H₂₅BN₂O₃Na [M+Na]⁺: 375.1850, found 375.1854.


2-((Triisopropylsilyl)ethynyl)-2,3-dihydrobenzo[d][1,3,2]diazaborinin-4(1H)-one (36).

Chemical Formula: C₁₈H₂₇BN₂OSi Molecular Weight: 326,32

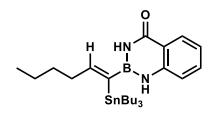
Prepared analogously from (triisopropylsilyl)acetylene (1.12 mL, 912 mg, 5.00 mmol) as a colorless solid material (1.58 g, 97%). 1 H NMR (400 MHz, CDCl₃): δ (ppm) 8.28-8.05 (m, 1H), 7.52 (ddd, J = 8.1, 7.2, 1.6 Hz, 1H), 7.20 (brs, 1H), 7.15 (ddd, J = 8.2, 7.2, 1.1 Hz, 1H), 7.00 (dt, J = 8.1, 0.8 Hz, 1H), 6.63 (brs, 1H), 1.12 (s, 21H); 13 C NMR (101 MHz, CDCl₃): δ (ppm)

166.0, 144.0, 134.0, 129.3, 122.3, 119.5, 117.5, 111.0, 18.7, 11.2; 11 B NMR (128 MHz, CDCl₃): δ (ppm) 21.1; IR (neat): $\tilde{\nu}$ (cm⁻¹) 3446, 3393, 3189, 2941, 2862, 1618, 1510, 1486, 1157, 881. 677, 630, 473; HRMS (EI): calcd. for C₂₀H₂₅BN₂O₃Na [M]⁺⁺: 326.1980, found 326.1978.

2-(3-Chloroprop-1-yn-1-yl)-2,3-dihydrobenzo[d][1,3,2]diazaborinin-4(1H)-one (37). Pre-

Chemical Formula: C₁₀H₈BCIN₂O Molecular Weight: 218,45

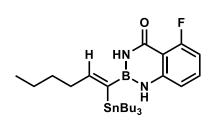
pared analogously from a solution of propargyl chloride in toluene (70% w/w, 1.11 mL, 1.06 g, 10.00 mmol) as a yellow solid material (1.98 g, 91%). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.24- 8.17 (m, 1H), 7.53 (ddd, J = 8.1, 7.2, 1.6 Hz, 1H), 7.26 (brs, 1H), 7.17 (ddd, J = 8.2, 7.2, 1.1 Hz, 1H), 7.06- 6.98 (m, 1H), 6.77 (brs, 1H), 4.23 (s, 2H); ¹³C NMR (101 MHz,


CDCl₃): δ (ppm) 165.8, 143.8, 134.1, 129.4, 122.6, 119.5, 117.6, 99.6, 30.3; ¹¹B NMR (128 MHz, CDCl₃): δ (ppm) 21.7; IR (neat): $\tilde{\nu}$ (cm⁻¹) 3278, 3193, 2216, 1612, 1520, 1485, 1363, 1261, 756, 701, 474; HRMS (EI): calcd. for C₁₂H₁₁BN₂ONa [M]⁺⁺: 218.0427, found 218.0415.

trans-Selective Hydrostannation of Alkynyl-B(aam) Derivatives. General Procedure (Small Scale). A 10 mL flame-dried Schlenk tube was charged under argon with the selected alkyne-B(aam) derivative (0.5 mmol), [Cp*RuCl]₄ (13.6 mg, 12.5 μmol, 2.5 mol%) and CH₂Cl₂ (2.5 mL). Bu₃SnH (0.14 mL, 0.525 mmol) was then slowly added (ca. one drop every 5 sec). Once the addition was complete, the mixture was stirred for 30 min and the conversion was checked by TLC. The mixture was concentrated under reduced pressure and the crude mixture analyzed by ¹H NMR to determine the isomer . The residue was purified by flash chromatography (hexane/EtOAc) to yield the desired hydrostannated product.

Larger Scale Experiments. A 50 mL flame-dried Schlenk tube was charged under argon atmosphere with the selected alkyne-B(aam) derivative (5.0 mmol), [Cp*RuCl]₄ (136 mg, 125

μmol, 2.5 mol%) and CH₂Cl₂ (25 mL). The resulting solution was cooled to 0°C in an ice bath before Bu₃SnH (1.4 mL, 5.25 mmol) was added over the course of 5 min via syringe pump. Once the addition was complete, the reaction was stirred for 30 min at 0°C and the conversion was checked by TLC. The mixture was then transferred in a 100 mL flask (ringing with CH₂Cl₂) and concentrated under reduced pressure. The crude product was analyzed by ¹H NMR to determine the isomer . The residue was suspended in pentane, sonicated and the mixture filtrated through a pad of Celite[®] in order to remove most of the catalyst decomposition products. The filtrate was concentrated and the residue purified by flash chromatography (hexane/EtOAc) to yield the desired hydrostannated product.


(Z)-2-(1-(Tributylstannyl)hex-1-en-1-yl)-2,3-dihydrobenzo[d][1,3,2]diazaborinin-4(1H)-

Chemical Formula: C₂₅H₄₃BN₂OSn Molecular Weight: 517,15 one (2e). Prepared accordingly as a brownish oil (2.26 g, 4.4 mmol, 88%, $\alpha/\beta = 96.4$, Z/E > 99.1). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.21-8.16 (m, 1H), 7.49 (ddd, J = 8.1, 7.2, 1.6 Hz, 1H), 7.11 (ddd, J = 8.1, 7.3, 1.0 Hz, 1H), 6.98-6.93 (m, 1H), 6.91 (brs, 1H), 6.86 (t, J = 6.7 Hz, $J_{\text{Sn-H}} = 152.5$ Hz, 1H), 6.15 (brs, 1H), 2.22-2.10 (m, 2H), 1.53-1.24 (m, 16H),

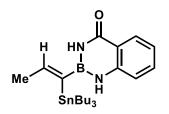
1.02-0.91 (m, 9H), 0.87 (t, J = 7.3 Hz, 9H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 166.7, 156.9, 144.6, 137.8 (C(sp²)-B by HMBC), 133.8, 129.3, 121.5, 118.7, 117.4, 39.0, 31.8, 29.4, 27.5, 22.7, 14.2, 13.8, 11.2; ¹¹B NMR (128 MHz, CDCl₃): δ (ppm) 30.8, ¹¹⁹Sn NMR (149 MHz, CDCl₃): δ (ppm) –52.0; IR (neat): \tilde{V} (cm⁻¹) 3305, 2954, 2923, 2853, 1654, 1613, 1509, 1485, 1341, 1162, 759; HRMS (ESI): calcd. for C₂₅H₄₃BN₂OSnNa [M+Na]⁺: 541.2383, found 541.2380.

(Z)-5-Fluoro-2-(1-(tributylstannyl)hex-1-en-1-yl)-2,3-dihydrobenzo[<math>d][1,3,2]diazabo-

Chemical Formula: C₂₅H₄₂BFN₂OSn Molecular Weight: 535,14 **rinin-4(1***H***)-one (2i).** Prepared analogously as a brownish oil (232.9 mg, 87%, α/β = 98:2, Z/E > 99:1). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.39 (td, J = 8.1, 5.3 Hz, 1H), 6.85 (t, J = 6.7 Hz, 1H), 6.84 (brs, 1H), 6.77-6.72 (m, 2H), 6.20 (brs, 1H), 2.21-2.08 (m, 2H), 1.51-1.43 (m, 6H), 1.42-1.34 (m, 4H), 1.32-1.27 (m, 6H), 1.00-0.89 (m, 9H), 0.87 (t, J

= 7.4 Hz, 9H); 13 C NMR (101 MHz, CDCl₃): δ (ppm) 164.3 (d, J = 3.5 Hz), 163.6 (d, J = 262.5 Hz), 157.3, 146.9 (d, J = 3.0 Hz), 137.1 (C(sp²)-B by HMBC), 134.1 (d, J = 11.5 Hz), 113.2 (d, J = 4.0 Hz), 108.9 (d, J = 22.1 Hz), 108.3 (d, J = 8.0 Hz), 39.0, 31.7, 29.4, 27.5, 22.7, 14.2,

13.8, 11.1; ¹⁹F NMR (282 MHz, CDCl₃): δ (ppm) –110.4, ¹¹B NMR (128 MHz, CDCl₃): δ (ppm) 30.7; ¹¹⁹Sn NMR (149 MHz, CDCl₃): δ (ppm) –51.9; IR (neat): \tilde{V} (cm⁻¹) 3407, 3311, 2955, 2923, 2871, 2854, 1656, 1626, 1515, 1044, 817, 666, 459; HRMS (ESI): calcd. for C₂₅H₄₁BFN₂OSn [M-H]⁻: 535.2323, found 535.2325.


(Z)-6-Fluoro-2-(1-(tributylstannyl)hex-1-en-1-yl)-2,3-dihydrobenzo[<math>d][1,3,2]diazabo-

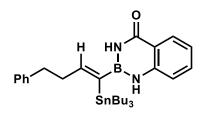
H HN B N H SnBu₃

Chemical Formula: C₂₅H₄₂BFN₂OSn Molecular Weight: 535,14 **rinin-4(1***H***)-one (2j).** Prepared analogously as a brownish oil (266.1 mg, 99%, α/β = 98:2, Z/E > 99:1). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.85 (dd, J = 8.9, 3.1 Hz, 1H), 7.22 (ddd, J = 8.9, 7.9, 3.0 Hz, 1H), 7.01 (brs, 1H), 6.94 (dd, J = 8.9, 4.3 Hz, 1H), 6.86 (t, J = 6.8 Hz, 1H), 6.19 (brs, 1H), 2.21-2.10 (m, 2H), 1.52-1.44 (m, 6H), 1.45-1.33 (m, 4H),

1.33-1.25 (m, 6H), 1.00-0.91 (m, 9H), 0.86 (t, J = 7.3 Hz, 9H); 13 C NMR (101 MHz, CDCl₃): δ (ppm) 165.9 (d, J = 2.5 Hz), 157.6 (d, J = 240.4 Hz), 157.0, 141.0, 137.5 (C(sp²)-B by HMBC), 121.6 (d, J = 24.1 Hz), 119.6 (d, J = 7.5 Hz), 118.8 (d, J = 7.5 Hz), 114.4 (d, J = 23.6 Hz), 39.0, 31.7, 29.4, 27.5, 22.7, 14.2, 13.8, 11.1; 19 F NMR (282 MHz, CDCl₃): δ (ppm) –121.5, 11 B NMR (128 MHz, CDCl₃): δ (ppm) 30.7; 119 Sn NMR (149 MHz, CDCl₃): δ (ppm) –51.9; IR (neat): \tilde{V} (cm⁻¹) 3440, 3405, 3306, 2955, 2923, 2871, 2853, 1652, 1597, 1497, 827; HRMS (ESI): calcd. for C₂₅H₄₁BFN₂OSn [M-H]⁻: 535.2323, found 535.2325.

(Z)-2-(1-(Tributylstannyl)prop-1-en-1-yl)-2,3-dihydrobenzo[<math>d][1,3,2]diazaborinin-

Chemical Formula: C₂₂H₃₇BN₂OSn Molecular Weight: 475,07 **4(1***H***)-one (5).** Prepared analogously as a brownish oil (237.5 mg, quant., $\alpha/\beta > 99:1$, Z/E > 99:1). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.22-8.15 (m, 1H), 7.48 (ddd, J = 8.2, 7.2, 1.6 Hz, 1H), 7.10 (td, J = 7.7, 1.0 Hz, 1H), 6.97 (q, J = 6.3 Hz, $J_{\text{Sn-H}} = 151.3$ Hz, 1H), 6.98-6.94 (m, 1H), 6.94 (brs, 1H), 6.20 (brs, 1H), 1.92 (d, J = 6.3 Hz, 3H), 1.58-1.42


(m, 6H), 1.45-1.21 (m, 6H), 1.04-0.95 (m, 6H), 0.87 (t, J = 7.3 Hz, 9H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 166.7, 150.8, 144.6, 139.5 (C(sp²)-B by HMBC), 133.8, 129.3, 121.5, 118.7, 117.4, 29.4, 27.5, 24.3, 13.8, 11.0; ¹¹B NMR (128 MHz, CDCl₃): δ (ppm) 30.8, ¹¹⁹Sn NMR (149 MHz, CDCl₃): δ (ppm) -51.9; IR (neat): \tilde{V} (cm⁻¹) 3305, 2955, 2922, 2852, 1654, 1612, 1509, 1484, 758; HRMS (ESI): calcd. for C₂₂H₃₈BN₂OSn [M+H]⁺: 477.2094, found 477.2094.

(Z)-2-(5-Methyl-1-(tributylstannyl)hex-1-en-1-yl)-2,3-dihydrobenzo[d][1,3,2]diazabo-

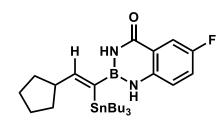
Chemical Formula: C₂₆H₄₅BN₂OSn Molecular Weight: 531.18 rinin-4(1*H*)-one (7). Prepared analogously as a brownish oil (243.2 mg, 92%, α/β = 97:3, Z/E > 99:1). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.22-8.15 (m, 1H), 7.48 (ddd, J = 8.1, 7.2, 1.6 Hz, 1H), 7.10 (ddd, J = 8.1, 7.2, 1.1 Hz, 1H), 6.96 (dd, J = 8.1, 1.1 Hz, 1H), 6.94 (brs, 1H), 6.85 (t, J = 6.7 Hz, J_{Sn-H} = 152.5 Hz, 1H), 6.19 (brs, 1H), 2.22-

2.09 (m, 2H), 1.68-1.52 (m, 2H), 1.55-1.39 (m, 6H), 1.39-1.18 (m, 8H), 1.01-0.95 (m, 6H), 0.92 (d, J = 6.6 Hz, 6H), 0.87 (t, J = 7.3 Hz, 9H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 166.7, 157.0, 144.6, 137.4 (C(sp²)-B by HMBC), 133.8, 129.3, 121.5, 118.7, 117.4, 38.7, 37.2, 29.4, 28.2, 27.5, 22.7, 13.8, 11.1; ¹¹B NMR (128 MHz, CDCl₃): δ (ppm) 30.7, ¹¹⁹Sn NMR (149 MHz, CDCl₃): δ (ppm) –52.2; IR (neat): \tilde{V} (cm⁻¹) 3306, 2954, 2923, 2870, 2852, 1654, 1613, 1510, 1485, 1261, 1164, 759; HRMS (ESI): calcd. for C₂₆H₄₅BN₂OSnNa [M+Na]⁺: 555.2539, found 555.2537.

(Z) - 2 - (4 - Phenyl - 1 - (tributyl stannyl) but - 1 - en - 1 - yl) - 2, 3 - dihydrobenzo[d][1,3,2] diazabo-large (displayed a stannyl) but - 1 - en - 1 - yl) - 2, 3 - dihydrobenzo[d][1,3,2] diazabo-large (displayed a stannyl) but - 1 - en - 1 - yl) - 2, 3 - dihydrobenzo[d][1,3,2] diazabo-large (displayed a stannyl) but - 1 - en - 1 - yl) - 2, 3 - dihydrobenzo[d][1,3,2] diazabo-large (displayed a stannyl) but - 1 - en - 1 - yl) - 2, 3 - dihydrobenzo[d][1,3,2] diazabo-large (displayed a stannyl) but - 1 - en - 1 - yl) - 2, 3 - dihydrobenzo[d][1,3,2] diazabo-large (displayed a stannyl) but - 1 - en - 1 - yl) - 2, 3 - dihydrobenzo[d][1,3,2] diazabo-large (displayed a stannyl) but - 1 - en - 1 - yl) - 2, 3 - dihydrobenzo[d][1,3,2] diazabo-large (displayed a stannyl) but - 1 - en - 1 - yl) - 2, 3 - dihydrobenzo[d][1,3,2] diazabo-large (displayed a stannyl) but - 1 - en - 1 - yl) - 2, 3 - dihydrobenzo[d][1,3,2][1,3

Chemical Formula: C₂₉H₄₃BN₂OSn Molecular Weight: 565,20 **rinin-4(1***H***)-one (9).** Prepared analogously as a brownish oil (250.8 mg, 89%, α/β = 91:9, Z/E > 99:1). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.23-8.15 (m, 1H), 7.50 (ddd, J = 8.0, 7.2, 1.6 Hz, 1H), 7.36-7.27 (m, 2H), 7.24-7.17 (m, 3H), 7.11 (ddd, J = 8.1, 7.2, 1.1 Hz, 1H), 7.02-6.95 (m, 1H), 6.90 (brs, 1H), 6.89 (t, J = 6.7 Hz, J_{Sn-H} = 149.7 Hz, 1H), 6.15

(brs, 1H), 2.77 (dd, J = 9.0, 6.5 Hz, 2H), 2.52-2.44 (m, 2H), 1.52-1.41 (m, 6H), 1.35-1.23 (m, 6H), 1.00-0.93 (m, 6H), 0.86 (t, J = 7.3 Hz, 9H); 13 C NMR (101 MHz, CDCl₃): δ (ppm) 166.7, 155.2, 144.5, 141.4, 139.0 (C(sp²)-B by HMBC), 133.8, 129.3, 128.6, 128.6, 128.6, 126.2, 121.6, 118.7, 117.4, 40.9, 35.8, 29.4, 27.5, 13.8, 11.1; 11 B NMR (128 MHz, CDCl₃): δ (ppm) 30.8, 119 Sn NMR (149 MHz, CDCl₃): δ (ppm) –52.1; IR (neat): \tilde{V} (cm⁻¹) 3306, 2954, 2922, 2869, 2852, 1654, 1612, 1508, 1484, 1151, 759, 696; HRMS (ESI): calcd. for C₂₉H₄₂BN₂OSnNa [M-H]⁻: 565.2418, found 565.2423


(Z)-2-(2-Cyclopentyl-1-(tributylstannyl)vinyl)-2,3-dihydrobenzo[d][1,3,2]diazaborinin-

Chemical Formula: C₂₆H₄₃BN₂OSn Molecular Weight: 529,16

4(1*H***)-one (11a).** Prepared analogously as a brownish oil (221.8 mg, 0.42 mmol, 84%, $\alpha/\beta = 97.3$, Z/E > 99:1). The isomer s of the crude material were $\alpha/\beta = 89:11$ and Z/E > 99:1. ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.22-8.15 (m, 1H), 7.49 (ddd, J = 8.2, 7.2, 1.6 Hz, 1H), 7.15-7.06 (m, 1H), 7.00-6.90 (m, 1H), 6.95 (brs, 1H), 6.72 (d, J = 9.3 Hz, $J_{\text{Sn-H}}$

= 151.5 Hz, 1H), 6.18 (brs, 1H), 2.40-2.25 (m, 1H), 1.85-1.74 (m, 2H), 1.74-1.55 (m, 2H), 1.65-1.55 (m, 2H), 1.54-1.44 (m, 6H), 1.44-1.36 (m, 2H), 1.36-1.24 (m, 6H), 1.04-0.91 (m, 6H), 0.87 (t, J = 7.3 Hz, 9H); 13 C NMR (101 MHz, CDCl₃): δ (ppm) 13 C NMR (101 MHz, CDCl₃) δ 166.7, 161.4, 144.6, 135.0 (C(sp²)-B by HMBC), 133.8, 129.3, 121.5, 118.7, 117.4, 50.2, 33.7, 29.4, 27.5, 25.9, 13.8, 11.3; 11 B NMR (128 MHz, CDCl₃): δ (ppm) 30.7, 119 Sn NMR (149 MHz, CDCl₃): δ (ppm) -50.1; IR (neat): \tilde{V} (cm⁻¹) 3306, 2953, 2924, 1654, 1613, 1507, 1485, 1153, 757; HRMS (ESI): calcd. for C₂₆H₄₃BN₂OSnNa [M+Na]⁺: 553.2383, found 553.2387.

(Z)-2-(2-Cyclopentyl-1-(tributylstannyl)vinyl)-6-fluoro-2,3-dihydrobenzo[d][1,3,2]di-

Chemical Formula: C₂₆H₄₂BFN₂OSn Molecular Weight: 547.15

azaborinin-4(1*H***)-one (11b).** Prepared analogously as a brownish oil (233.5 mg, 85%, $\alpha/\beta = 99:1$, Z/E > 99:1). The isomer s of the crude product were $\alpha/\beta = 94:6$, Z/E > 99:1. ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.85 (dd, J = 9.0, 3.0 Hz, 1H), 7.22 (ddd, J = 8.9, 7.9, 3.0 Hz, 1H), 7.01 (brs, 1H), 6.94 (dd, J = 8.8, 4.2 Hz, 1H), 6.71 (d, J

= 9.4 Hz, 1H), 6.18 (brs, 1H), 2.39-2.25 (m, 1H), 1.84-1.74 (m, 2H), 1.74-1.67 (m, 2H), 1.64-1.56 (m, 2H), 1.51-1.44 (m, 6H), 1.43-1.36 (m, 2H), 1.33-1.26 (m, 6H), 0.99-0.92 (m, 6H), 0.86 (t, J = 7.3 Hz, 9H); 13 C NMR (101 MHz, CDCl₃): δ (ppm) 165.9 (d, J = 2.5 Hz), 161.6, 157.6 (d, J = 240.9 Hz), 141.0 (d, J = 2.0 Hz), 134.9 (C(sp²)-B by HMBC), 121.6 (d, J = 24.1 Hz), 119.6 (d, J = 7.0 Hz), 118.8 (d, J = 7.5 Hz), 114.4 (d, J = 23.6 Hz), 50.2, 33.7, 29.4, 27.5, 25.9, 13.8, 11.3; 19 F NMR (282 MHz, CDCl₃): δ (ppm) -121.5, 11 B NMR (128 MHz, CDCl₃): δ (ppm) 30.8; 119 Sn NMR (149 MHz, CDCl₃): δ (ppm) -50.0; IR (neat): \tilde{V} (cm⁻¹) 3440, 3406, 3305, 2953, 2923, 2869, 2854, 1651, 1597, 1496, 1334, 825; HRMS (ESI): calcd. for C₂₆H₄₁BFN₂OSn [M-H]⁻: 547.2323, found 547.2326.

(Z)-2-(2-Cyclohexyl-1-(tributylstannyl)vinyl)-2,3-dihydrobenzo[d][1,3,2]diazaborinin-

Chemical Formula: C₂₇H₄₅BN₂OSn Molecular Weight: 543.19

4(1*H***)-one (13).** Prepared analogously as a brownish oil (203.3 mg, 75%, $\alpha/\beta = 95.5$, Z/E > 99.1). The isomer s of the crude material were $\alpha/\beta = 87.13$, Z/E > 99.1. ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.18 (dd, J = 7.9, 1.6 Hz, 1H), 7.48 (ddd, J = 8.1, 7.2, 1.6 Hz, 1H), 7.10 (ddd, J = 8.1, 7.2, 1.1 Hz, 1H), 6.96 (dd, J = 8.2, 1.0 Hz, 1H), 6.94 (brs, 1H), 6.64 (d, J = 9.2 Hz, $J_{\text{Sn-H}} = 152.5$ Hz, 1H), 6.18

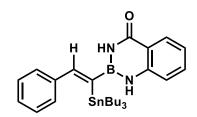
(brs, 1H), 1.94-1.80 (m, 1H), 1.81-1.74 (m, 2H), 1.74-1.59 (m, 4H), 1.54-1.44 (m, 6H), 1.36-1.26 (m, 6H), 1.27-1.13 (m, 4H), 1.02-0.93 (m, 6H), 0.87 (t, J = 7.3 Hz, 9H); 13 C NMR (101 MHz, CDCl₃): δ (ppm) 166.8, 162.1, 144.6, 135.1 (C(sp²)-B by HMBC), 133.8, 129.3, 121.5, 118.7, 117.4, 48.9, 32.9, 29.4, 27.5, 25.9, 25.8, 13.8, 11.3; 11 B NMR (128 MHz, CDCl₃): δ (ppm) 30.8, 119 Sn NMR (149 MHz, CDCl₃): δ (ppm) –51.8; IR (neat): \tilde{V} (cm⁻¹) 3306, 2854, 2921, 2869, 2849, 1653, 1612, 1508, 1485, 759, 736; HRMS (ESI): calcd. for C₂₇H₄₅BN₂O-SnNa [M+Na]⁺: 567.2539, found 567.2537.

(Z)-2-(5-Chloro-1-(tributylstannyl)pent-1-en-1-yl)-2,3-dihydrobenzo[d][1,3,2]diazabo-

Chemical Formula: C₂₄H₄₀BCIN₂OSn Molecular Weight: 537,57

rinin-4(1*H***)-one (15).** Prepared analogously as a brownish oil (248.9 mg, 93%, α/β = 92:8, Z/E > 99:1). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.19 (dd, J = 8.0, 1.6 Hz, 1H), 7.50 (ddd, J = 8.1, 7.2, 1.6 Hz, 1H), 7.11 (ddd, J = 8.2, 7.2, 1.1 Hz, 1H), 7.01-6.94 (m, 1H), 6.93 (brs, 1H), 6.82 (t, J = 6.7 Hz, J_{Sn-H} = 147.8 Hz, 1H), 6.17 (brs, 1H), 3.59

(t, J = 6.5 Hz, 2H), 2.39-2.26 (m, 2H), 1.99-1.90 (m, 2H), 1.57-1.40 (m, 6H), 1.36-1.24 (m, 6H), 1.05-0.96 (m, 6H), 0.87 (t, J = 7.3 Hz, 9H); 13 C NMR (101 MHz, CDCl₃): δ (ppm) 166.7, 154.0, 144.5, 140.1 (C(sp²)-B by HMBC), 133.9, 129.3, 121.6, 118.7, 117.4, 44.6, 36.2, 32.4, 29.4, 27.5, 13.8, 11.1; 11 B NMR (128 MHz, CDCl₃): δ (ppm) 30.7, 119 Sn NMR (149 MHz, CDCl₃): δ (ppm) -51.5; IR (neat): \tilde{V} (cm⁻¹) 3304, 2955, 2923, 2870, 2852, 1656, 1612, 1507, 1485, 756; HRMS (ESI): calcd. for C₂₄H₄₀BClN₂OSnNa [M+Na]⁺: 561.1836, found 561.1837.


(Z)-2-(4-(tert-Butyldimethylsiloxy)-1-(tributylstannyl)but-1-en-1-yl)-2,3-dihydro-

 $\begin{array}{c} \textbf{Chemical Formula: } \textbf{C}_{29}\textbf{H}_{53}\textbf{BN}_2\textbf{O}_2\textbf{SiSn} \\ \textbf{Molecular Weight: 619,36} \end{array}$

benzo[*d*][1,3,2]diazaborinin-4(1*H*)-one (17). Prepared analogously as a brownish oil (2.47 g, 80%, α/β > 99:1, Z/E > 99:1). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.23-8.15 (m, 1H), 7.49 (ddd, J = 8.1, 7.2, 1.6 Hz, 1H), 7.11 (ddd, J = 8.1, 7.2, 1.1 Hz, 1H), 6.99-6.92 (m, 1H), 6.88 (brs, 1H), 6.87 (t, J = 6.6 Hz, $J_{\text{Sn-H}}$ = 150.5 Hz, 1H), 6.15

(brs, 1H), 3.72 (t, J = 6.7 Hz, 2H), 2.40 (q, J = 6.7 Hz, 2H), 1.54-1.42 (m, 6H), 1.37-1.22 (m, 6H), 1.04-0.93 (m, 6H), 0.91 (s, 9H), 0.87 (t, J = 7.3 Hz, 9H), 0.07 (s, 6H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 166.6, 152.8, 144.6, 140.5 (C(sp²)-B by HMBC), 133.8, 129.3, 121.5, 118.7, 117.4, 62.7, 42.3, 29.4, 27.5, 26.1, 18.5, 13.8, 11.1, -5.1; ¹¹B NMR (128 MHz, CDCl₃): δ (ppm) 30.7, ¹¹⁹Sn NMR (149 MHz, CDCl₃): δ (ppm) -52.4; IR (neat): \tilde{V} (cm⁻¹) 3307, 2954, 2926, 2855, 1657, 1613, 1508, 1485, 1256, 1091, 835, 759; HRMS (ESI): calcd. for C₂₉H₅₃BN₂O₂SiSnNa [M+Na]⁺: 643.2884, found 643.2895.

(Z)-2-(2-Phenyl-1-(tributylstannyl)vinyl)-2,3-dihydrobenzo[d][1,3,2]diazaborinin-4(1H)-

Chemical Formula: C₂₇H₃₉BN₂OSn Molecular Weight: 537,14 one (19). Prepared analogously as a brownish oil (263.6 mg, 98%, $\alpha/\beta >$ 99:1, Z/E > 99:1). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.23 (dd, J = 7.9, 1.5 Hz, 1H), 7.96 (s, $J_{Sn-H} = 145.4$ Hz, 1H), 7.52 (ddd, J = 8.1, 7.2, 1.6 Hz, 1H), 7.34 (tt, J = 6.9, 6.0 Hz, 3H), 7.29-7.24 (m, 2H), 7.14 (ddd, J = 8.1, 7.3, 1.0 Hz, 1H), 7.04 (brs, 1H), 7.02 (d, J = 8.1 Hz, 1H), 6.31

(brs, 1H), 1.39-1.31 (m, 6H), 1.27-1.13 (m, 6H), 0.80 (t, J = 7.3 Hz, 9H), 0.81-0.76 (m, 6H); 13 C NMR (101 MHz, CDCl₃): δ (ppm) 166.7, 153.4, 144.5, 143.7 (C(sp²)-B by HMBC), 142.3, 133.9, 129.3, 128.4, 128.1, 127.4, 121.7, 118.8, 117.5, 29.3, 27.4, 13.7, 11.7; 11 B NMR (128 MHz, CDCl₃): δ (ppm) 31.2; 119 Sn NMR (149 MHz, CDCl₃): δ (ppm) –48.1; IR (neat): $\tilde{\nu}$ (cm⁻¹) 3304, 2954, 2921, 2852, 1655, 1509, 1485, 1153, 758, 695; HRMS (ESI): calcd. for C₂₇H₃₉BN₂OSnNa [M+Na]⁺: 561.2070, found 561.2076.

(Z) - 2 - (2 - Cyclopropyl - 1 - (tributyl stannyl) vinyl) - 2, 3 - dihydrobenzo[d][1,3,2] diazaborinin-diazaborin-di

Chemical Formula: C₂₄H₃₉BN₂OSn Molecular Weight: 501,11

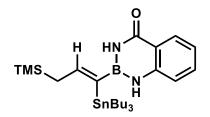
4(1*H***)-one (21).** Prepared analogously as a brownish oil (210.2 mg, 0.42 mmol, 84%, $\alpha/\beta > 99:1$, Z/E > 99:1). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.18 (dd, J = 7.9, 1.7 Hz, 1H), 7.48 (ddd, J = 8.1, 7.2, 1.6 Hz, 1H), 7.09 (ddd, J = 8.1, 7.2, 1.1 Hz, 1H), 6.95 (dd, J = 8.2, 1.1 Hz, 1H), 6.92 (brs, 1H), 6.16 (brs, 1H), 6.15 (d, J = 9.4 Hz, $J_{\text{Sn-H}} = 146.7$ Hz,

1H), 1.58-1.46 (m, 6H), 1.37-1.26 (m, 7H), 1.07-0.98 (m, 6H), 0.91-0.85 (m, 2H), 0.87 (t, J = 7.3 Hz, 9H), 0.62-0.54 (m, 2H); 13 C NMR (101 MHz, CDCl₃): δ (ppm) 166.8, 160.7, 144.7, 133.8, 133.3 (C(sp²)-B by HMBC), 129.3, 121.4, 118.7, 117.4, 29.4, 27.5, 19.5, 13.8, 11.2, 8.4; 11 B NMR (128 MHz, CDCl₃): δ (ppm) 30.7, 119 Sn NMR (149 MHz, CDCl₃): δ (ppm) –46.2; IR (neat): \tilde{V} (cm⁻¹) 3307, 2955, 2922, 2851, 1655, 1613, 1508, 1485, 1153, 757; HRMS (ESI): calcd. for C₂₄H₄₀BN₂OSn [M+H]⁺: 503.2250, found 503.2252.

(Z) - 2 - (3 - Methoxy - 1 - (tributyl stannyl) prop - 1 - en - 1 - yl) - 2, 3 - dihydrobenzo[d][1, 3, 2] diazabo-leading the stannyl prop - 1 - en - 1 - yl) - 2, 3 - dihydrobenzo[d][1, 3, 2] diazabo-leading the stannyl prop - 1 - en - 1 - yl) - 2, 3 - dihydrobenzo[d][1, 3, 2] diazabo-leading the stannyl prop - 1 - en - 1 - yl) - 2, 3 - dihydrobenzo[d][1, 3, 2] diazabo-leading the stannyl prop - 1 - en - 1 - yl) - 2, 3 - dihydrobenzo[d][1, 3, 2] diazabo-leading the stannyl prop - 1 - en - 1 - yl) - 2, 3 - dihydrobenzo[d][1, 3, 2] diazabo-leading the stannyl prop - 1 - en - 1 - yl) - 2, 3 - dihydrobenzo[d][1, 3, 2] diazabo-leading the stannyl prop - 1 - en - 1 - yl) - 2, 3 - dihydrobenzo[d][1, 3, 2] diazabo-leading the stannyl prop - 1 - en - 1 - yl) - 2, 3 - dihydrobenzo[d][1, 3, 2] diazabo-leading the stannyl prop - 1 - en - 1 - yl) - 2, 3 - dihydrobenzo[d][1, 3, 2] diazabo-leading the stannyl prop - 1 - en - 1 - yl) - 2, 3 - dihydrobenzo[d][1, 3, 2] diazabo-leading the stannyl prop - 1 - en - 1 - yl) - 2, 3 - dihydrobenzo[d][1, 3, 2] diazabo-leading the stannyl prop - 1 - en - 1 - yl) - 2, 3 - dihydrobenzo[d][1, 3, 2] diazabo-leading the stannyl prop - 1 - en - 1 - yl) - 2, 3 - dihydrobenzo[d][1, 3, 2] diazabo-leading the stannyl prop - 1 - en - 1 - yl) - 2, 3 - dihydrobenzo[d][1, 3, 2] diazabo-leading the stannyl prop - 1 - en - 1 - yl) - 2, 3 - dihydrobenzo[d][1, 3, 2] diazabo-leading the stannyl prop - 1 - en - 1 - yl) - 2, 3 - dihydrobenzo[d][1, 3, 2] diazabo-leading the stannyl prop - 1 - en - 1 - yl) - 2, 3 - dihydrobenzo[d][1, 3, 2] diazabo-leading the stannyl prop - 1 - en - 1 - yl) - 2, 3 - dihydrobenzo[d][1, 3, 3] diazabo-leading the stannyl prop - 1 - en - 1 - yl) - 2, 3 - dihydrobenzo[d][1, 3, 3] diazabo-leading the stannyl prop - 1 - en - 1 - yl) - 2, 3 - diazabo-leading the stannyl prop - 1 - en - 1 - yl) - 2, 3 - diazabo-leading the stannyl prop - 1 - en - 1 - yl) - 2, 3 - diazabo-leading the stannyl prop - 1 - en - 1 - yl) - 2, 3 -

Chemical Formula: C₂₃H₃₉BN₂O₂Sn Molecular Weight: 505,10 **rinin-4(1***H***)-one (23).** Prepared analogously as a brownish oil (203.3 mg, 81%, α/β = 98:2, Z/E > 99:1). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.19 (ddd, J = 8.0, 1.5, 0.7 Hz, 1H), 7.49 (ddd, J = 8.1, 7.2, 1.6 Hz, 1H), 7.11 (ddd, J = 8.1, 7.2, 1.1 Hz, 1H), 6.98-6.95 (m, 1H), 6.92 (t, J = 4.9 Hz, $J_{\text{Sn-H}}$ = 146.4 Hz, 1H), 6.90 (brs, 1H), 6.21 (brs, 1H), 3.99 (d, J =

4.9 Hz, 2H), 3.38 (s, 3H), 1.53-1.41 (m, 6H), 1.34-1.22 (m, 6H), 0.99-0.92 (m, 6H), 0.86 (t, J = 7.3 Hz, 9H); 13 C NMR (101 MHz, CDCl₃): δ (ppm) 166.6, 150.3, 144.5, 141.3 (C(sp²)-B by HMBC), 133.9, 129.3, 121.6, 118.7, 117.4, 76.1, 58.5, 29.4, 27.5, 13.8, 11.6; 11 B NMR (128 MHz, CDCl₃): δ (ppm) 31.3, 119 Sn NMR (149 MHz, CDCl₃): δ (ppm) –52.2; IR (neat): $\tilde{\nu}$ (cm⁻¹) 3307, 2954, 2921, 2870, 2852, 1655, 1612, 1511, 1484, 1162, 1117, 759; HRMS (ESI): calcd. for C₂₃H₃₉BN₂O₂SnNa [M+Na]⁺: 529.2019, found 529.2019.


$(Z)-2-(3,3-{\rm Diethoxy-1-}(tributyl stannyl) prop-1-en-1-yl)-2,3-{\rm dihydrobenzo}[d][1,3,2]{\rm diethoxy-1-}(d)[1,3,2]{\rm diethoxy-1-}(d)[1,3,2]{\rm$

Chemical Formula: C₂₆H₄₅BN₂O₃Sn Molecular Weight: 563,18

azaborinin-4(1*H***)-one (25).** Prepared analogously as a brownish oil (232.1 mg, 0.41 mmol, 82%, $\alpha/\beta > 99:1$, Z/E > 99:1). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.19 (ddd, J = 8.0, 1.6, 0.7 Hz, 1H), 7.50 (ddd, J = 8.1, 7.2, 1.6 Hz, 1H), 7.12 (ddd, J = 8.1, 7.2, 1.0 Hz, 1H), 7.00-6.93 (m, 1H), 6.89 (brs, 1H), 6.79 (d, J = 5.4 Hz, 1H), 6.22 (brs, 1H), 4.81 (d,

J = 5.4 Hz, $J_{Sn-H} = 143.0$ Hz, 1H), 3.68 (dq, J = 9.4, 7.1 Hz, 2H), 3.54 (dq, J = 9.4, 7.0 Hz, 2H), 1.53-1.41 (m, 6H), 1.35-1.21 (m, 12H), 1.11-0.91 (m, 6H), 0.85 (t, J = 7.3 Hz, 9H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 166.5, 150.4, 144.4, 144.4 (C(sp²)-B by HMBC), 133.9, 129.3, 121.7, 118.7, 117.4, 102.9, 61.0, 29.4, 27.5, 15.5, 13.8, 11.6; ¹¹B NMR (128 MHz, CDCl₃): δ (ppm) 31.4, ¹¹⁹Sn NMR (149 MHz, CDCl₃): δ (ppm) –52.7; IR (neat): \tilde{V} (cm⁻¹) 3307, 2955, 2922, 2871, 2853, 1658, 1613, 1510, 1485, 1117, 1047, 760; HRMS (ESI): calcd. for C₂₆H₄₅BN₂O₃SnNa [M+Na]⁺: 587.2437, found 587.2438.

(Z)-2-(1-(Tributylstannyl)-3-(trimethylsilyl)prop-1-en-1-yl)-2,3-dihydrobenzo[d][1,3,2]-

Chemical Formula: C₂₅H₄₅BN₂OSiSn Molecular Weight: 547.25

diazaborinin-4(1*H***)-one (27a).** Prepared analogously as a brownish oil (222.2 mg, 81%, α - Z/β - Z/β -E = 79:8:13). The isomer of the crude material was α - Z/β - Z/β -E = 75:10:15. *Data of the major* α -Z-isomer: 1 H NMR (400 MHz, CDCl₃): δ (ppm) 8.18 (dd, J = 7.9, 1.6 Hz, 1H), 7.48 (ddd, J = 8.1, 7.2, 1.5 Hz, 1H), 7.09 (ddd,

J = 8.1, 7.2, 1.1 Hz, 1H), 7.00-6.90 (m, 3H), 6.16 (brs, 1H), 1.80-1.72 (m, 2H), 1.57-1.44 (m, 6H), 1.36-1.26 (m, 6H), 1.03-0.94 (m, 6H), 0.87 (t, J = 7.3 Hz, 9H), 0.07 (s, 9H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 166.8, 153.5, 144.7, 135.1 (C(sp²)-B by HMBC), 133.8, 129.3, 121.4, 118.7, 117.4, 31.4, 29.4, 27.6, 13.8, 11.2, -1.4; ¹¹B NMR (128 MHz, CDCl₃): δ (ppm) 30.5, ¹¹⁹Sn NMR (149 MHz, CDCl₃): δ (ppm) -53.4; IR (neat): \tilde{V} (cm⁻¹) 3306, 2954, 2923, 2853, 1654, 1614, 1509, 1485, 1247, 838, 759, 692; HRMS (ESI): calcd. for C₂₅H₄₄BN₂OSiSn [M-H]⁻: 547.2343, found 547.2347.

(Z)-6-Fluoro-2-[1-(tributylstannyl)-3-(trimethylsilyl)prop-1-en-1-yl]-2,3-dihydro-

Chemical Formula: C₂₅H₄₄BFN₂OSiSn Molecular Weight: 565.24

benzo[d][1,3,2]diazaborinin-4(1*H*)-one (27b). Prepared analogously as a brownish oil (210 mg, 74%, α - Z/β - Z/β -E=82:7:11). Spectral data of the major α -Z-isomer: ^{1}H NMR (400 MHz, CDCl₃): δ (ppm) 7.85 (dd, J=9.0, 3.0 Hz, 1H), 7.22 (ddd, J=8.8, 7.8, 3.0 Hz, 1H), 6.98–6.88 (m, 3H), 6.11 (br s, 1H), 1.76 (d, J=8.0 Hz, 2H), 1.53–

1.44 (m, 6H), 1.38–1.29 (m, 6H), 1.01–0.94 (m, 6H), 0.87 (t, J = 7.3 Hz, 9H), 0.07 (s, 9H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 166.0, 157.6 (d, J = 240.5 Hz), 153.7, 141.0, 134.8 (C(sp²)-B by HMBC), 121.6 (d, J = 24.4 Hz), 119.6 (d, J = 7.4 Hz), 118.7 (d, J = 7.4 Hz), 114.5 (d, J = 23.5 Hz), 31.5, 29.4, 27.6, 13.8, 11.2, –1.3; ¹⁹F NMR (282 MHz, CDCl₃): δ (ppm) –121.6; ¹¹B NMR (128 MHz, CDCl₃): δ (ppm) 30.2; ¹¹⁹Sn NMR (149 MHz, CDCl₃): δ (ppm) –53.3; IR (neat): \tilde{V} (cm⁻¹) 3308 (br), 2955, 2923, 2871, 2825, 1655, 1499, 1336, 1249, 1137, 848, 734; HRMS (ESI): calcd. for C₂₅H₄₅BFN₂OSiSn [M+H]⁺: 567.2394; found: 567.2392.

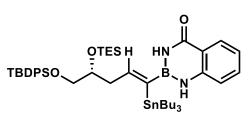
tert-Butyl (Z)-2-(3-(4-oxo-3,4-dihydrobenzo[d][1,3,2]diazaborinin-2(1H)-yl)-3-(tributylstannyl)allyl)piperidine-1-carboxylate and tert-butyl (E)-2-(3-(4-oxo-3,4-dihydro-

Chemical Formula: C₃₂H₅₄BN₃O₃Sn Molecular Weight: 658.32

benzo[*d*][1,3,2]diazaborinin-2(1*H*)-yl)-2-(tributylstannyl)allyl)piperidine-1-carboxylate (29). Prepared analogously as a brownish oil (249.1 mg, 76%, α/β = 85:15, Z/E > 99:1); the corresponding β -E isomer was separated by flash chromatography and obtained as a brownish oil (48.2 mg, 15%, α/β = 1:99, Z/E = 1:99). The

isomer in the crude product was α - Z/β - Z/β -E = 70:12:18. Spectroscopic data of the major α -Z-isomer: 1 H NMR (400 MHz, CDCl₃): δ (ppm) 8.17 (dd, J = 8.0, 1.7 Hz, 1H), 7.47 (ddd, J = 8.6, 7.2, 1.6 Hz, 1H), 7.09 (ddd, J = 8.2, 7.2, 1.1 Hz, 1H), 6.95 (dd, J = 8.2, 1.2 Hz, 1H), 6.89 (brs, 1H), 6.81 (t, J = 6.4 Hz, J_{Sn-H} = 152.2 Hz, 1H), 6.27 (brs, 1H), 4.51-4.38 (m, 1H), 4.09-3.94 (m, 1H), 2.84-2.70 (m, 1H), 2.62 (ddd, J = 14.7, 9.0, 5.8 Hz, 1H), 2.23 (dt, J = 14.8, 6.6 Hz, 1H), 1.67-1.38 (m, 12H), 1.44 (s, 9H), 1.37-1.24 (m, 6H), 1.06-0.93 (m, 6H), 0.87 (t, J = 7.3 Hz, 9H); 13 C NMR (101 MHz, CDCl₃): δ (ppm) 166.6, 155.2, 153.5, 144.6, 139.6 (C(sp²)-B by HMBC), 133.8, 129.2, 121.4, 118.7, 117.4, 79.6, 50.6, 39.2, 39.0, 29.4, 28.7, 28.6, 27.5, 25.6, 19.3, 13.8, 11.1; 11 B NMR (128 MHz, CDCl₃): δ (ppm) 30.7, 119 Sn NMR (149 MHz, CDCl₃): δ (ppm) -52.2; IR (neat): \tilde{V} (cm⁻¹) 3274, 2954, 1677, 1648, 1613, 1516, 1485, 1409, 1356,

1262, 1159, 759; HRMS (ESI): calcd. for $C_{32}H_{54}BN_3O_3SnNa$ [M+Na]⁺: 682.3172, found 682.3177.


Spectroscopic data of the β-E isomer : 1 H NMR (400 MHz, CDCl₃): δ (ppm) 8.18 (dd, J = 7.9,

Chemical Formula: C₃₂H₅₄BN₃O₃Sn Molecular Weight: 658,32

1.4 Hz, 1H), 7.50 (ddd, J = 8.6, 7.0, 1.6 Hz, 1H), 7.44 (brs, 1H), 7.14-7.08 (m, 2H), 6.03 (s, 1H), 4.36-4.25 (m, 1H), 3.97-3.87 (m, 1H), 2.83-2.64 (m, 3H), 1.51 (s, 9H), 1.59-1.45 (m, 12H), 1.37-1.29 (m, 6H), 1.00-0.94 (m, 6H), 0.91 (t, J = 7.3 Hz, 9H); 13 C NMR (101 MHz, CDCl₃): δ (ppm) 168.3 (C(sp²)-Sn by HMBC), 167.0, 155.7, 145.4, 140.0, 133.6, 128.8, 121.5, 118.9, 118.4, 80.0, 51.8, 40.2, 38.6,

29.2, 28.7, 27.6, 25.5, 19.4, 17.7, 13.8, 10.4; 11 B NMR (128 MHz, CDCl₃): δ (ppm) 26.6, 119 Sn NMR (149 MHz, CDCl₃): δ (ppm) –38.2; IR (neat): \tilde{v} (cm⁻¹) 3273, 2957, 1677, 1650, 1613, 1518, 1485, 1356, 1262, 1159, 759, 647; HRMS (ESI): calcd. for C₃₂H₅₄BN₃O₃SnNa [M+Na]⁺: 682.3172, found 682.3174.

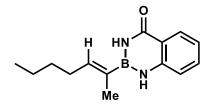
(R,Z)-2-(5-(tert-Butyldiphenylsiloxy)-1-(tributylstannyl)-4-((triethylsiloxy)pent-1-en-1-

C₄₆H₇₃BN₂O₃Si₂Sn Molecular Weight: 887.79

yl)-2,3-dihydrobenzo[d][1,3,2]diazaborinin-4(1H)-

one (31). Prepared analogously as a brownish oil (404.9 mg, 91%, $\alpha/\beta = 98:2$, Z/E > 99:1). $[\alpha]_D^{20} = +11.4^\circ$ (c = 1.48, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.21 (dd, J = 8.0, 1.6 Hz, 1H), 7.71-7.64 (m, 4H), 7.50 (ddd, J = 8.1, 7.2, 1.6 Hz, 1H), 7.43-7.33 (m, 6H), 7.12

(ddd, J = 8.1, 7.2, 1.1 Hz, 1H), 6.93 (dd, J = 8.2, 1.0 Hz, 1H), 6.91 (t, J = 6.4 Hz, $J_{\rm Sn-H}$ = 151.6 Hz, 1H), 6.84 (brs, 1H), 6.10 (brs, 1H), 3.88 (tt, J = 7.1, 4.7 Hz, 1H), 3.62 (dd, J = 10.1, 5.0 Hz, 1H), 3.49 (dd, J = 10.1, 6.6 Hz, 1H), 2.59 (ddd, J = 14.9, 6.3, 4.6 Hz, 1H), 2.34 (dt, J = 14.4, 7.0 Hz, 1H), 1.53-1.41 (m, 6H), 1.35-1.21 (m, 6H), 1.06 (s, 9H), 1.04-0.96 (m, 6H), 0.90 (t, J = 8.0 Hz, 9H), 0.85 (t, J = 7.3 Hz, 9H), 0.53 (q, J = 7.9 Hz, 6H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 166.6, 153.2, 144.6, 140.1 (C(sp²)-B by HMBC), 135.8, 135.7, 133.8, 133.6, 133.5, 129.9, 129.3, 127.8, 121.5, 118.7, 117.4, 72.7, 68.3, 43.8, 29.4, 27.5, 27.0, 19.3, 13.8, 11.1, 7.0, 5.1; ¹¹B NMR (128 MHz, CDCl₃): δ (ppm) 30.6, ¹¹⁹Sn NMR (149 MHz, CDCl₃): δ (ppm) -52.9; IR (neat): \tilde{V} (cm⁻¹) 3306, 2954, 2928, 2872, 2857, 1665, 1613, 1506, 1486, 1112, 737, 700, 503; HRMS (ESI): calcd. for C₄₆H₇₄BN₂O₃Si₂Sn [M+H]⁺: 889.4348, found 889.4344.


(Z)-2-(3-(2,3,4,6-Zetra-O-(tert-butyldimethylsilyl)- α -D-glucopyranosyl)-1-(tributyl-stannyl)prop-1-en-1-yl)-2,3-dihydrobenzo[d][1,3,2]diazaborinin-4(1H)-one (33). Prepared

Chemical Formula: C₅₂H₁₀₃BN₂O₆Si₄Sn Molecular Weight: 1094.26 analogously as a brownish oil (245.1 mg, 90%, α/β > 99:1, Z/E > 99:1). [α]_D²⁰ = +28.4° (c = 0.92, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.19 (dd, J = 7.9, 1.6 Hz, 1H), 7.48 (ddd, J = 8.1, 7.2, 1.6 Hz, 1H), 7.10 (ddd, J = 8.2, 7.3, 1.1 Hz, 1H), 7.08 (dd, J = 7.8, 5.3 Hz J_{Sn-H} = 153.5 Hz, 1H), 6.94 (dd, J = 8.1, 1.0 Hz, 1H), 6.84

(brs, 1H), 6.20 (brs, 1H), 3.88-3.81 (m, 3H), 3.79-3.75 (m, 2H), 3.73 (dt, J = 4.7, 1.2 Hz, 1H), 3.53-3.49 (m, 1H), 2.68 (ddd, J = 14.6, 10.3, 5.4 Hz, 1H), 2.04-1.92 (m, 1H), 1.53-1.42 (m, 6H), 1.34-1.23 (m, 6H), 1.01-0.96 (m, 6H), 0.94 (s, 9H), 0.90 (s, 9H), 0.89 (s, 9H), 0.86 (t, J = 7.3 Hz, 9H), 0.83 (s, 9H), 0.13 (s, 3H), 0.12 (s, 3H), 0.09 (s, 9H), 0.08 (s, 3H), 0.02 (s, 3H), 0.00 (s, 3H); 13 C NMR (101 MHz, CDCl₃): δ (ppm) 166.6, 154.3, 144.7, 139.2 (C(sp²)-B by HMBC), 133.7, 129.3, 121.4, 118.7, 117.4, 77.6, 74.8, 72.4, 71.0, 70.1, 62.4, 40.8, 29.4, 27.5, 26.3, 26.2, 26.0, 25.9, 18.5, 18.4, 18.3, 18.0, 13.8, 11.1, -3.4, -3.9, -4.0, -4.5, -4.6, -4.8, -5.1; 11 B NMR (128 MHz, CDCl₃): δ (ppm) 30.7, 119 Sn NMR (149 MHz, CDCl₃): δ (ppm) -54.0; IR (neat): \tilde{V} (cm⁻¹) 2954, 2928, 2856, 1667, 1252, 1084, 831, 773, 666; HRMS (ESI): calcd. for C₅₂H₁₀₄BN₂O₆Si₄Sn [M+H]⁺: 1095.6081, found 1095.6092.

Copper Mediated Methylation. (*Z*)-2-(Hept-2-en-2-yl)-2,3-dihydrobenzo[*d*][1,3,2]dia-zaborinin-4(1*H*)-one (46). A 25 mL flame-dried Schlenk tube was charged under Ar with compound 1e (226.1 mg, 1.0 mmol), [Cp*RuCl]₄ (27.2 mg, 25 μmol, 2.5 mol%) and CH₂Cl₂ (5 mL). Bu₃SnH (0.14 mL, 0.525 mmol) was added at a rate of one drop every 5 seconds at 0°C. Once the addition was complete, the mixture was stirred for 30 min before the solvent was evaporated on a Schlenk line.

In a second Schlenk tube, (Ph₂PO₂)NBu₄ (250 mg, 544 µmol) was flame dried and, after cooling to room temperature, dissolved in DMSO (5 mL). This solution was added to the crude hydrostannation product. MeI (0.19 mL, 3 mmol) was then added, immediately followed – within maximum 30 sec – by CuTC (200 mg, 1.05 mmol). The resulting black suspension was stirred for 1 h before the reaction was quenched by the addition of Et₃N (ca. 0.1 mL). The mixture was diluted with ethyl acetate (30 mL) and poured into a mixture of 25% aq. NH₄OH/sat. aq. NH₄Cl solution (1:9, 20 mL). The phases were separated and the clear, bright blue aqueous phase was

Chemical Formula: C₁₄H₁₉BN₂O Molecular Weight: 242.13

extracted with ethyl acetate (2 x 30 mL). The combined extracts were dried over MgSO₄, filtered and concentrated under reduced pressure. Purification of the residue by flash chromatography (CH₂Cl₂/EtOAc, 90:10) afforded the title compound contaminated by some isomers as well as the protodestannylated compound. Pure material was obtained by recrystallization

from hexane/ethyl acetate as a colorless solid (149.5 mg, 62%, $\alpha/\beta > 99:1$, Z/E > 99:1). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.19 (dd, J = 7.9, 1.7 Hz, 1H), 7.50 (ddd, J = 8.1, 7.1, 1.5 Hz, 1H), 7.28 (brs, 1H), 7.11 (ddd, J = 8.1, 7.2, 1.1 Hz, 1H), 7.06-6.99 (m, 1H), 6.47 (brs, 1H), 6.17 (tq, J = 6.8, 1.6 Hz, 1H), 2.26-2.17 (m, 2H), 1.82-1.80 (m, 3H), 1.48-1.30 (m, 4H), 0.93 (t, J = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 166.8, 144.5, 143.4, 133.9, 129.2, 128.7 (C(sp²)-B by HMBC), 121.6, 118.9, 117.5, 31.3, 28.6, 22.6, 14.1, 14.0; ¹¹B NMR (128 MHz, CDCl₃): δ (ppm) 29.0; IR (neat): \tilde{V} (cm⁻¹) 3368, 3332, 3249, 2949, 2924, 2867, 1626, 1611, 1486, 1268, 758, 478; HRMS (ESI): calcd. for C₁₄H₂₀BN₂O [M+H]⁺: 243.1663, found 243.1666.

Suzuki-Miyaura Coupling Reactions under Preservation of the Adjacent Organotin Moi-

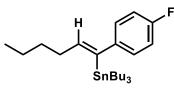
ety. ¹¹ A 10 mL flame-dried Schlenk tube was charged under argon atmosphere with the alkenyl-B(aam) substrate (0.1 mmol) and THF (2 mL). A solution of NaOH (3 M, 0.17 mL, 0.5 mmol) was added and the mixture was stirred at room temperature for 10 min. The corresponding aryl halide (1 equiv) and Pd(P'Bu₃)₂ (1.0 mg, 2.0 μmol, 2 mol%) were then added and the mixture was stirred at 60 °C for 4 h. The reaction was cooled to room temperature and the mixture diluted with water and *tert*-butyl methyl ether. The layers were separated and the aqueous phase was extracted two times with *tert*-butyl methyl ether. The combined organic layers were dried over MgSO₄, filtrated, and concentrated under reduced pressure. The crude material was purified by flash chromatography (hexane/EtOAc, 95:5) to yield the desired product.

(Z)-N,N-Dimethyl-4-[1-(tributylstannyl)hex-1-en-1-yl]aniline (38). Prepared analogously,

Chemical Formula: C₂₆H₄₇NSn Molecular Weight: 492.38 using 4-iodo-*N*,*N*-dimethylaniline as the coupling partner; brown oil (33 mg, 91%). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 6.93 (m, app. br d, J = 8.7 Hz, 2H), 6.67 (m, app. br d, J = 8.7 Hz, 2H), 6.19 (t, J = 7.2 Hz, J_{Sn-H} = 127.6 Hz, 1H), 2.92 (s, 6H), 2.18–2.09 (m, 2H), 1.50–1.40 (m, 10H), 1.34–1.24 (m,

6H), 0.95–0.89 (m, 9H), 0.86 (t, J = 7.3 Hz, 9H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 148.9,

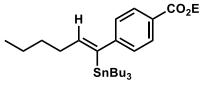
144.3, 143.0, 136.7, 127.8, 112.9, 41.1, 35.1, 32.6, 29.3, 27.5, 22.7, 14.3, 13.8, 11.2; 119 Sn NMR (149 MHz, CDCl₃): δ (ppm) -51.5; IR (neat): \tilde{v} (cm⁻¹) 2955, 2926, 2871, 2853, 1608, 1514, 1463, 1343, 1164, 1061, 866, 813; HRMS (ESI): calcd. for C₂₆H₄₈NSn [M+H]⁺: 494.2803, found 494.2805.


(Z)-Tributyl[1-(4-methoxyphenyl)hex-1-en-1-yl]stannane (39). Prepared analogously, using

H OMe
SnBu₃

Chemical Formula: C₂₅H₄₄OSn Molecular Weight: 479.34 4-iodoanisole as the coupling partner; brown oil (35 mg, 73%). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 6.95 (m, app. br d, J = 8.7 Hz, 2H), 6.80 (m, app. br d, J = 8.7 Hz, 2H), 6.19 (t, J = 7.2 Hz, $J_{\text{Sn-H}}$ = 124.6 Hz, 1H), 3.79 (s, 3H), 2.20–2.09 (m, 2H), 1.50–1.34 (m, 10H), 1.33–1.22 (m, 6H), 0.96–0.89 (m, 9H),

0.86 (t, J = 7.3 Hz, 9H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 157.6, 144.3, 144.0, 140.6, 128.0, 113.5, 55.4, 35.1, 32.5, 29.3, 27.5, 22.7, 14.2, 13.8, 11.2; ¹¹⁹Sn NMR (149 MHz, CDCl₃): δ (ppm) –51.0; IR (neat): \tilde{V} (cm⁻¹) 2955, 2926, 2871, 2854, 1604, 1505, 1463, 1283, 1243, 1173, 1040, 826; HRMS (CI): calcd. for C₂₅H₄₅OSn [M+H]⁺: 481.2487, found 481.2483.


(Z)-Tributyl[1-(4-fluorophenyl)hex-1-en-1-yl]stannane (40). Prepared analogously, using 4-

Chemical Formula: C₂₄H₄₁FSn Molecular Weight: 467.30 fluorobromobenzene as the coupling partner; colorless oil (31 mg, 66%). 1 H NMR (400 MHz, CDCl₃): δ (ppm) 6.97–6.91 (m, 4H), 6.19 (t, J=7.2 Hz, $J_{\text{Sn-H}}=116.8$ Hz, 1H), 2.19–2.09 (m, 2H), 1.49–1.37 (m, 10H), 1.32–1.23 (m, 6H), 0.94–0.89 (m, 9H), 0.86 (t, J=7.3 Hz, 9H); 13 C NMR (101 MHz, CDCl₃): δ

(ppm) 161.2 (d, J_{C-F} = 243.3 Hz), 149.5, 144.9, 144.0, 128.3 (d, J_{C-F} = 7.9 Hz), 114.8 (d, J_{C-F} = 21.4 Hz), 35.1, 32.4, 29.2, 27.5, 22.7, 14.2, 13.8, 11.1; ¹⁹F NMR (282 MHz, CDCl₃): δ (ppm) –118.8, ¹¹⁹Sn NMR (149 MHz, CDCl₃): δ (ppm) –50.2; IR (neat): \tilde{V} (cm⁻¹) 2956, 2925, 2872, 2854, 1599, 1502, 1463, 1377, 1228, 1155, 1072, 830; HRMS (CI): calcd. for C₂₄H₄₂FSn [M+H]⁺: 469.2287, found 469.2287.

Ethyl (Z)-4-(1-(tributylstannyl)hex-1-en-1-yl)benzoate (41). Prepared analogously, using

Chemical Formula: C₂₇H₄₆O₂Sn Molecular Weight: 521.37

 7.1 Hz, 2H), 2.17 (app. q, J = 7.3 Hz, 2H), 1.48–1.41 (m, 10H), 1.39 (t, J = 7.1 Hz, 3H), 1.32–1.21 (m, 6H), 0.96–0.89 (m, 9H), 0.85 (t, J = 7.3 Hz, 9H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 167.0, 153.2, 145.7, 144.7, 129.5, 127.3, 127.0, 60.8, 35.3, 32.3, 29.2, 27.4, 22.7, 14.5, 14.2, 13.8, 11.2; ¹¹⁹Sn NMR (149 MHz, CDCl₃): δ (ppm) –48.7; IR (neat): $\tilde{\nu}$ (cm⁻¹) 2956, 2927, 2871, 2854, 1719, 1603, 1463, 1367, 1271, 1175, 1100, 1021, 770; HRMS (ESI): calcd. for C₂₇H₄₇O₂Sn [M+H]⁺: 523.2592, found 523.2593.

(Z)-Tributyl[1-(4-methoxyphenyl)-4-phenylbut-1-en-1-yl]stannane (42). Prepared analo-

Ph SnBu₃

Chemical Formula: C₂₉H₄₄OSn Molecular Weight: 527.38 gously, using 4-iodoanisole as the coupling partner; brown oil (40 mg, 76%). 1 H NMR (400 MHz, CDCl₃): δ (ppm) 7.34–7.27 (m, 2H), 7.25–7.18 (m, 3H), 6.95 (m, app. br d, J = 8.7 Hz, 2H), 6.81 (m, app. br d, J = 8.7 Hz, 2H), 6.24 (t, J = 7.2 Hz, J_{Sn-H} = 122.4 Hz, 1H), 3.80 (s, 3H), 2.82–2.71 (m, 2H), 2.52–

2.41 (m, 2H), 1.47–1.39 (m, 6H), 1.32–1.21 (m, 6H), 0.93–0.88 (m, 6H), 0.85 (t, J = 7.3 Hz, 9H); 13 C NMR (101 MHz, CDCl₃): δ (ppm) 157.7, 145.4, 142.7, 142.0, 140.4, 128.6, 128.5, 128.0, 126.0, 113.5, 55.4, 37.3, 36.6, 29.3, 27.5, 13.8, 11.2; 119 Sn NMR (149 MHz, CDCl₃): δ (ppm) –50.7; IR (neat): \tilde{V} (cm⁻¹) 2954, 2922, 2870, 2852, 1603, 1504, 1454, 1283, 1242, 1173, 1038, 824, 746, 697; HRMS (ESI): calcd. for $C_{29}H_{44}OSnNa$ [M+Na]⁺: 551.2306, found 551.2304.

(Z)-tert-Butyl{[4-(4-methoxyphenyl)-4-(tributylstannyl)but-3-en-1-yl]oxy}dimethyl-

TBSO SnBu₃ OMe

Chemical Formula: C₂₉H₅₄O₂SiSn Molecular Weight: 581.54 **silane** (**43**). Prepared analogously, using 4-iodoanisole as the coupling partner; brown oil (34 mg, 58%). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 6.94 (m, app. br d, J = 8.7 Hz, 2H), 6.81 (m, app. br d, J = 8.8 Hz, 2H), 6.18 (t, J = 7.2 Hz, $J_{\rm Sn-H} = 122.8$ Hz, 1H), 3.79 (s, 3H), 3.70 (t, J = 7.0 Hz, 1H), 2.44–

2.35 (m, 2H), 1.49–1.41 (m, 6H), 1.33–1.22 (m, 6H), 0.96–0.91 (m, 6H), 0.91 (s, 9H), 0.86 (t, J = 7.3 Hz, 9H), 0.07 (s, 6H); 13 C NMR (101 MHz, CDCl₃): δ (ppm) 157.7, 146.9, 140.5, 139.7, 127.9, 113.5, 63.4, 55.4, 38.8, 29.2, 27.5, 26.1, 18.5, 13.8, 11.2, –5.1; 119 Sn NMR (149 MHz, CDCl₃): δ (ppm) –51.1; IR (neat): \tilde{V} (cm⁻¹) 2954, 2927, 2855, 1604, 1504, 1463, 1284, 1243, 1173, 1093, 1040, 834, 774; HRMS (ESI): calcd. for C₂₈H₅₂O₂SiSnNa [M+Na]⁺: 605.2807, found 605.2807.

(Z)-4-{4-[(tert-Butyldimethylsilyl)oxy]-1-(tributylstannyl)but-1-en-1-yl}benzonitrile (44).

Chemical Formula: C₂₉H₅₁OSiSn Molecular Weight: 576.53 Prepared analogously, using 4-bromobenzonitrile as the coupling partner; colorless oil (34 mg, 59%). 1 H NMR (400 MHz, CDCl₃): δ (ppm) 7.54 (m, app. br d, J = 8.4 Hz, 2H), 7.06 (m, app. br d, J = 8.4 Hz, 2H), 6.23 (t, J = 7.1 Hz, J_{Sn-H} = 112.7 Hz, 1H), 3.72 (t, J = 6.7 Hz, 2H), 2.45–2.36 (m, 2H),

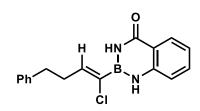
1.45–1.38 (m, 6H), 1.30–1.23 (m, 6H), 0.96–0.91 (m, 6H), 0.90 (s, 9H), 0.85 (t, J = 7.3 Hz, 9H), 0.06 (s, 6H); 13 C NMR (101 MHz, CDCl₃): δ (ppm) 153.3, 146.7, 142.6, 132.0, 127.6, 119.5, 108.8, 63.0, 38.8, 29.1, 27.4, 26.1, 18.5, 13.8, 11.2, –5.1; 119 Sn NMR (149 MHz, CDCl₃): δ (ppm) –47.4; IR (neat): \tilde{V} (cm⁻¹) 2956, 2828, 2856, 2227, 1600, 1463, 1255, 1096, 906, 835, 733; HRMS (ESI): calcd. for C₂₉H₅₁NOSiSnNa [M+Na]⁺: 600.2654, found 600.2652.

(Z)-tert-Butyldimethyl{[4-(tributylstannyl)hexa-3,5-dien-1-yl]oxy}silane(45). Prepared

Chemical Formula: C₂₄H₅₀OSiSn Molecular Weight: 501.46 analogously, using vinyl iodide as the coupling partner; brown solid material (35 mg, 70%). 1 H NMR (400 MHz, CDCl₃): δ (ppm) 6.50 (ddd, J = 17.3, 10.4, 1.1 Hz, 1H), 6.29 (td, J = 7.3, 1.2 Hz, 1H), 4.98 (dd, J = 17.1, 1.3 Hz, 1H), 4.88 (dd, J = 10.4, 1.4 Hz, 1H), 3.64 (t, J = 7.0 Hz, 2H), 2.37–2.29

(m, 2H), 1.54–1.47 (m, 6H), 1.36–1.27 (m, 6H), 1.02–0.95 (m, 6H), 0.92–0.85 (m, 18H), 0.05 (s, 6H); 13 C NMR (101 MHz, CDCl₃): δ (ppm) 145.2, 144.5, 142.4, 113.5, 63.3, 37.8, 29.3, 27.5, 26.1, 18.5, 13.8, 11.3, –5.1; 119 Sn NMR (149 MHz, CDCl₃): δ (ppm) –54.6; IR (neat): \tilde{V} (cm⁻¹) 2955, 2928, 2857, 1611, 1463, 1254, 1173, 1101, 836, 776; HRMS (ESI): calcd. for C₂₄H₅₀OSiSnNa [M+Na]⁺: 525.2544, found 525.2539.

Silver-Mediated Chlorination of B(aam)-Capped Alkenylstannanes. AgOP(O)Ph₂ (65 mg, 0.2 mmol) and NCS (27 mg, 0.2 mmol) were stirred under Ar in an oven-dried Schlenk flask for 10 min until a homogenous greyish powder had formed. This material was suspended in dry acetone (1.5 mL). A solution of the alkenyl-B(aam) substrate (0.1 mmol, 1.0 equiv) in dry acetone (0.5 mL) was added over 60 min via syringe pump to this suspension. Once the addition was complete, the mixture was stirred for an additional 1 h at room temperature. The mixture was diluted with *tert*-butyl methyl ether and the reaction quenched with saturated ammonium chloride solution. The mixture was extracted twice with *tert*-butyl methyl ether, the combined extracts were washed with brine, dried over magnesium sulfate and concentrated under reduced


pressure. The crude material was purified by flash chromatography (hexane/EtOAc, 80:20) to yield the desired chlorinated alkene.

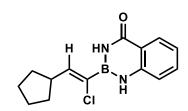
(Z)-2-(1-Chlorohex-1-en-1-yl)-2,3-dihydrobenzo[d][1,3,2]diazaborinin-4(1H)-one (47c).

Chemical Formula: C₁₃H₁₆BCIN₂O Molecular Weight: 262.54 Prepared analogously as a white solid (15 mg, 57%). 1 H NMR (400 MHz, CDCl₃): δ (ppm) 8.35 (br s, 1H), 8.21 (dd, $J=8.0,\ 1.6$ Hz, 1H), 7.53 (ddd, $J=8.5,\ 7.2,\ 1.6$ Hz, 1H), 7.15 (ddd, $J=8.1,\ 7.2,\ 1.0$ Hz, 1H), 7.09 (dd, $J=8.1,\ 1.0$ Hz, 1H), 6.88 (br s, 1H), 6.71 (t, J=6.8 Hz, 1H), 2.45 (app. q, J=7.2 Hz, 2H), 1.57–1.47 (m, 2H), 1.47–1.36 (m, 2H),

0.95 (t, J = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 167.0, 144.0, 143.7, 134.1, 129.2, 129.0 (C(sp²)-B by HMBC), 122.2, 119.1, 117.9, 30.4, 29.5, 22.5, 14.0; ¹¹B NMR (128 MHz, CDCl₃): δ (ppm) 26.6; IR (neat): \tilde{V} (cm⁻¹) 3405, 3202 (br), 3101, 2950, 2926, 2867, 1656, 1616, 1513, 1490, 1414, 1339, 1306, 1264, 873, 757; HRMS (EI): calcd. for C₁₃H₁₆BClN₂O [M]⁺⁺: 262.1039, found 262.1039.

(Z)-2-(1-Chloro-4-phenylbut-1-en-1-yl)-2,3-dihydrobenzo[d][1,3,2]diazaborinin-4(1H)-

Chemical Formula: C₁₇H₁₆BCIN₂O Molecular Weight: 310.59 **one** (**48a**). Prepared analogously as a white solid (15 mg, 48%). ¹H NMR (400 MHz, CDCl₃): δ (ppm) δ 8.21 (dd, J = 8.0, 1.6 Hz, 1H), 8.17 (br s, 1H), 7.54 (ddd, J = 8.5, 7.2, 1.6 Hz, 1H), 7.35–7.28 (m, 2H), 7.26–7.20 (m, 3H), 7.16 (ddd, J = 8.2, 7.2, 1.1 Hz, 1H), 7.08 (dd, J = 8.1, 1.0 Hz, 1H), 6.86 (br s, 1H), 6.70 (t, J = 6.4 Hz, 1H), 2.89–2.82 (m, 2H), 2.82–2.74


(m, 2H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 166.8, 143.9, 142.2, 141.0, 134.1, 129.6 (C(sp²)-B by HMBC), 129.2, 128.7, 128.5, 126.4, 122.3, 119.1, 117.9, 34.2, 31.4; ¹¹B NMR (128 MHz, CDCl₃): δ (ppm) 26.5; IR (neat): $\tilde{\nu}$ (cm⁻¹) 3389, 3201 (br), 3025, 2921, 1655, 1615, 1523, 1491, 1416, 1298, 1264, 870, 763; HRMS (ESI): calcd. for C₁₇H₁₅BClN₂O [M-H]⁻: 309.0971, found 309.0971.

(Z)-2-{4-[(tert-Butyldimethylsilyl)oxy]-1-chlorobut-1-en-1-yl}-2,3-dihydrobenzo[d][1,3,2]

Chemical Formula: C₁₇H₂₆BCIN₂O₂Si Molecular Weight: 364.75 **diazaborinin-4(1***H***)-one (49a).** Prepared analogously as a white solid (20 mg, 55%). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.21 (dd, J = 8.0, 1.6 Hz, 1H), 7.85 (br s, 1H), 7.54 (ddd, J = 8.1, 7.2, 1.6 Hz, 1H), 7.16 (ddd, J = 8.2, 7.3, 1.1 Hz, 1H), 7.08 (dd, J = 8.1, 0.6 Hz, 1H), 6.83 (br s, 1H), 6.67

(t, J = 6.6 Hz, 1H), 3.79 (t, J = 6.5 Hz, 2H), 2.67 (app. q, J = 6.6 Hz, 2H), 0.91 (s, 9H), 0.08 (s, 6H); 13 C NMR (101 MHz, CDCl₃): δ (ppm) δ 166.6, 143.8, 139.8, 134.1, 130.5 (C(sp²)-B by HMBC), 129.3, 122.3, 119.1, 117.9, 61.4, 33.6, 26.1, 18.5, -5.1; 11 B NMR (128 MHz, CDCl₃): δ (ppm) 26.4; IR (neat): \tilde{V} (cm⁻¹) 3410, 3378, 32085 (br), 2953, 2930, 1651, 1617, 1527, 1254, 1111, 836, 777, 755, 657; HRMS (ESI): calcd. for C₁₇H₂₆BClN₂O₂SiNa [M+Na]⁺: 387.1437, found 387.1438.

(Z)-2-(1-Chloro-2-cyclopentylvinyl)-2,3-dihydrobenzo[d][1,3,2]diazaborinin-4(1H)-one

Chemical Formula: C₁₄H₁₆BCIN₂O Molecular Weight: 274.56

(**50a**). Prepared analogously as a white solid (19 mg, 69 μmol, 69%). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.20 (dd, J = 8.0, 1.6 Hz, 1H), 8.14 (br s, 1H), 7.53 (ddd, J = 8.5, 7.2, 1.6 Hz, 1H), 7.16 (ddd, J = 8.1, 7.2, 1.1 Hz, 1H), 7.08 (dd, J = 8.1, 1.0 Hz, 1H), 6.84 (br s, 1H), 6.59 (d, J = 8.6 Hz, 1H), 3.18 (app. h, J = 8.2 Hz, 1H), 2.03–1.90 (m, 2H), 1.81–1.71

(m, 2H), 1.71–1.60 (m, 2H), 1.47–1.34 (m, 2H); 13 C NMR (101 MHz, CDCl₃): δ (ppm) 166.8, 148.7, 144.0, 134.1, 129.2, 128.0 (C(sp²)-B by HMBC), 122.2, 119.1, 117.9, 40.4, 32.7, 25.6; 11 B NMR (128 MHz, CDCl₃): δ (ppm) 26.6; IR (neat): $\tilde{\nu}$ (cm⁻¹) 3397, 3196 (br), 2946, 1657, 1618, 1523, 1492, 1415, 1310, 1265, 874, 756; HRMS (ESI): calcd. for C₁₄H₁₆BClN₂ONa [M+Na]⁺: 297.0936, found 297.0939.

(Z)-2-(1-Fluorohex-1-en-1-yl)-2,3-dihydrobenzo[d][1,3,2]diazaborinin-4(1H)-one (47d).¹² AgOP(O)Ph₂ (65 mg, 0.2 mmol, 2.0 equiv) and F-TEDA-PF₆ (94 mg, 0.2 mmol, 2.0 equiv) were stirred under argon in an flame-dried Schlenk flask at room temperature for 10 min until a homogenous greyish powder had formed. This material was suspended in dry acetone (1.5 mL). A solution of the alkenyl-B(aam) derivative 2e (52 mg, 0.1 mmol) in dry acetone (0.5 mL) was added over 60 min via syringe pump to this suspension. Once the addition was complete, the mixture was stirred for an additional 2 h at room temperature. The mixture was diluted with *tert*-butyl methyl ether and the reaction quenched with saturated ammonium chloride solution.

The mixture was extracted twice with tert-butyl methyl ether, the combined extracts were

Chemical Formula: C₁₃H₁₆BFN₂O Molecular Weight: 246.09

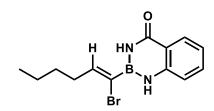
washed with brine, dried over magnesium sulfate and concentrated under reduced pressure. The crude product was purified by flash chromatography (hexane/EtOAc, 70:30) to yield the title compound as a white solid (5.0 mg, 20%). 1 H NMR (400 MHz, CDCl₃): δ (ppm) 8.21 (dd, J = 8.0, 1.7 Hz, 1H), 7.74 (br s, 1H), 7.53 (ddd, J = 8.1, 7.2, 1.6 Hz, 1H), 7.16 (ddd, J = 8.1,

7.2, 1.1 Hz, 1H), 7.05 (dd, J = 8.3, 1.0 Hz, 1H), 6.70 (br s, 1H), 5.67 (dt, J = 45.8, 7.5 Hz, 1H), 2.31 (app. qd, J = 7.3, 1.7 Hz, 2H), 1.50–1.32 (m, 4H), 0.94 (t, J = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 166.5, 143.9, 134.1, 129.3, 124.9 (d, $J_{C-F} = 8.1$ Hz), 122.2, 119.3, 117.8, 31.1, 23.8 (d, $J_{C-F} = 7.5$ Hz), 22.4, 14.0; ¹⁹F NMR (282 MHz, CDCl₃): δ (ppm) –131.3, ¹¹B NMR (128 MHz, CDCl₃): δ (ppm) 25.8; IR (neat): \tilde{V} (cm⁻¹) 3425, 3198 (br), 2952, 2926, 2866, 1654, 1616, 1529, 1493, 1417, 1345, 1147, 887, 755; HRMS (EI): calcd. for C₁₃H₁₆BFN₂O [M]⁺⁺: 246.1334, found 246.1335.

One-Pot *trans*-Selective Hydrostannation/Halodestannation. ¹³ A 25 mL flame-dried Schlenk tube was charged under Ar with the respective alkyne (1.0 mmol), [Cp*RuCl]₄ (27.2 mg, 25 µmol, 2.5 mol%) and CH₂Cl₂ (5 mL). Bu₃SnH (0.14 mL, 0.525 mmol) was added at a rate of one drop every 5 seconds at 0° C. ¹ Once the addition was complete, the mixture was stirred for 30 min. At this point, a solution of X_2 (Br₂, 28 µL or I₂, 139.6 mg, 0.55 mmol) in CH₂Cl₂ (5 mL) was added and stirring was continued for 30 min at 0° C. The reaction was quenched with aq. Na₂S₂O₃ (half-saturated, 4 mL), the organic layer was separated, and the aqueous layer extracted with CH₂Cl₂ (3 x 2 mL). The combined organic phases were dried under Mg₂SO₄, filtrated and concentrated under reduced pressure. The crude product was used to analyze the isomer ratio by ¹H NMR. The residue was suspended in pentane, sonicated, and the mixture filtered. The obtained brown solid was carefully rinsed with pentane to remove the tributyltin halide byproduct. The solid was dissolved in CH₂Cl₂, the solution was concentrated under reduced pressure and the residue purified by flash chromatography (CH₂Cl₂/AcOEt, 90:10) to yield the desired product. In some case, as precised later, a simple wash of the obtained solid with chilled CH₂Cl₂ to remove brown impurity sufficed to give product of \geq 95% purity.

-

¹ When performed on 5 mmol scale, the Bu₃SnH (1.4 mL, 5.25 mmol, 1.05 equiv) was added over 5 min via syringe pump.


(Z)-2-(1-Iodohex-1-en-1-yl)-2,3-dihydrobenzo[d][1,3,2]diazaborinin-4(1H)-one (47a). Pre-

Chemical Formula: C₁₃H₁₆BIN₂O Molecular Weight: 354.00

pared analogously as a colorless solid (164.1 mg, 93%, α/β > 99:1, Z/E > 99:1) without flash column chromatography. ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.20 (dd, J = 8.0, 1.6 Hz, 1H), 7.83 (brs, 1H), 7.54 (ddd, J = 8.1, 7.2, 1.6 Hz, 1H), 7.16 (ddd, J = 8.1, 7.2, 1.0 Hz, 1H), 7.10 (dd, J = 8.2, 1.1 Hz, 1H), 6.76 (brs, 1H), 6.70 (t, J = 6.3 Hz, 1H), 2.42-2.32 (m, 2H),

1.60-1.48 (m, 2H), 1.47-1.35 (m, 2H), 0.96 (t, J = 7.2 Hz, 3H); 13 C NMR (101 MHz, CDCl₃): δ (ppm) 166.7, 152.1, 143.9, 134.1, 129.3, 122.3, 119.0, 117.9, 101.8 (C(sp²)-B by HMBC), 39.0, 30.0, 22.5, 14.1; 11 B NMR (128 MHz, CDCl₃): δ (ppm) 27.0; IR (neat): \tilde{V} (cm⁻¹) 3395, 3191, 3095, 2945, 2925, 2864, 1655, 1606, 1509, 1486, 871, 756, 641; HRMS (ESI): calcd. for C₁₃H₁₆BIN₂ONa [M+Na]⁺: 377.0293, found 377.0295.

(Z)-2-(1-Bromohex-1-en-1-yl)-2,3-dihydrobenzo[d][1,3,2]diazaborinin-4(1H)-one (47b).

Chemical Formula: C₁₃H₁₆BBrN₂O Molecular Weight: 307.00

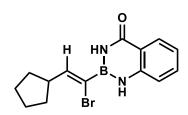
Prepared analogously as a colorless solid (1.18 g, 77%, α/β > 99:1, Z/E > 99:1) without flash column chromatography. ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.20 (dd, J = 8.0, 1.8 Hz, 1H), 7.91 (brs, 1H), 7.54 (ddd, J = 8.5, 7.1, 1.5 Hz, 1H), 7.16 (ddd, J = 8.2, 7.3, 1.1 Hz, 1H), 7.09 (dd, J = 8.2, 1.1 Hz, 1H), 6.84 (t, J = 6.7 Hz, 1H), 6.83 (brs, 1H), 2.48-2.38

(m, 2H), 1.59-1.47 (m, 2H), 1.47-1.34 (m, 2H), 0.95 (t, J = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 166.7, 146.3, 143.9, 134.1, 129.3, 122.3, 121.7 (C(sp²)-B by HMBC), 119.0, 117.9, 32.9, 30.2, 22.5, 14.0; ¹¹B NMR (128 MHz, CDCl₃): δ (ppm) 26.6; IR (neat): \tilde{V} (cm⁻¹) 3406, 3217, 2951, 2917, 2853, 1651, 1609, 1509, 1486, 761, 642; HRMS (ESI): calcd. for C₁₃H₁₆B⁷⁹BrN₂ONa [M+Na]⁺: 329.0431, found 329.0431.

(Z)-2-(1-Iodo-4-phenylbut-1-en-1-yl)-2,3-dihydrobenzo[d][1,3,2]diazaborinin-4(1H)-one

Chemical Formula: C₁₇H₁₆BIN₂O Molecular Weight: 402.04

(48b). Prepared analogously as a colorless solid (147.3 mg, 73%, $\alpha/\beta = 97.3$, Z/E > 99.1) without flash column chromatography. ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.20 (dd, J = 7.9, 1.7 Hz, 1H), 7.62 (brs, 1H), 7.54 (ddd, J = 8.1, 7.2, 1.6 Hz, 1H), 7.35-7.29 (m, 2H), 7.26-7.20 (m, 3H), 7.16 (ddd, J = 8.1, 7.2, 1.1 Hz, 1H), 7.10-7.06 (m, 1H), 6.72 (brs, 1H), 6.69


(t, J = 6.3 Hz, 1H), 2.86 (dd, J = 8.7, 6.7 Hz, 2H), 2.73-2.64 (m, 2H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 166.6, 150.5, 143.8, 140.7, 134.2, 129.3, 128.7, 128.5, 126.5, 122.4, 118.9, 117.9, 102.5 (C(sp²)-B by HMBC), 40.7, 33.8; ¹¹B NMR (128 MHz, CDCl₃): δ (ppm) 26.9; IR (neat): \tilde{V} (cm⁻¹) 3398, 3198, 3096, 2941, 2925, 1667, 1609, 1508, 1487, 1410, 876, 757, 744, 635; HRMS (ESI): calcd. for C₁₇H₁₇BIN₂O [M+H]⁺: 403.0473, found 403.0472.

(Z)-2-(4-(tert-Butyldimethylsiloxy)-1-iodobut-1-en-1-yl)-2,3-dihydrobenzo[d][1,3,2]di-

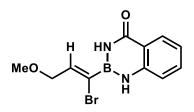
Chemical Formula: C₁₇H₂₆BIN₂O₂Si Molecular Weight: 456.21 **azaborinin-4(1***H***)-one (49c).** Prepared analogously as a colorless solid (1.83 g, 80%, $\alpha/\beta > 99:1$, Z/E > 99:1) without flash column chromatography. ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.24-8.17 (m, 1H), 7.54 (ddd, J = 8.1, 7.2, 1.6 Hz, 1H), 7.48 (brs, 1H), 7.17 (ddd, J = 8.1, 7.2, 1.0 Hz, 1H), 7.09 (ddd, J = 8.1, 1.1, 0.5 Hz, 1H), 6.74 (t, J = 6.3

Hz, 1H), 6.72 (brs, 1H), 3.80 (t, J = 6.3 Hz, 2H), 2.57 (q, J = 6.3 Hz, 2H), 0.91 (s, 9H), 0.09 (s, 6H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 166.4, 148.6, 143.8, 134.1, 129.3, 122.4, 119.0, 117.9, 103.1 (C(sp²)-B by HMBC), 61.0, 42.7, 26.1, 18.5, -5.1; ¹¹B NMR (128 MHz, CDCl₃): δ (ppm) 27.0; IR (neat): \tilde{V} (cm⁻¹) 3347, 3221, 2927, 2856, 1644, 1612, 1487, 1098, 1069, 833, 756, 666; HRMS (ESI): calcd. for C₁₇H₂₆BIN₂O₂SiNa [M+Na]⁺: 479.0794, found 479.0798.

(Z)-2-(1-Bromo-2-cyclopentylvinyl)-2,3-dihydrobenzo[d][1,3,2]diazaborinin-4(1H)-one

Chemical Formula: C₁₄H₁₆BBrN₂O Molecular Weight: 319.01 (50b). Prepared analogously as a colorless solid (114.3 mg, 72%, $\alpha/\beta >$ 99:1, Z/E > 99:1). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.20 (dd, J = 8.0, 1.6 Hz, 1H), 7.85 (brs, 1H), 7.54 (ddd, J = 8.1, 7.2, 1.6 Hz, 1H), 7.16 (ddd, J = 8.1, 7.2, 1.0 Hz, 1H), 7.09 (dd, J = 8.2, 1.3 Hz, 1H), 6.81 (brs, 1H), 6.74 (d, J = 8.4 Hz, 1H), 3.12 (hex, J = 8.4 Hz, 1H), 2.06-1.92

(m, 2H), 1.83-1.68 (m, 2H), 1.73-1.59 (m, 2H), 1.48-1.31 (m, 2H); 13 C NMR (101 MHz, CDCl3): δ (ppm) 166.7, 151.2, 143.9, 134.2, 129.3, 122.3, 119.7 (C(sp²)-B by HMBC), 118.9, 117.9, 43.7, 32.5, 25.7; 11 B NMR (128 MHz, CDCl₃): δ (ppm) 26.6; IR (neat): \tilde{V} (cm⁻¹) 3386, 3194, 2945, 2862, 1652, 1610, 1510, 1488, 1412, 1154, 869, 754; HRMS (ESI): calcd. for $C_{14}H_{17}B^{79}BrN_2O$ [M+H]⁺: 319.0612, found 319.0611.


(Z)-2-(1-Bromo-5-chloropent-1-en-1-yl)-2,3-dihydrobenzo[d][1,3,2]diazaborinin-4(1H)-

Chemical Formula: C₁₂H₁₃BBrCIN₂O Molecular Weight: 327.41

one (**51**). Prepared analogously as a colorless solid (130.9 mg, 80%, $\alpha/\beta = 96.4$, Z/E > 99.1). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.40 (brs, 1H), 8.24-8.17 (m, 1H), 7.55 (ddd, J = 8.1, 7.1, 1.5 Hz, 1H), 7.18 (ddd, J = 8.1, 7.1, 1.0 Hz, 1H), 7.10 (dd, J = 8.1, 1.3 Hz, 1H), 6.96 (t, J = 6.7 Hz, 1H), 6.88 (brs, 1H), 3.63 (t, J = 6.6 Hz, 2H), 2.66-2.55 (m,

2H), 2.05 (dt, J = 8.0, 6.8 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 167.0, 144.2, 143.9, 134.2, 129.2, 123.1 (C(sp²)-B by HMBC), 122.4, 119.1, 118.0, 44.3, 30.9, 30.5; ¹¹B NMR (128 MHz, CDCl₃): δ (ppm) 26.4; IR (neat): \tilde{V} (cm⁻¹) 3408, 3213, 1651, 1608, 1507, 1486, 763, 641 HRMS (ESI): calcd. for C₁₂H₁₃B⁷⁹Br³⁵ClN₂ONa [M+Na]⁺: 348.9885, found 348.9885.

(Z)-2-(1-Bromo-3-methoxyprop-1-en-1-yl)-2,3-dihydrobenzo[d][1,3,2]diazaborinin-

Chemical Formula: C₁₁H₁₂BBrN₂O₂ Molecular Weight: 294.94

4(1*H***)-one (52).** Prepared analogously as a yellow solid (93.2 mg, 63%, $\alpha/\beta = 98.2$, Z/E > 99.1). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.26-8.19 (m, 1H), 7.95 (brs, 1H), 7.55 (ddd, J = 8.1, 7.2, 1.5 Hz, 1H), 7.18 (ddd, J = 8.2, 7.2, 1.1 Hz, 1H), 7.12-7.08 (m, 1H), 7.05 (t, J = 4.8 Hz, 1H), 6.85 (brs, 1H), 4.27 (d, J = 4.7 Hz, 2H), 3.44 (s, 3H); ¹³C

NMR (101 MHz, CDCl₃): δ (ppm) 166.6, 143.7, 143.2, 134.2, 129.4, 122.5, 121.3 (C(sp²)-B by HMBC), 119.1, 117.9, 73.3, 58.9; ¹¹B NMR (128 MHz, CDCl₃): δ (ppm) 26.4; IR (neat): \tilde{V} (cm⁻¹) 3399, 3177, 3090, 2928, 2816, 1652, 1612, 1511, 1488, 1267, 1118, 768; HRMS (ESI): calcd. for C₁₁H₁₂B⁷⁹BrN₂ONa [M+Na]⁺: 317.0068, found 317.0066.

(Z)-2-(2-Cyclopropyl-1-iodovinyl)-2,3-dihydrobenzo[d][1,3,2]diazaborinin-4(1H)-one

Chemical Formula: C₁₂H₁₂BIN₂O Molecular Weight: 337.96 (53). Prepared analogously as a colorless solid (124.1 mg, 73%, $\alpha/\beta > 99:1$, Z/E > 99:1) without flash column chromatography. ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.17 (dd, J = 7.9, 1.7 Hz, 1H), 7.72 (brs, 1H), 7.53 (ddd, J = 8.1, 7.2, 1.6 Hz, 1H), 7.15 (ddd, J = 8.1, 7.2, 1.1 Hz, 1H), 7.10-7.02 (m, 1H), 6.70 (brs, 1H), 6.04 (d, J = 8.9 Hz, 1H), 1.98 (dtt, J = 9.1,

8.0, 4.6 Hz, 1H), 1.12-1.00 (m, 2H), 0.81-0.72 (m, 2H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 166.7, 155.8, 144.0, 134.1, 129.2, 122.2, 118.9, 117.9, 22.0, 8.5; ¹¹B NMR (128 MHz, CDCl₃):

 δ (ppm) 27.0; IR (neat): \tilde{v} (cm⁻¹) 3413, 3216, 1662, 1617, 1604, 1506, 1487, 1400, 1305, 1157, 755, 634; HRMS (ESI): calcd. for C₁₂H₁₂BIN₂ONa [M+Na]⁺: 360.9980, found 360.9981.

Post-Functionalization of the Halide via Negishi Cross Coupling. A 10 mL flame-dried Schlenk tube was charged under argon atmosphere with the selected alkenyl halide (0.2 mmol), the palladium catalyst (4 μmol, 2 mol%), and THF (1 mL). Next, the solution of the selected organozinc reagent (0.24 mmol, 1.2 equiv.) was added dropwise and stirring was continued until TLC showed full conversion. The mixture was concentrated under reduced pressure and the residue purified by flash chromatography (CH₂Cl₂/EtOAc, 90:10) to yield the desired product.

(Z)-2-(5-(tert-butyldimethylsiloxy)pent-2-en-2-yl)-2,3-dihydrobenzo[d][1,3,2]diazabo-

TBSO H HN H

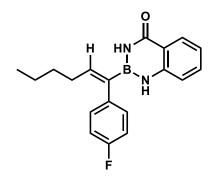
Chemical Formula: C₁₈H₂₉BN₂O₂Si Molecular Weight: 344.34

rinin-4(1*H***)-one (54).** Prepared using PEPPSITM-IPr as the catalyst; a colorless solid material (58.0 mg, 84%, α/β > 99:1, Z/E > 99:1). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.24-8.15 (m, 1H), 7.50 (ddd, J = 8.1, 7.2, 1.6 Hz, 1H), 7.32 (brs, 1H), 7.11 (ddd, J = 8.1, 7.2, 1.1 Hz, 1H), 7.06-6.99 (m, 1H), 6.49 (brs, 1H), 6.19 (tq, J = 7.0, 1.7 Hz, 1H), 3.71 (t, J

= 6.8 Hz, 2H), 2.51-2.41 (m, 2H), 1.85-1.82 (m, 3H), 0.90 (s, 9H), 0.07 (s, 6H); 13 C NMR (101 MHz, CDCl₃): δ (ppm) 166.8, 144.5, 139.0, 133.9, 130.7 (C(sp²)-B by HMBC), 129.2, 121.7, 118.9, 117.6, 62.3, 32.7, 26.1, 18.5, 14.3, -5.1; 11 B NMR (128 MHz, CDCl₃): δ (ppm) 28.7; IR (neat): $\tilde{\nu}$ (cm⁻¹) 3350, 3247, 2951, 2926, 2884, 2856, 1629, 1615, 1525, 1103, 1037, 833, 757, 478; HRMS (ESI): calcd. for C₁₈H₃₀BN₂O₂Si [M+H]⁺: 345.2164, found 345.2165.

2-((2Z,4Z)-1-(tert-Butyldimethylsiloxy)-7-phenylhepta-2,4-dien-4-yl)-2,3-dihydro-

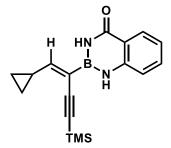
benzo[*d*][1,3,2]diazaborinin-4(1*H*)-one (55). The organozinc reagent was prepared as follow: A 10 mL flame-dried Schlenk tube was charged under argon atmosphere with (*Z*)-*tert*-butyl((3-iodoallyl)oxy)dimethylsilane (71.6 mg, 0.24 mmol, 1.2 equiv) and Et₂O (0.4 mL). The solution was cooled to –78°C before *tert*-butyllithium (1.6 M in pentane, 0.30 mL, 0.24 mmol) was added dropwise. After stirring for 1 h at –78°C, a solution of dry ZnBr₂ (54 mg, 0.24 mmol) in THF (0.3 mL) was added dropwise. Stirring was continued at –78°C for 15 min before the mixture was allowed to reach room temperature over the course of 30 min.


Chemical Formula: C₂₆H₃₅BN₂O₂Si Molecular Weight: 446.47

The cross coupling was performed as described above, using this solution of the organozinc reagent and PEPPSITM-IPr as catalyst. The title compound was obtained as a yellow solid material (42.4 mg, 48%, $\alpha/\beta = 97.3$, Z/E > 99.1). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.20 (dd, J = 7.9, 1.7 Hz, 1H), 7.48 (ddd, J = 8.1, 7.2, 1.6 Hz, 1H), 7.45 (brs, 1H),

7.32-7.26 (m, 2H), 7.23-7.16 (m, 3H), 7.11 (ddd, J = 8.1, 7.2, 1.1 Hz, 1H), 6.99 (dd, J = 8.2, 1.1 Hz, 1H), J = 8.2, 1.11.2 Hz, 1H), 6.70 (brs, 1H), 6.32-6.24 (m, 1H), 6.09 (ddt, J = 11.2, 1.9, 1.2 Hz, 1H), 5.79 (dtd, J = 11.3, 6.8, 1.0 Hz, 1H), 3.99 (dd, J = 6.8, 1.3 Hz, 2H), 2.75 (t, J = 7.7 Hz, 2H), 2.58-2.43 (m, 2H), 0.84 (s, 9H), -0.01 (s, 6H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 166.8, 144.5, 143.8, 141.4, 133.8, 132.1, 129.2, 128.6, 128.5, 128.0, 126.2, 121.7, 119.0, 117.8, 60.3, 35.0, 32.1, 26.1, 18.5, -5.1; ¹¹B NMR (128 MHz, CDCl₃): δ (ppm) 27.9; IR (neat): \tilde{v} (cm⁻¹) 3406, 3215, 2951, 2927, 2855, 1651, 1613, 1515, 1488, 1253, 1058, 833, 756; HRMS (ESI): calcd. for $C_{26}H_{35}BN_2O_2SiNa$ [M+Na]⁺: 469.2453, found 469.2457.

(Z)-2-(1-(4-Fluorophenyl)hex-1-en-1-yl)-2,3-dihydrobenzo[d][1,3,2]diazaborinin-4(1H)-


one (56). The organozinc reagent was prepared as follow: A 10 mL flame-dried Schlenk tube was charged under argon atmosphere with ZnBr₂ (135.1 mg, 0.60 mmol) and THF (2.2 mL). A solution of 4-fluorophenylmagnesium bromide (2 M in THF, 0.30 mL, 0.60 mmol) was added dropwise at 0°C and the resulting mixture was stirred at 0°C for 30 min.

Chemical Formula: C₁₉H₂₀BFN₂O Molecular Weight: 322.19

The cross coupling was performed as described above, using this solution of the organozinc reagent and Pd(P'Bu₃)₂ as the catalyst. The title compound was obtained as a yellow solid material (139.8 mg, 87%, $\alpha/\beta > 99:1$, Z/E = 95:5). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.18 (dd, J = 7.9, 1.7 Hz, 1H), 7.47 (ddd, J = 8.5, 7.2, 1.6 Hz, 1H), 7.26 (brs, 1H), 7.14-7.03(m, 5H), 6.93 (dd, J = 8.1, 0.9 Hz, 1H), 6.45 (t, J = 7.2 Hz, 1H), 6.19 (brs, 1H), 2.09 (q, J = 7.2 Hz, 2H), 1.45-1.34 (m, 2H), 1.33-1.22 (m, 2H), 0.85 (t, J = 7.3 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 166.7, 161.9 (d, J = 245.4 Hz), 145.6, 144.3, 136.1 (C(sp²)-B by HMBC), 135.8 (d, J = 3.5 Hz), 133.9, 130.4 (d, J = 7.5 Hz), 129.3, 121.9, 118.9, 117.6, 115.9 (d, J = 21.1 Hz), 31.5, 30.0, 22.5, 14.0; ^{19}F NMR (282 MHz, CDCl₃): δ (ppm) $-115.9,\,^{11}B$ NMR (128 MHz, CDCl₃): δ (ppm) 28.6; IR (neat): \tilde{v} (cm⁻¹) 3421, 3185, 3103, 2948, 2924, 2865, 1657, 1608, 1504, 1487, 1401, 1207, 1152, 759; HRMS (ESI): calcd. for $C_{19}H_{19}BFN_2O$ [M-H]⁻: 321.1580, found 321.1586.

(Z)-2-(1-Cyclopropyl-4-(trimethylsilyl)but-1-en-3-yn-2-yl)-2,3-dihydrobenzo[d][1,3,2]diazaborinin-4(1*H*)-one (57). The used alkynyl zinc bromide solution was prepared as follow: A 10 mL flame-dried Schlenk tube was charged under argon atmosphere with ethynyl-trimethylsilan (34 μL, 23.6 mg, 0.24 mmol) and THF (0.5 mL). The resulting solution was cooled to -78°C before *n*-butyllithium (1.6 M in hexane, 0.15 mL, 0.24 mmol) was added dropwise. The mixture was stirred for 1 h at -78°C before a solution of dry ZnBr₂ (54 mg, 0.24 mmol, 1.2 equiv) in THF (0.35 mL) was added dropwise. Stirring was continued at -78°C for 15 min before the mixture was allowed to reach room temperature.

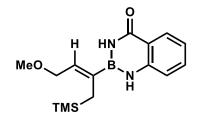
Chemical Formula: C₁₇H₂₁BN₂OSi Molecular Weight: 308.26

The cross coupling was performed as described above, using this alkynyl zinc reagent and Pd(P^tBu₃)₂ as the catalyst. The title compound was obtained as a colorless solid (49.1 mg, 80%, $\alpha/\beta > 99:1$, Z/E > 99:1). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.17 (dd, J = 7.9, 1.7 Hz, 1H), 7.79 (brs, 1H), 7.51 (ddd, J = 8.1, 7.2, 1.5 Hz, 1H), 7.13 (ddd, J = 8.1, 7.2, 1.1 Hz, 1H), 7.02 (dd, J = 8.2, 1.2 Hz, 1H), 6.68 (brs, 1H), 6.02

(d, J = 10.1 Hz, 1H), 2.29-2.16 (m, 1H), 1.12-1.06 (m, 2H), 0.77-0.69 (m, 2H), 0.28 (s, 9H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 166.9, 159.9, 144.2, 133.9, 129.2, 121.8, 119.0, 117.7, 113.6 (C(sp²)-B by HMBC), 103.7, 100.6, 16.1, 9.5, 0.4; ¹¹B NMR (128 MHz, CDCl₃): δ (ppm) 27.5; IR (neat): \tilde{V} (cm⁻¹) 3413, 1394, 2956, 2129, 1672, 1607, 1511, 1409, 1244, 837, 751; HRMS (ESI): calcd. for C₁₇H₂₂BN₂OSi [M+H]⁺: 309.1589, found 309.1587.

(*Z*)-2-(6-(*tert*-Butyldimethylsiloxy)-1-(1,3-dioxan-2-yl)hex-3-en-3-yl)-2,3-dihydrobenzo-[*d*][1,3,2]diazaborinin-4(1*H*)-one (58). The organozinc reagent was prepared as follow: A 10 mL flame-dried Schlenk tube was charged under argon atmosphere with ZnBr₂ (54 mg, 0.24 mmol) and THF (0.52 mL). A solution of (1,3-dioxan-2-ylethyl)magnesium bromide (0.5 M in THF, 0.24 mL, 0.48 mmol) was added dropwise at 0°C and the resulting mixture was stirred at 0°C for 30 min.

The cross coupling was performed as described above, using this solution of the organozinc reagent and PEPPSITM-IPr as the catalyst. The title compound was obtained as a yellow solid


Chemical Formula: C₂₃H₃₇BN₂O₄Si Molecular Weight: 444.45

material (77.2 mg, 77%, $\alpha/\beta > 99:1$, Z/E > 99:1). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.19 (dd, J = 7.9, 1.7 Hz, 1H), 7.49 (ddd, J = 8.1, 7.2, 1.6 Hz, 1H), 7.45 (brs, 1H), 7.11 (ddd, J = 8.1, 7.2, 1.1 Hz, 1H), 7.00 (brs, 1H), 6.98 (dd, J = 8.1, 1.4 Hz, 1H), 6.19 (t, J = 7.0 Hz, 1H), 4.55 (t, J = 4.9 Hz, 1H), 4.16 (ddd, J = 11.8, 4.9, 1.3 Hz, 2H), 3.81-3.73 (m, 2H), 3.71 (t, J = 6.7 Hz, 2H), 2.46 (q, J = 6.7 Hz, 2H), 2.39 (t, J = 7.4 Hz, 2H), 2.20-2.03 (m, 1H), 1.73 (ddd, J = 8.0,

Molecular Weight: 444.45 (t, J = 7.4 Hz, 2H), 2.20-2.03 (III, 1H), 1.73 (ddd, J = 8.0, 7.0, 4.9 Hz, 2H), 1.37 (ddt, J = 13.4, 2.5, 1.2 Hz, 1H), 0.90 (s, 9H), 0.07 (s, 6H); 13 C NMR (101 MHz, CDCl₃): δ (ppm) 166.9, 144.7, 139.6, 135.5 (C(sp²)-B by HMBC), 133.8, 129.2, 121.5, 119.0, 117.6, 101.3, 67.0, 62.6, 35.2, 32.5, 26.1, 25.8, 22.2, 18.5, -5.1; 11 B NMR (128 MHz, CDCl₃): δ (ppm) 28.5; IR (neat): \tilde{V} (cm⁻¹) 3356, 3220, 2953, 2927, 2855, 1655, 1614, 1522, 1080, 835, 761; HRMS (ESI): calcd. for C₂₃H₃₇BN₂O₄SiNa [M+Na]⁺: 467.2508, found 467.2506.

$(Z)-2-(4-Methoxy-1-(trimethylsilyl)but-2-en-2-yl)-2, 3-dihydrobenzo[\emph{d}][1,3,2] diazabo-1-(trimethylsilyl)but-2-en-2-yl)-2, 3-dihydrobenzo[\emph{d}][1,3,2] diazabo-1-(trimethy$

rinin-4(1*H***)-one (59).** The organozinc reagent was prepared as follow: A 10 mL flame-dried Schlenk tube was charged under argon atmosphere with ZnBr₂ (54 mg, 0.24 mmol, 1.2 equiv) and THF (0.76 mL). A solution of (trimethylsilyl)methylmagnesium chloride (1 M in THF, 0.24 mL, 0.24 mmol) was added dropwise at 0°C and the resulting mixture was stirred at 0°C for 30 min.

Chemical Formula: C₁₅H₂₃BN₂O₂Si Molecular Weight: 302.26

The cross coupling was performed as described above, using this solution of the organozinc reagent and PEPPSITM-IPr as catalyst. The title compound was obtained as a yellow solid material (42.6 mg, 71%, α/β = 98:2, Z/E > 99:1). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.26-8.12 (m, 1H), 7.51 (ddd, J = 8.1, 7.2, 1.5 Hz, 1H), 7.23 (brs, 1H), 7.13 (ddd, J

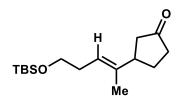
= 8.1, 7.2, 1.0 Hz, 1H), 7.02 (ddd, J = 8.1, 1.1, 0.5 Hz, 1H), 6.47 (brs, 1H), 6.08 (tt, J = 5.8, 1.1 Hz, 1H), 4.06 (d, J = 5.7 Hz, 2H), 3.39 (s, 3H), 1.75 (s, 2H), 0.00 (s, 9H); 13 C NMR (101 MHz, CDCl₃): δ (ppm) 166.7, 144.3, 134.6, 134.0, 129.3, 121.9, 118.9, 117.6, 69.8, 58.6, 21.0, -1.1; 11 B NMR (128 MHz, CDCl₃): δ (ppm) 29.3; IR (neat): \tilde{V} (cm⁻¹) 3320, 3289, 2947, 2912, 1650, 1615, 1518, 1486, 1247, 1145, 1082, 842, 754; HRMS (ESI): calcd. for C₁₅H₂₃BN₂O₂SiNa [M+Na]⁺: 325.1514, found 325.1514.

Further Post-Functionalizations of the B(aam) Part

(E)-tert-Butyl((4-(4-methoxyphenyl)pent-3-en-1-yl)oxy)dimethylsilane (60). 16-18 A 2-5 mL

Chemical Formula: C₁₈H₃₀O₂Si Molecular Weight: 306.52 microwave Biotage tube was charged under argon with the the alkenyl-B(aam) derivative **54** (34.4 mg, 0.1 mmol), $Pd(PPh_3)_4$ (5.8 mg, 5 µmol, 5 mol%), and 1,4-dioxane (0.5 mL). 4-Bromo-anisol (13 µL, 18.7 mg, 0.1 mmol) was added, followed by a solution of potassium *tert*-butoxide in

THF (1 M, 0.11 mL, 0.11 mmol). The tube was sealed and the mixture was vigorously stirred at 100° C for 2 h. The mixture was cooled to room temperature and concentrated under reduced pressure. The crude material was purified by flash chromatography (hexane/EtOAc, 90:10) to yield the title compound as a colorless liquid (20.8 mg, 68%). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.35-7.29 (m, 2H), 6.87-6.82 (m, 2H), 5.70 (tq, J = 7.2, 1.4 Hz, 1H), 3.81 (s, 3H), 3.70 (t, J = 7.1 Hz, 2H), 2.48-2.38 (m, 2H), 2.07-1.99 (m, 3H), 0.91 (s, 9H), 0.07 (s, 6H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 158.6, 136.6, 135.9, 126.7, 122.9, 113.7, 63.0, 55.4, 32.8, 26.1, 18.5, 16.1, -5.1; IR (neat): \tilde{V} (cm⁻¹) 2953, 2928, 2856, 1608, 1511, 1245, 1179, 1092, 1036, 935, 824, 773; HRMS (CI): calcd. for C₁₈H₃₁O₂Si [M+H]⁺: 307.2088, found 307.2087

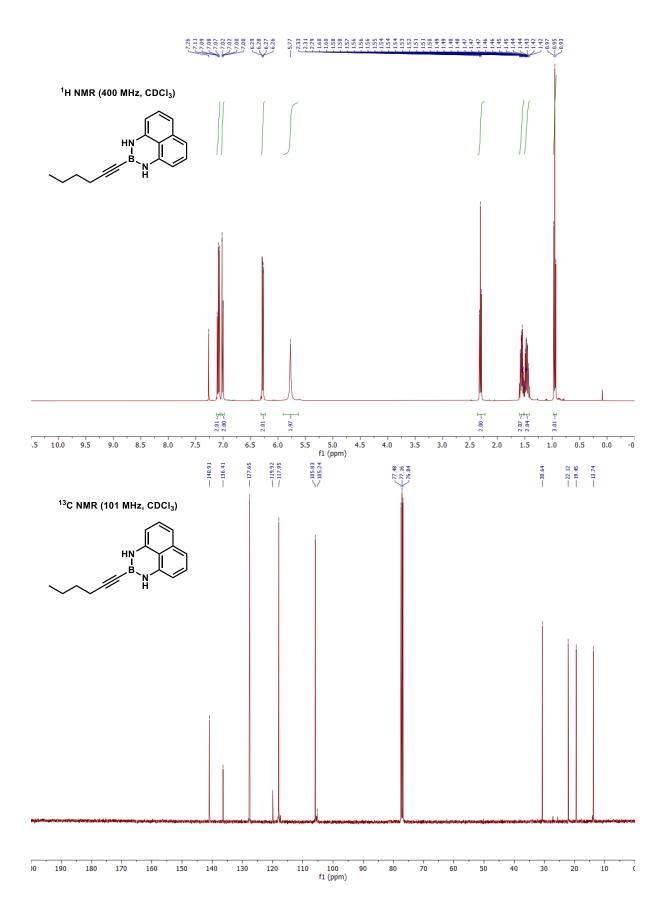

(E)-5-(tert-Butyldimethylsiloxy)-1-(4-methoxyphenyl)-2-methylpent-2-en-1-ol (61). A 2-

Chemical Formula: C₁₉H₃₂O₃Si Molecular Weight: 336.55 5 mL microwave Biotage tube was charged under argon with the alkenyl-B(aam) derivative **54** (51.6 mg, 0.15 mmol), [Rh(cod)Cl]₂ (2.2 mg, 4.5 μ mol, 3 mol%), K₃PO₄ (47.8 mg, 0.225 mmol), 1,4-dioxane (0.5 mL) and water (0.13 mL). *p*-Anisaldehyde (37 μ L, 40.8 mg, 0.30 mmol)

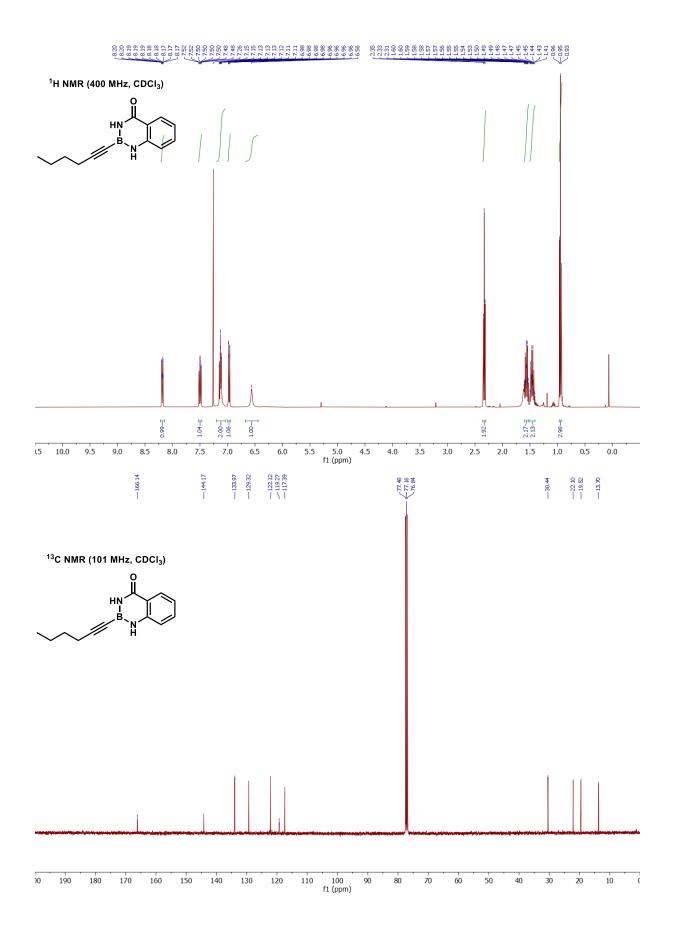
was added and the tube was sealed. The mixture was then heated under microwave irradiation at 140° C for 30 min, before it was cooled to room temperature and diluted with MeOH (1 mL). NaBH₄ (11.3 mg, 0.30 mmol) was added carefully and the resulting mixture was stirred at room temperature for 1 h. The reaction was quenched with water and the mixture extracted with ethyl acetate. The combined organic phases were dried over MgSO₄, filtrated and concentrated under reduced pressure. The residue was purified by flash chromatography (hexane/EtOAc, 80:20) to yield the title compound as a colorless liquid (26.8 mg, 53%). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.30-7.26 (m, 2H), 6.89-6.84 (m, 2H), 5.64 (tq, J = 7.2, 1.3 Hz, 1H), 5.08 (s, 1H), 3.80 (s, 3H), 3.66 (t, J = 7.0 Hz, 2H), 2.35-2.27 (m, 2H), 1.78 (brs, 1H), 1.53-1.47 (m, 3H), 0.90 (s,

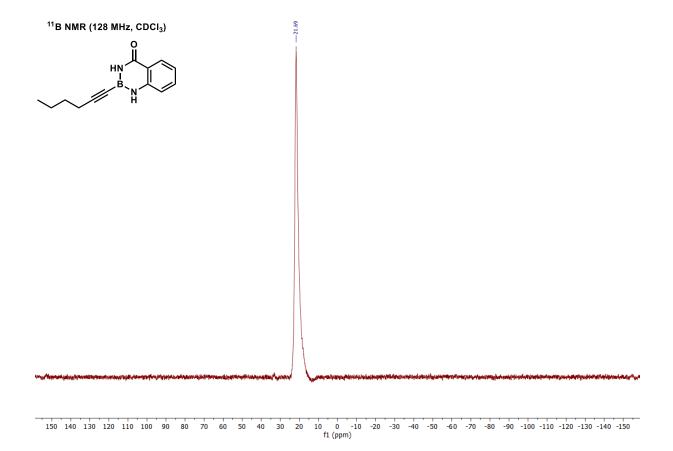
9H), 0.06 (s, 6H); 13 C NMR (101 MHz, CDCl₃): δ (ppm) 159.1, 138.8, 134.7, 127.7, 122.7, 113.8, 78.9, 62.9, 55.4, 31.7, 26.1, 18.5, 12.6, -5.1; IR (neat): $\tilde{\nu}$ (cm⁻¹) 3428, 2953, 2929, 2898, 2856, 1611, 1510, 1247, 1093, 1037, 832, 810, 774; HRMS (CI): calcd. for C₁₉H₃₁O₃Si [M-H]⁻ 335.2037, found 335.2034.

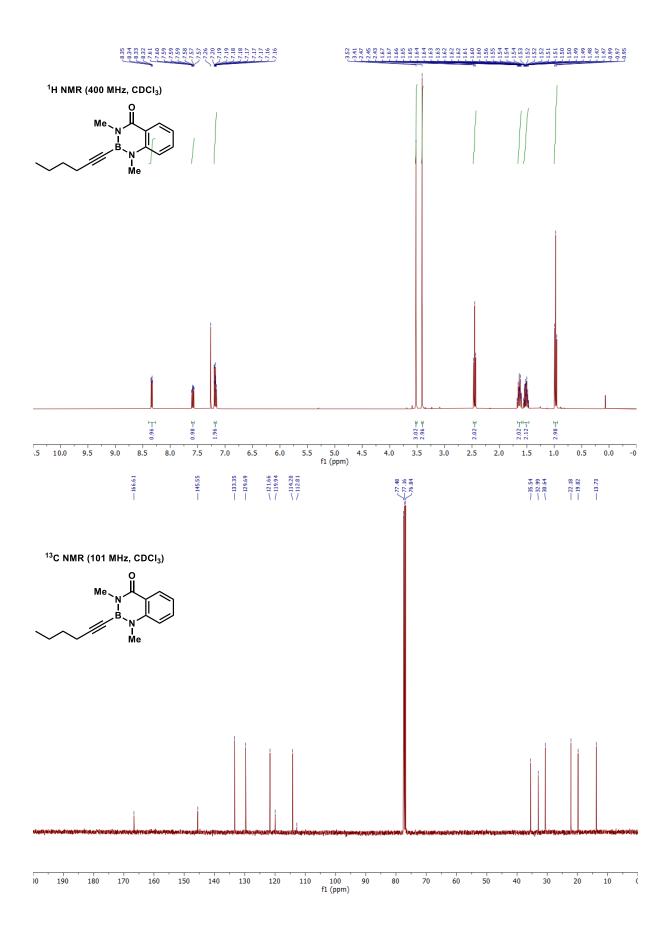
(E)-3-(5-(tert-Butyldimethylsiloxy)pent-2-en-2-yl)cyclopentan-1-one (62).¹⁴ A 2-5 mL mi-

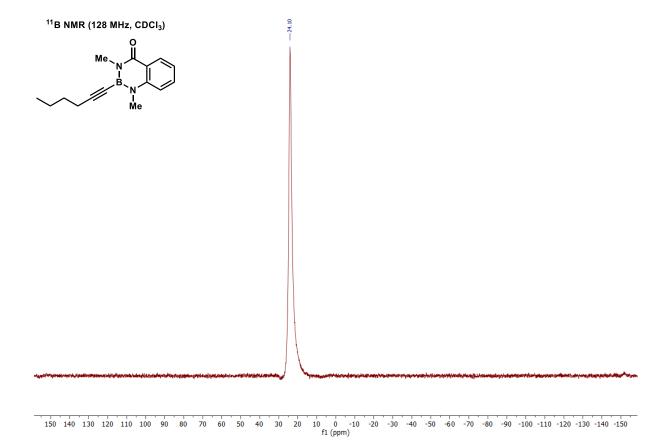


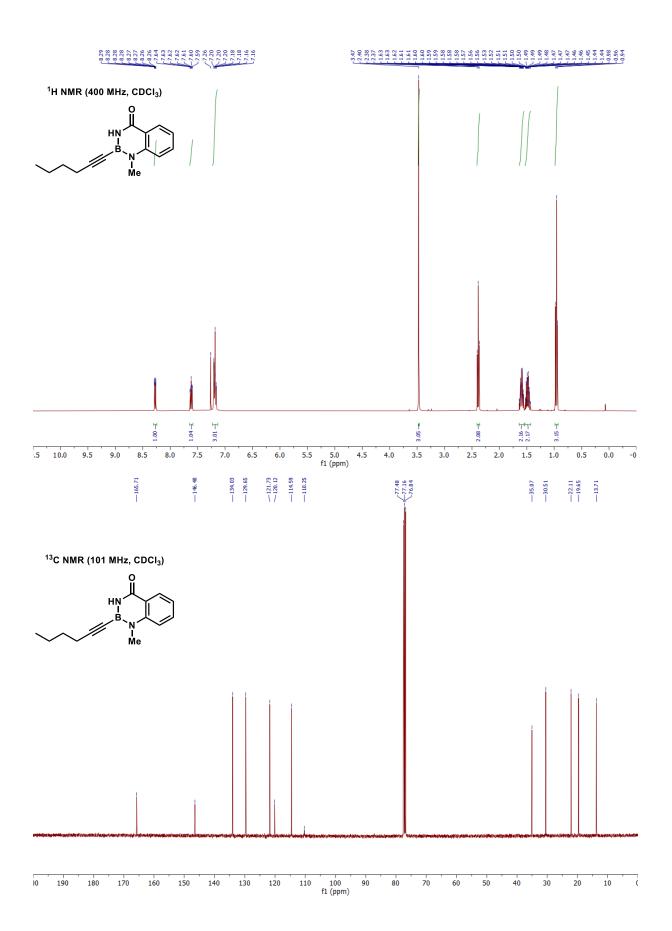
Chemical Formula: C₁₆H₃₀O₂Si Molecular Weight: 282.50 crowave Biotage tube was charged under argon with the alkenyl-B(aam) derivative **54** (51.65 mg, 0.15 mmol), [Rh(cod)Cl]₂ (2.2 mg, 4.5 μ mol, 3 mol%), K₃PO₄ (47.8 mg, 0.225 mmol), 1,4-dioxane (0.5 mL) and water (0.13 mL). 2-Cy-clopentenone (25 μ L, 24.6 mg, 0.30 mmol) was added and the tube was sealed. The mixture was then heated under microwave

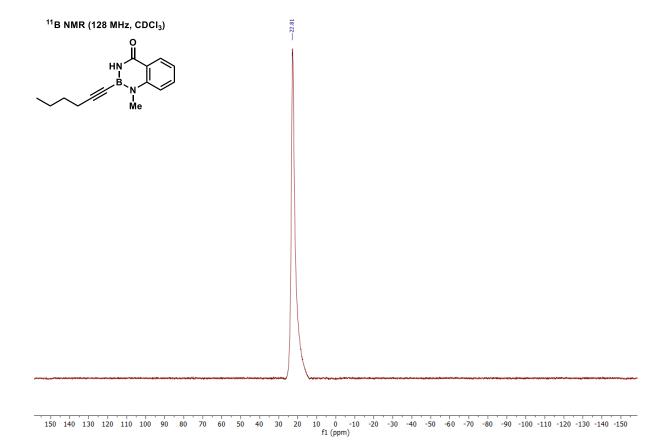

irradiation at 140°C for 30 min, before it was cooled to room temperature and filtrated through a short plug of silica, eluting with hexane/EtOAc (9:1). The combined filtrates were concentrated under reduced pressure and the residue was purified by flash chromatography (hexane/EtOAc, 90:10) to yield the title compound as a colorless liquid (25.8 mg, 61%). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 5.23 (tquint, J = 7.1, 1.4 Hz, 1H), 3.60 (t, J = 6.8 Hz, 2H), 2.76 (ddd, J = 16.7, 11.2, 6.7 Hz, 1H), 2.39-2.29 (m, 2H), 2.26 (qt, J = 7.0, 0.9 Hz, 2H), 2.23-2.06 (m, 3H), 1.82-1.69 (m, 1H), 1.67-1.64 (m, 3H), 0.89 (s, 9H), 0.05 (s, 6H); ¹³C NMR (101 MHz, CDCl₃): δ (ppm) 219.3, 137.4, 120.7, 63.0, 45.3, 43.6, 38.7, 31.8, 28.2, 26.1, 18.5, 14.8, -5.1; IR (neat): \tilde{V} (cm⁻¹) 2954, 2928, 2895, 2856, 1743, 1253, 1093, 832, 773; HRMS (CI): calcd. for C₁₆H₃₁O₂Si [M+H]⁺: 283.2088, found 283.2085.

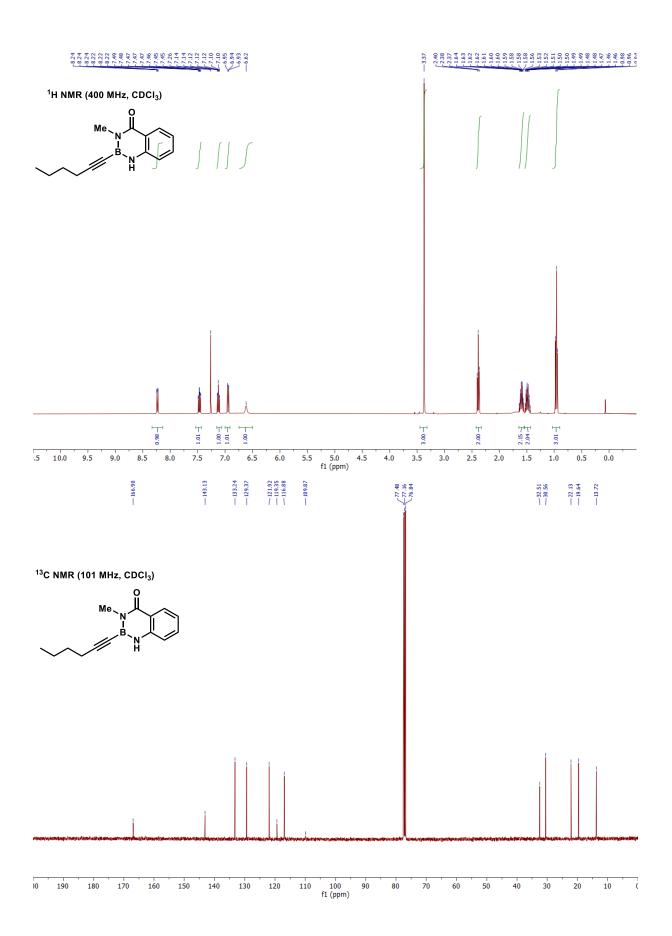

References

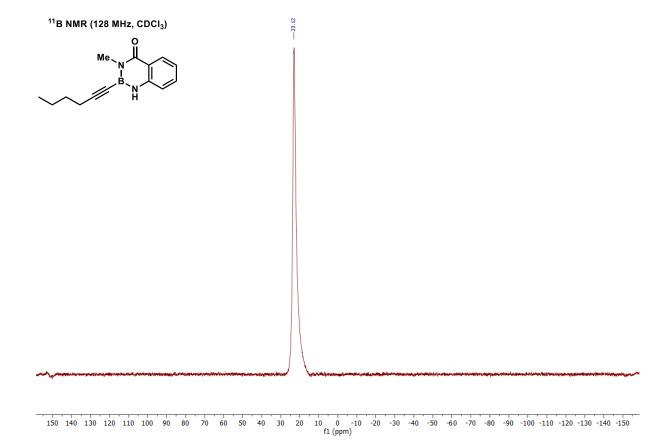

- 1. Y. Nishihara, Y. Okada, J. Jiao, M. Suetsugu, M.-T. Lan, M. Kinoshita, M. Iwasaki, K. Takagi, *Angew. Chem. Int. Ed.* **2011**, *50*, 8660–8664.
- 2. M. D. Mbaye, B. Demerseman, J.-L. Renaud, L. Toupet, C. Bruneau, *Adv. Synth. Catal.* **2004**, *346*, 835–841.
- 3. G. A. Molander, B. W. Katona, F. Machrouhi, *J. Org. Chem.* **2002**, *67*, 8416–8423.
- 4. V. V. Bardin, N. Y. Adonin, H.-J. Frohn, Z. Anorg. Allg. Chem. 2012, 638, 565–579.
- 5. P. J. Fagan, M. D. Ward, J. C. Calabrese, J. Am. Chem. Soc. 1989, 111, 1698–1719.
- 6. J. Willwacher, B. Heggen, C. Wirtz, W. Thiel, A. Fürstner, *Chem. Eur. J.* **2015**, *21*, 10416–10430.
- 7. S. Größl, Total Synthesis of Belizentrin Methyl Ester: The Polyhydroxylated Sidechain, Dissertation, TU Dortmund, 2018.
- 8. A. Fürstner, J. W. J. Kennedy, *Chem. Eur. J.* **2006**, *12*, 7398–7410.
- 9. K. Semba, T. Fujihara, J. Terao, Y. Tsuji, *Angew. Chem. Int. Ed.* **2013**, *52*, 12400–12403.
- 10. N. Huwyler, K. Radkowski, S. M. Rummelt, A. Fürstner, *Chem. Eur. J.* **2017**, 23, 12412–12419.
- 11. R. S Coleman, X. Lu, Chem. Commun. 2006, 423-425.
- 12. H. Sommer, A. Fürstner Chem. Eur. J. 2017, 23, 558-562.
- 13. R. N. Hanson, H. El-Wakil, J. Org. Chem. 1987, 52, 3687–3688.
- 14. C. Wang, Z. Xu, T. Tobrman, E. Negishi, Adv. Synth. Catal. 2010, 352, 627–631.
- 15. S. Xu, C.-T. Lee, H. Rao, E. Negishi, Adv. Synth. Catal. 2011, 353, 2981–2987.
- 16. Y. Mutoh, K. Yamamoto, S. Saito, ACS Catal. 2020, 10, 352–357.
- 17. K. Yamamoto, Y. Mohara, Y. Mutoh, S. Saito, J. Am. Chem. Soc. 2019, 141, 17042–17047.
- 18. H. Yoshida, M. Seki, S. Kamio, H. Tanaka, Y. Izumi, J. Li, I. Osaka, M. Abe, H. Andoh, T. Yajima, et al., *ACS Catal.* **2020**, *10*, 346–351.
- 19. S. Kamio, I. Kageyuki, I. Osaka, H. Yoshida, *Chem. Commun.* **2019**, *55*, 2624–2627.

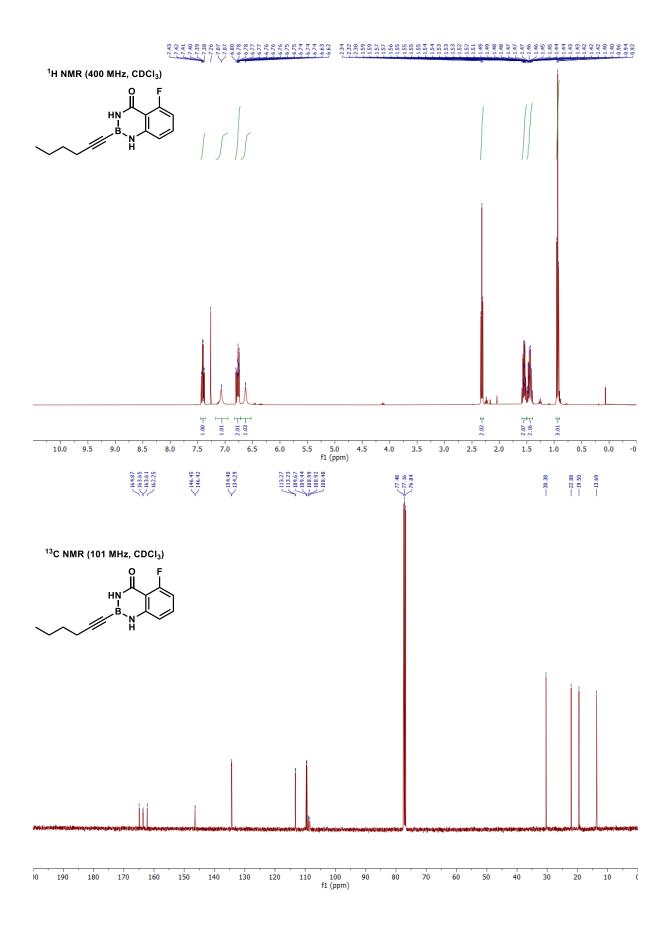


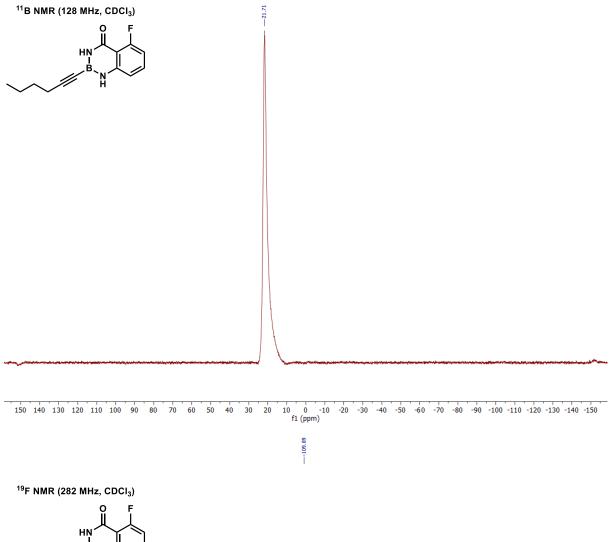

150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 f1 (ppm)

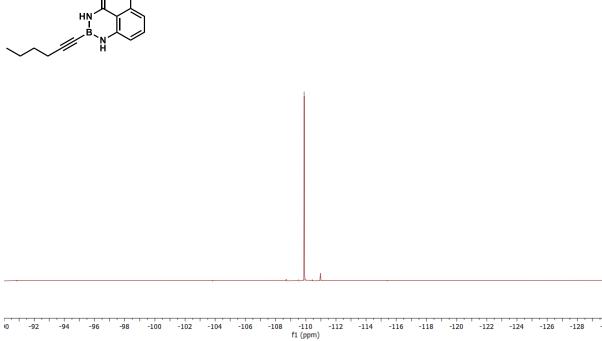


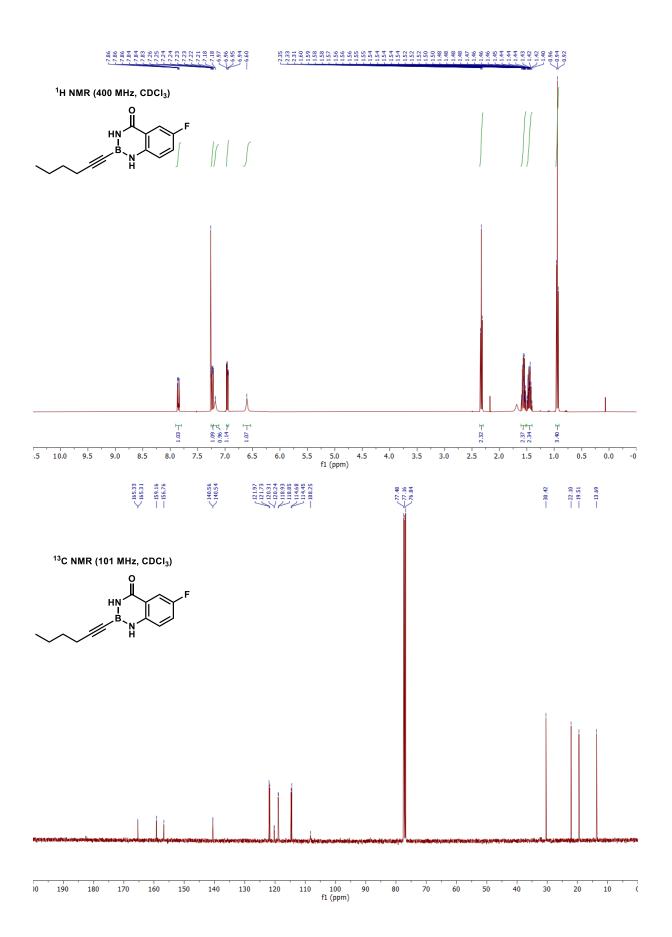


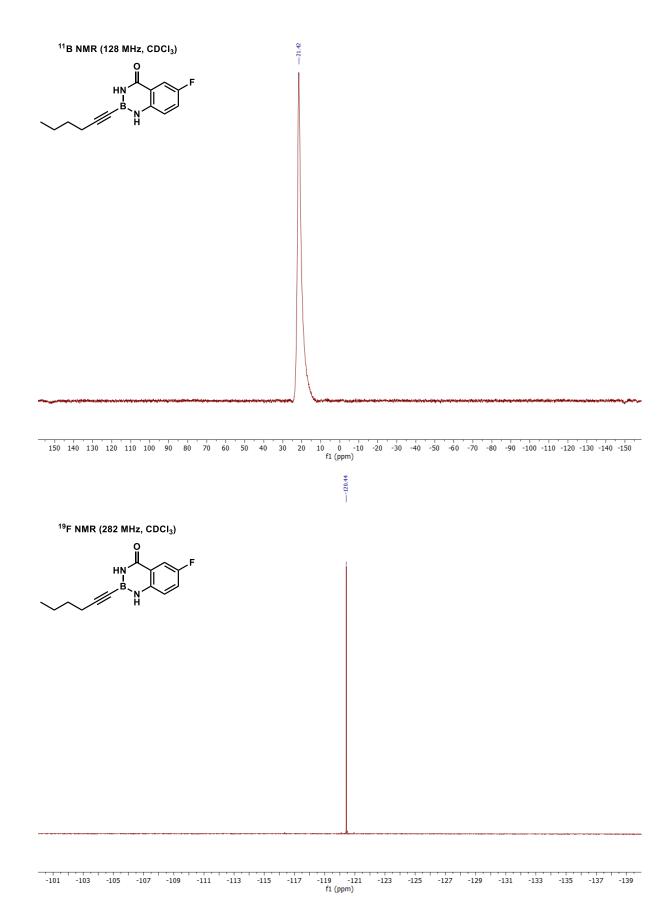


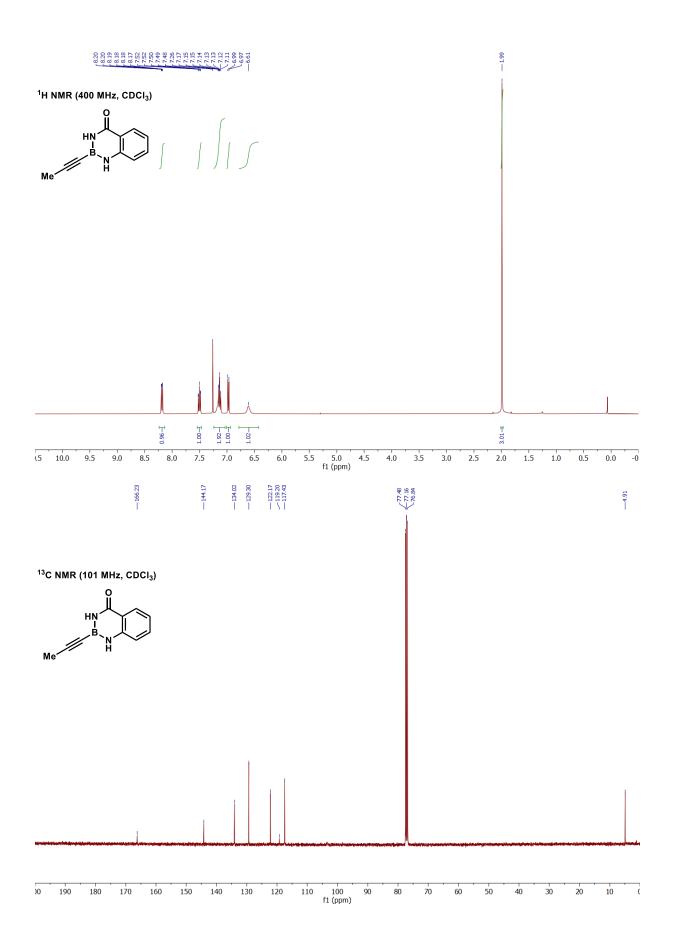


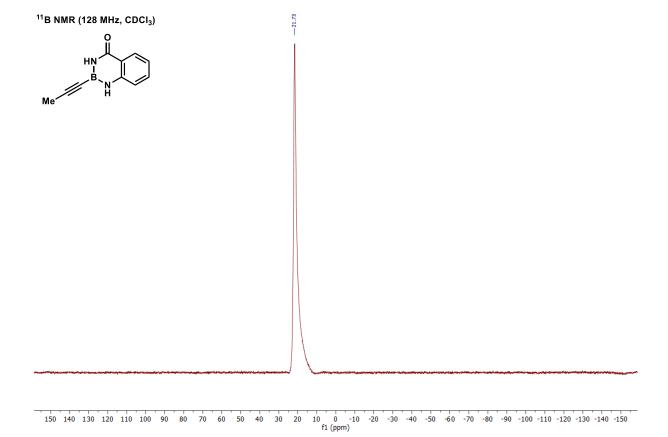


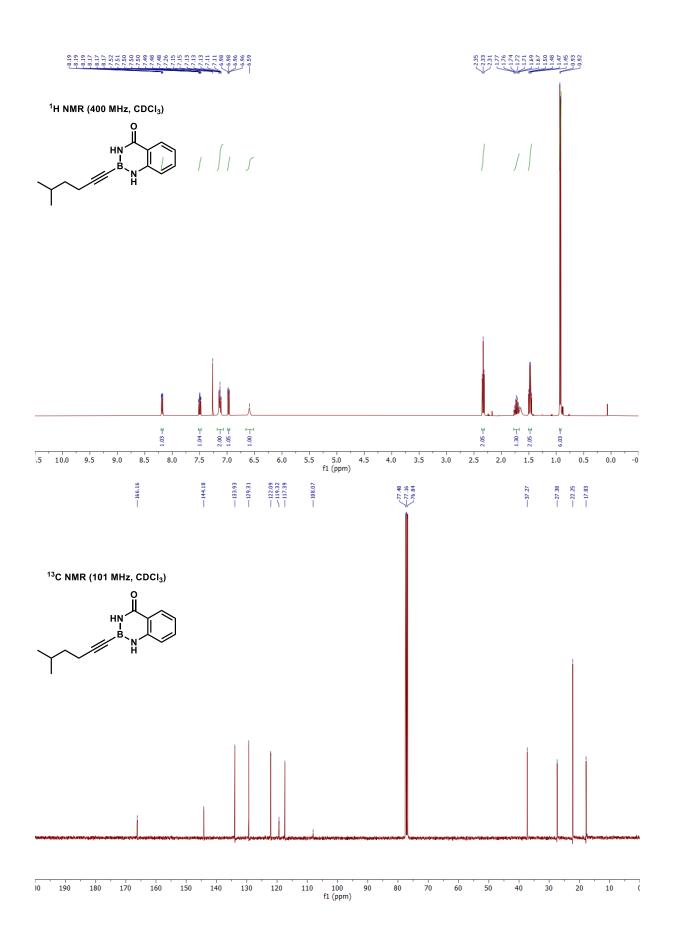


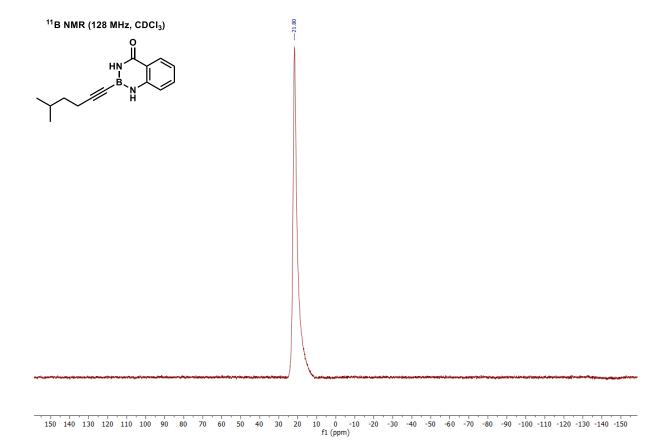


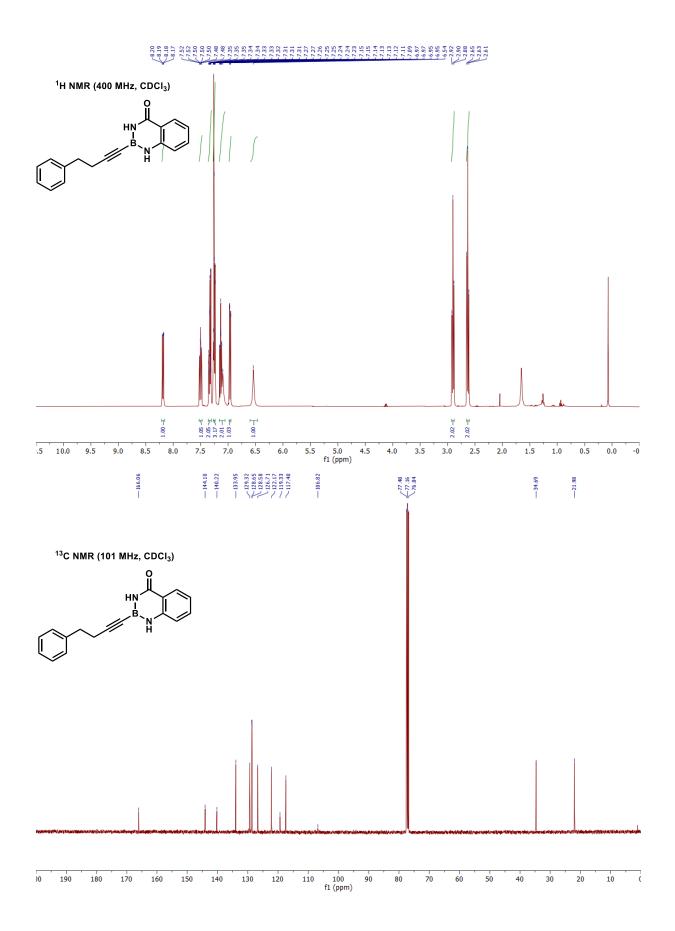


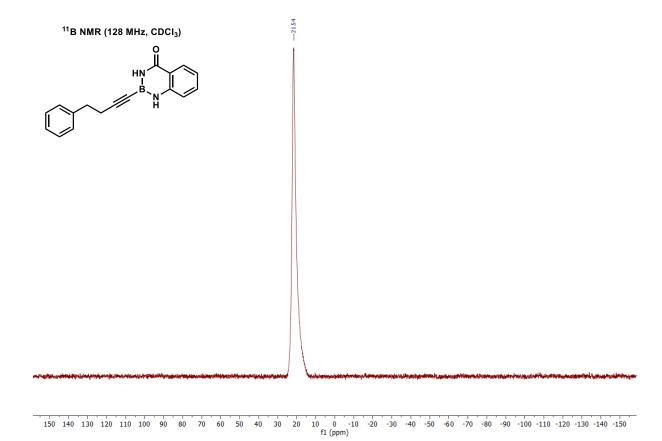


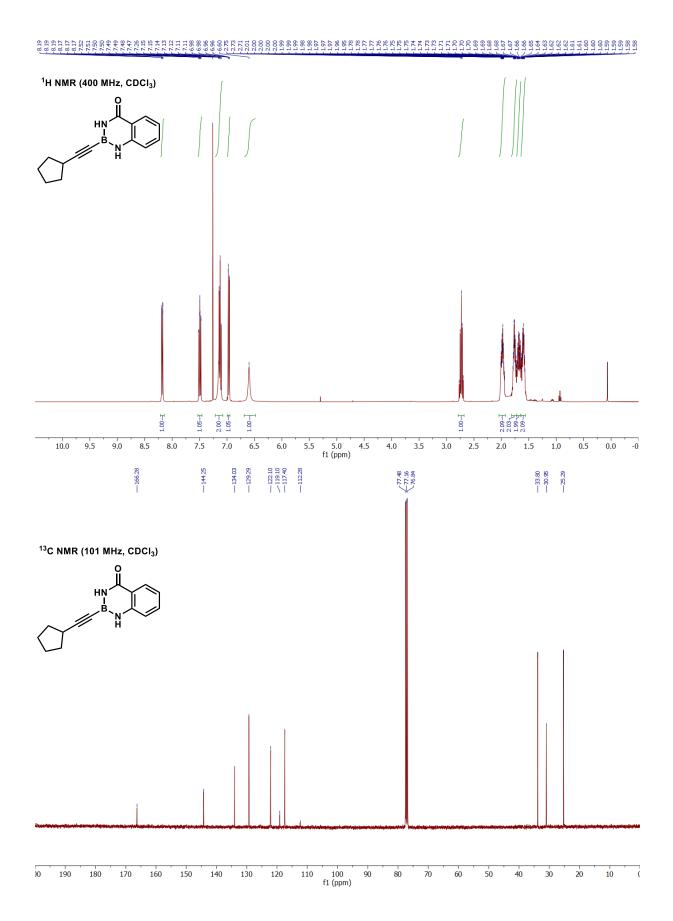


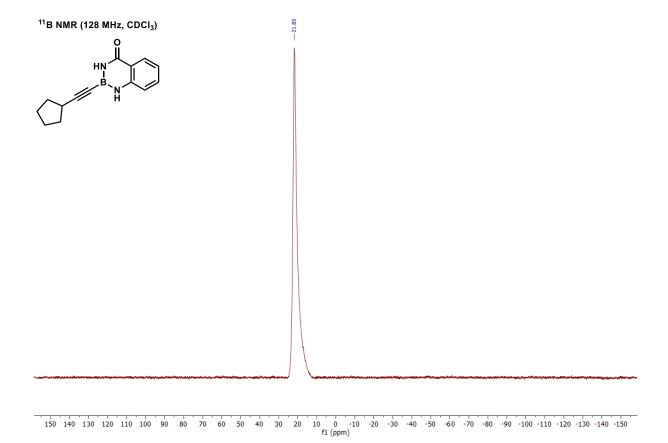


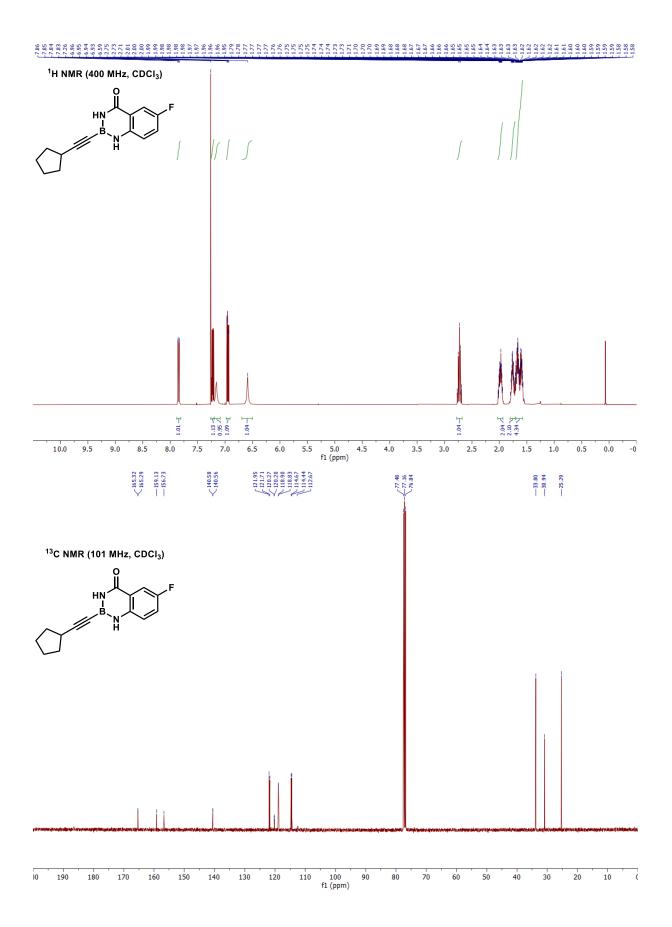


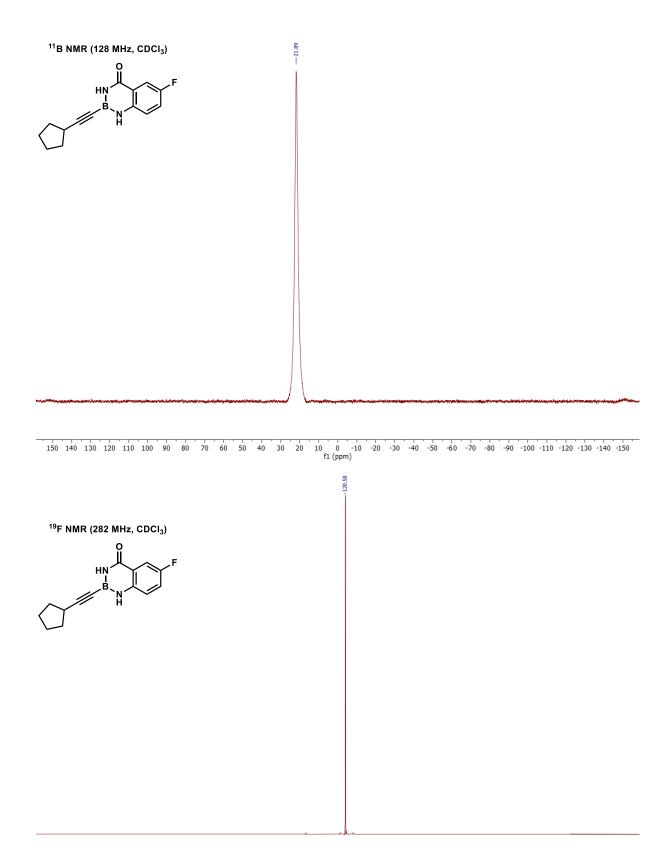


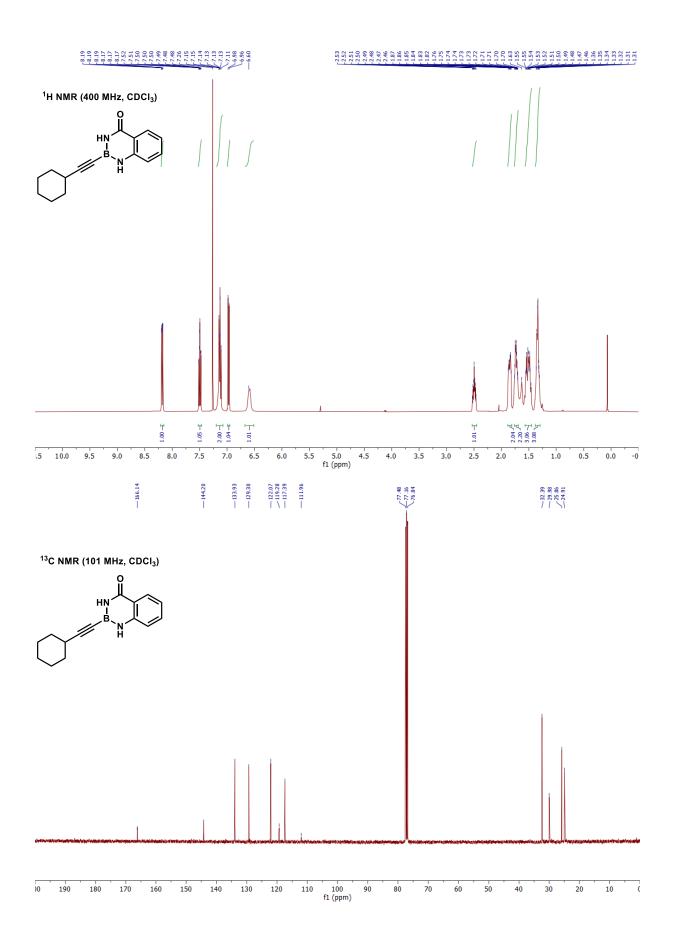


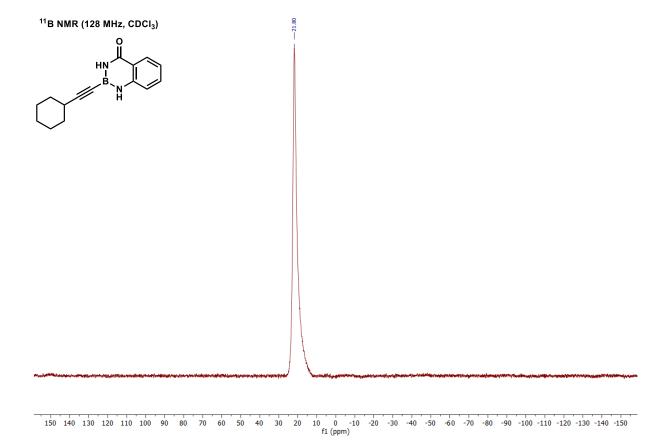


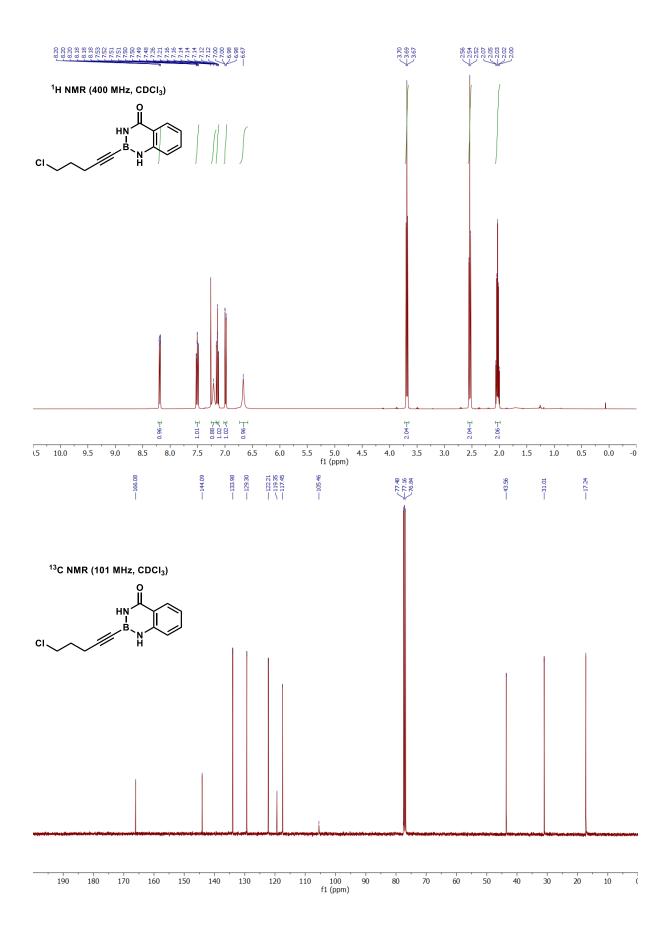


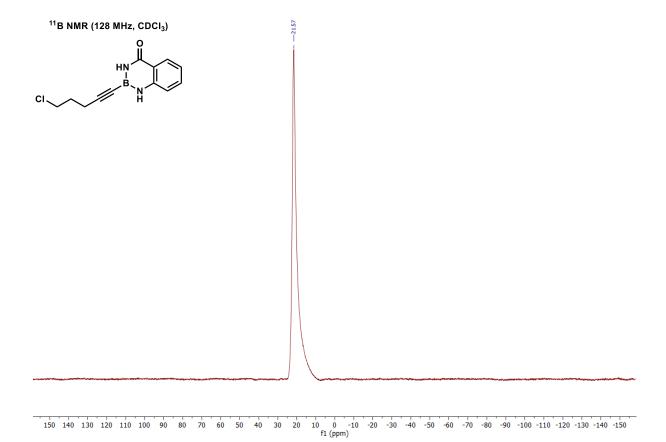


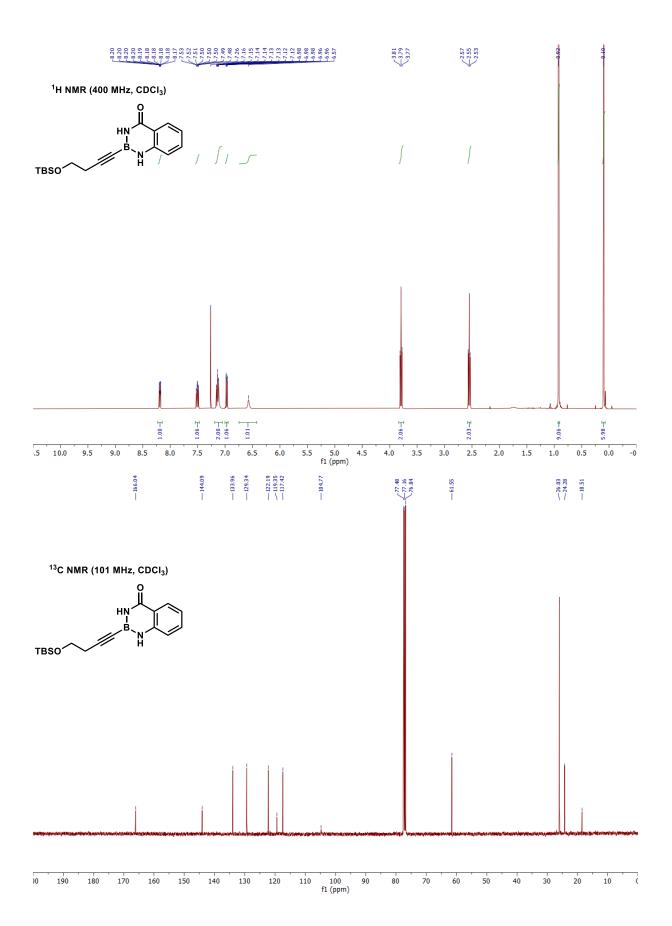


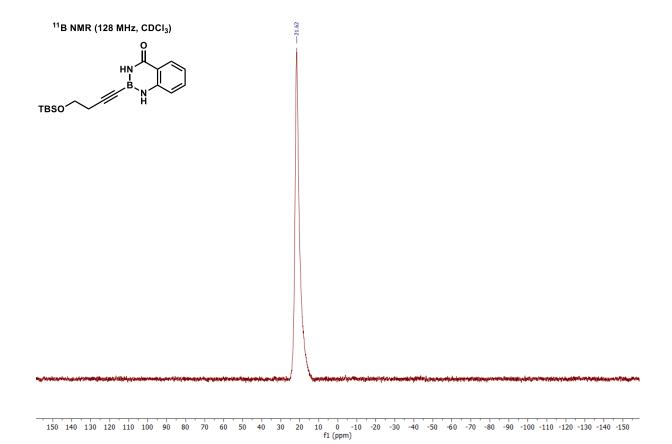


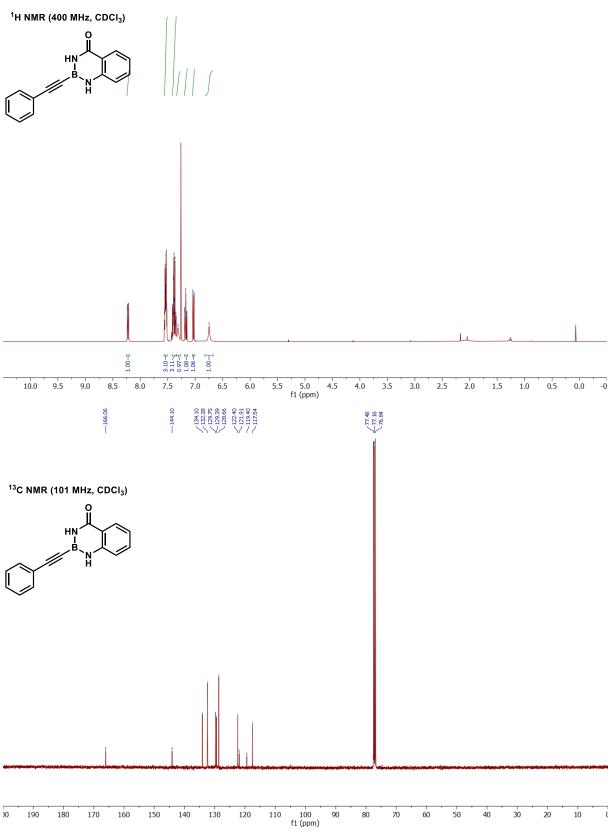


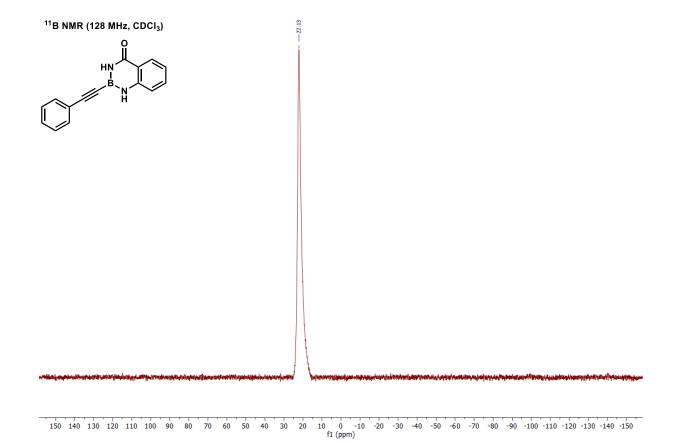


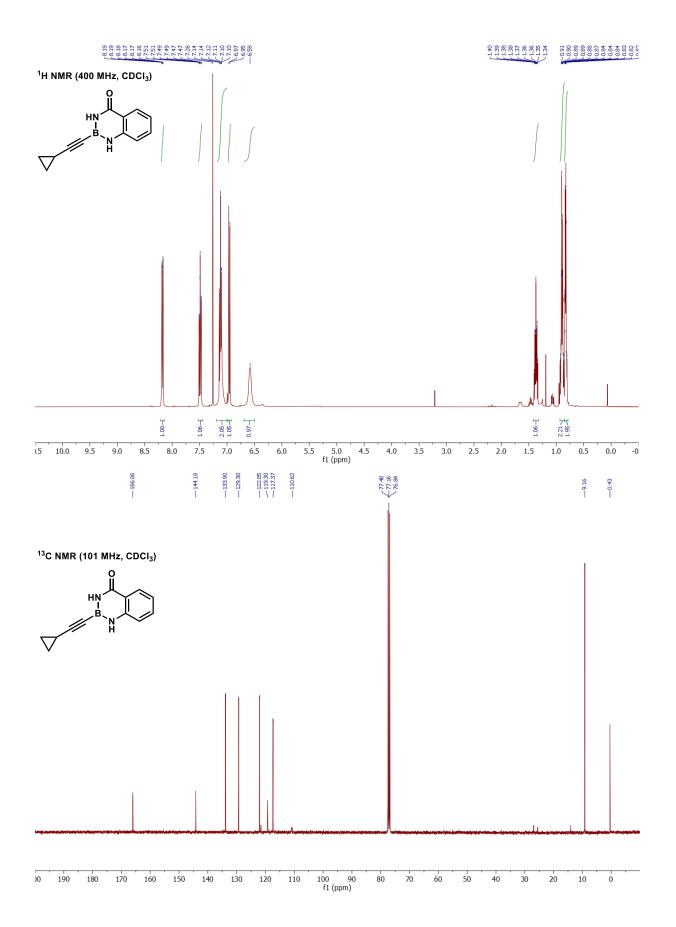


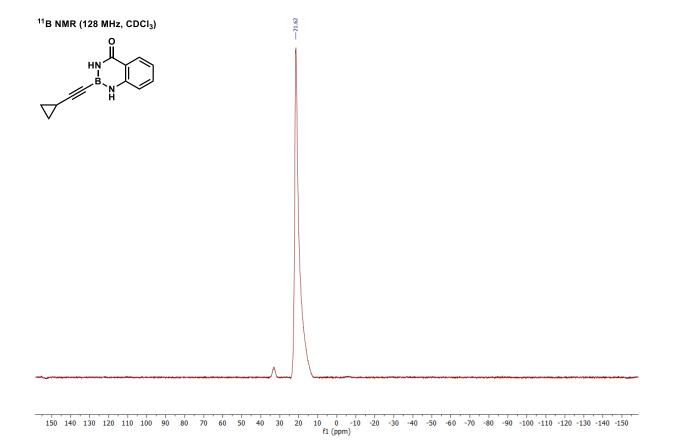

-111 -113 -115 -117 -119 -121 f1 (ppm)

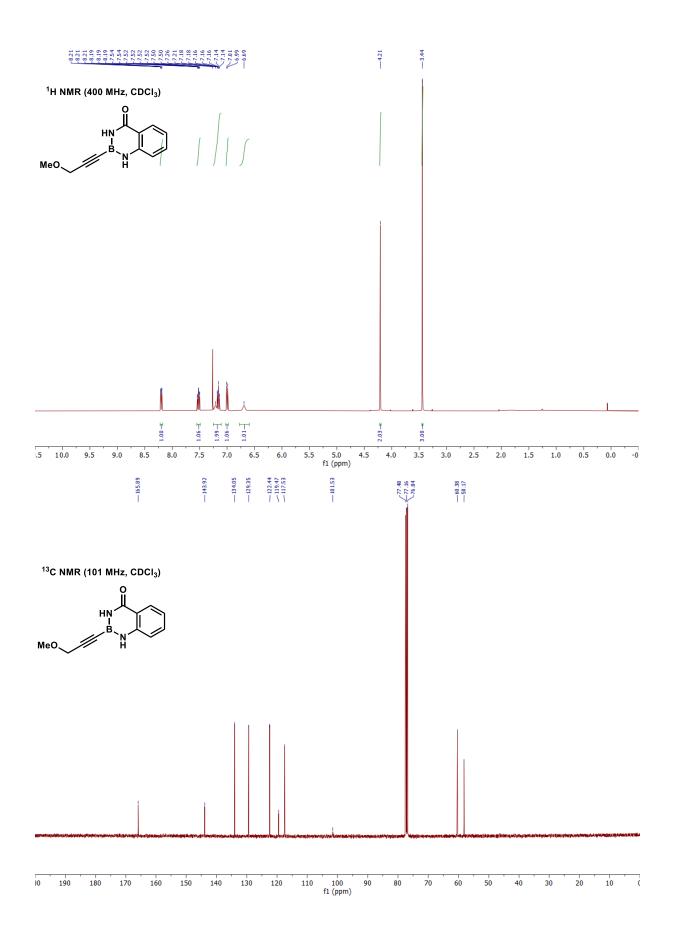


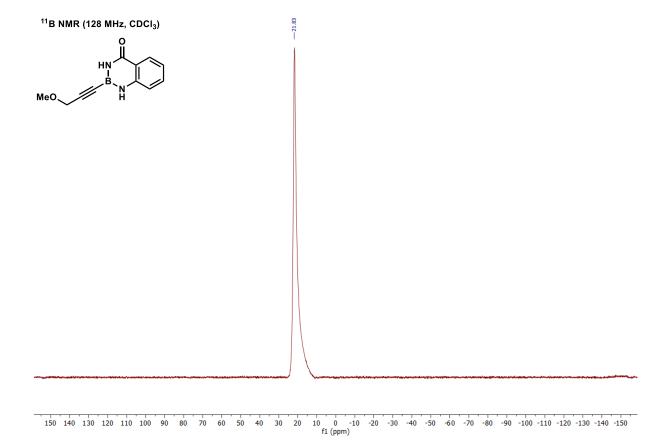


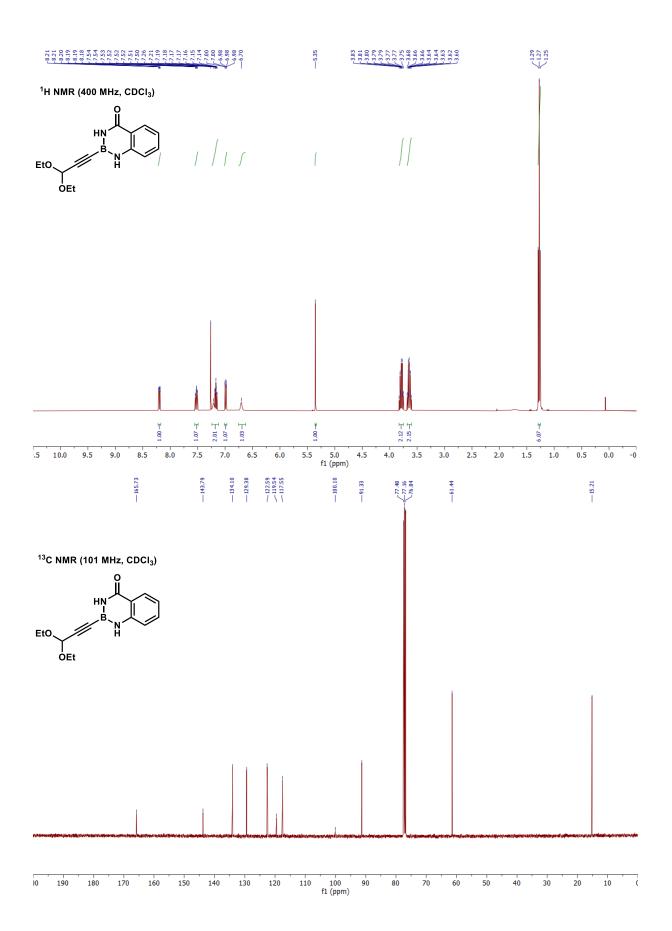


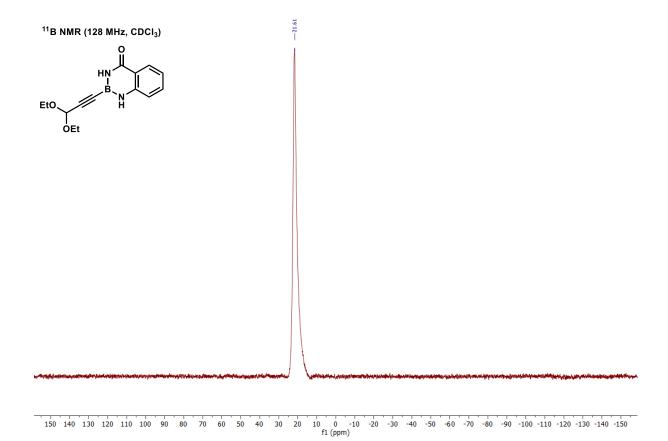


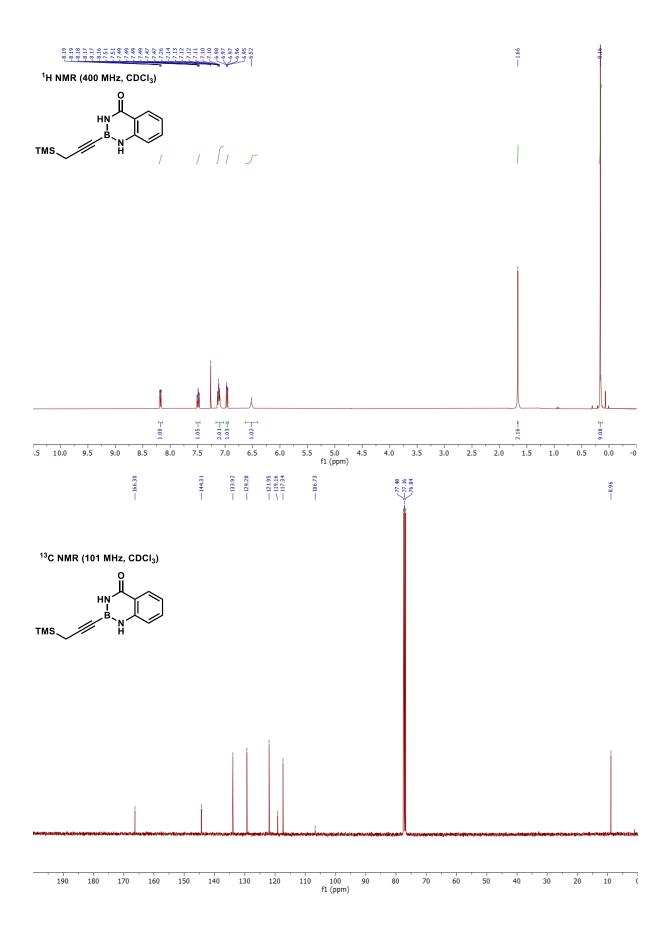


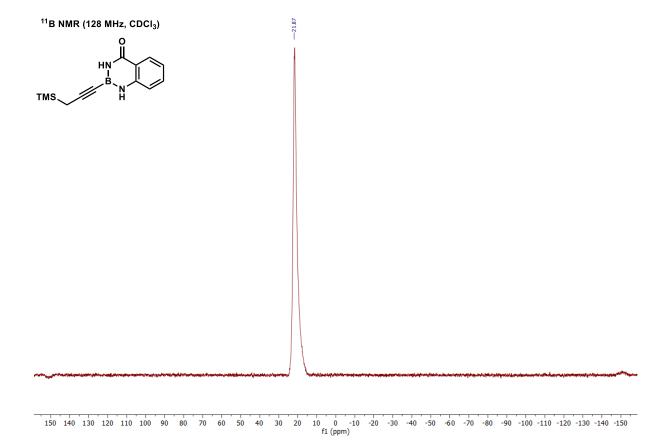


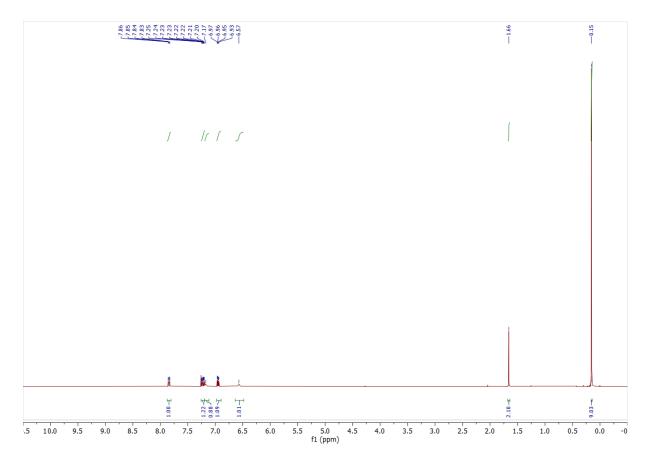


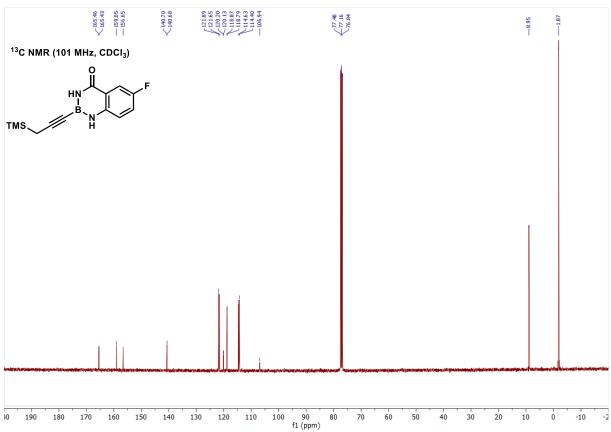


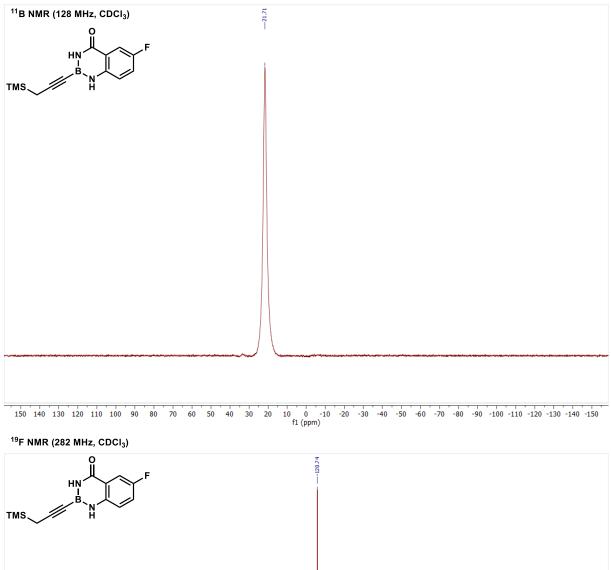


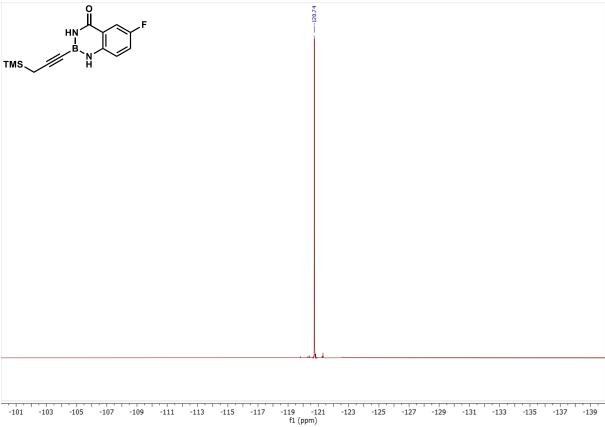


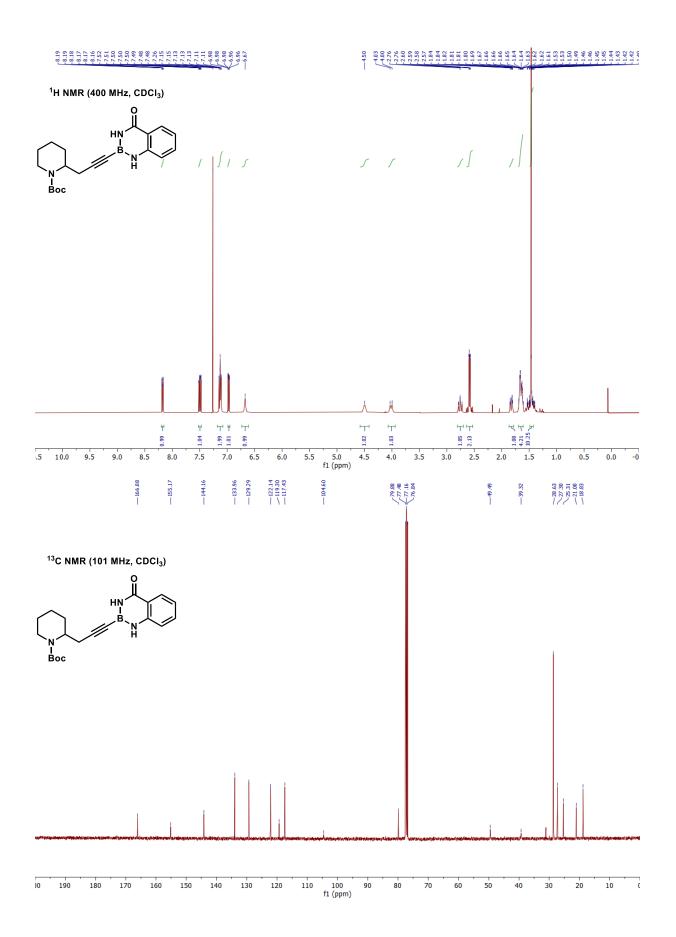


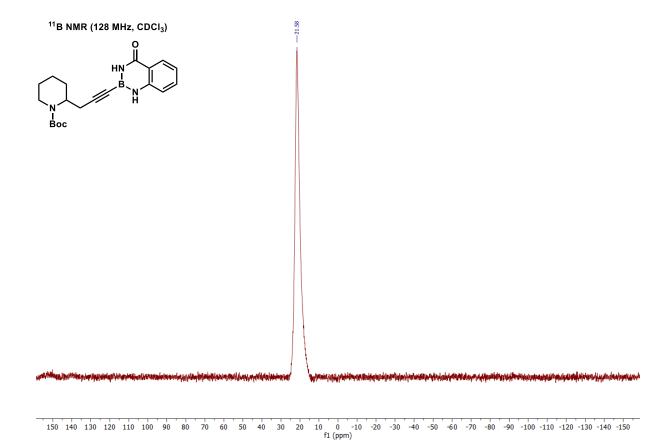


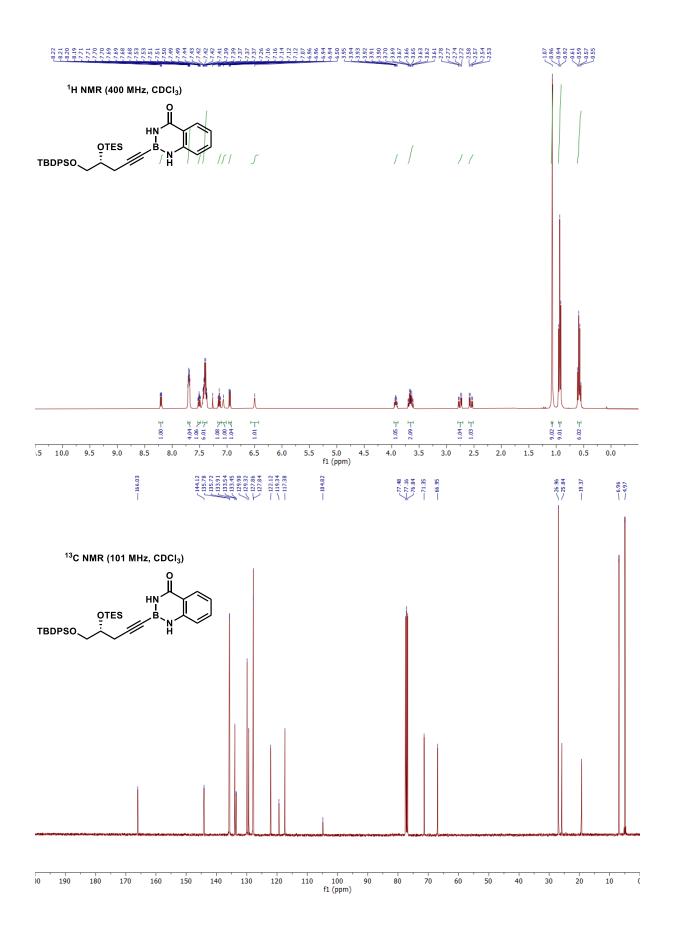


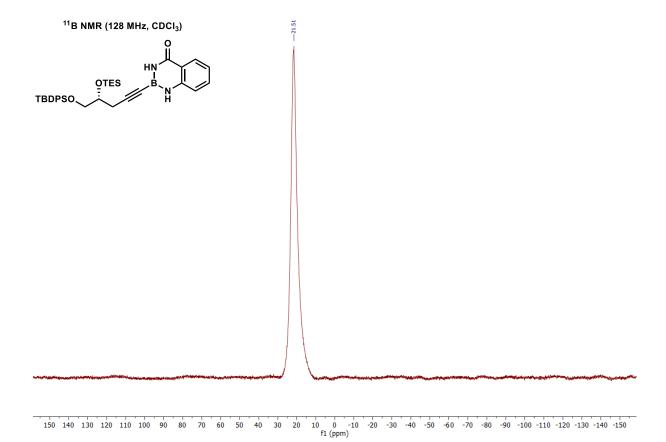


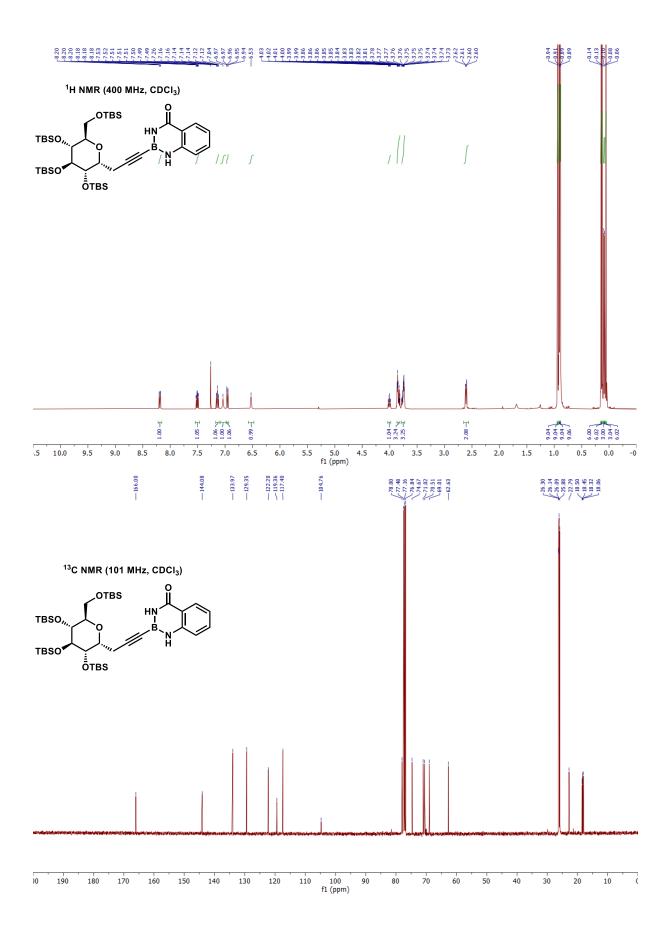


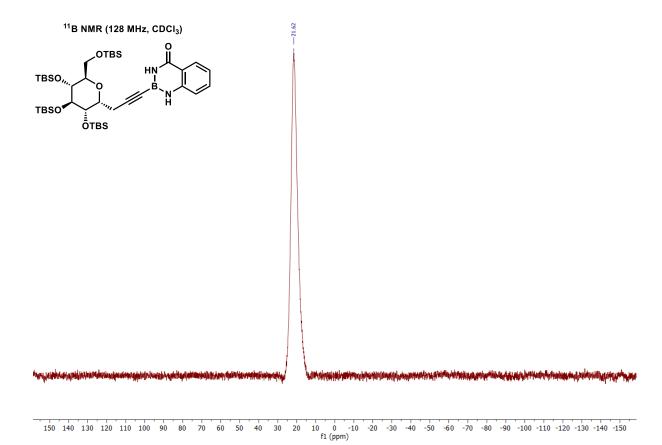


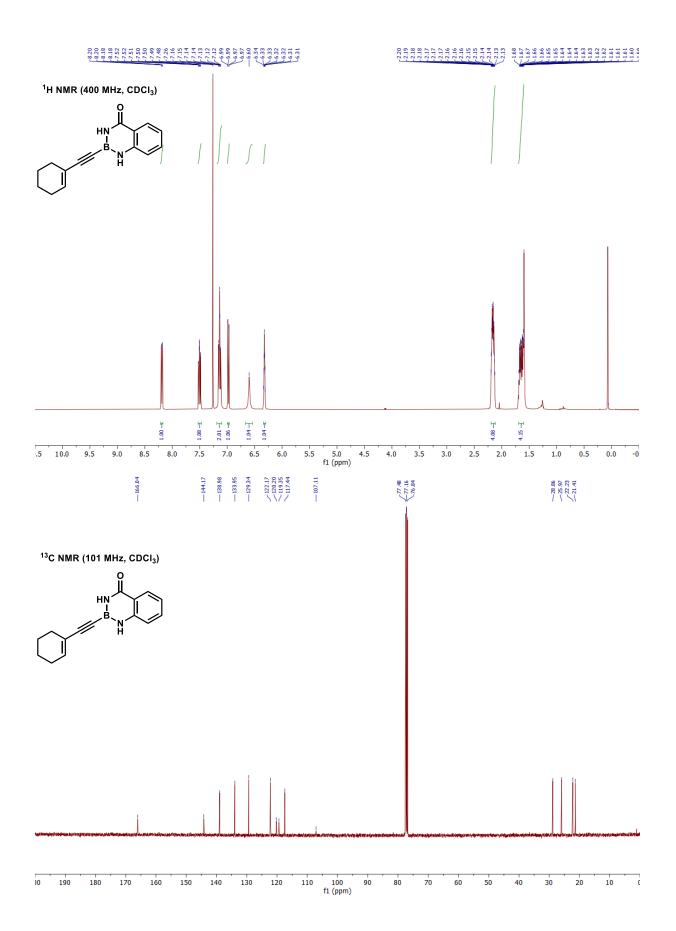


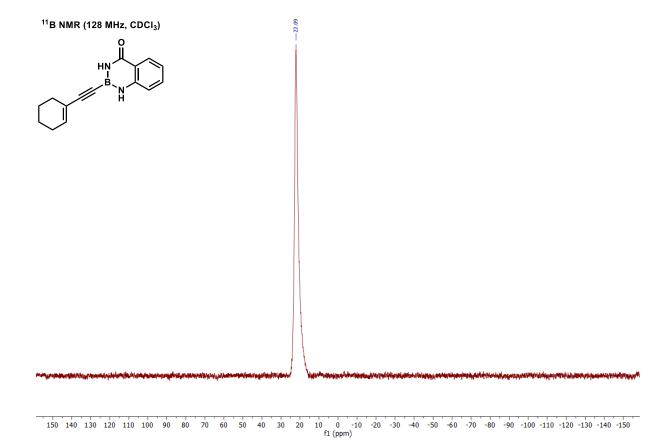


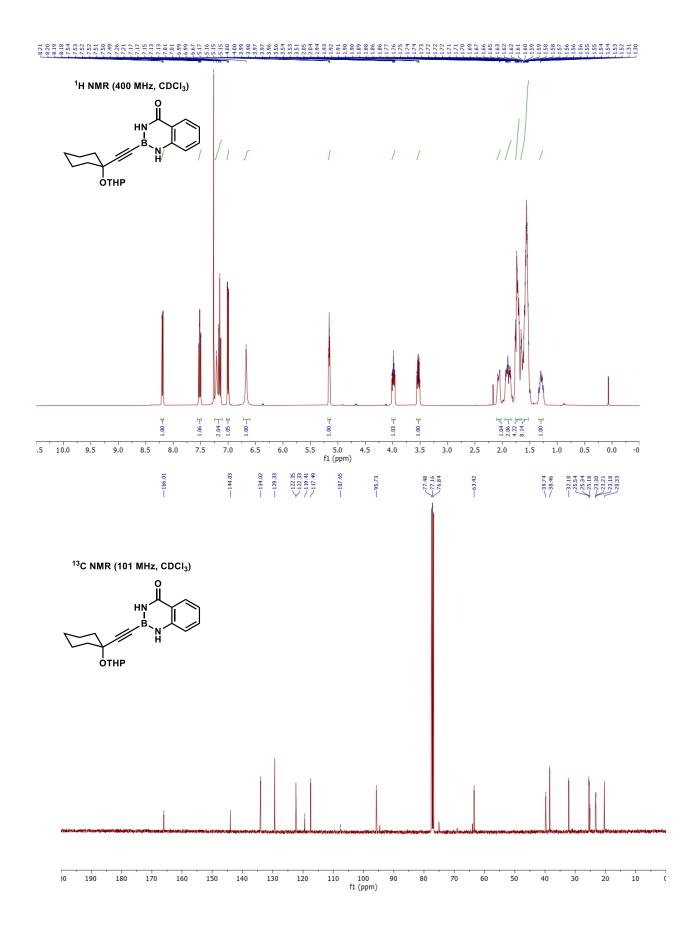




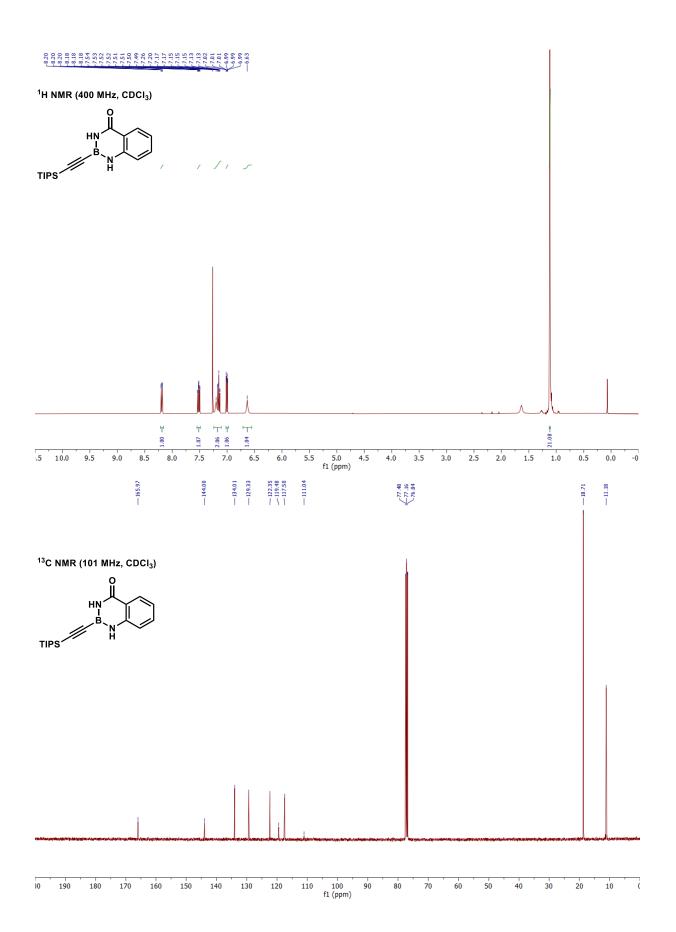


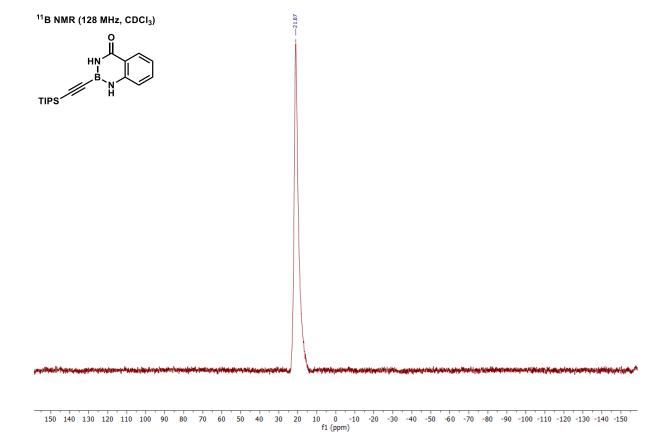


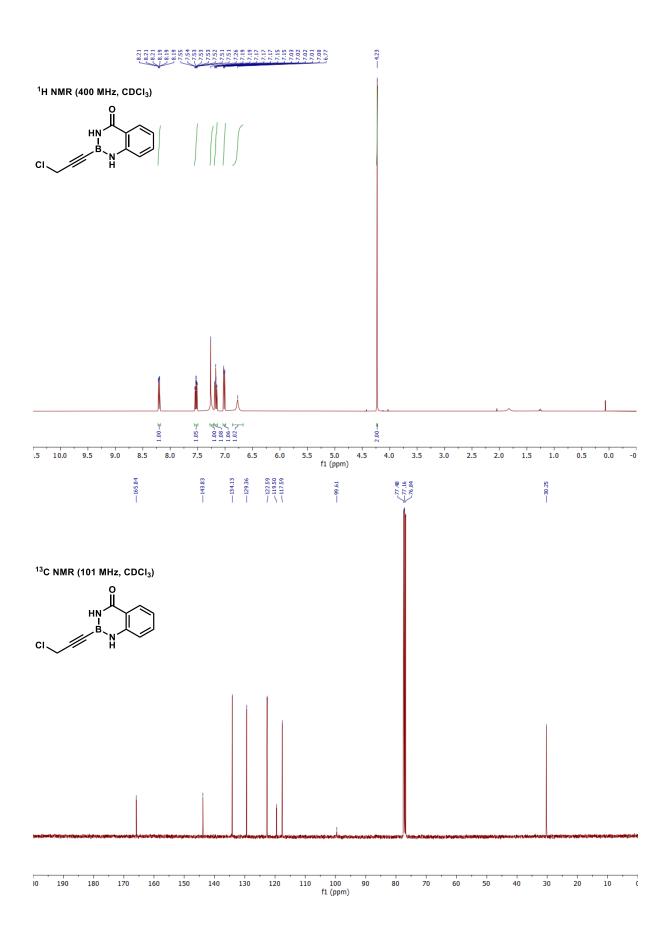


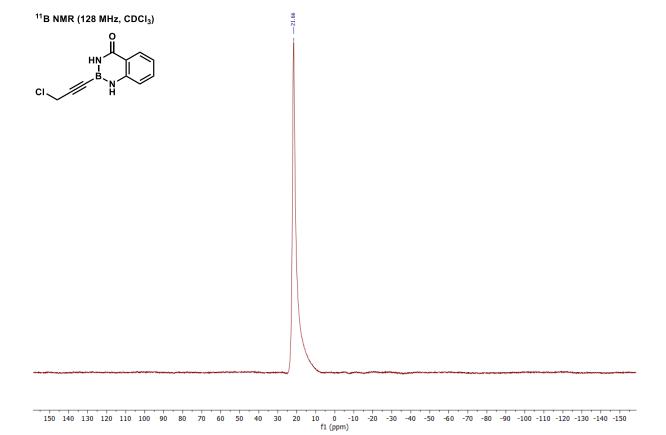


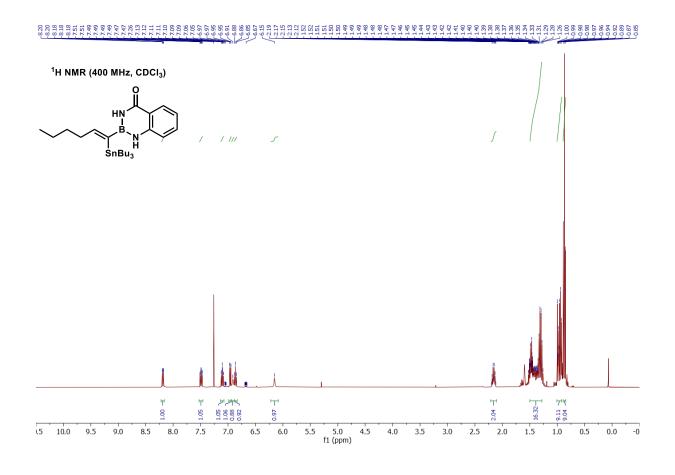


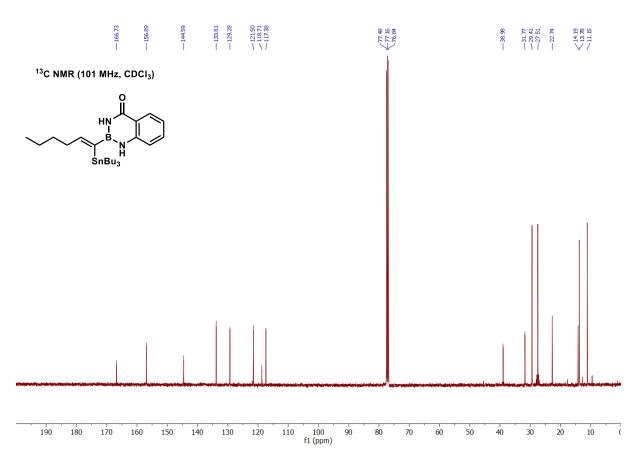


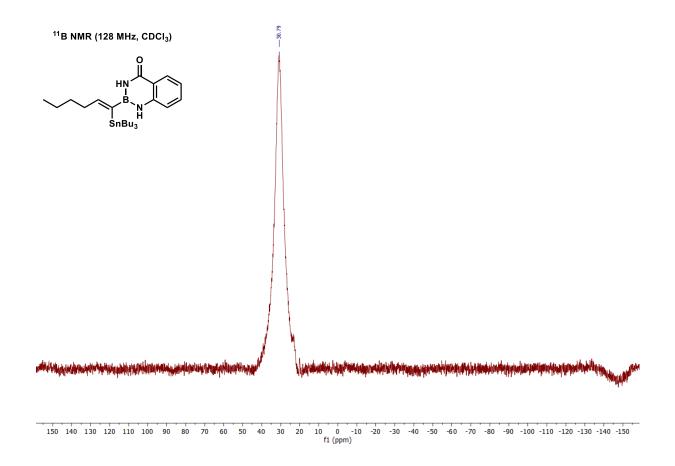


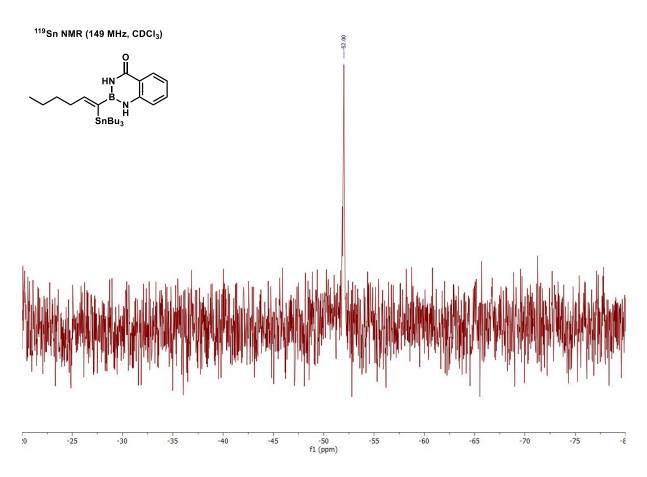


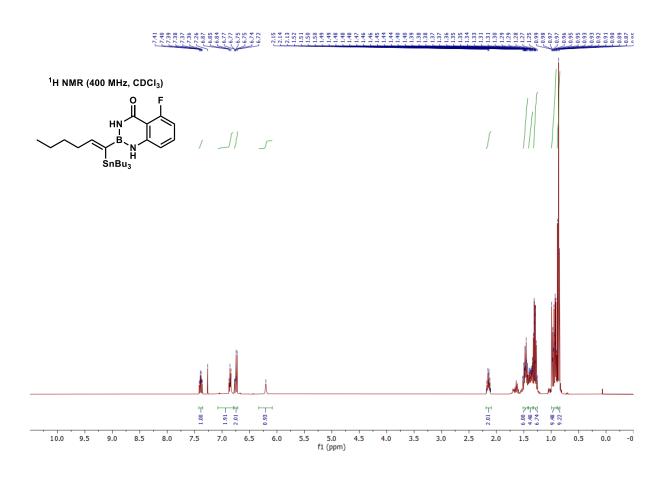


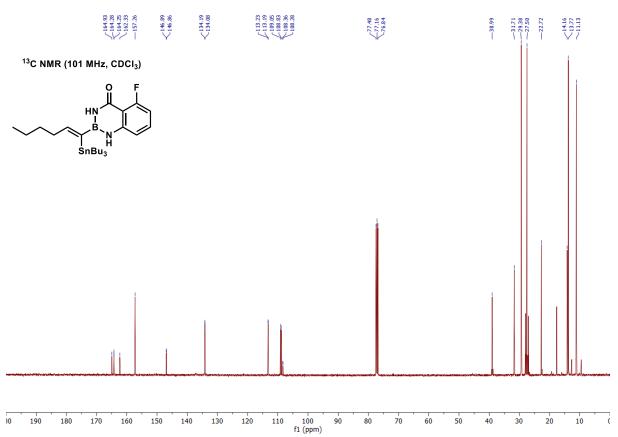


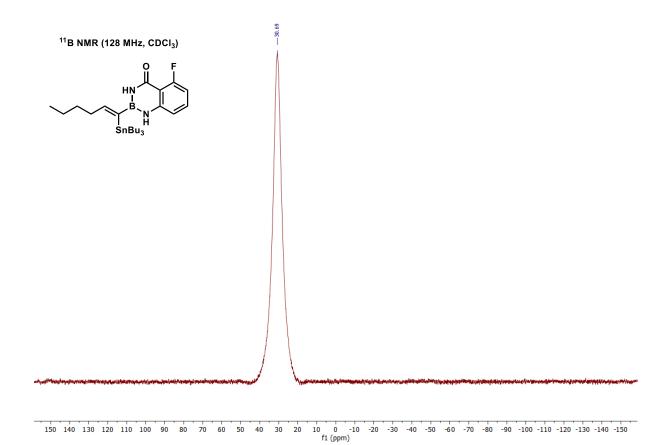


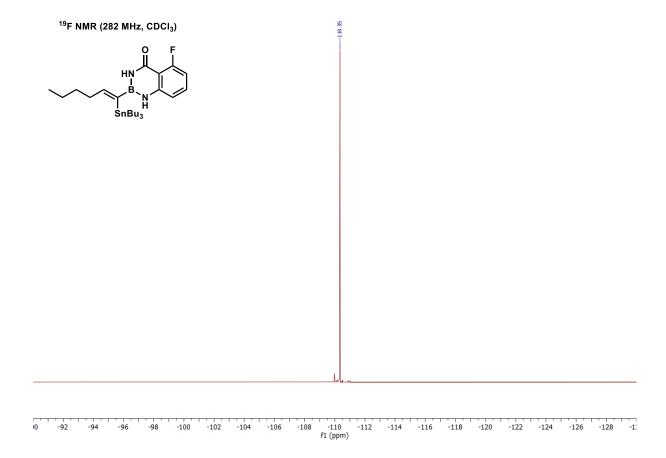


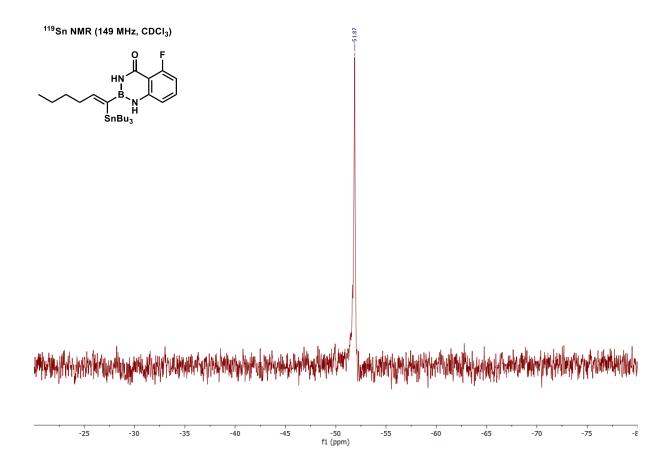


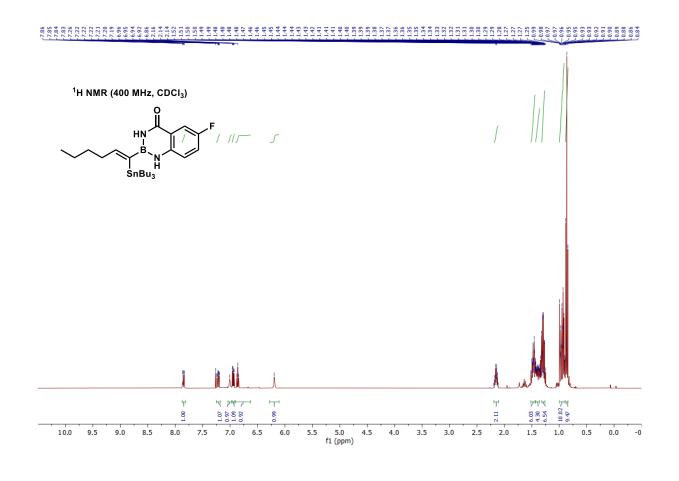


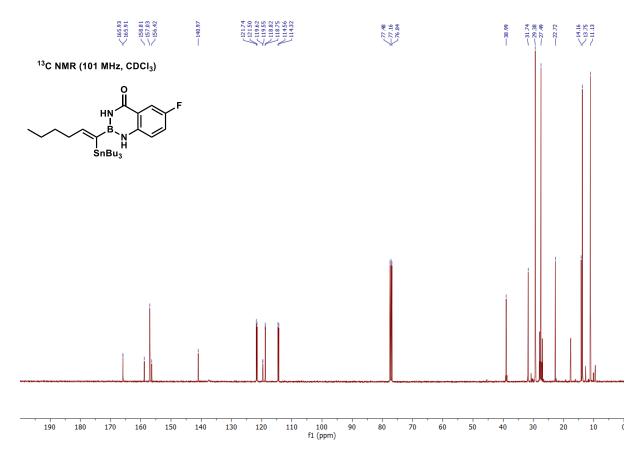


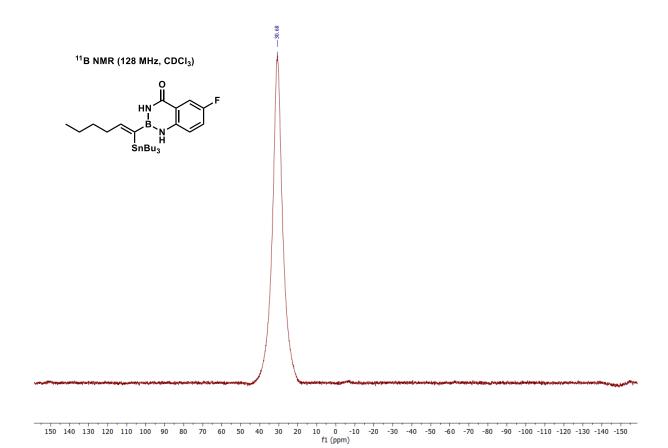


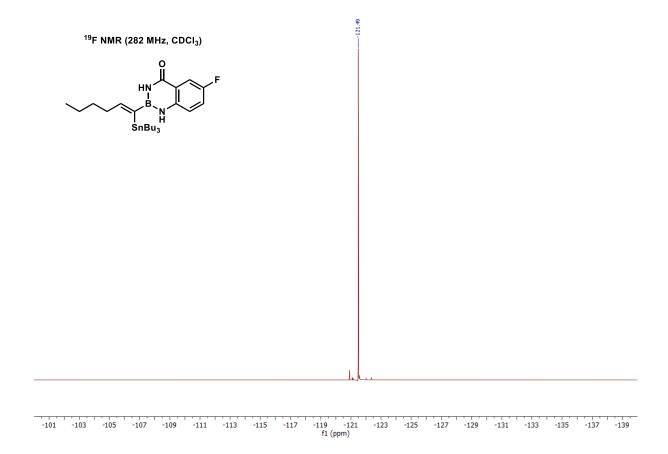


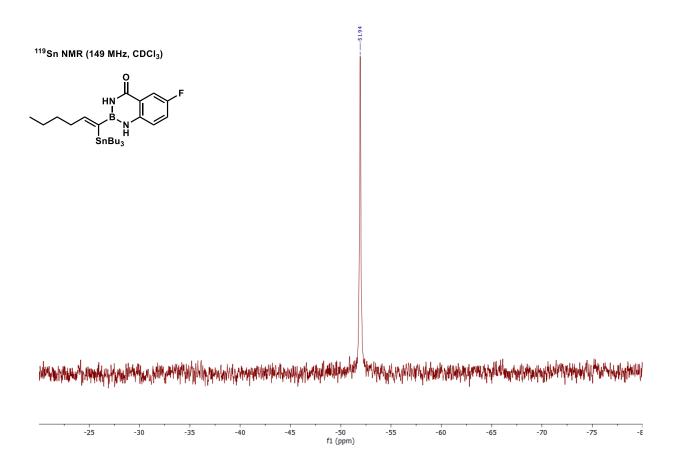


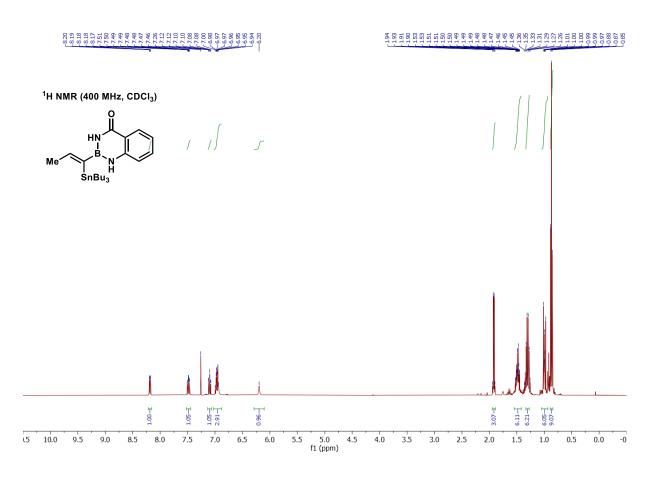


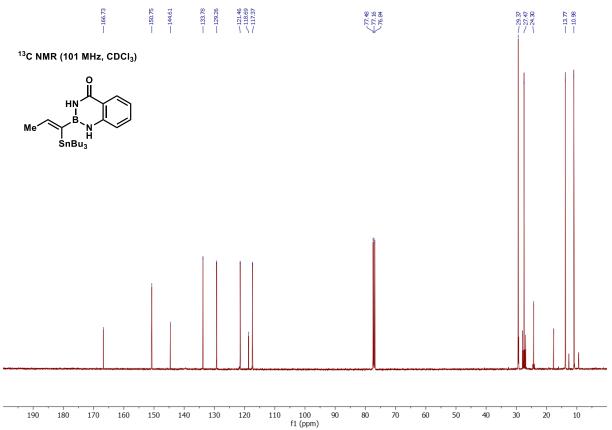


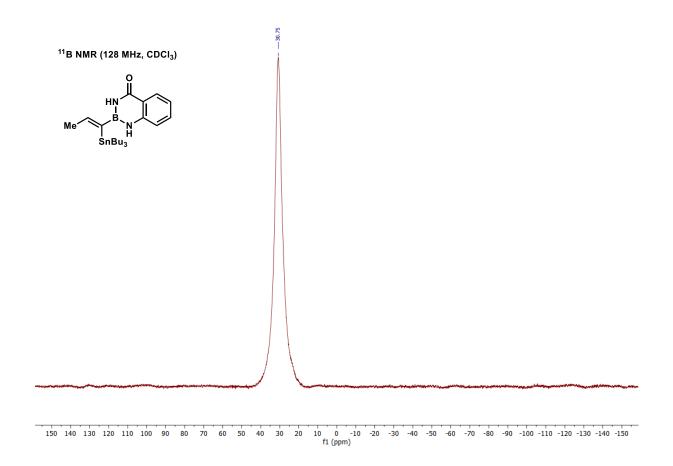


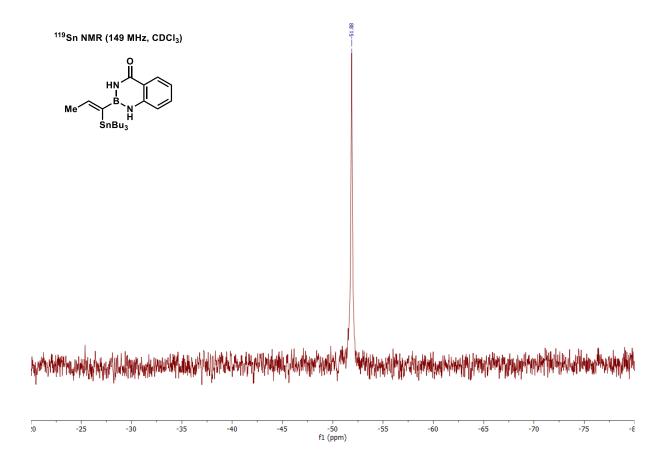


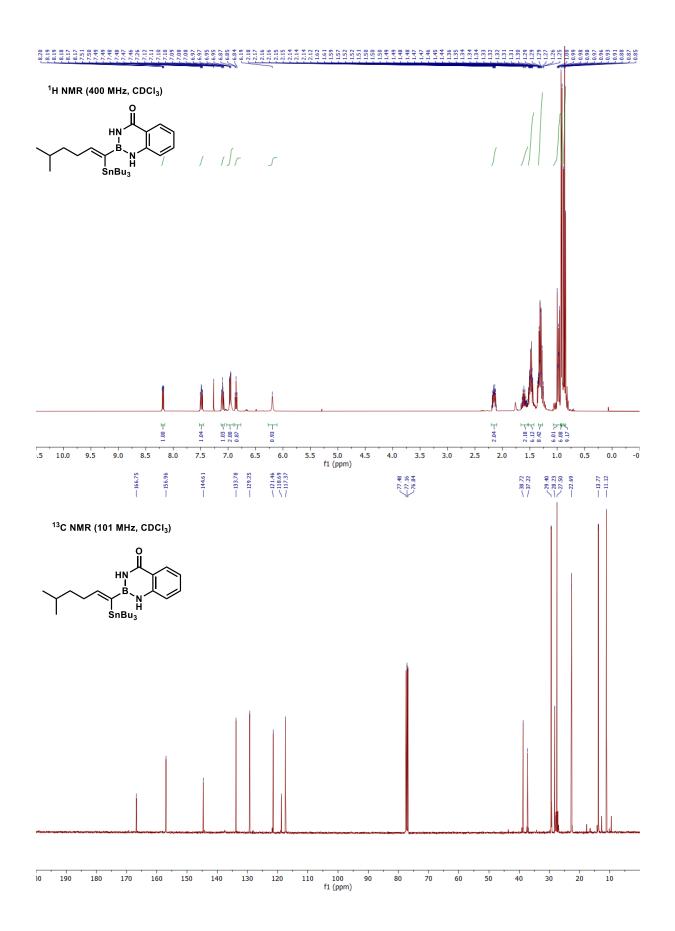


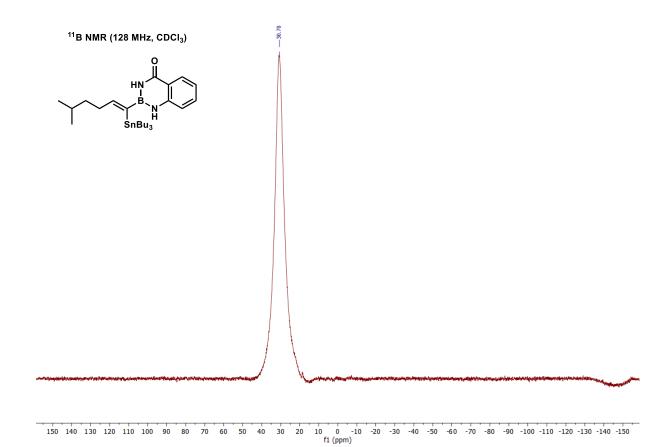


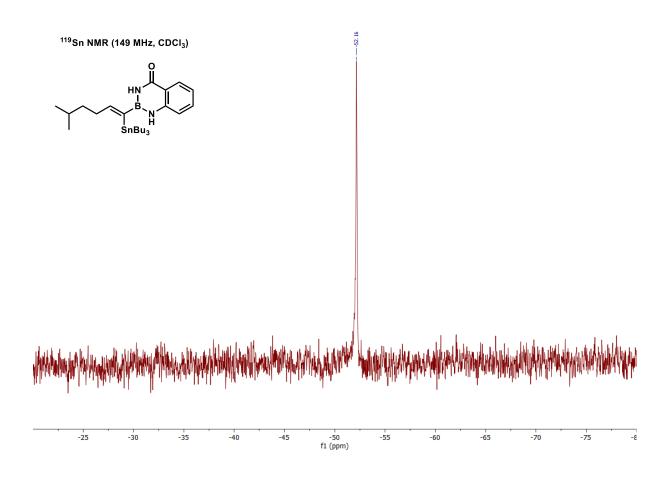


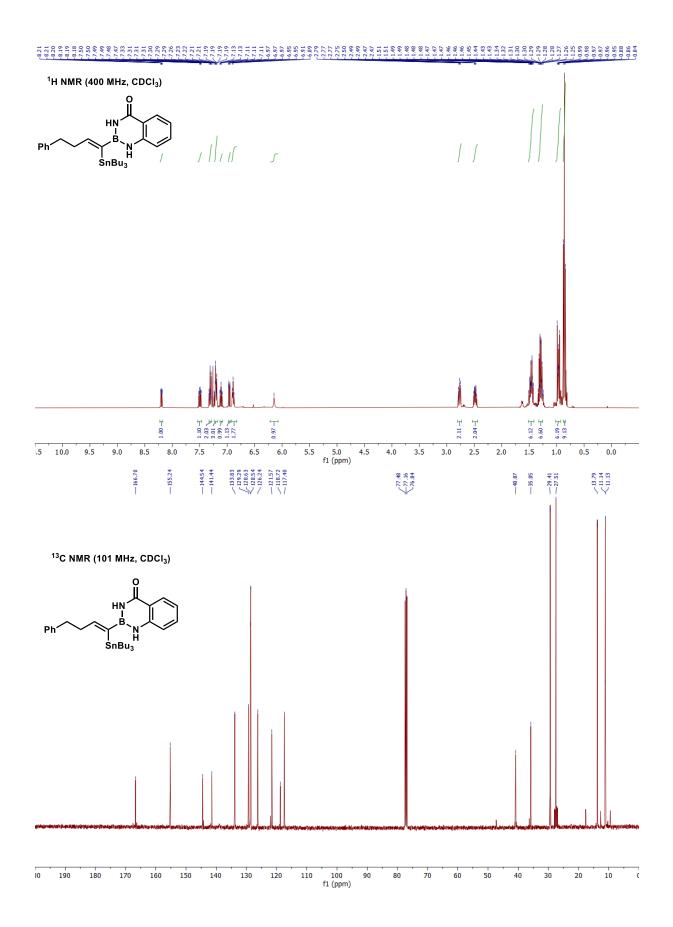


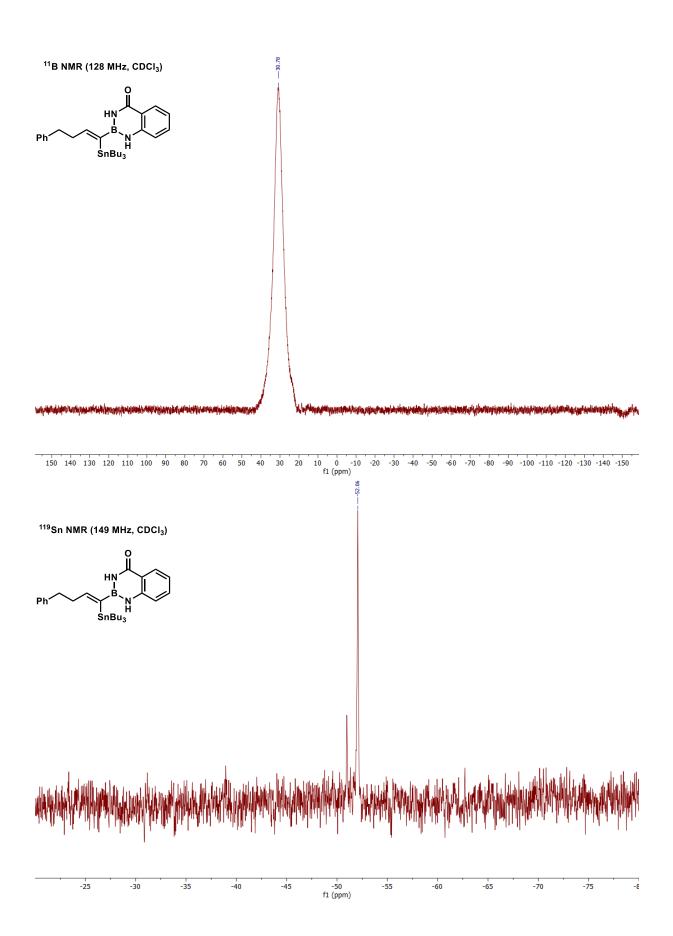


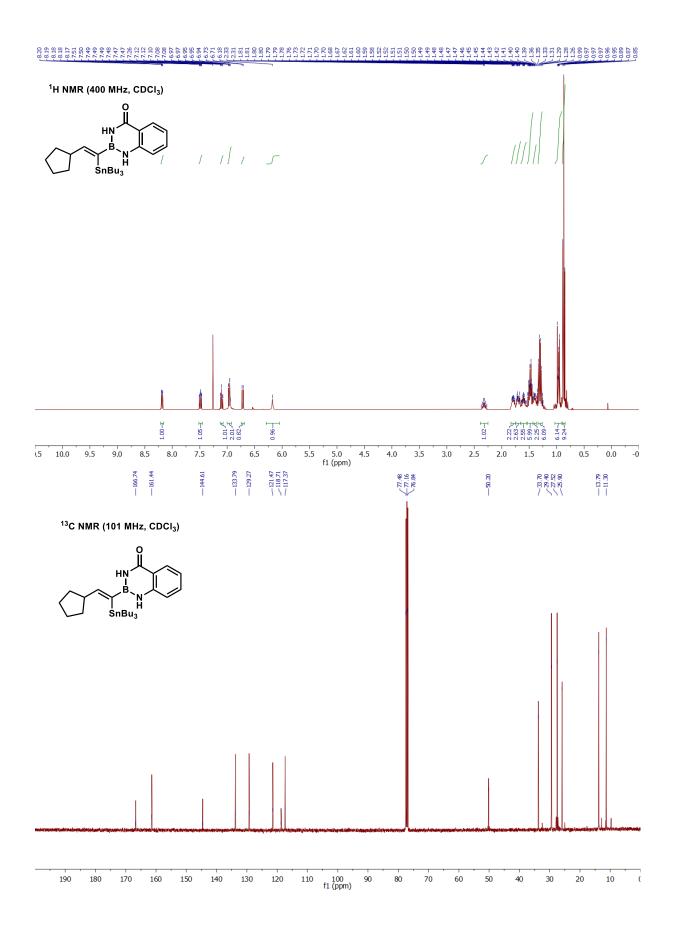


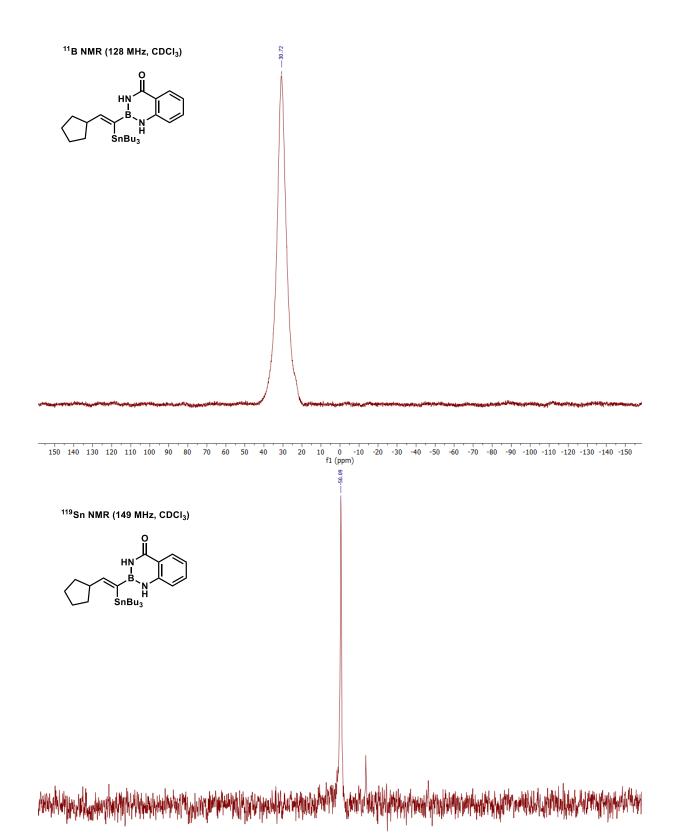












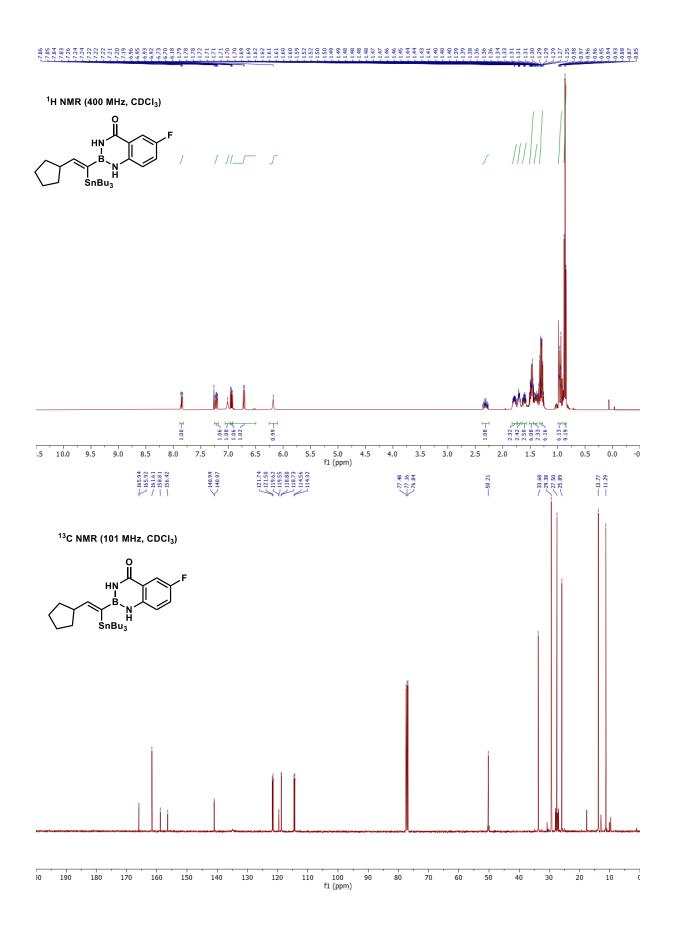
-50 f1 (ppm) -60

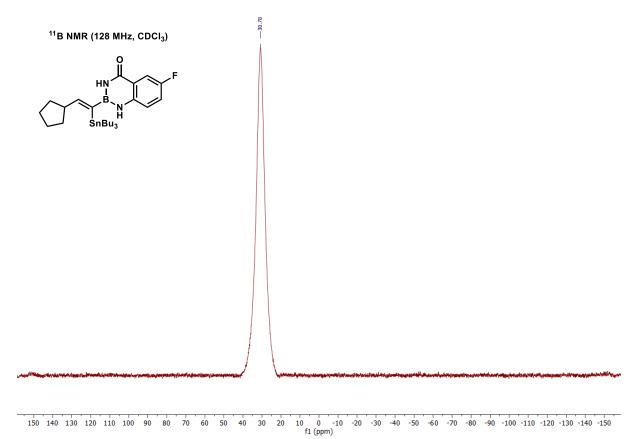
-55

-70

-65

-75


-25


-30

-35

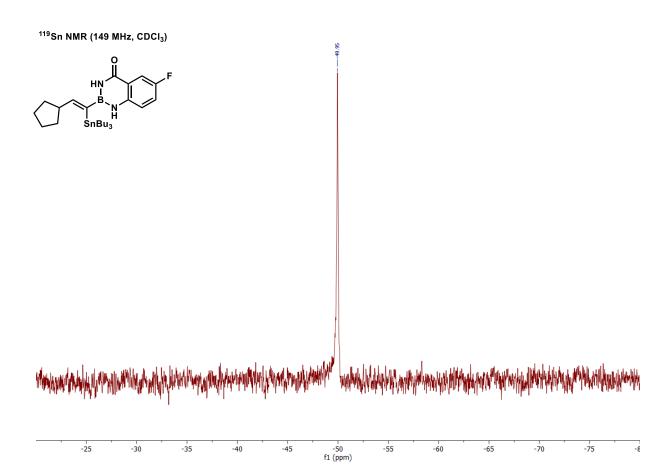
-40

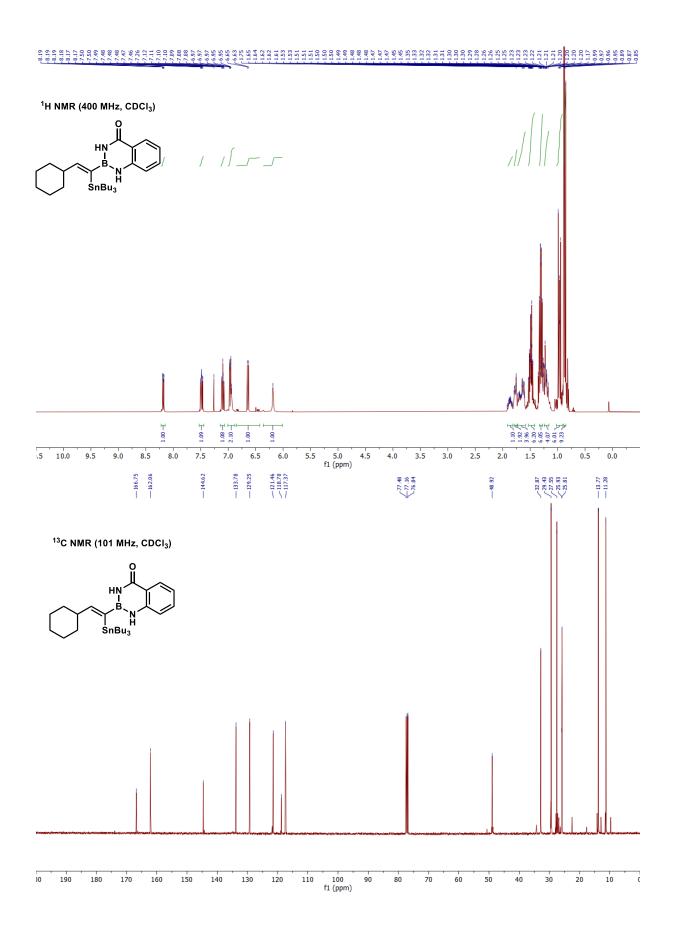
-45

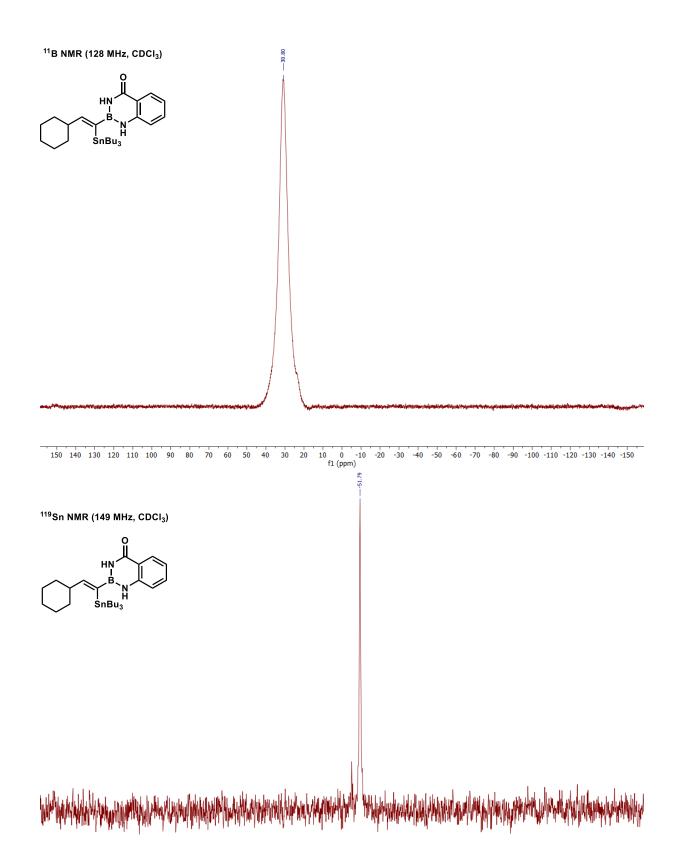
-123

-125

-131


-129


-133 -135 -137 -139


-111 -113 -115 -117 -119 -121 f1 (ppm)

-101 -103

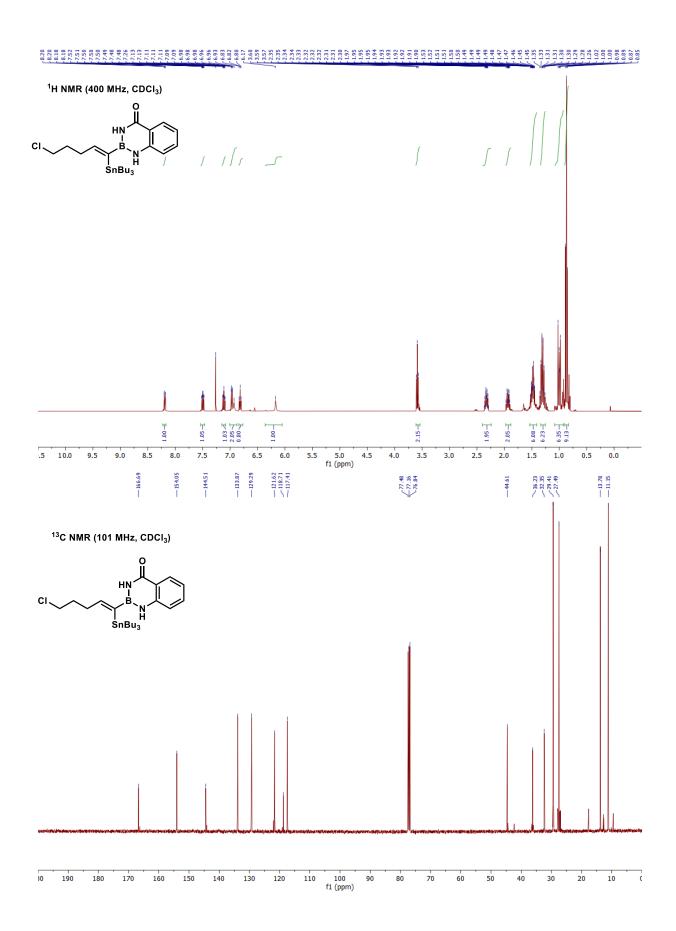
-105 -107 -109

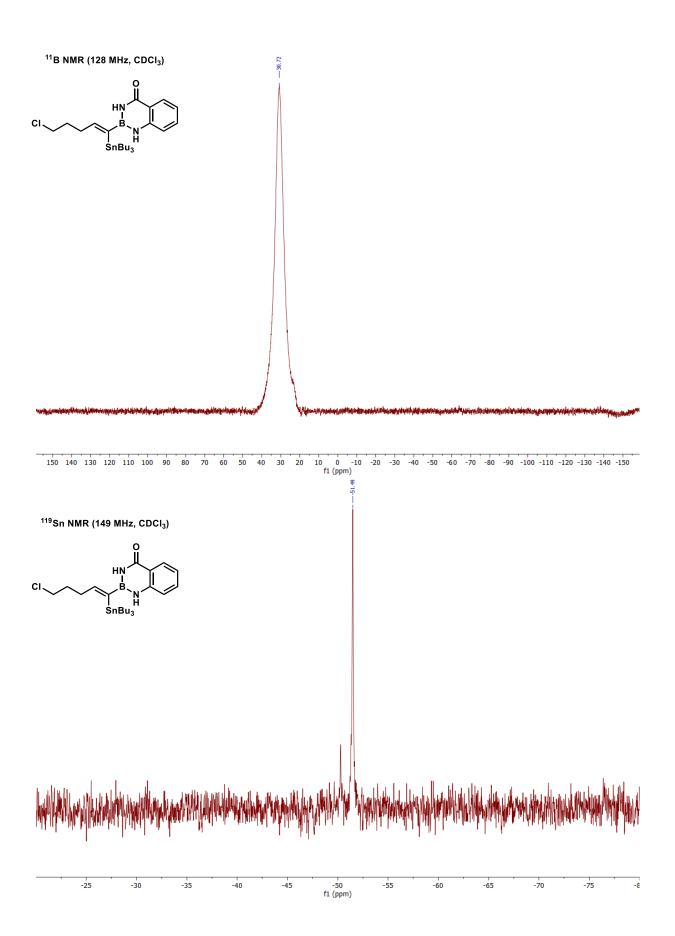
-50 f1 (ppm) -60

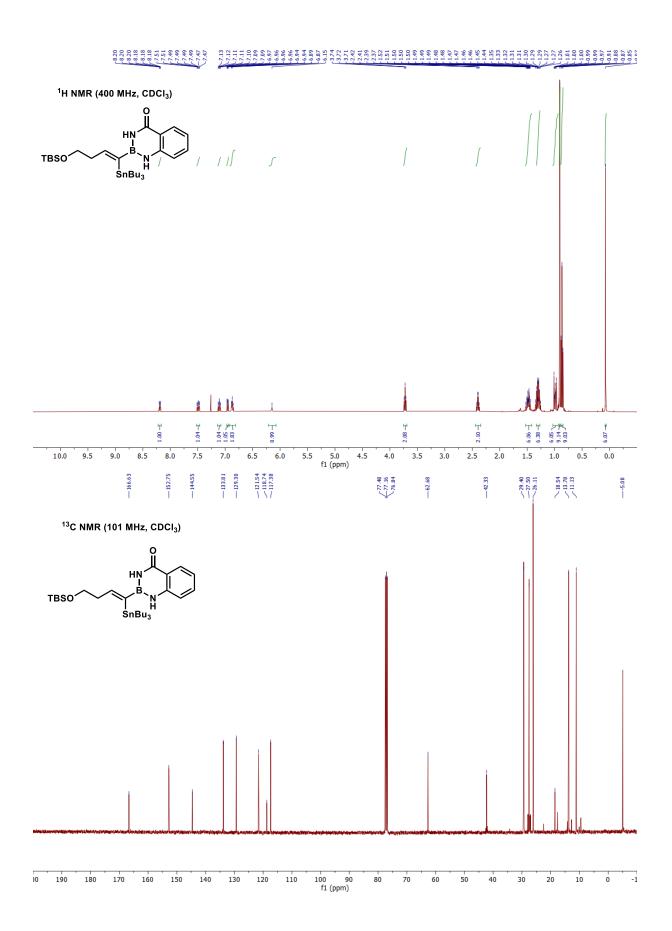
-55

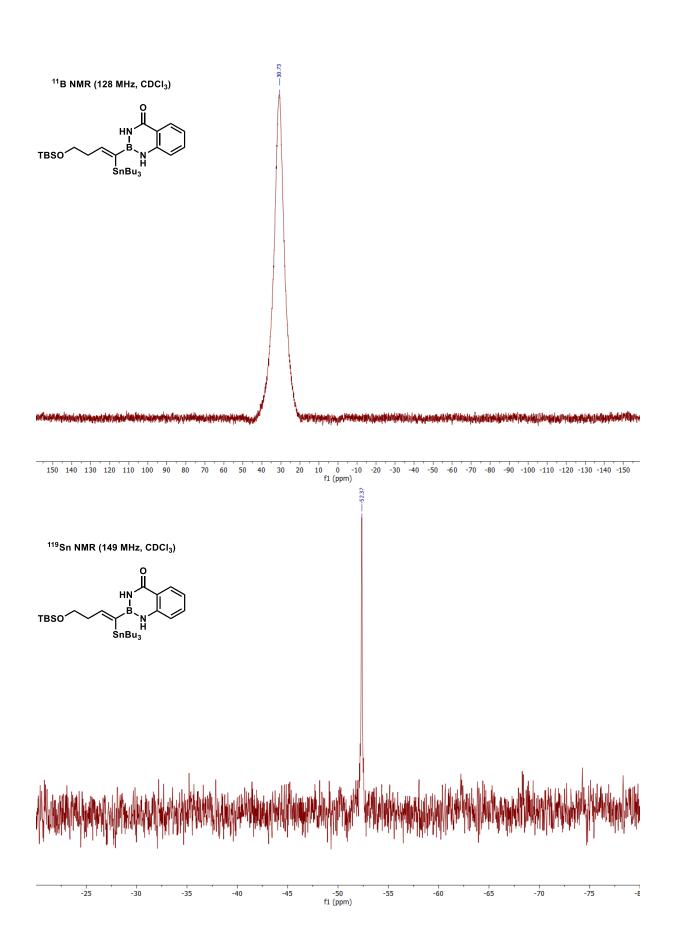
-70

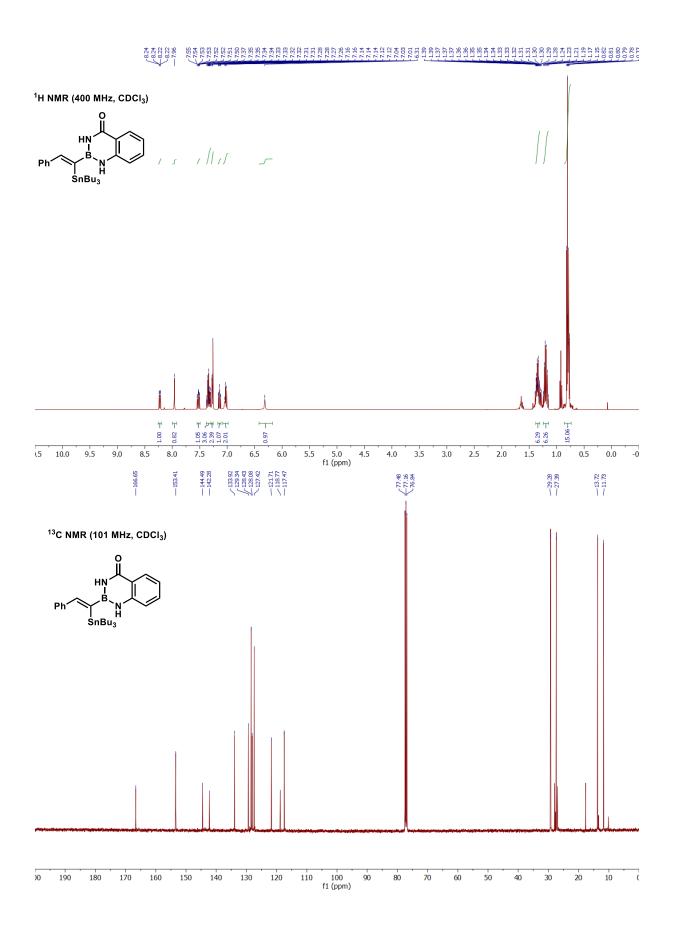
-75

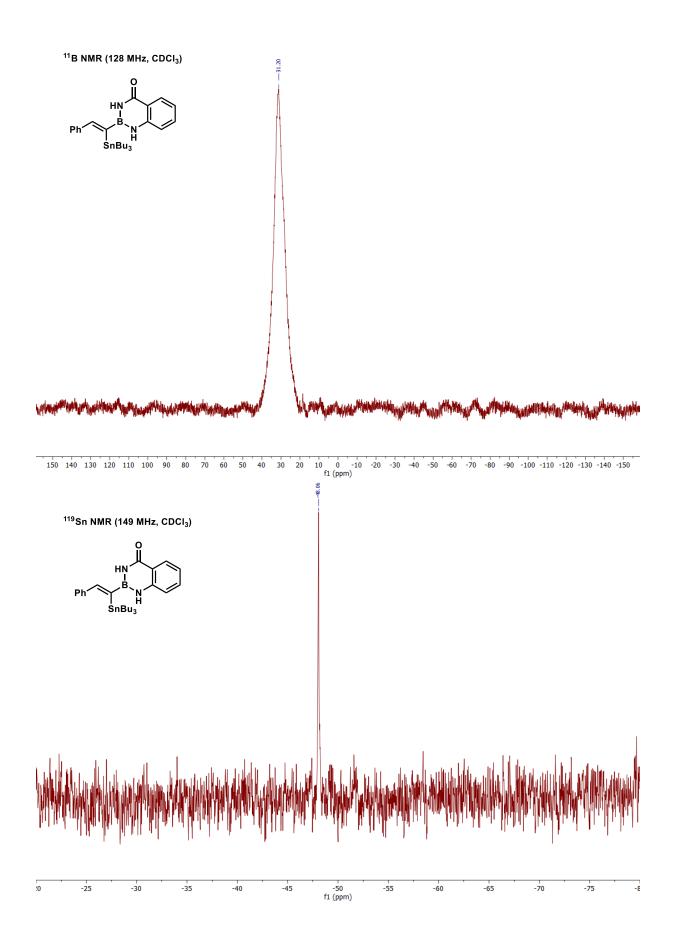

-25

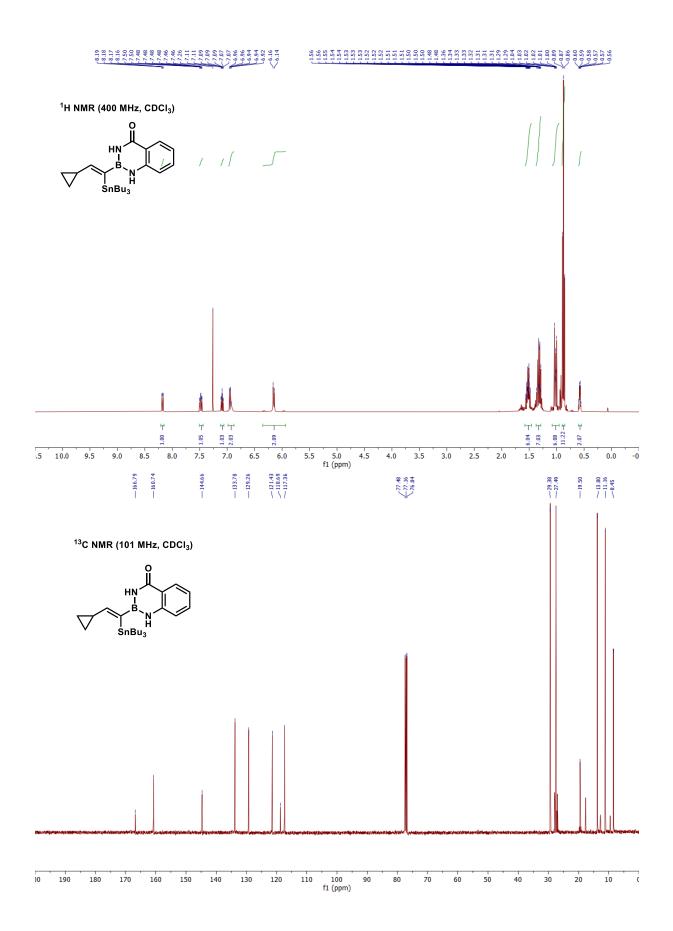

-30

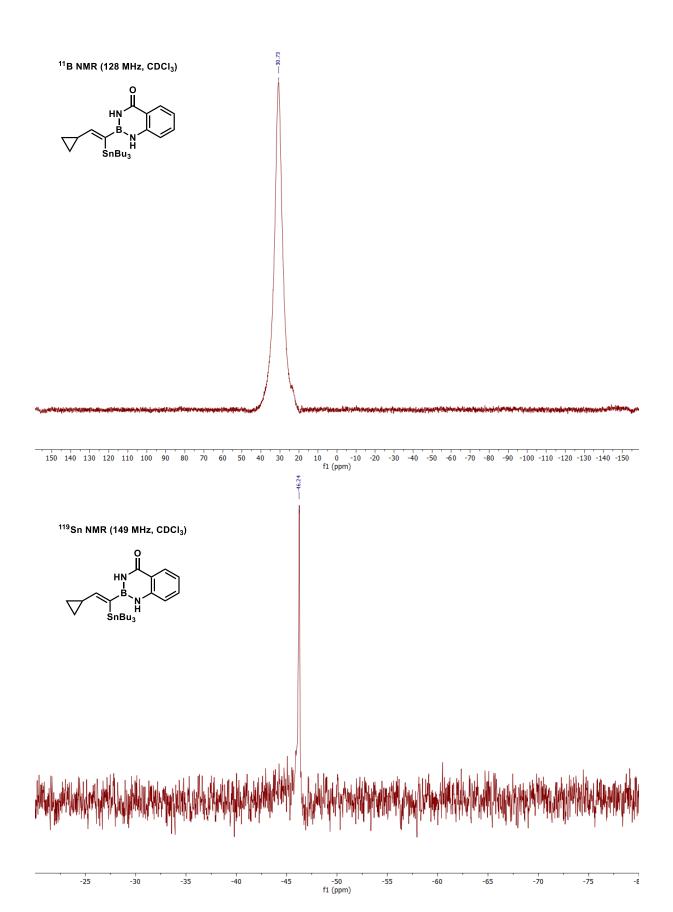

-35

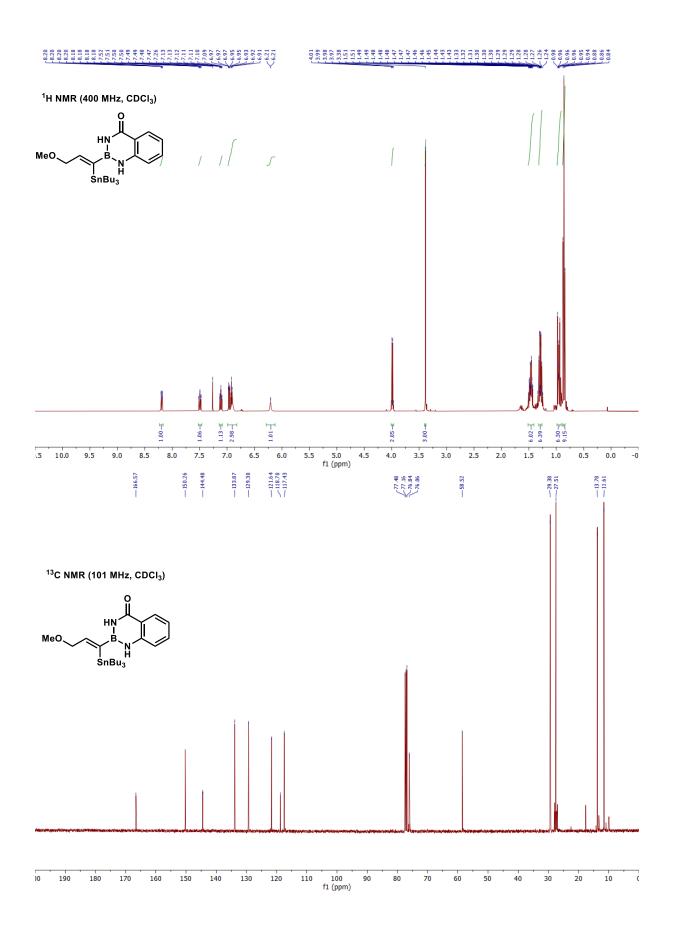

-40

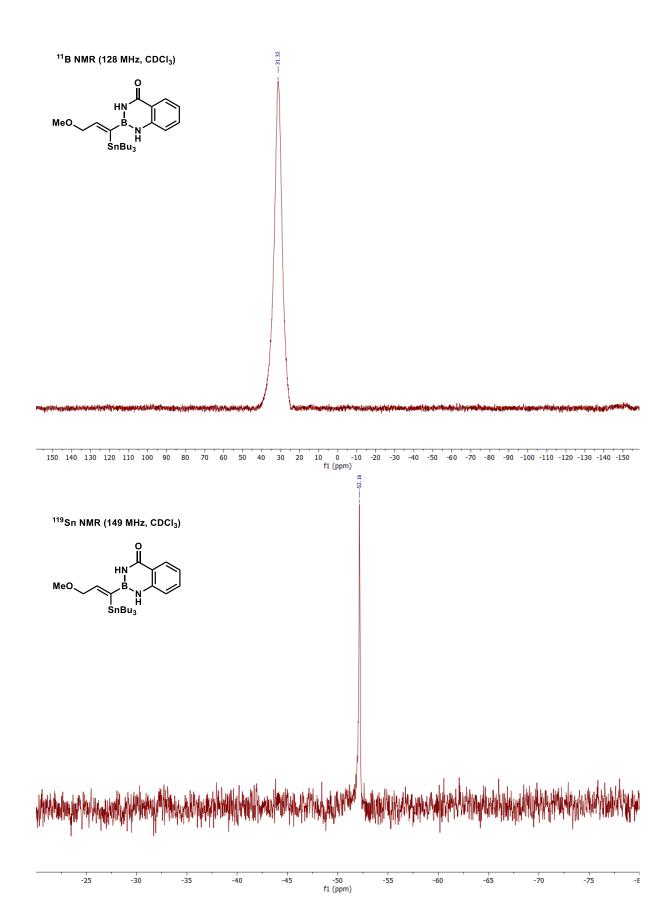

-45

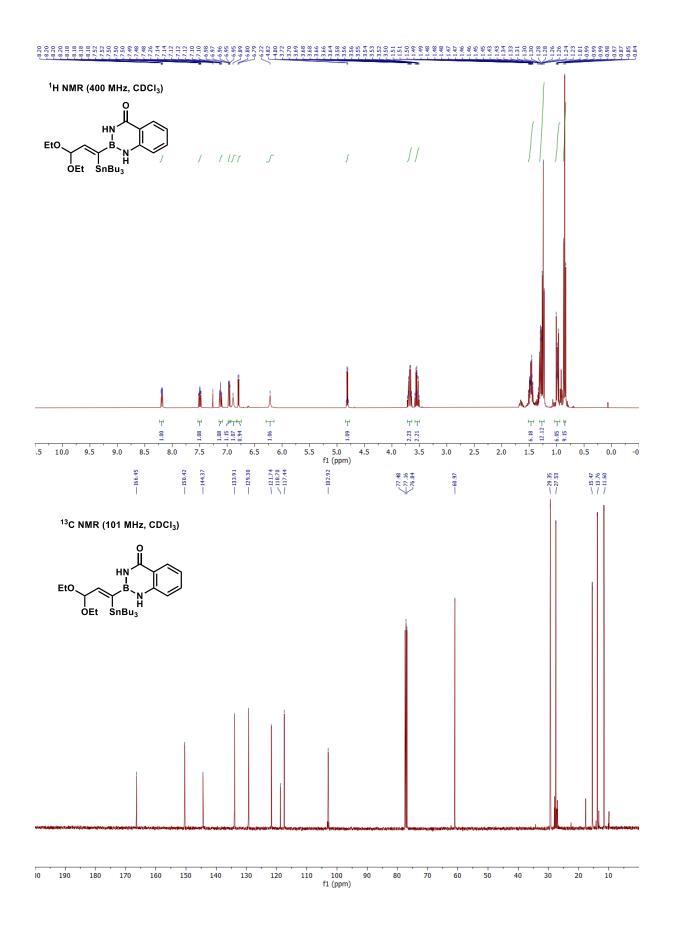


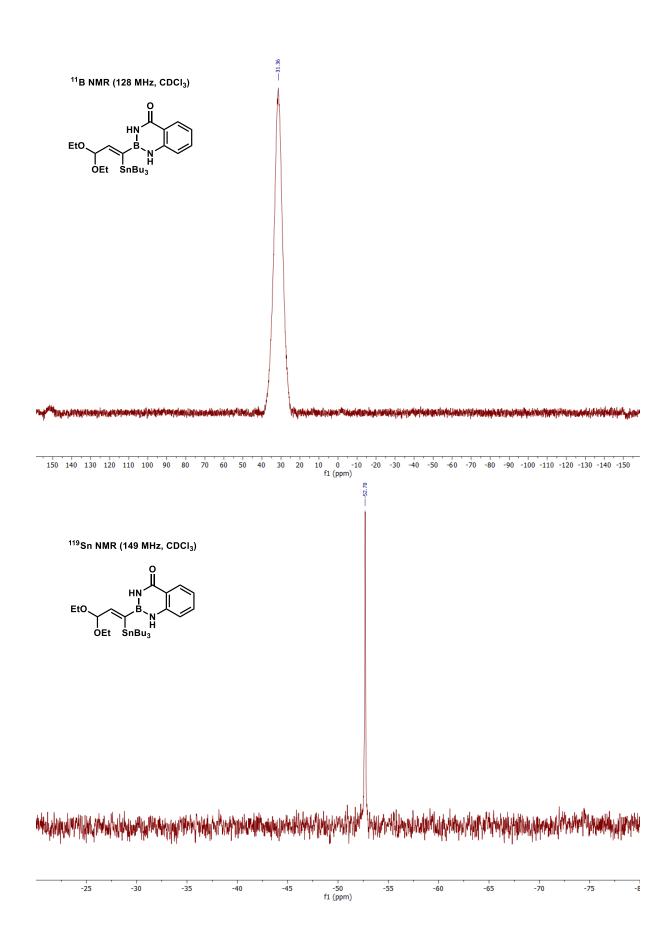


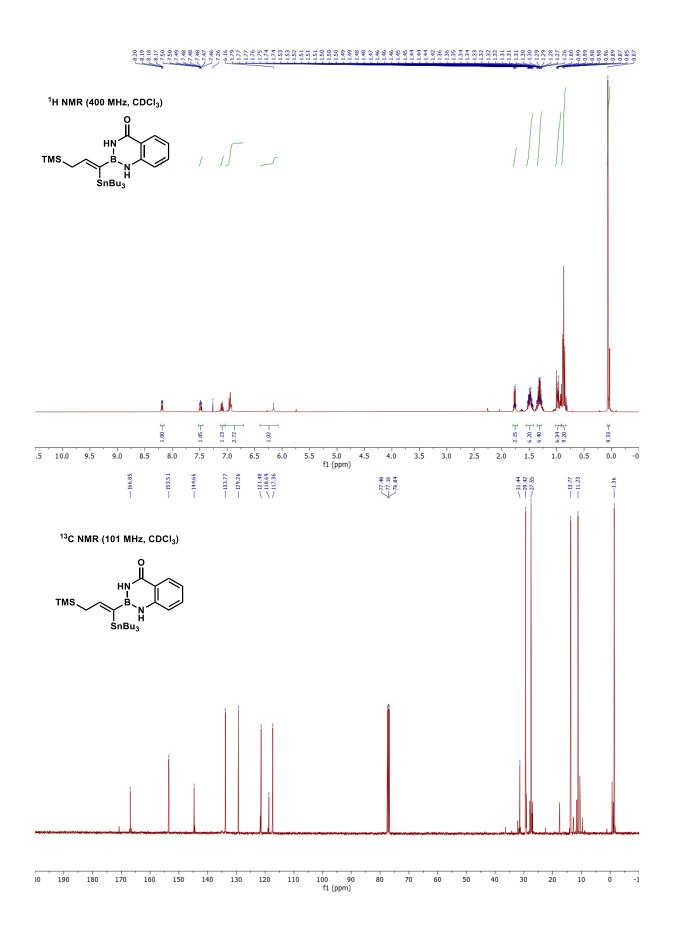


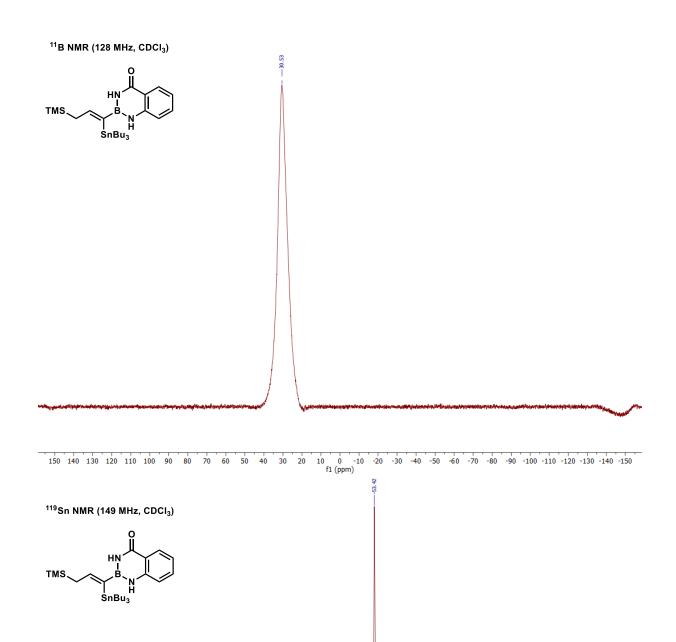










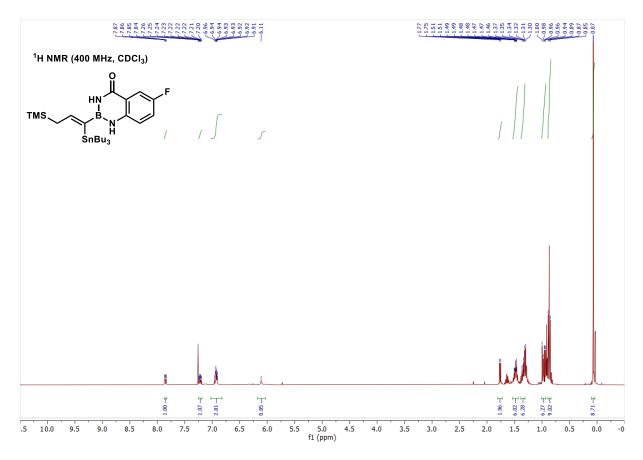


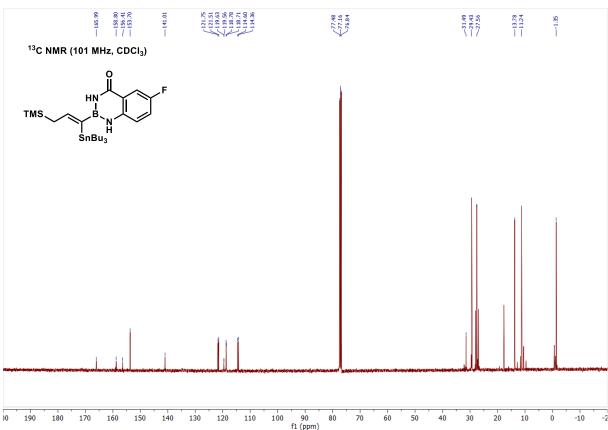
-50 f1 (ppm) -60

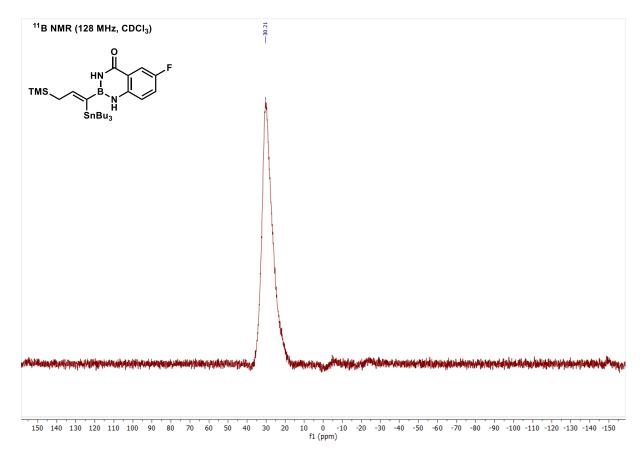
-55

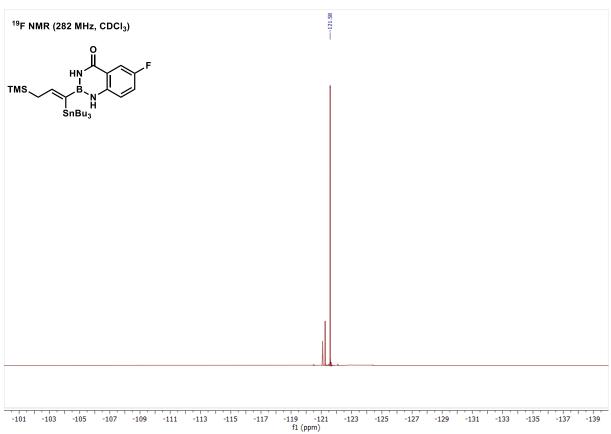
-70

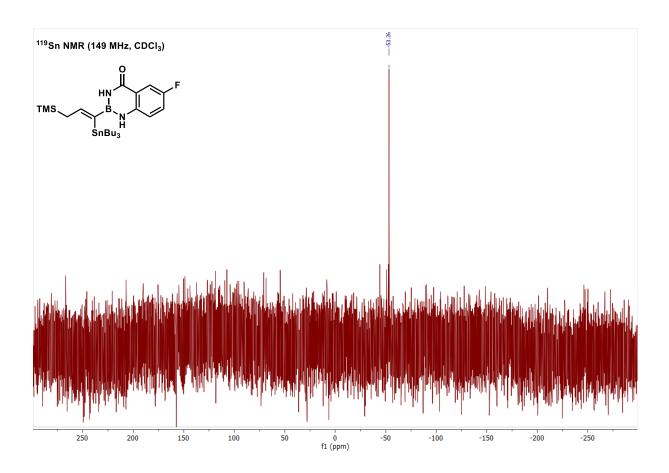
-75

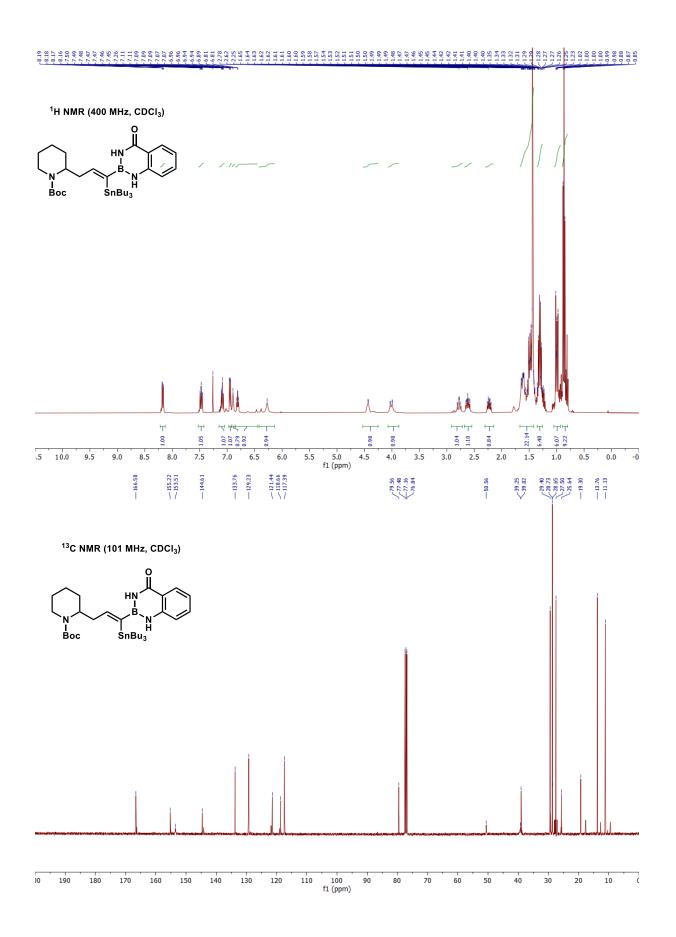

-25

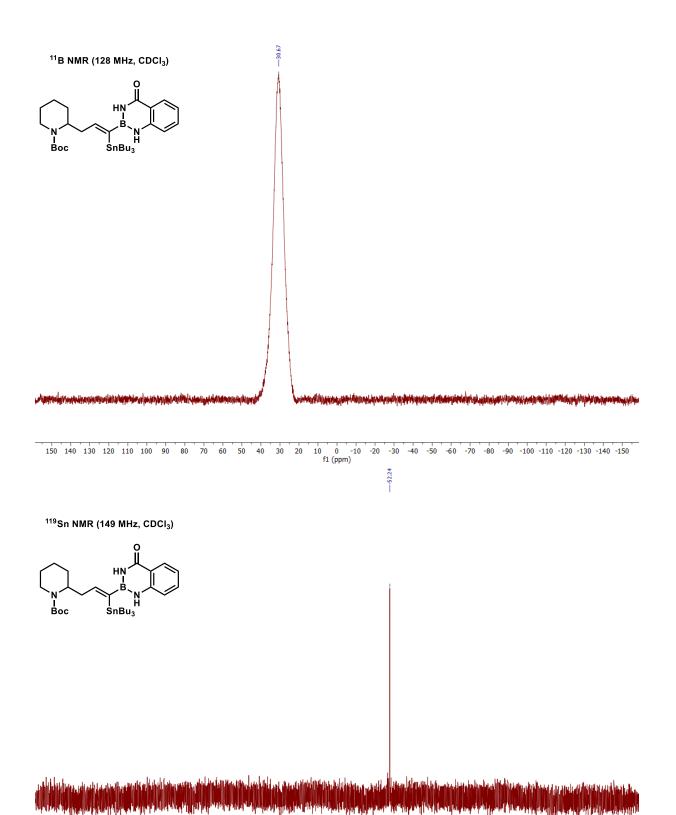

-30


-35


-40


-45





0 f1 (ppm)

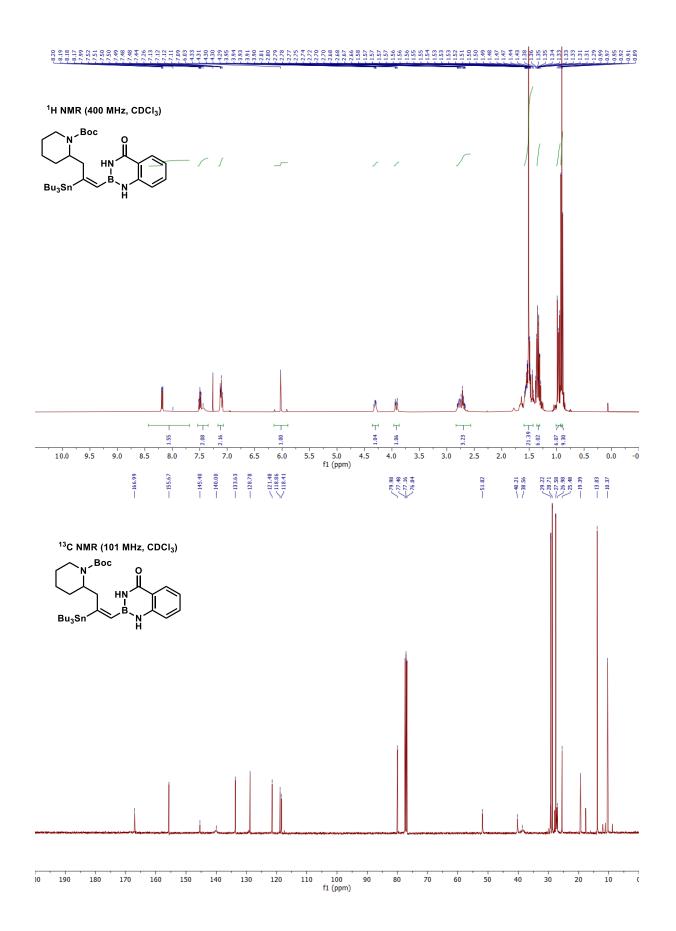
S95

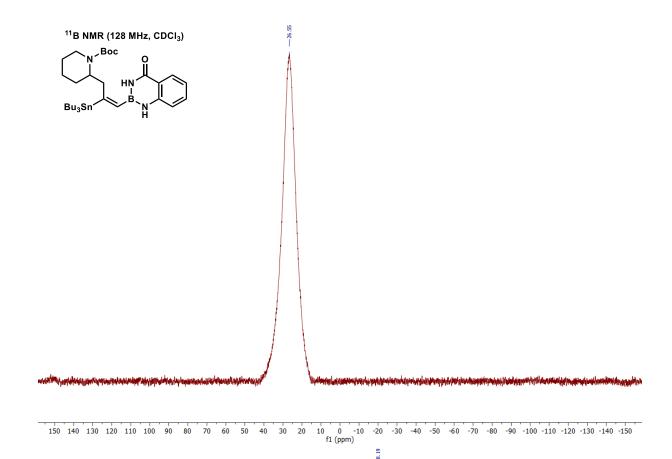
-50

250

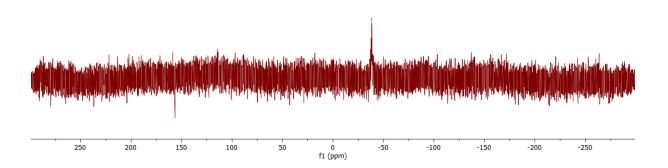
200

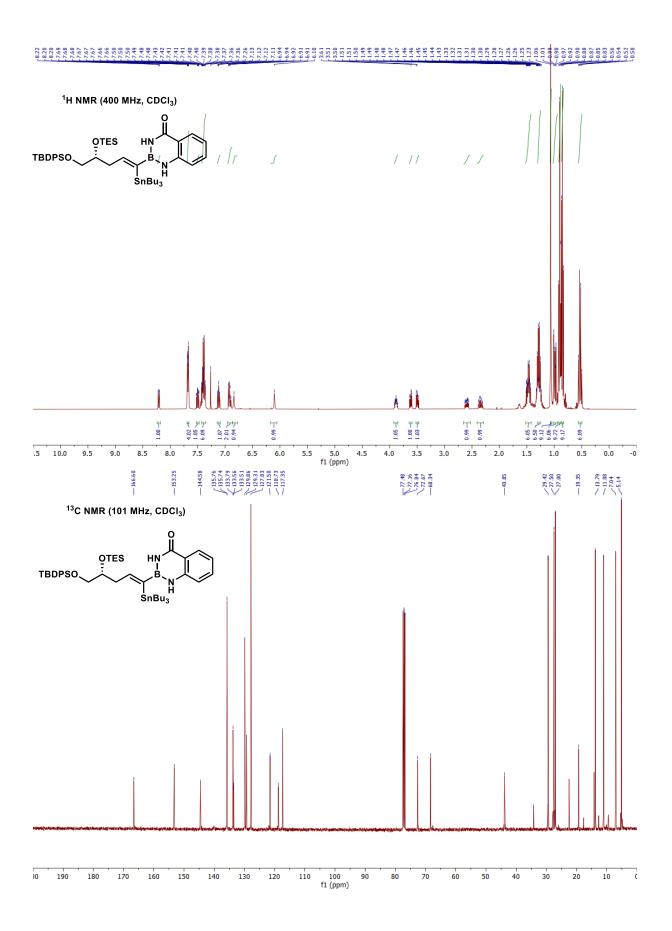
150

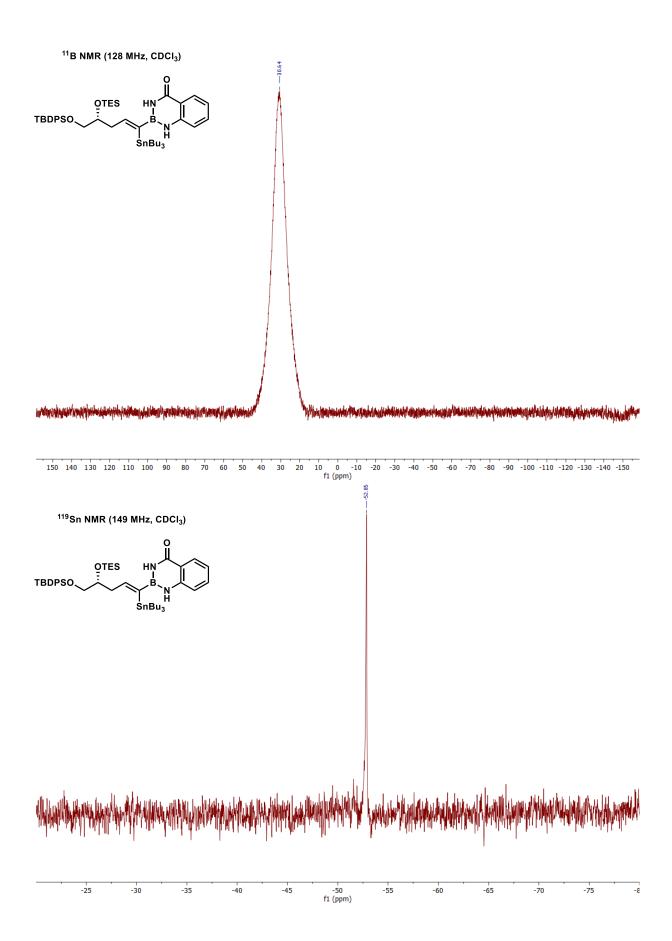

100

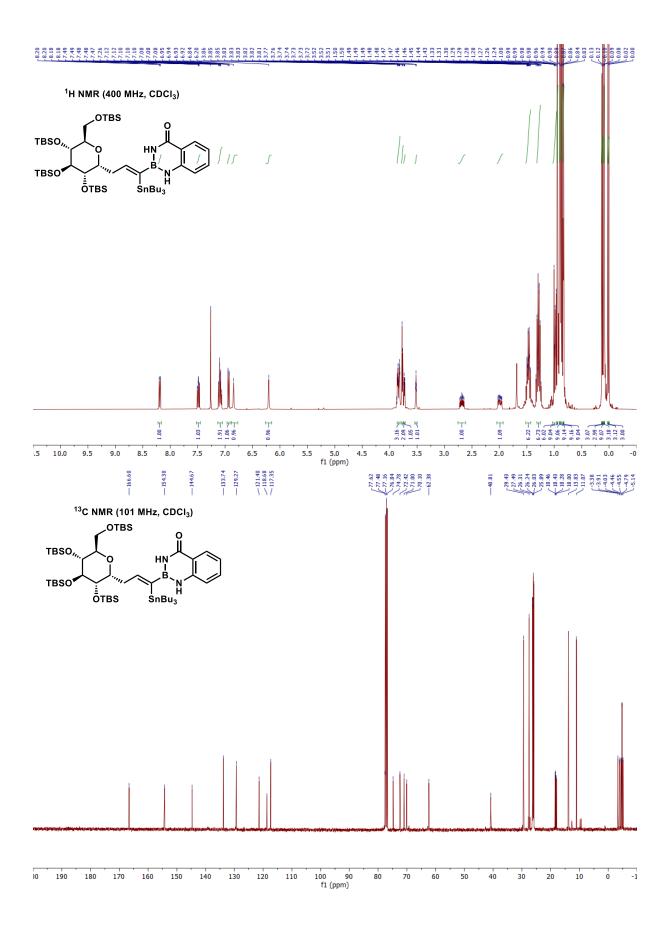

-100

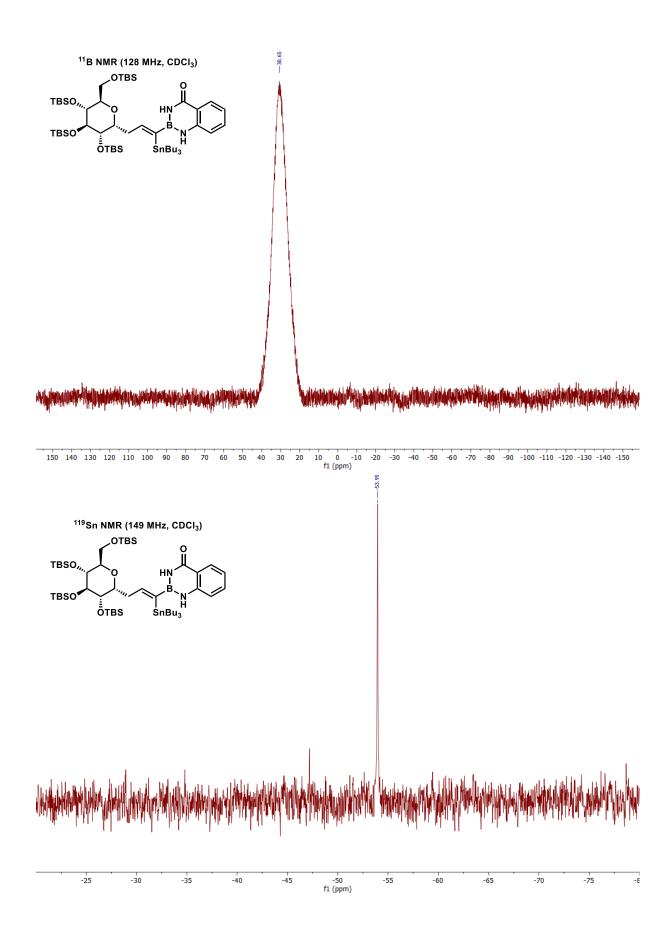
-150

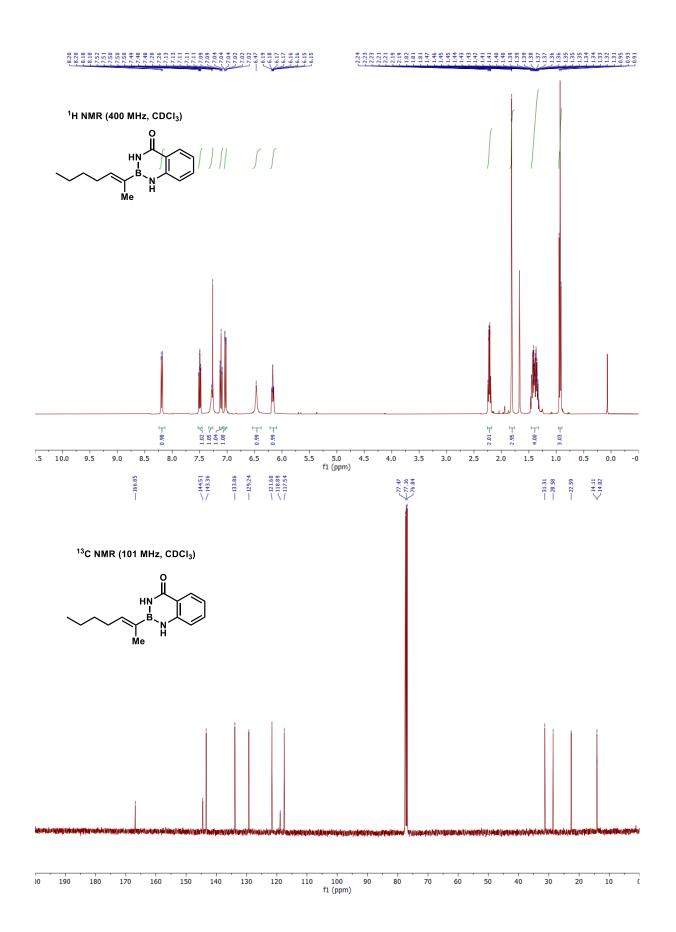

-200

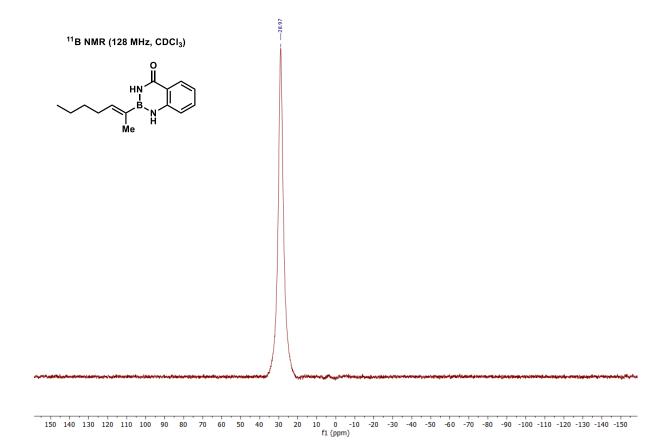

-250



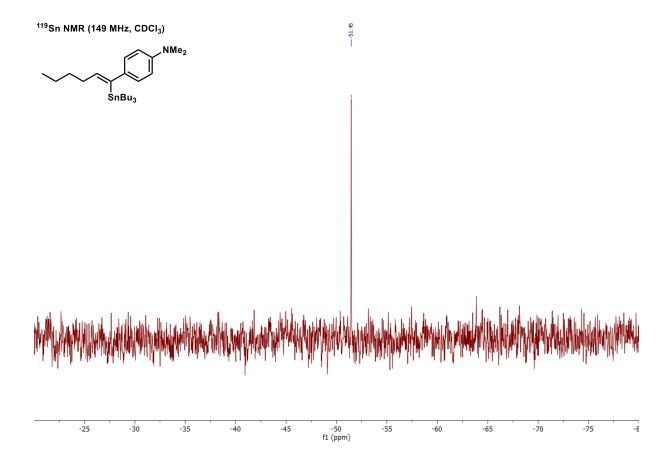


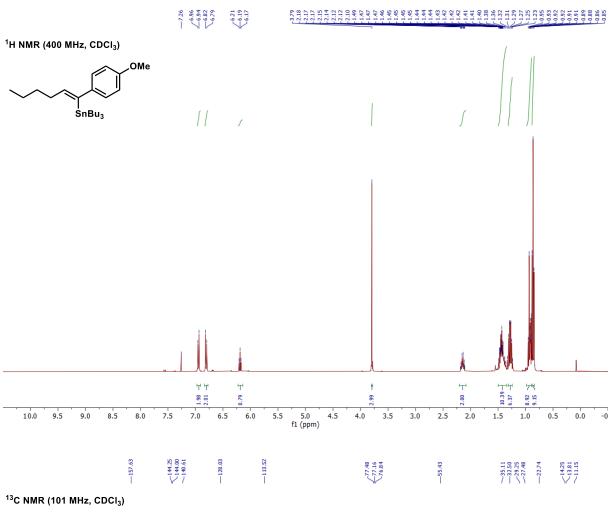

¹¹⁹Sn NMR (149 MHz, CDCI₃)

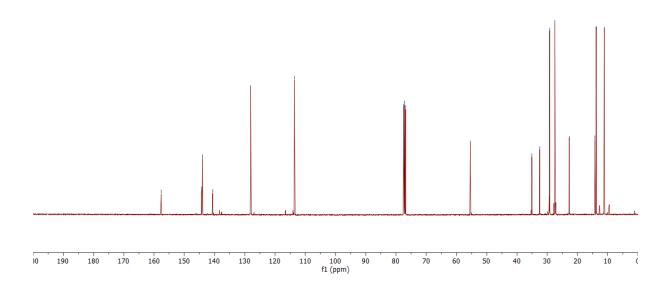


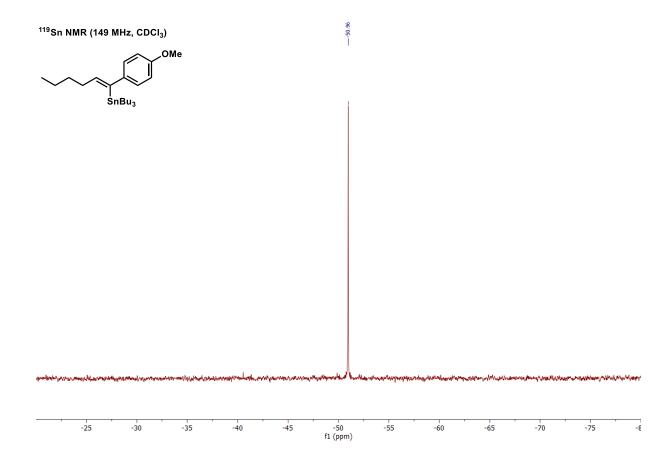


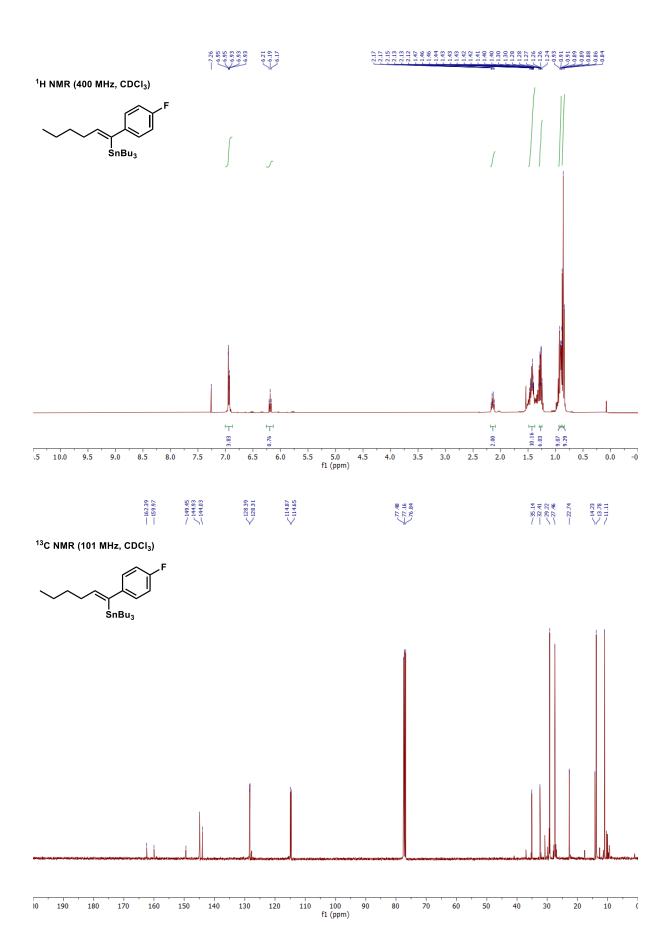


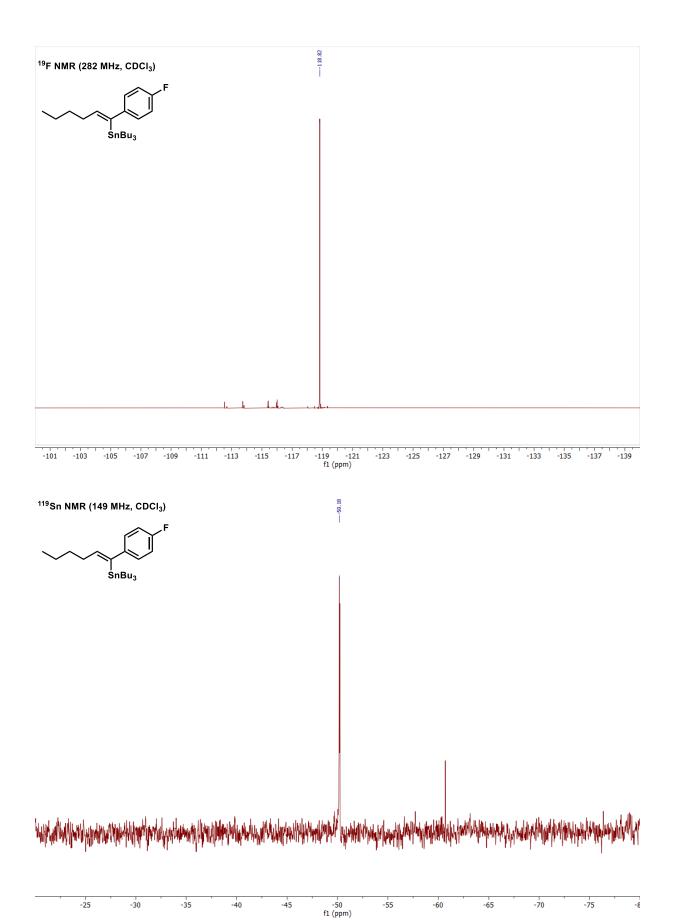


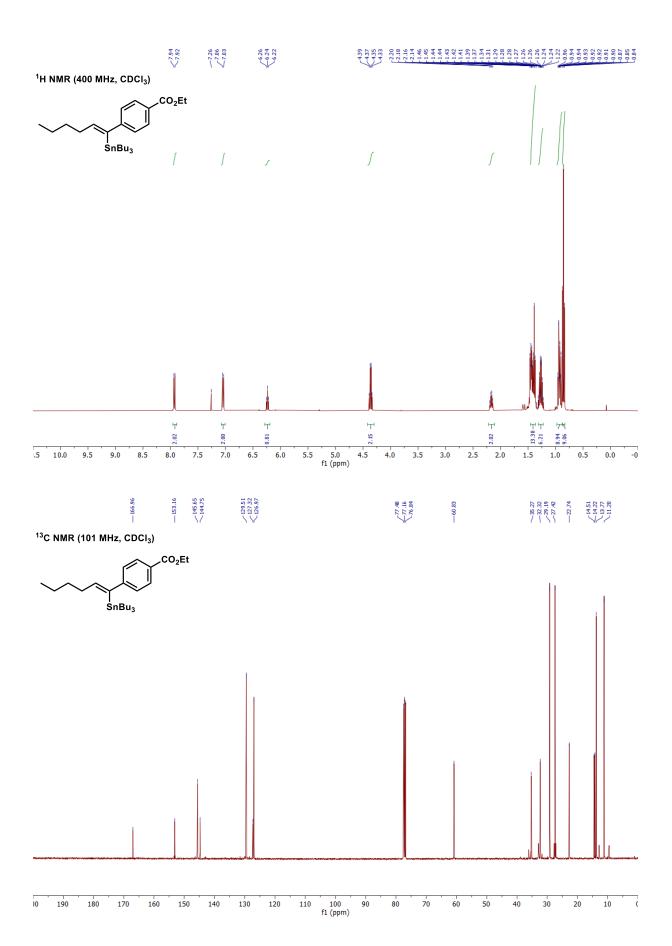


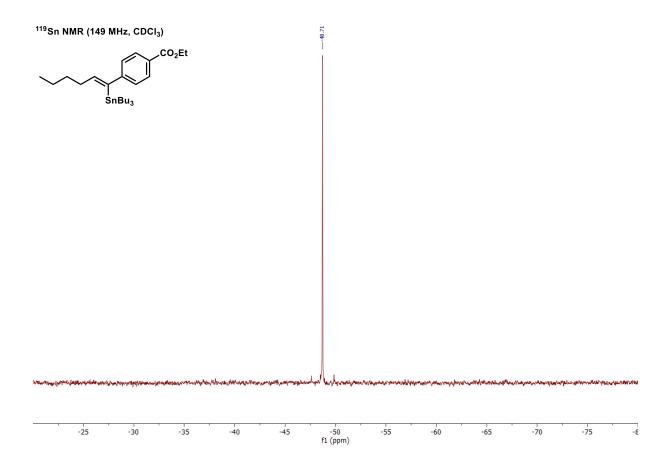


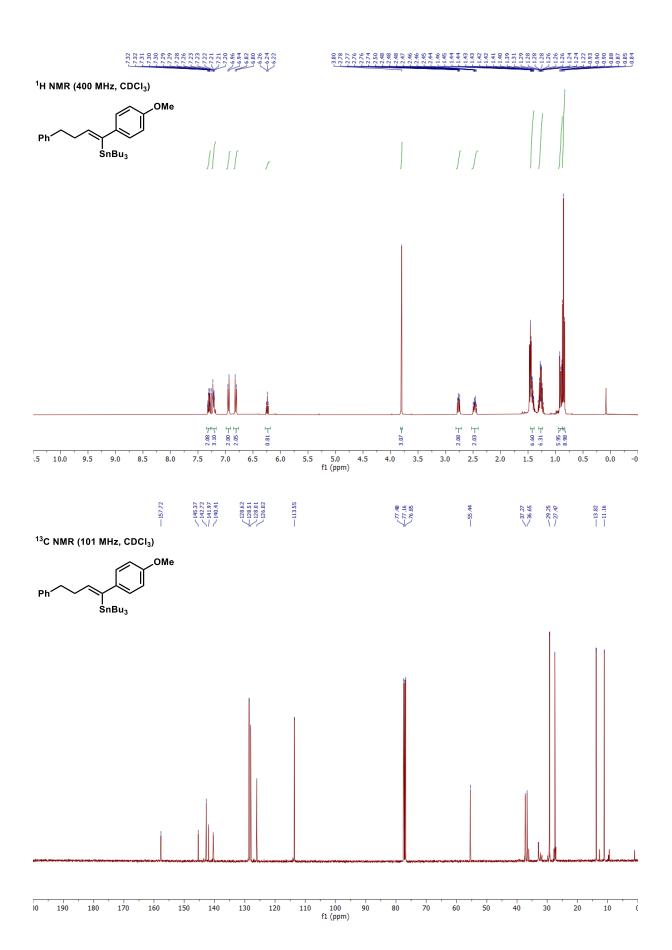


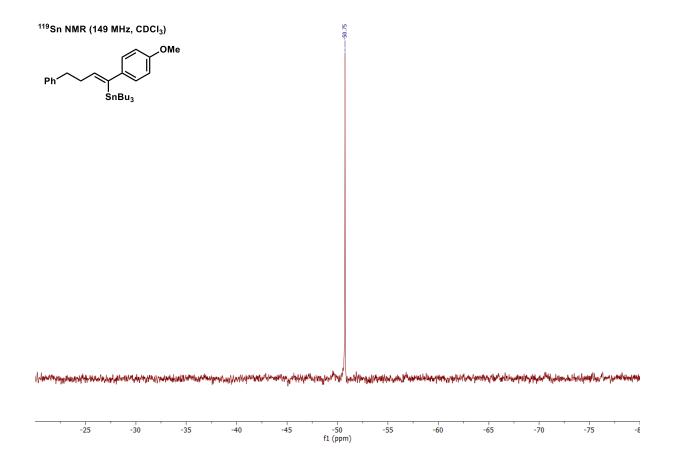


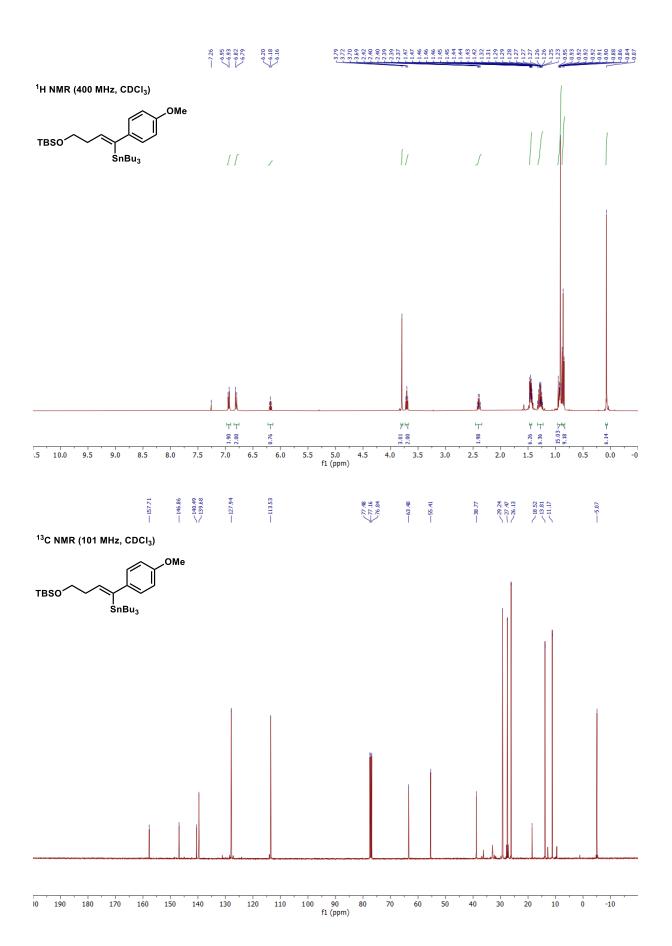


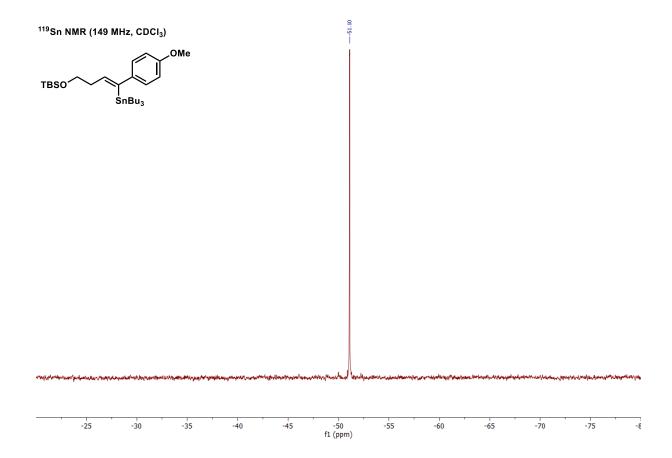


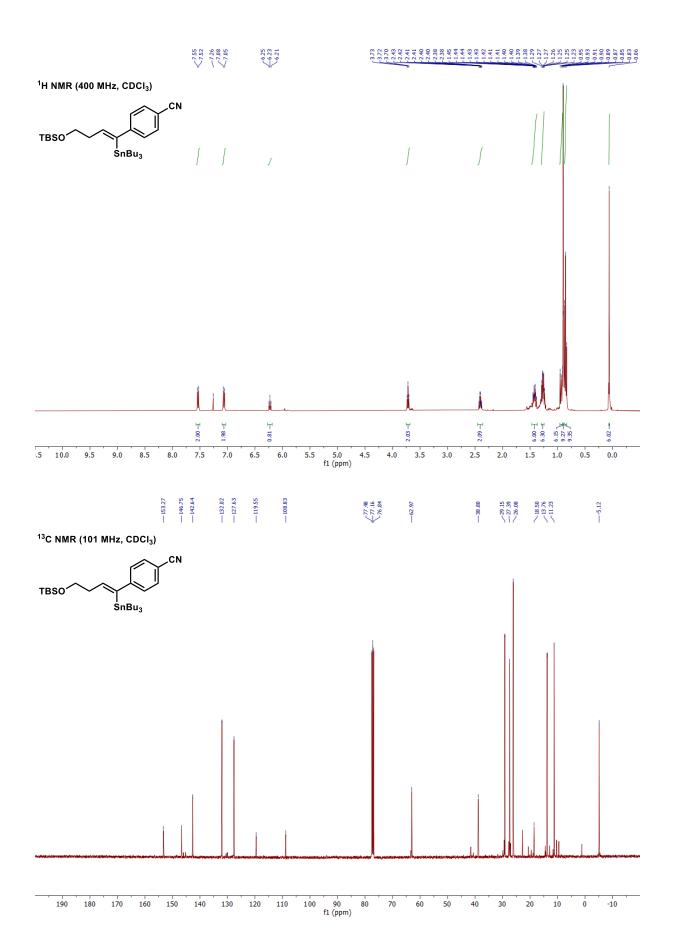


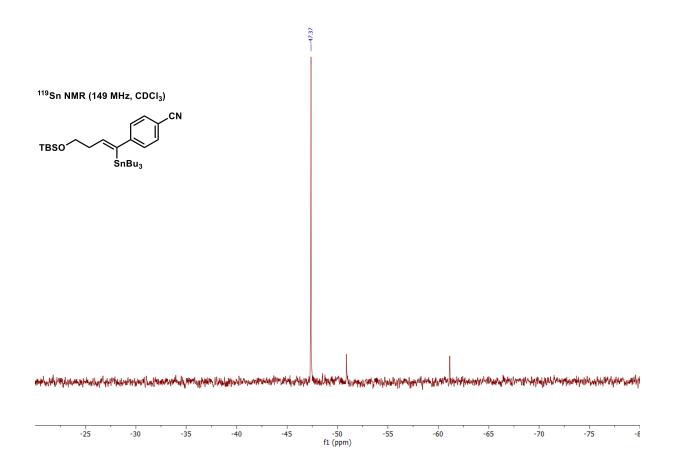


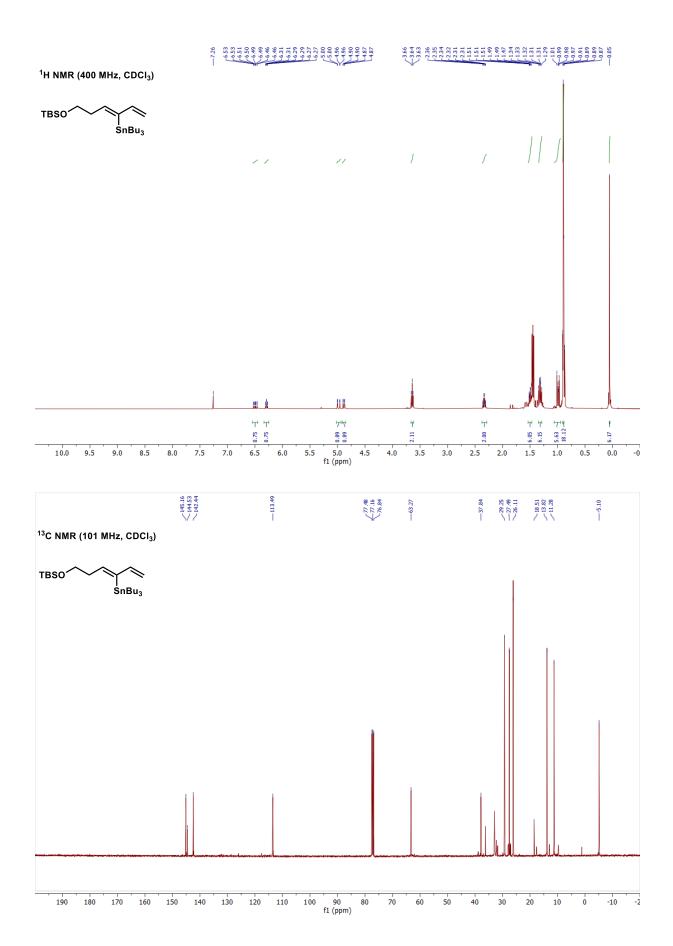


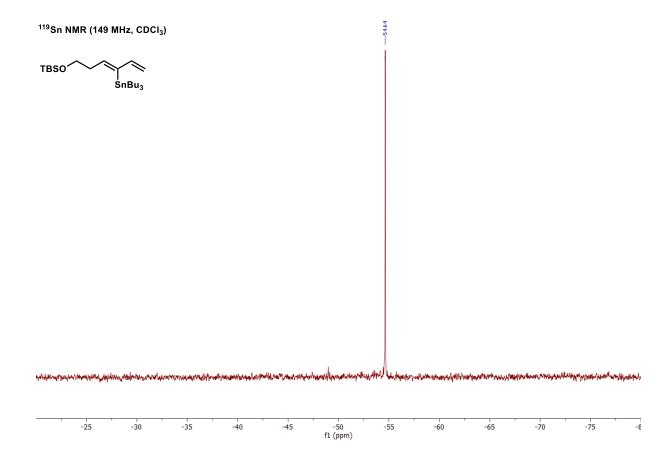




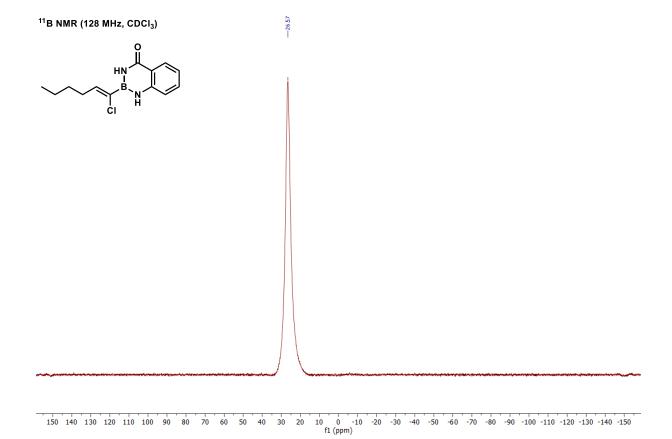


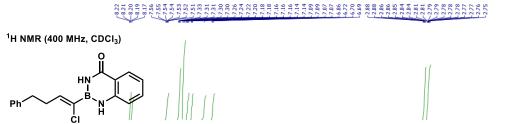


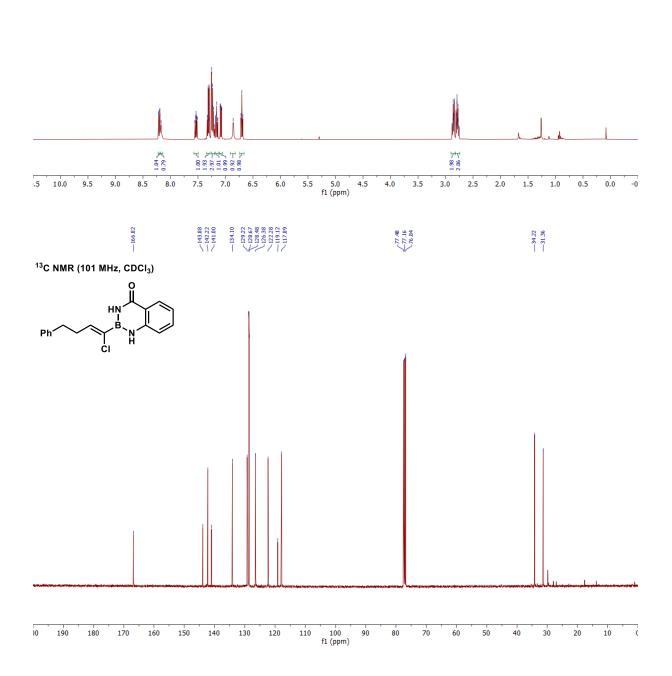


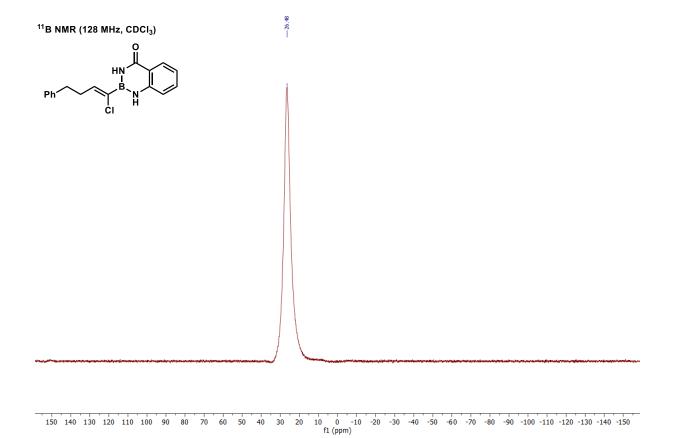


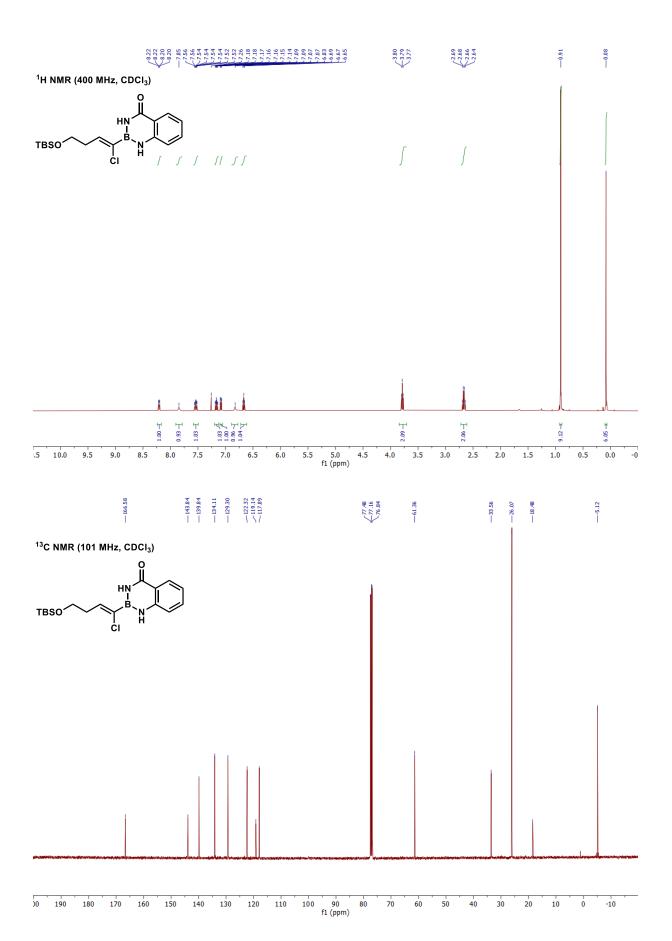


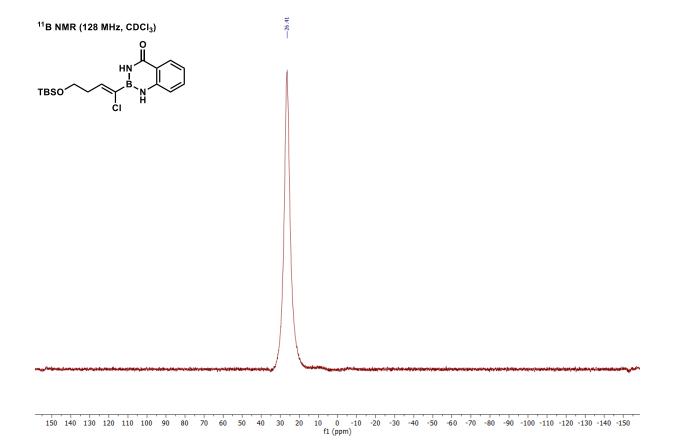


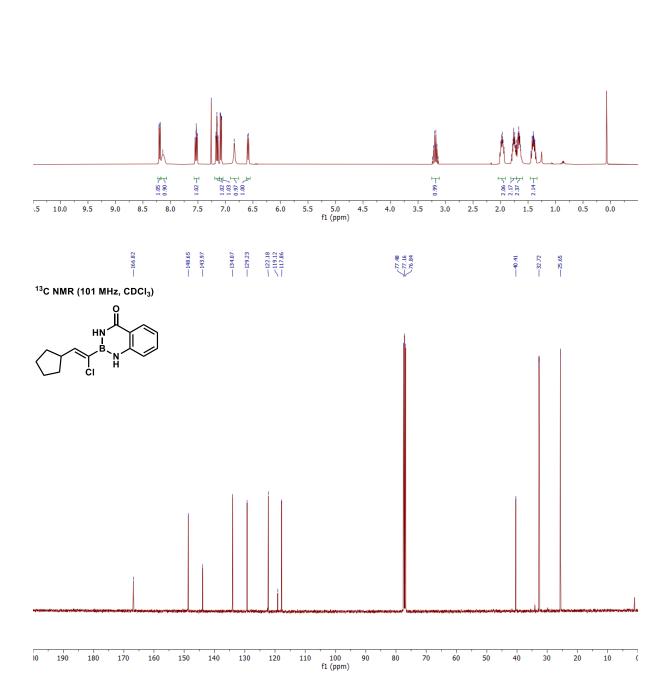


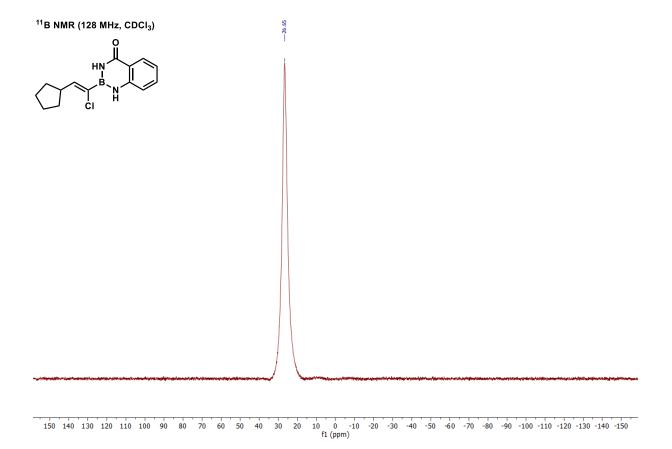


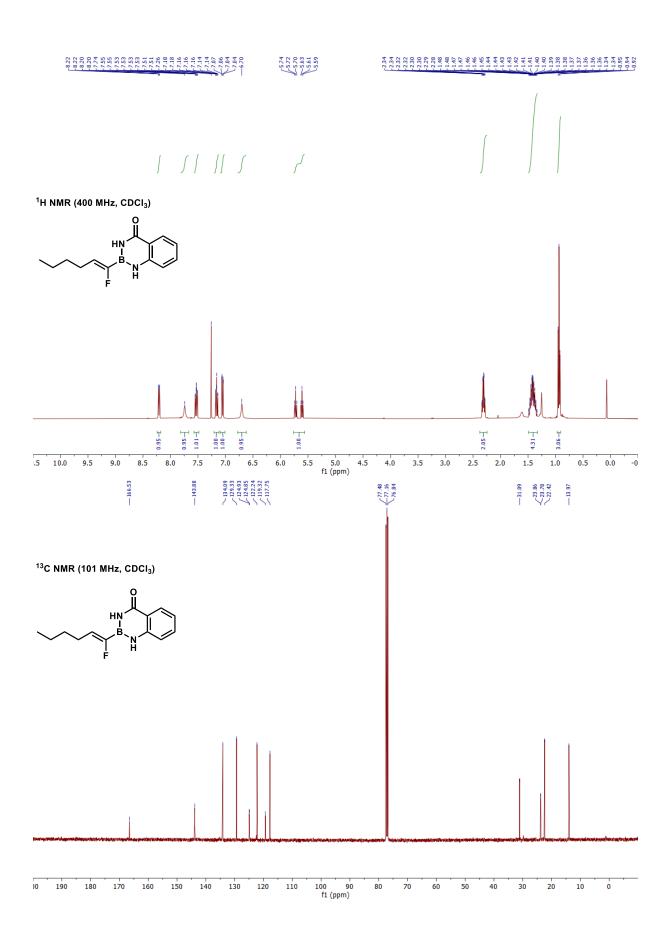


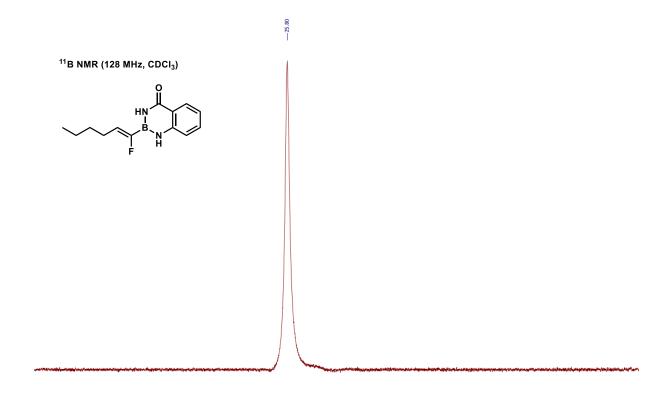




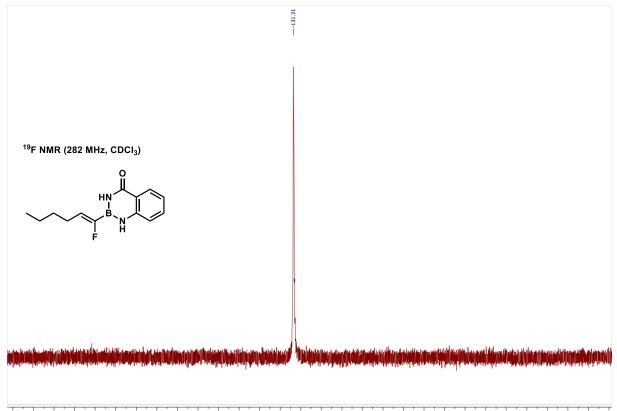


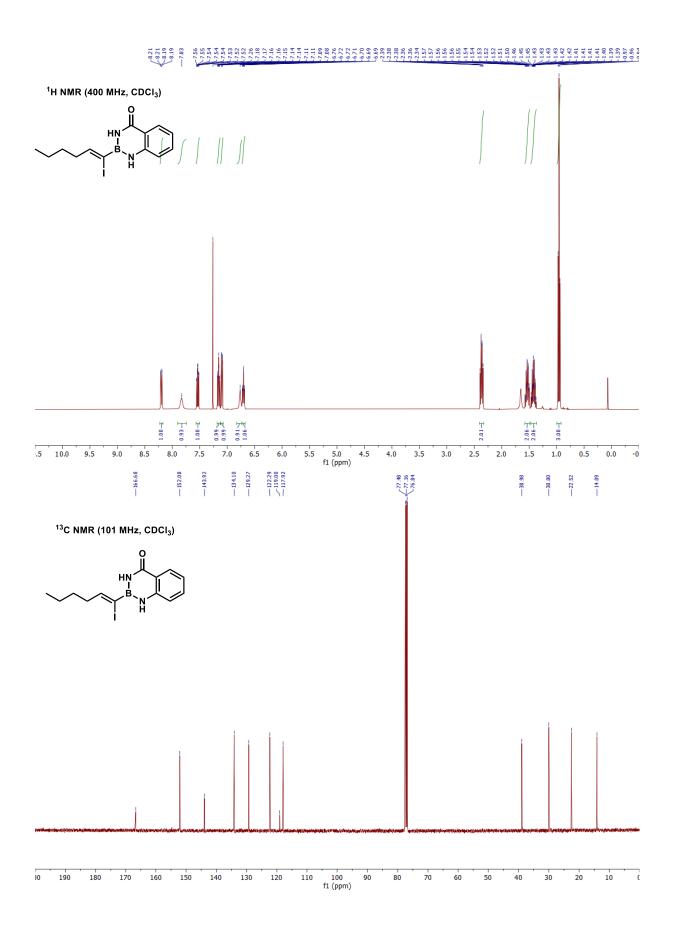


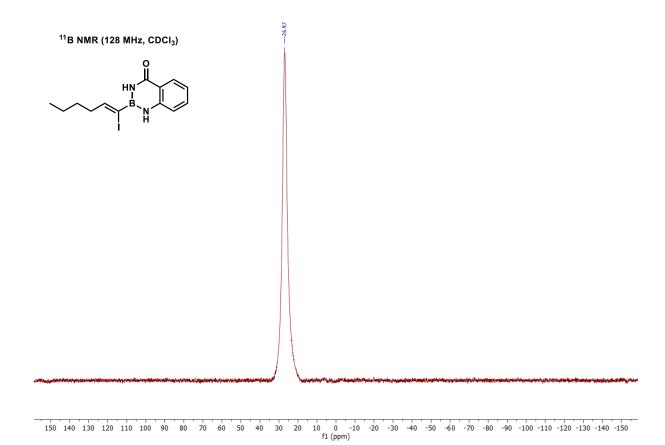


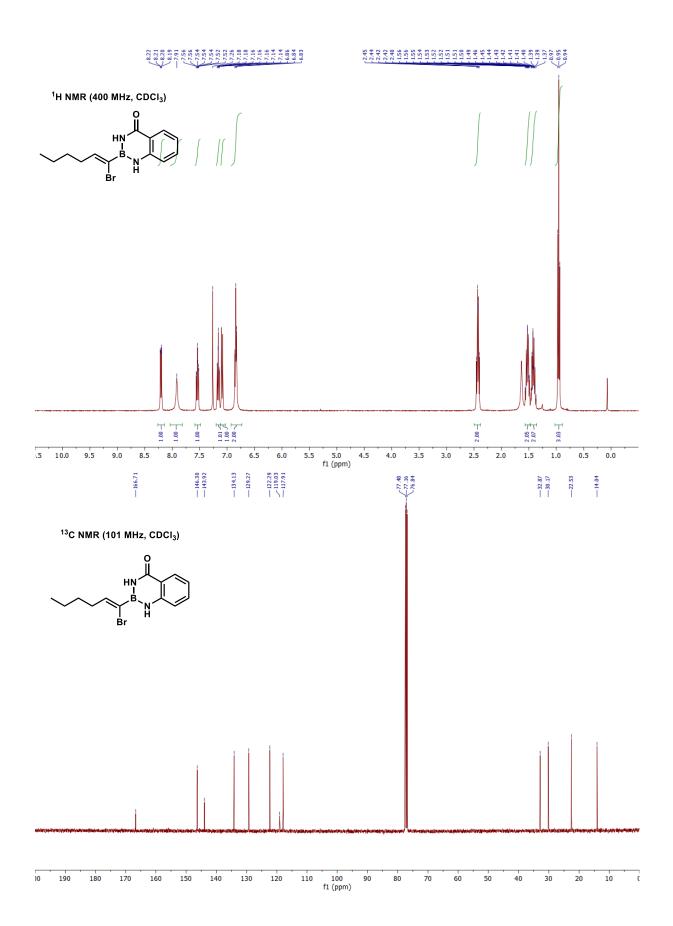


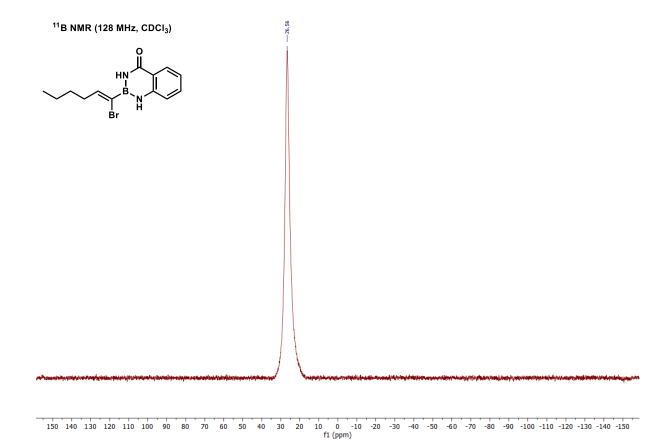
1H NMR (400 MHz, CDCl₃)

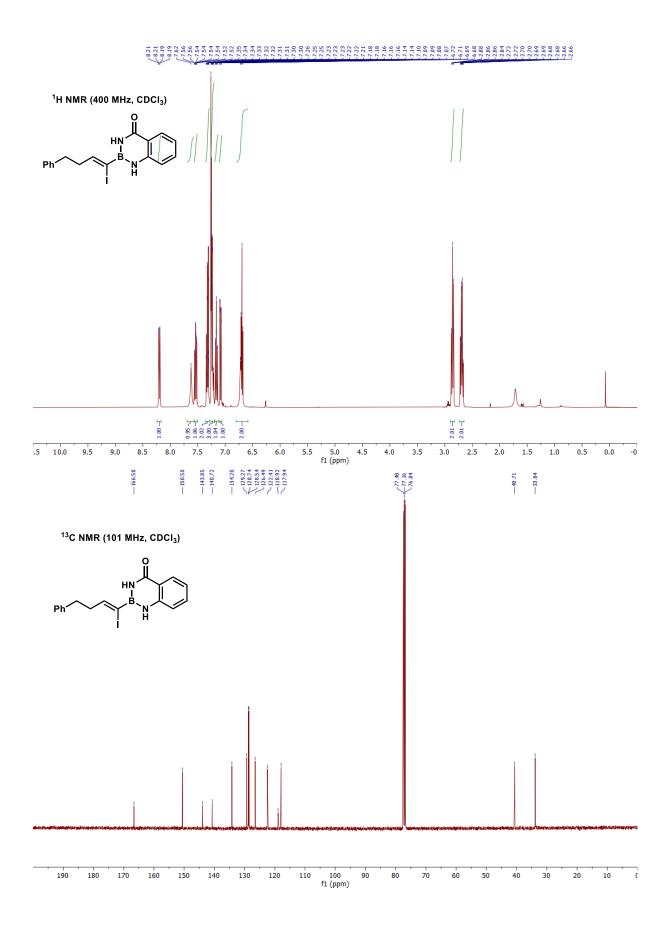


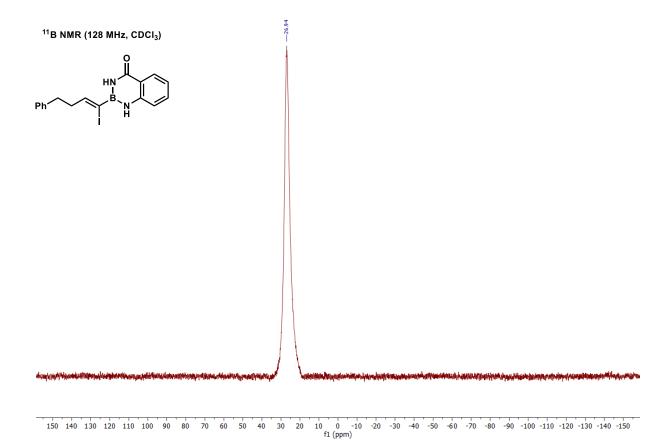


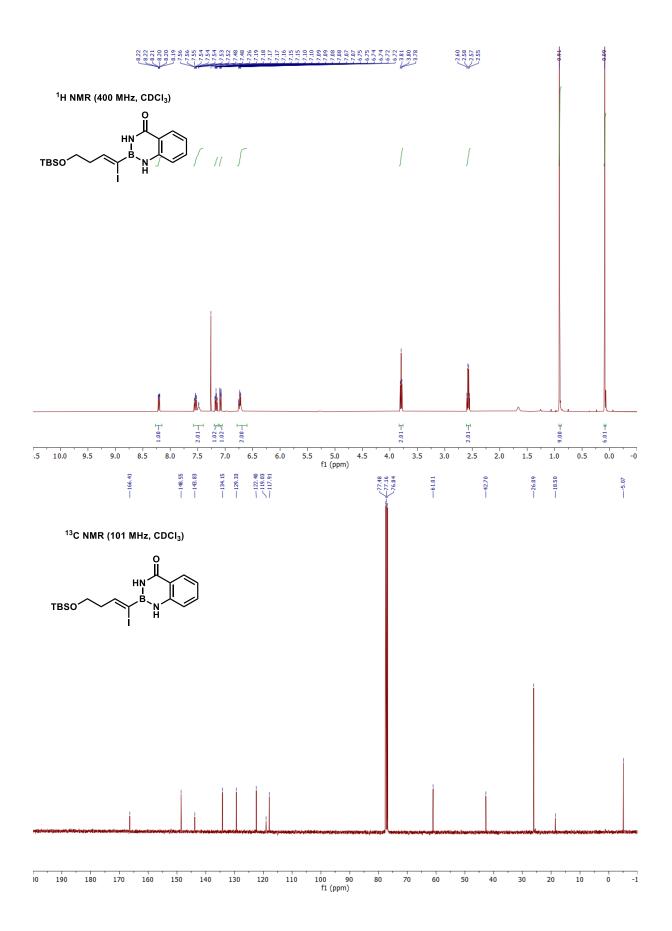


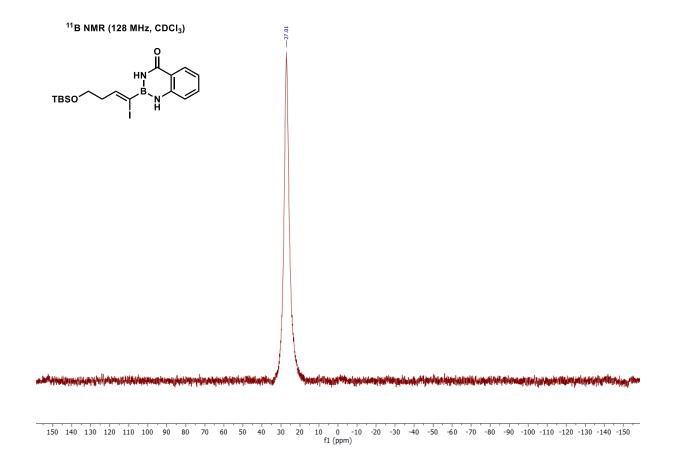

150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 f1 (ppm)

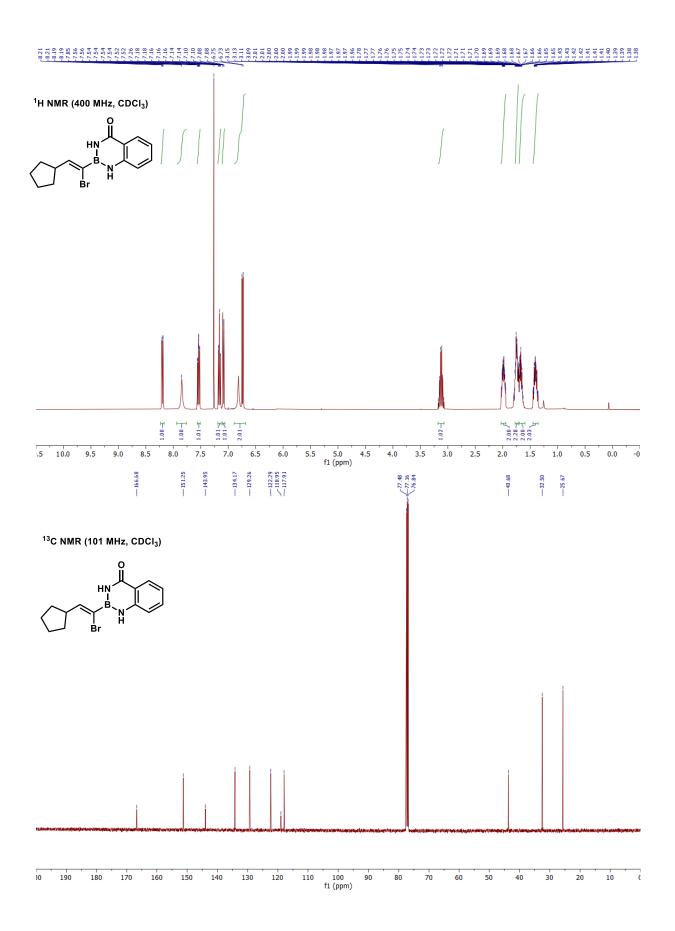


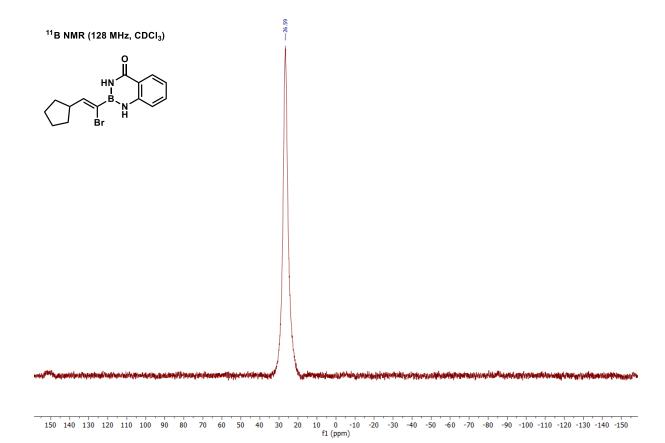

104 -106 -108 -110 -112 -114 -116 -118 -120 -122 -124 -126 -128 -130 -132 -134 -136 -138 -140 -142 -144 -146 -148 -150 -152 -154 -156 -158 -160 -16 f1 (ppm)

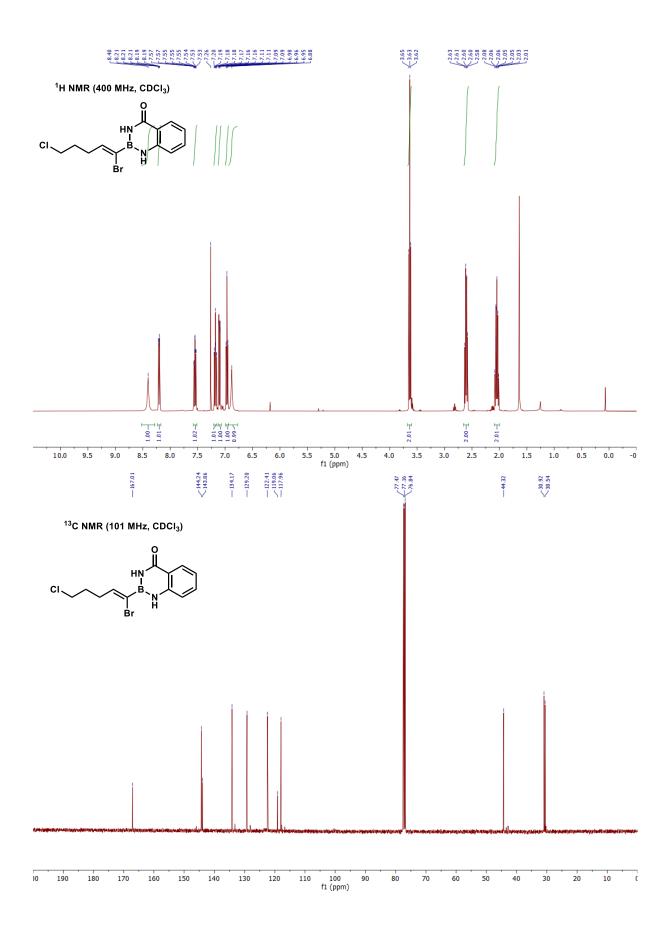


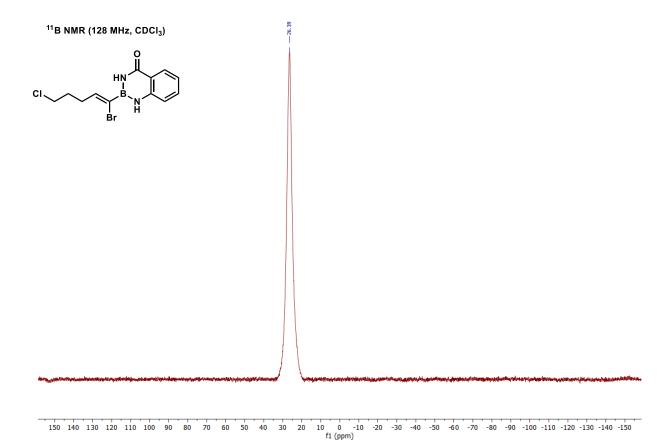


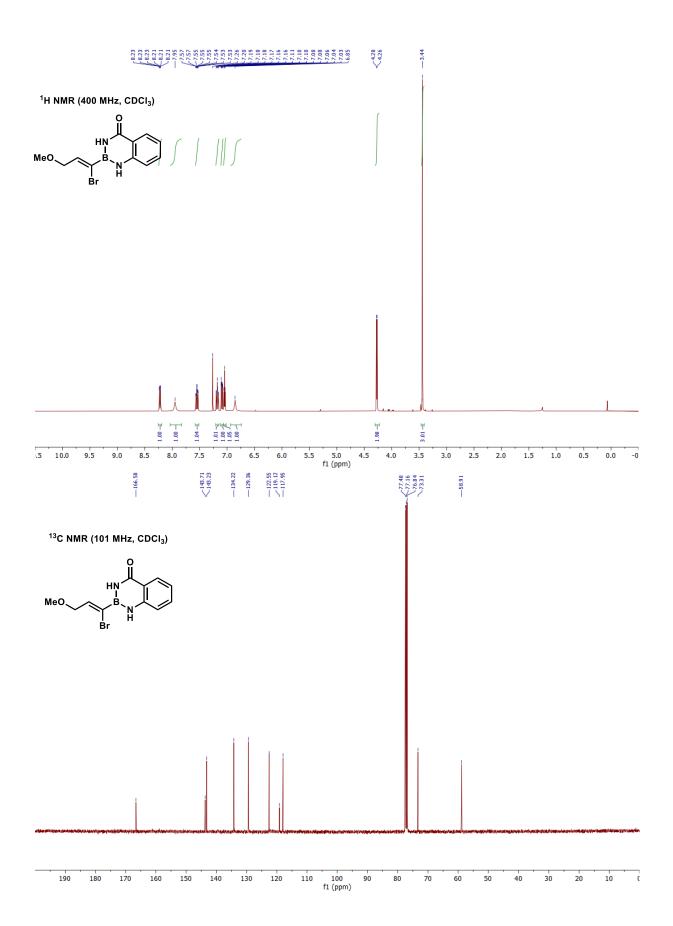


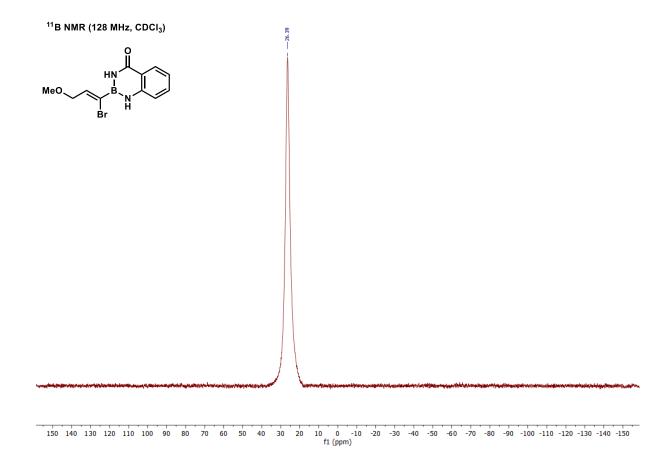


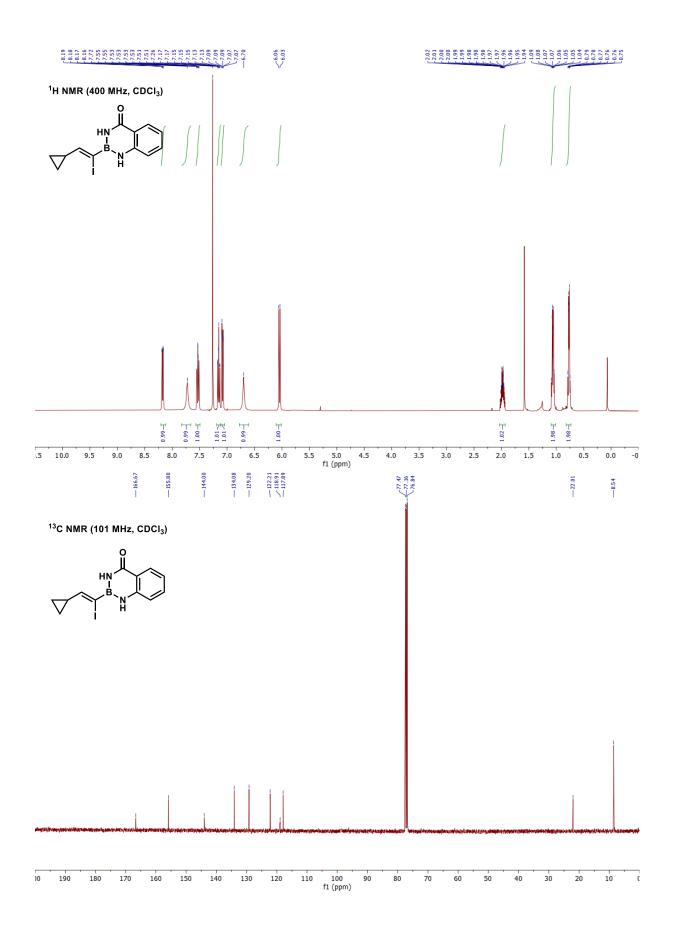


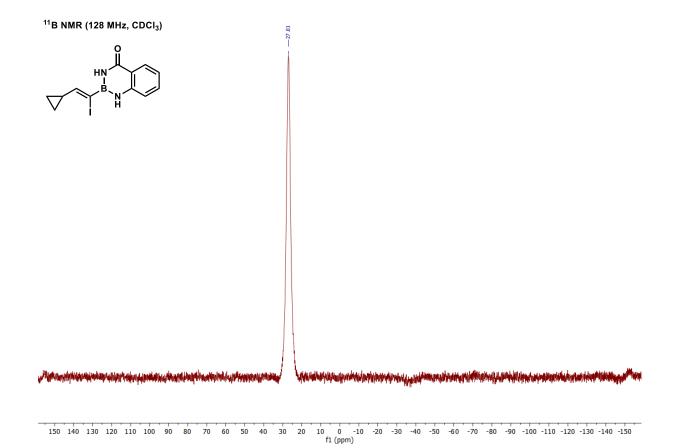


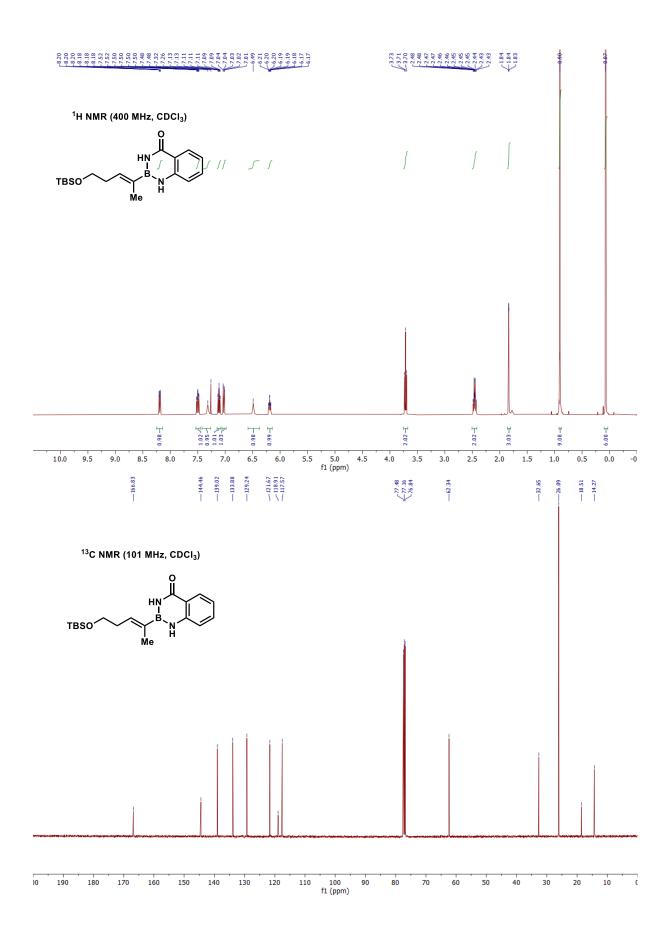


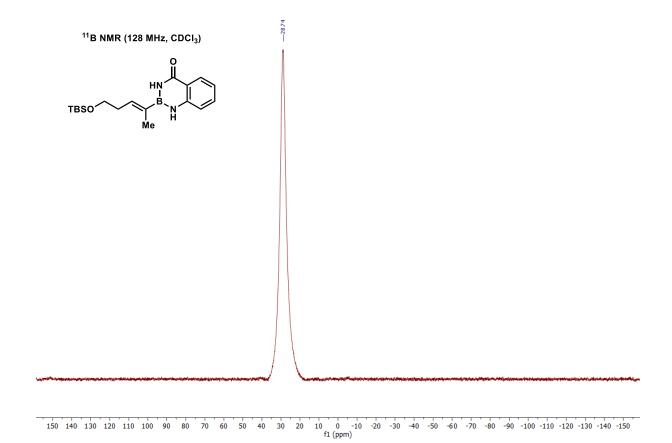


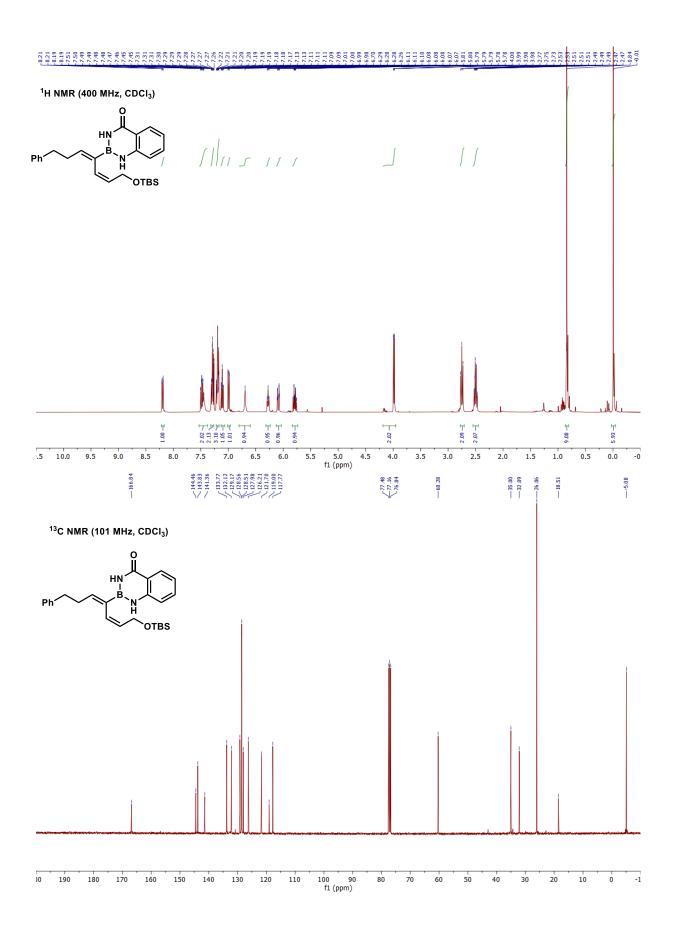


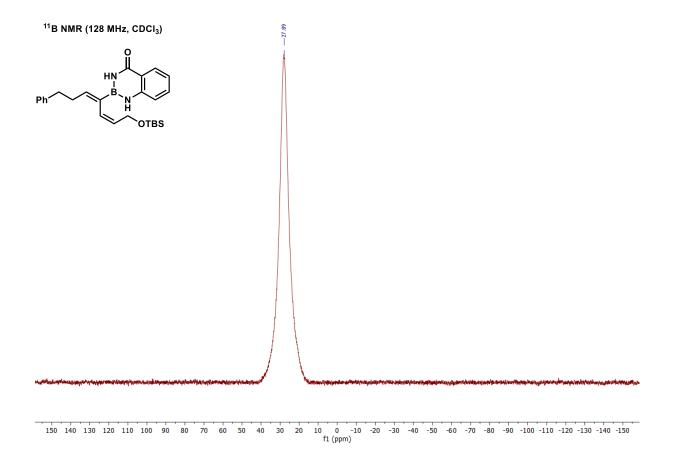


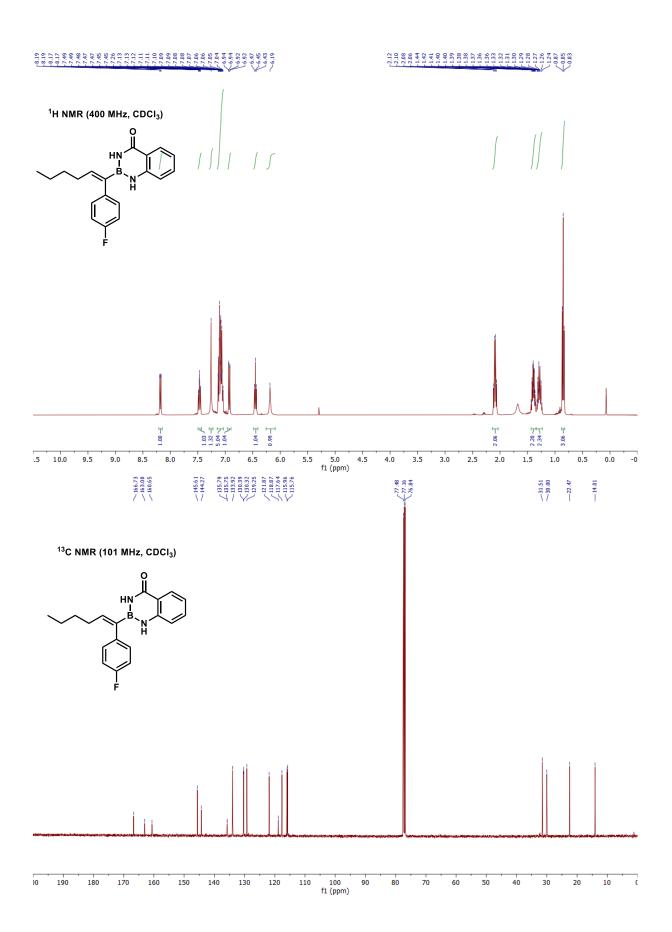


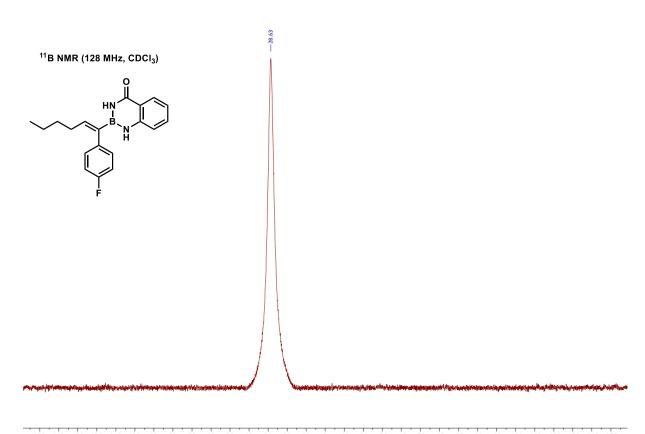


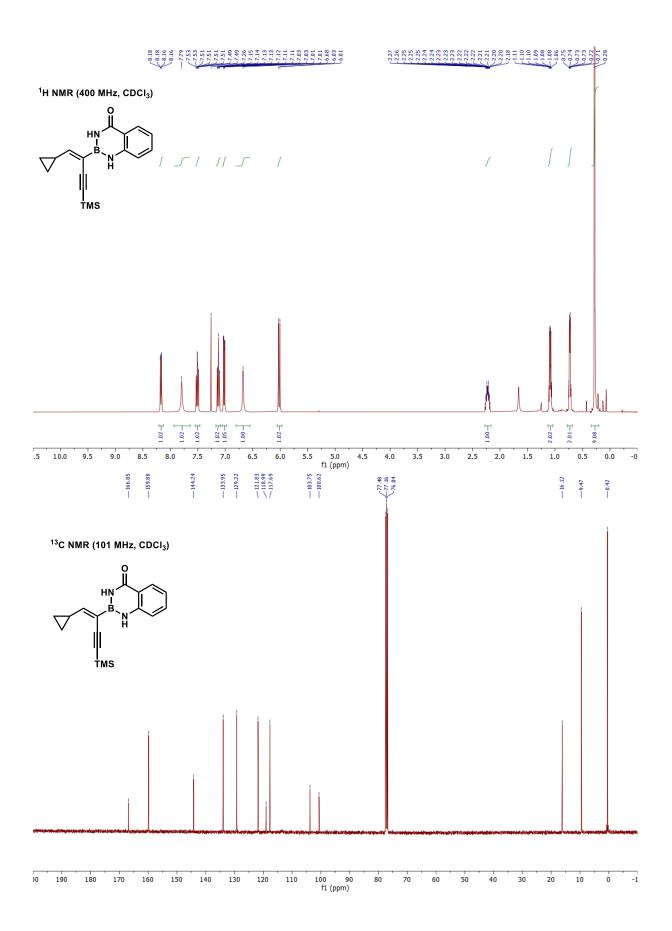


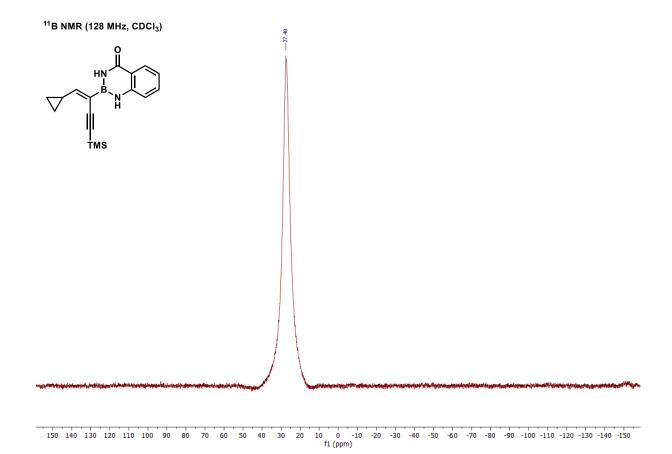


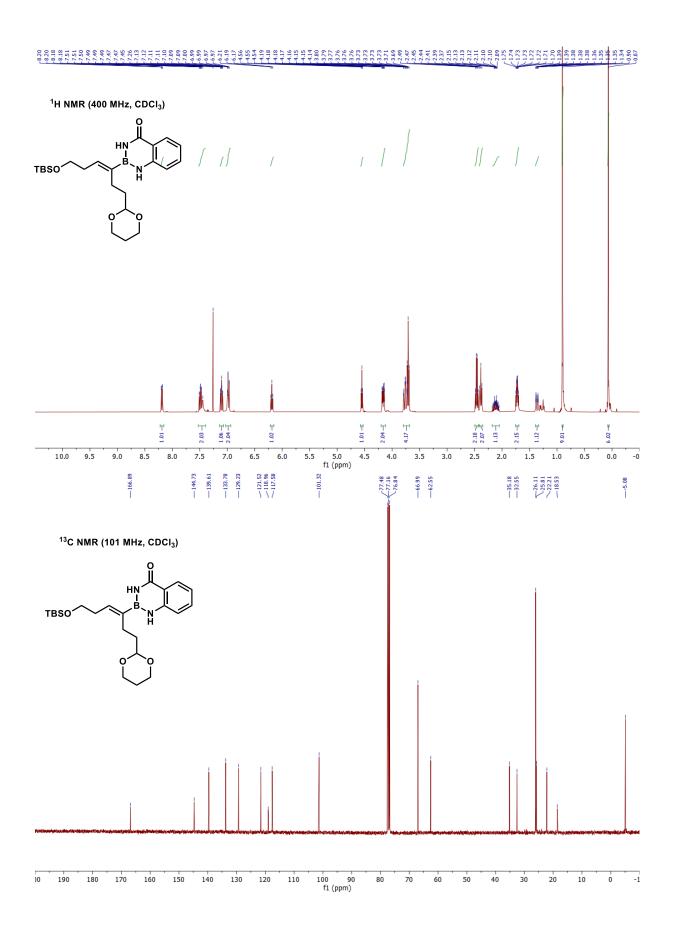


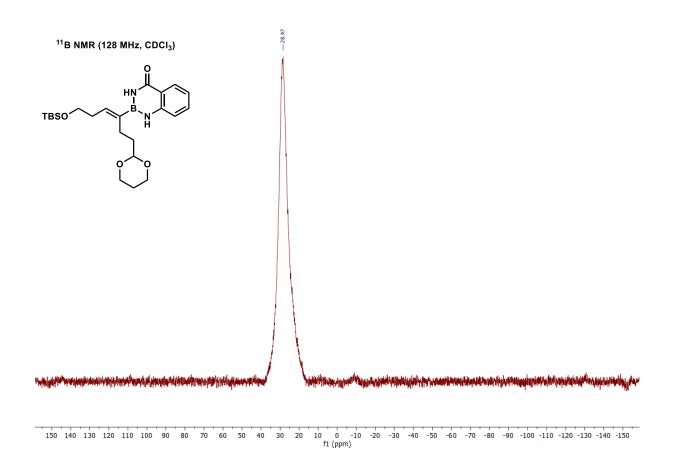


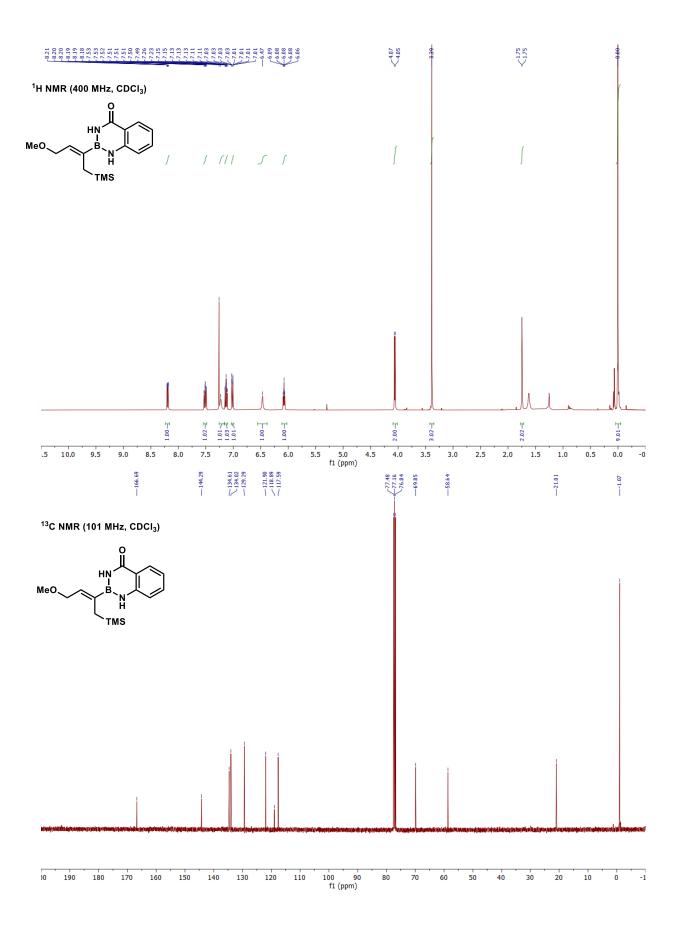









-114 -116 f1 (ppm)


-108

