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SERRE–TATE THEORY FOR CALABI–YAU VARIETIES

PIOTR ACHINGER AND MACIEJ ZDANOWICZ

Abstract. Classical Serre–Tate theory describes deformations of ordinary abelian va-
rieties. It implies that every such variety has a canonical lift to characteristic zero and
equips its local moduli space with a Frobenius lifting and canonical multiplicative coor-
dinates. A variant of this theory has been obtained for ordinary K3 surfaces by Nygaard
and Ogus.

In this paper, we construct canonical liftings modulo p2 of varieties with trivial canon-
ical class which are ordinary in the weak sense that the Frobenius acts bijectively on the
top cohomology of the structure sheaf. Consequently, we obtain a Frobenius lifting on
the moduli space of such varieties. The quite explicit construction uses Frobenius split-
tings and a relative version of Witt vectors of length two. If the variety has a smooth
deformation space and bijective first higher Hasse–Witt operation, the Frobenius lifting
gives rise to canonical coordinates. One of the key features of our liftings is that the
crystalline Frobenius preserves the Hodge filtration.

We also extend Nygaard’s approach from K3 surfaces to higher dimensions, and show
that no nontrivial families of such varieties exist over simply connected bases with no
global one-forms.

1. Introduction

1.1. Deformations of varieties with trivial canonical class. Let X be a smooth
and projective algebraic variety with trivial canonical class (i.e. c1(X) = 0 ∈ PicX) over
an algebraically closed field k. A fundamental result, due to Bogomolov [Bog78], Tian
[Tia87], and Todorov [Tod89] (see also [Kaw92, Kaw97, Ran92]), and called the BTT
theorem, states that if k = C, then deformations of X are unobstructed; in other words,
its local deformation space – or Kuranishi space – is smooth. Moreover, the base of
a modular family of such X carries a structure of an affine manifold [LS13] (equivalently,
a torsion-free flat holomorphic connection on the tangent bundle), giving rise to local
canonical flat coordinates.

In contrast, if k has characteristic p > 0, then the assertion of the BTT theorem is
no longer true (see e.g. [Hir99, Sch04]), even if one considers deformations in the equi-
characteristic direction [CvS09, Proposition 5.4]. Important results towards a charac-
teristic p version of the BTT theorem were given by Schröer [Sch03] and Ekedahl and
Shepherd-Barron [ESB05], but in general the deformation theory of varieties with trivial
canonical class in positive characteristic remains a mystery (for example, both aforemen-
tioned results require liftability to characteristic zero to prove unobstructedness).

On the other hand, all known examples of varieties with trivial canonical class in positive
characteristic which do not lift to characteristic zero are ‘supersingular’ in the broad sense
that the Hasse–Witt operation, i.e. the map

(1.1.1) F ∗ : Hd(X,OX) −→ Hd(X,OX ), d = dimX

induced by the absolute Frobenius, vanishes. It is a natural expectation (which we have
not seen stated explicitly in the literature) that this is the case in general. More precisely,
we conjecture the following.
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2 P. ACHINGER AND M. ZDANOWICZ

Conjecture 1.1.1. Let X be a smooth projective variety with trivial canonical class over
an algebraically closed field of characteristic p > 0. Suppose that the Hasse–Witt operation
(1.1.1) is bijective. Then X has unobstructed deformations over the ring of Witt vectors
W (k) of k.

The goal of this paper is to investigate the deformation theory of varieties with trivial
canonical class for which (1.1.1) is bijective, with a special focus on deformations mod-
ulo p2.

1.2. Classical Serre–Tate theory. In the important case of ordinary abelian varieties,
a complete description of the deformation problem was given by Serre and Tate [Kat81,
Del81]. Let us summarize the main points of this description: let A be an ordinary abelian
variety (or, somewhat more generally, an ordinary variety with trivial tangent bundle
[MS87]) over a perfect field k of characteristic p, and let DefA be its formal deformation
space over W (k). Then:

• DefA has the structure of a formal group, in fact a formal torus, over W (k),

• DefA has a canonical lifting of Frobenius
∼
F (the p-th power map in the group law),

• DefA⊗k̄ has canonical multiplicative coordinates (dependent on the choice of basis

of the p-adic Tate module Tp(A(k̄))), i.e. there is a preferred isomorphism

DefA⊗k̄ ≃ SpfW (k)[[qij − 1, 1 ≤ i, j ≤ dimA]].

They are compatible with the Frobenius lifting
∼
F in the sense that

∼
F ∗(qij) = qpij.

• Setting qij = 1, we obtain a canonical lifting
∼
A over W (k), which can be charac-

terized as the unique lifting to which the Frobenius FA lifts.
• The restriction map Pic

∼
A → PicA admits a natural section. Consequently, the

canonical lift
∼
A is projective, and hence algebraizable.

From our viewpoint, it is the Frobenius lifting
∼
F which is the most fundamental; in fact,

it determines the other features uniquely (cf. [Del81, Appendix]). It can be regarded as
an analog of the affine manifold structure on the moduli of complex tori (see [Moc96]).

As an important step in his proof of the Tate conjecture for ordinary K3 surfaces
[Nyg83], Nygaard has developed an appropriate version of Serre–Tate theory. His results
were recently extended to Calabi–Yau threefolds by Ward in his thesis [War14]. In fact,
the same methods can be used to yield an analog for higher-dimensional varieties, under
some extra assumptions.

Before stating our first result, we have to note that beyond the cases of abelian varieties
and K3 surfaces, it is important to distinguish between several notions of ordinarity. In
this paper, the following conditions on a smooth projective variety X of dimension d shall
play a role:

Definition 1.2.1. Let X be a smooth projective variety with trivial canonical class over
an algebraically closed field k of characteristic p > 0.

(a) X is 1-ordinary if the Hasse–Witt operation (1.1.1) is bijective,
(b) X is 2-ordinary if it is 1-ordinary and if the first higher Hasse–Witt operation

HW(1): Hd−1(X,Ω1
X) −→ Hd−1(X,Ω1

X)

is bijective (see Definition 2.4.2).
(c) X is ordinary (in the sense of Bloch–Kato) if Hj(X, dΩiX ) = 0 for all i, j.

If X has no crystalline torsion, ordinarity is equivalent to the equality of the Hodge and
Newton polygons for Hd

cris(X/W (k)) [BK86, §7], and implies 2-ordinarity. More generally,
m-ordinarity means that the first m segments of the Hodge and Newton polygon coincide.
Note that a choice of trivialization of the canonical bundle ωX yields an identification of
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Hd−1(X,Ω1
X) with the dual of the tangent space H1(X,TX ) of the deformation functor

DefX .
Our first result is the following.

Theorem 1.2.2 (Corollary 10.2.2). Let X be a smooth projective variety with trivial
canonical class over an algebraically closed field of characteristic p > 0. Assume that

(i) H1(X,OX ) = 0 = H0(X,TX),
(ii) X is 2-ordinary,
(iii) the crystalline cohomology groups H∗

cris(X/W (k)) are torsion-free for ∗ = d, d+ 1,
(iv) the Hodge spectral sequence of X/k degenerates,
(v) X has unobstructed deformations over Wm(k) for some m ≥ 1.

Then a choice of a basis of the free Zp-module

HomZp(H
d
cris(X/W (k))ϕ=p,Hd

cris(X/W (k))ϕ=1)

gives rise to an isomorphism

DefX/Wm(k) ≃ SpfWm(k)[[q1 − 1, . . . , qr − 1]], r = dimHd−1(X,Ω1
X),

and a natural lifting of Frobenius, defined by
∼
F ∗(qi) = qpi .

1.3. F -splittings and canonical liftings modulo p2. Theorem 1.2.2 is unsatisfying
in several aspects. First, the assumption on smoothness of the deformation space is dis-
couraging. Second, its relation to Hodge theory (Frobenius and the Hodge filtration) is
a mystery (see Question 10.3.2). It is also important to ask whether the 2-ordinarity
assumption could be relaxed to 1-ordinarity. Our main new insight is that using a dif-
ferent approach one can build a version of the Serre–Tate theory for 1-ordinary varieties
with trivial canonical class which describes deformations modulo p2 (i.e. over Artinian
W2(k)-algebras).

An important feature of our approach is the use of F -splittings, which are OX-linear
splittings of the Frobenius map F ∗ : OX → F∗OX . They were invented by Mehta and
Ramanathan in the 1980s [MR85] and were put to good use in geometric representation
theory in positive characteristic, but so far they have not appeared too prominently in
arithmetic geometry (see, however, [MS87]). This is in contrast with the use of formal and
p-divisible groups in the classical case, and it would be interesting to see a more direct
link between F -splittings and the formal groups of Artin and Mazur.

Our key starting point is the following construction. Let X be a 1-ordinary variety
with trivial canonical class. Then X admits a unique F -splitting σ. On the other hand,
a construction due to the second author [Zda18] attaches to a pair (X,σ) of a k-scheme

and an F -splitting a canonical lifting
∼
X of the Frobenius twist X ′ of X. The structure

sheaf of
∼
X can be described as the following quotient of W2(OX):

O ∼
X =W2(OX)/Iσ, Iσ = {(0, f) |σ(f) = 0}.

It was known before [Ill96, 8.5] that an F -split scheme can be lifted modulo p2. What is
new here is that there is a preferred, and quite explicit, such lifting. This was a strong
indication that there should be a version of Serre–Tate theory for 1-ordinary varieties with
trivial canonical class.

Already the existence of the preferred
∼
X has interesting consequences. First, by [DI87],

for every n < p there exists a canonical Hodge decomposition

Hn
dR(X/k) ≃

⊕

i+j=n

Hj(X ′,ΩiX′/k).

One wonders what other features of classical Hodge theory have analogues for 1-ordinary
varieties with trivial canonical class. Second, by construction the canonical lifting

∼
X is a
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closed subscheme of W2(X), and the Teichmüller lifting

O
×
X −→ O

×
∼
X
, f 7→ the class of (f, 0) mod Iσ

gives rise to a natural splitting of the restriction map Pic
∼
X → PicX.

From our perspective, the most important feature of the canonical lifting
∼
X is seen

through its de Rham cohomology. Recall that the isomorphism

ρ : Hd
cris(X

′/W2(k)) ∼−−→ Hd
dR(

∼
X/W2(k)

endows the right hand side with the crystalline Frobenius ϕ.

Theorem 1.3.1 (Theorem 5.0.1). Let X be a 1-ordinary smooth projective variety with

trivial canonical class, and let
∼
X be the canonical lifting of X ′ described above. Then the

crystalline Frobenius

ϕ : Hd
dR(

∼
X/W2(k)) −→ Hd

dR(
∼
X/W2(k))

preserves the submodule F 1Hd
dR(

∼
X/W2(k)) (the image of Hd(

∼
X,Ω•≥1

∼
X

)→ Hd
dR(

∼
X/W2(k))).

If p > 2 and certain technical assumptions are satisfied,
∼
X is the unique lifting

∼
X of X ′

with this property (Theorem 5.7.1). By results of Katz [Del81, Appendix], this implies

that for abelian varieties and K3 surfaces, the lifting
∼
X agrees with the usual one, obtained

by Serre–Tate theory (Corollary 5.7.2).

1.4. Modular Frobenius liftings. In order to describe the deformation theory of a
1-ordinary variety X with trivial canonical class, we construct the canonical lifting in
families: if X/S is a family of such varieties over a k-scheme S, and if

∼
S is a flat lifting of

S overW2(k), there is a canonical lifting
∼
X/

∼
S of the Frobenius pull-back familyX ′ = F ∗

SX.

This is achieved using a construction of a sheaf of rings W2(OX/
∼
S) on X, a relative version

of W2OX . As in the absolute case, the unique relative F -splitting σ of X/S gives rise to

an ideal Iσ ⊆W2(OX/
∼
S), and O ∼

X =W2(OX/
∼
S)/Iσ.

Note that in the relative case (where S is not perfect), it is important to have in mind
that it is X ′, and not X, that admits a canonical lifting. For example, if S is smooth over
k, then X ′/S will always have vanishing Kodaira–Spencer map. Conversely, one can show
that, if the fibers have no nonzero global vector fields, a family with vanishing Kodaira–
Spencer descends canonically under Frobenius (see Appendix B). Consequently, a family
of 1-ordinary varieties with trivial canonical class, no global vector fields, and vanishing
Kodaira–Spencer admits a canonical lifting to any lifting of the base modulo p2.

Consider now the deformation functor of X

DefX : ArtW2(k)(k) −→ Sets.

Suppose that DefX ≃
∼
S = Spf R for a flat W2(k)-algebra R. Then the construction of

the relative canonical lifting yields by abstract nonsense a lifting of Frobenius

F ∼S :
∼
S −→

∼
S.

We have thus obtained the key ingredient of a Serre–Tate theory for X. As in the absolute
case, the key feature concerns the relationship of this Frobenius lifting with de Rham
cohomology.

Theorem 1.4.1 (Theorem 7.1.1). Let X0 be a 1-ordinary smooth projective variety with

trivial canonical class, with d = dimX0. Suppose that the deformation space
∼
S = DefX0/W2(k)

is pro-representable and smooth. Then the construction outlined above endows
∼
S with

a Frobenius lifting F ∼S. Let
∼
X/

∼
S be the universal family, and let

H = Hd
cris(

∼
X/

∼
S) ≃ Hd

dR(
∼
X/

∼
S)
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be the associated Hodge F -crystal. Then the induced crystalline Frobenius map

ϕ(F ∼S)F
∗
∼
S
: H −→ H

preserves the submodule F 1H.

If p > 2 and if certain technical assumptions are satisfied, then F ∼S is unique with this
property (Corollary 7.3.2). Again, using Katz’s results, we can show that for abelian
varieties and K3 surfaces, this lifting of Frobenius agrees with the one obtained by classical
Serre–Tate theory (Corollary 7.3.3).

1.5. 2-ordinarity and canonical coordinates. The modular Frobenius lifting described
above carries important arithmetic information related to the first higher Hasse–Witt
operation and which is especially interesting if X is 1-ordinary but not 2-ordinary.

Recall that if S is a smooth scheme over k, and if
∼
F :

∼
S →

∼
S is a lifting of S over W2(k)

together with Frobenius, one has the induced operator

(1.5.1) ξ : F ∗Ω1
S −→ Ω1

S , ξ(ω) =
1

p

∼
F ∗(∼ω)

(here ∼ω ∈ Ω1
∼
S

is a lifting of the local section ω ∈ Ω1
S). Following Mochizuki [Moc96], we

call
∼
F ordinary if ξ is an isomorphism.

Applying this to
∼
S = DefX being the base of a local modular family, and specializing

the operator ξ at the closed point, we obtain a map

(1.5.2) ξ(0) : H1(X,TX)
∨ −→ H1(X,TX )∨

For the statements below, it is convenient to choose a basis element of Hd(X,OX ) which
is invariant under the Hasse–Witt operation. This together with Serre duality allows us
to interpret ξ(0) as a map

(1.5.3) ξ(0) : Hd−1(X,Ω1
X) −→ Hd−1(X,Ω1

X).

Theorem 1.5.1 (Proposition 5.8.1 + Corollary 7.2.2). Suppose that p > 2. Let X/k be

a 1-ordinary variety with trivial canonical class as in Theorem 1.4.1, and let
∼
X/W2(k)

be its canonical lifting. Suppose that the Hodge groups of the universal deformation over
W2(k) are free and that its Hodge spectral sequence degenerates. Then the following three
Frobenius-linear maps are equal:

(i) The map ξ(0) : Hd−1(X,Ω1
X)→ Hd−1(X,Ω1

X) (1.5.3).

(ii) The map β : Hd−1(X,Ω1
X ) → Hd−1(X,Ω1

X) obtained by dividing the crystalline

Frobenius on F 1Hd
dR(

∼
X/W2(k)) by p (this makes sense thanks to Theorem 1.3.1).

(iii) The first higher Hasse–Witt operation HW(1): Hd−1(X,Ω1
X)→ Hd−1(X,Ω1

X).

Consequently,
∼
F is ordinary if and only if X is 2-ordinary.

A simple corollary of this is that every 1-ordinary variety as above can be (formally)
deformed to a 2-ordinary one (Corollary 7.3.1).

The second big feature of the modular Frobenius lifting
∼
F is that if X is 2-ordinary, so

that
∼
F is ordinary, we obtain an Fp-local system

M = {x ∈ Ω1
S | ξ(x) = x}

such that Ω1
S ≃ M⊗Fp OS . Consequently, Ω1

S becomes trivialized on a canonical finite
étale cover of S. This is the analog of the affine manifold structure over C.

Theorem 1.5.2 (Proposition 8.3.1). Suppose that p > 2. Let X be a 2-ordinary variety
with trivial canonical class satisfying the assumptions of Theorem 1.5.1. Then for every
choice of a basis {ωi} of the Fp-vector space

M = ker
(

HW(1)− id : Hd−1(X,Ω1
X) −→ Hd−1(X,Ω1

X)
)
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there is an isomorphism

DefX = SpfW2(k)[[q1 − 1, . . . , qr − 1]], r = dimkH
d−1(X,Ω1

X) = dimFp M

such that
∼
F (qi) = qpi and the image of d log qi in T ∗DefX = Hd−1(X,Ω1

X) equals ωi.

These coordinates are only unique up to jet order depending on p: if q′i are another such
coordinates, then

q′i − qi ∈ (qp1 − 1, . . . , qpr − 1),

where the ideal on the right is independent of the choices.

1.6. Application to isotriviality questions. To illustrate the utility of the modular
Frobenius lifting, we give an application to isotriviality of families of 2-ordinary varieties.
Recall that by a result of Raynaud [MB85, Chapter XI, Theorem 5.1], every family of
ordinary abelian varieties over a complete curve is isotrivial. The proof of this result
makes use of the global geometry of the moduli space, notably the fact that the locus
of non-ordinary abelian varieties is an ample divisor. For general varieties with trivial
canonical class, we do not know of such results. Nevertheless, the Frobenius lifting can be
used to show that no nontrivial families of 2-ordinary varieties exist over simply connected
varieties with no nonzero global 1-forms.

Theorem 1.6.1 (see Proposition 9.0.3 and Proposition 9.1.1 for precise statements). Let
S/k be a smooth simply connected variety with H0(S,Ω1

S) = 0, and let X/S be a smooth
projective morphism whose fibers are 2-ordinary varieties with trivial canonical class sati-
fying certain assumptions. Then f is a constant family.

1.7. Future directions. 1. We were unable to construct in an analogous way a canonical
lifting modulo pn for n > 2. On the other hand, we do not know of an example of an
F -split variety which does not admit a lifting over W (k). By the results of [ESB05], such
an extension would give an affirmative answer to Conjecture 1.1.1. A good first step in
this direction would be to check whether in the simplest case of an ordinary elliptic curve
E, the Serre–Tate lifting En admits a closed immersion into Wn(E) for n > 2.

2. The sheaves of relative Witt vectors W2(OX/
∼
S) seem to be new and potentially of

independent interest. It would be desirable to construct relative Witt vectors of length
n > 2, and for singular schemes. Being unable to develop such a general theory, we decided
to stick to the simplest case in this paper.

3. The construction of a canonical lifting modulo p2 for a 1-ordinary variety with
trivial canonical class can be extended to varieties with finite height. We discuss this
construction, based on the ideas of Yobuko [Yob17], in Appendix A. We do not know how
much of the theory developed in this paper can be extended to the case of finite height.
For K3 surfaces, such a theory was developed by Nygaard and Ogus [NO85].

4. Our construction of the canonical lifting is reasonably explicit, and it seems that in
practice one could write it down with equations in the case of hypersurfaces or complete
intersections. This could be interesting already for elliptic curves, where the results should
interact with those of Finotti [Fin10].

5. As we have already mentioned, for p > d the canonical lifting gives by [DI87] a canon-
ical Hodge decomposition of Hd

dR(X/k). How can we characterize this decomposition?
6. We do not know whether one should expect that exists a formal lifting of a (suitably)

ordinary variety with trivial canonical class over W (k) for which the crystalline Frobenius
preserves the first step of the Hodge filtration as in Theorem 1.3.1 (we know that there
is at most one), or, when such a lift does exist, whether the crystalline Frobenius should
preserve the entire Hodge filtration. The latter feature could be used to produce CM
Hodge structures as in the case of abelian varieties and K3 surfaces. See §5.7 and §10.3
for more discussion.
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7. Lastly, we do not know if there is a logarithmic variant of our construction, which
would allow one to extend the Frobenius lifting to some part of the boundary of the moduli
space, and to study some arithmetic aspects of the toric degenerations studied by Gross
and Siebert [GS06].

1.8. Notation and conventions. We fix a perfect field k of characteristic p > 0. We
tend to denote schemes over W2(k) by

∼
X,

∼
S, . . . and by X,S, . . . their reductions modulo

p. If X/S is a morphism of k-schemes, we denote by X ′ the pullback of X along the
absolute Frobenius FS of S, and by FX/S : X → X ′ the relative Frobenius.
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2. Ordinary varieties with trivial canonical class

Let k be a perfect field of characteristic p > 0. We call a scheme X/k a variety with trivial
canonical class if X is smooth, projective, geometrically connected, and if the canonical
bundle ωX = detΩ1

X is trivial. We do not implicitly fix however a particular trivialization
of ωX , unless stated otherwise.

2.1. Crystalline and de Rham cohomology. The most interesting cohomological in-
variant of a variety with trivial canonical class X is its middle crystalline cohomology
group

Hd
cris(X/W (k)), d = dimX

as well as the corresponding de Rham cohomology group Hd
dR(X/k). These are related by

the short exact sequence

0→ Hd
cris(X/W (k)) ⊗W (k) k → Hd

dR(X/k)→ Tor1(H
d+1
cris (X/W (k)), k) → 0.
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Assumption (NCT). We suppose that the crystalline cohomology groups H∗
cris(X/W (k))

are free W (k)-modules for ∗ = d, d+ 1.

The de Rham cohomology groups H∗
dR(X/k) are by definition the hypercohomology

groups of the de Rham complex Ω•
X/k, and as such they are abutments of the two spectral

sequences: the Hodge spectral sequence

(2.1.1) Eij1 = Hj(X,ΩiX/k) ⇒ H i+j
dR (X/k)

and the conjugate spectral sequence [Kat72, §2]

(2.1.2) Eij2 = H i(X,H j(Ω•
X/k)) ⇒ H i+j

dR (X/k).

Further, the Cartier isomorphism C : H j(FX/k,∗Ω
•
X/k) ≃ ΩjX′/k allows one to identify the

Eij2 term of the conjugate spectral sequence with H i(X ′,ΩjX′/k). The abutment filtration

on H∗
dR(X/k) induced by the Hodge resp. conjugate spectral sequence is called the Hodge

resp. conjugate filtration and denoted F i resp. Fi. Explicitly,

F i = Im
(

H∗(X,Ω•≥i
X ) −→ H∗

dR(X/k)
)

, Fi = Im (H∗(X, τ≤iΩ
•
X) −→ H∗

dR(X/k)) .

The first spectral sequence degenerates if and only if the second one does, and in this case
we have

(2.1.3) F i/F i+1 ∼−−→ H∗−i(X,ΩiX)
C−1

∼−−→ Fi/Fi−1.

Assumption (DEG). We assume that the spectral sequences (2.1.1) and (2.1.2) degen-
erate.

By the results of [DI87], this is the case if p > dimX and X can be lifted to W2(k), in
particular if p > dimX and X is 1-ordinary (see Corollary 4.1.3).

2.2. Hodge and Newton polygons. The crystalline cohomology groups are endowed
with the crystalline Frobenius

ϕ : Hd
cris(X/W (k)) −→ Hd

cris(X/W (k)),

which is semi-linear with respect to the Frobenius on W (k) and which is injective modulo
torsion. Its main invariants are the Hodge numbers h0, . . . , hd, determined by

H =
⊕

Hi, ϕ(H) =
⊕

piHi, rankHi = hi,

where H = Hd
cris(X/W (k))/torsion, and the Newton slopes λ1 ≤ . . . ≤ λm, m = rankH,

coming from the Dieudonné–Manin decomposition of the associated F -isocrystal over the
algebraic closure of k. They are conveniently encoded by means of the Hodge polygon,
which is the graph of the piecewise linear function h : [0,m] → R, h(0) = 0, with slope
i on [h0 + . . . + hi−1, h0 + . . . + hi], and the Newton polygon, which is the graph of the
piecewise linear function λ : [0,m]→ R, λ(0) = 0, with slope λi on [i− 1, i].

The Mazur–Ogus theorem [BO78, 8.39] asserts that under our assumptions hi equals
dimkH

d−i(X,ΩiX), that the Newton polygon lies above the Hodge polygon, and that
the endpoints of the two polygons coincide. Moreover, the image of Mi = ϕ−1(piH) in
H ⊗ k = H∗

dR(X/k) equals F i, the image of (p−iϕ)(Mi) in H∗
dR(X/k) equals Fi, and the

isomorphism (2.1.3) is the one induced by p−iϕ [op.cit., 8.26].

In the rest of this section, with the exception of §2.6, we assume that X is a variety with
trivial canonical class of dimension d satisfying (NCT) and (DEG).
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2.3. The Hasse–Witt operation. The Hasse–Witt operations are the maps

HW(0) = F ∗
X : H∗(X,OX ) −→ H∗(X,OX ).

Proposition 2.3.1. Let X be a normal proper scheme over k. Consider the following
conditions:

(i) X is F -split, i.e. the exact sequence

(2.3.1) 0 −→ OX′ −→ FX/k,∗OX −→ BΩ1
X −→ 0

is split.
(ii) H i(X,BΩ1

X) = 0 for all i ≥ 0.
(iii) The Hasse–Witt operations HW(0) on H i(X,OX) are bijective for all i.
(iv) The Hasse–Witt operation HW(0) on Hd(X,OX ) is bijective, where d = dimX.

Then (i)⇒(ii)⇒(iii)⇒(iv). If X is a variety with trivial canonical class, then all four
conditions are equivalent, and a splitting of (2.3.1) is unique if it exists.

Proof. The implications (i)⇒(ii)⇒(iii) follow by taking the cohomology exact sequence
of (2.3.1). For (iv)⇒(i), see [MR85, Proposition 9]. For the uniqueness, note first that
splittings of (2.3.1) are a torsor under Hom(BΩ1

X ,OX′) ≃ H0(X ′, BΩdX) [vdGK03, §3].
We have an exact sequence

0 −→ H0(X ′, BΩdX) −→ H0(X ′, F∗Ω
d
X)

C
−−→ H0(X ′,ΩdX′)

where the map C is dual to F : Hd(X ′,OX′)→ Hd(X,OX ) and hence bijective. �

Definition 2.3.2. We call a variety with trivial canonical class X 1-ordinary if the equiv-
alent conditions of Proposition 2.3.1 hold.

2.4. Higher Hasse–Witt operations. These are Frobenius-linear morphisms

(2.4.1) HW(i) : Hd−i(X,ΩiX) −→ Hd−i(X,ΩiX), i = 0, . . . , d

defined by Katz [Kat72, 2.3.4.2]. The morphism HW(0) is the Hasse–Witt operation, and
for i > 0, HW(i) is only defined if the following composition is bijective

h(i) : Fi−1
� � // Hd

dR(X/k)
// // Hd

dR(X/k)/F
i.

In this case, Fi ∩ F
i projects isomorphically onto Fi/Fi−1. The mapping HW(i) is then

the composition

Hd−i(X,ΩiX) = Fi/Fi−1
∼−→ Fi ∩ F

i −→ F i/F i+1 = Hd−i(X,ΩiX).

Moreover, h(i+ 1) is bijective if and only if HW (i) is bijective.

Proposition 2.4.1. Let 1 ≤ m ≤ d+ 1. The following are equivalent:

(i) The higher Hasse–Witt operations HW(i) are defined and bijective for i < m.
(ii) Fi ⊕ F

i+1 ∼−→ Hd
dR(X/k) for i < m.

(iii) The first m segments of the Newton and Hodge polygons of Hd
cris(X/W (k)) coincide.

(iv) There exists a ϕ-stable decomposition

Hd
cris(X/W (k)) ≃

(

⊕

i<m

Hi

)

⊕H≥m

where the Hi are free W (k)-modules of ranks hi = dimkH
d−i(X,ΩiX), where ϕ|Hi

has matrix pi · Id in some basis of Hi, and where ϕ(H≥m) ⊆ p
mH≥m.

Moreover, these conditions hold for all m if X is ordinary in degree d in the sense of [IR83,
Definition 4.12, p. 208].
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Proof. The equivalence of (i) and (ii) is clear by the definition of HW(i) and h(i). In light
of §2.2, the equivalence of (ii) and (iii) is a statement purely about F -crystals proved e.g. in
[Del81, Prop. 1.3.2]. The equivalence of (iii) and (iv) follows from [Kat79, Theorem 1.6.1].
Finally, the last assertion is [IR83, 4.12.1 p. 208] (see also [BK86, Proposition 7.3]). �

Definition 2.4.2. Let 1 ≤ m ≤ d. We call X m-ordinary if the equivalent conditions of
Proposition 2.4.1 hold.

The following result will be used in §10.

Lemma 2.4.3. If X is 2-ordinary and Hd(X,Ω1
X) = 0, then we have H i(X,BΩ2

X) = 0
for i = d− 1, d.

Proof. Since X is 1-ordinary, we know that Hd(X,BΩ1
X) = 0, and hence the short exact

sequence
0 −→ BΩ1

X −→ ZΩ1
X −→ Ω1

X −→ 0

and the assumption Hd(X,Ω1
X) = 0 show together that Hd(X,ZΩ1

X) = 0. Then the short
exact sequence

0 −→ ZΩ1
X −→ Ω1

X −→ BΩ2
X −→ 0

shows that Hd(X,BΩ2
X) = 0. Finally, the exact triangle

τ≤1Ω
•
X ⊕ Ω•≥2

X −→ Ω•
X −→ BΩ2

X [−1]
+1
−−→

gives an exact sequence

(F1⊕F
2)Hd

dR(X/k)
∼−→ Hd

dR(X/k)→ Hd−1(X,BΩ2
X)→ (F1⊕F

2)Hd+1
dR (X/k)→ Hd+1

dR (X/k)

where the first map is an isomorphism by 2-ordinarity. It remains to show that the last
map above is injective, which follows from F1H

d+1
dR (X/k) = Hd+1(X, τ≤1Ω

•
X) = 0. Indeed,

this group sits inside an exact sequence

0 = Hd(X,ZΩ1
X) −→ Hd+1(X, τ≤1Ω

•
X) −→ Hd+1(X,OX ) = 0. �

2.5. Artin–Mazur formal groups. Suppose that Hd−1(X,OX ) = 0. In [AM77], Artin
and Mazur consider the functor

ΦX : Artk → Set, ΦX(A) = ker
(

Hd
ét(XA,Gm)→ Hd

ét(X,Gm)
)

= Hd(XA, 1+mAOXA
).

and show that it is a formal Lie group. The group ΦX is called the Artin–Mazur formal
group of X. Its tangent space is Hd(X,OX ), and its (covariant) Dieudonné module is
canonically identified with Hd(X,WOX) endowed with its natural Frobenius and Ver-
schiebung.

Proposition 2.5.1. The following are equivalent:

(i) X is 1-ordinary.
(ii) F : Hd(X,WOX)→ Hd(X,WOX) is bijective.
(iii) The height of the formal group ΦX equals one.

Moreover, in this case there exists a canonical isomorphism

ΦX ≃ H
d(X,WOX)

F=1 ⊗ Ĝm

inducing the identity Hd(X,OX ) = Hd(X,OX ) on tangent spaces.

Proof. The equivalence of the three conditions follows from [vdGK03, Theorem 2.1]. The
isomorphism

Hd(X,WOX)
F=1 ⊗W (k)→ Hd(X,WOX)

is an isomorphism of Dieudonné modules where on the left F and V act on W (k) in the
usual way and trivially on Hd(X,WOX)

F=1. Reversing the equivalence between suitable
Dieudonne modules and formal groups, we obtain the desired isomorphism. �
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2.6. Ordinarity in families. In characteristic zero, deformations of a variety with trivial
canonical class have trivial canonical class. This is no longer the case in positive character-
istic, for example a supersingular Enriques surface in characteristic two can be deformed
to a classical one. Fortunately for us, this is true for families of 1-ordinary varieties. In
fact, such families admit a unique relative F -splitting, and a trivialization of the canonical
bundle which is canonical up to a discrete choice (Corollary 2.6.5 below). This will be
crucial later on for the construction of the canonical lifting in families (Corollary 4.1.3).

Proposition 2.6.1. Let S be the spectrum of a noetherian local Fp-algebra with closed
point s, and let f : X → S be a proper and flat morphism. Suppose that the maps

(2.6.1) F ∗
Xs

: H i(Xs,OXs) −→ H i(Xs,OXs)

are bijective for i ≥ 0. Then the higher direct images Rif∗OX are locally free, with forma-
tion commuting with base change, for all i ≥ 0.

Proof. The proof proceeds by descending induction on i. For i > dimXs, the assertion
is trivial. For the induction step, suppose that Ri+1f∗OX has the required property. By
cohomology and base change [Har77, Theorem 12.11], it follows that the formation of
Rif∗OX commutes with base change. Equivalently, the restriction map

(Rif∗OX)⊗ κ(s) −→ H i(Xs,OXs)

is an isomorphism. Consider the commutative square

Rif∗OX
//

F
��

H i(Xs,OXs)

F
��

Rif∗OX
// H i(Xs,OXs).

By assumption, the right vertical arrow is an isomorphism. By the base change property
of Rif∗OX and Nakayama’s lemma, it follows that the morphism

F ∗
X/S : R

if ′∗OX′ ≃ F ∗
SR

if∗OX −→ Rif∗OX

is an isomorphism. By Lemma 2.6.2 below, Rif∗OX is then locally free, as desired. �

Lemma 2.6.2. Let R be a local Fp-algebra and let M be a finitely presented R-module
such that F ∗

RM ≃M . Then M is free.

Proof. Fix a presentation

Rm
A
−−→ Rn −→M −→ 0, A = [aij] ∈Mn×m(R)

with n and m minimal; in particular, aij ∈ mR. As F ∗
RM ≃ M , the matrix FR(A) gives

another minimal presentation for M . But every two such presentations are isomorphic, so
there exist B ∈ GLn(R), C ∈ GLm(R) such that A = BFR(A)C. Therefore, if I ⊆ mR is
the ideal generated by the aij, then I ⊆ FR(I) ⊆ I

2. So I = I2, and hence I = 0. �

Remarks 2.6.3. 1. The assertion of Proposition 2.6.1 fails if S is of mixed character-
istic, already for S = SpecW2(k). Indeed, if p = 2 and X/k is a singular Enriques
surface [Ill79, §II 7.3], then the Frobenius acts bijectively on H∗(X,OX), which are
one-dimensional for ∗ ≤ 2, and one has H2

cris(X/W (k))tors ≃ H2(X,WOX) ≃ k. Thus

if
∼
X/W2(k) is any lifting of X, then H2(

∼
X,O ∼

X) ≃ k. Note that X is a 1-ordinary
variety with trivial canonical class which satisfies (DEG) but not (NCT).

2. If Xs is F -split, then the maps (2.6.1) are bijective for all i ≥ 0 by Proposition 2.3.1.
3. The proof of Proposition 2.6.1 shows that if the maps (2.6.1) are bijective for i ≥ r

for some integer r, then the sheaves Rif∗OX are locally free and commute with base
change for all i ≥ r.
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Corollary 2.6.4. In the situation of Proposition 2.6.1, suppose that f is smooth. Then
the sheaves Rif∗ωX/S are locally free, with formation commuting with base change, for all
i ≥ 0.

Proof. Let d = dimXs. Grothendieck duality produces a quasi-isomorphism

Rf∗ωX/S = Rf∗RH omX(OX , ωX/S)

= Rf∗RH omX(OX , f
!
OS [−d]) ≃ RH omS(Rf∗OX ,OS)[−d].

Since the cohomology sheaves Rif∗OX of Rf∗OX are locally free by Proposition 2.6.1, we
conclude that

Rif∗ωX/S ≃H omS(R
d−if∗OX ,OS). �

Corollary 2.6.5. Let S be a noetherian Fp-scheme, and let f : X → S be a smooth
and proper morphism. Suppose that for every closed s ∈ S, the geometric fiber Xs̄ is
a 1-ordinary variety with trivial canonical class. Then the following assertions hold.

(a) There exists a unique relative F -splitting σ : FX/S,∗OX → OX′ .
(b) There exists a canonical µp−1-torsor T → S and a canonical trivialization ωXT /T ≃

OXT
.

Proof. We shall first prove that locally on S, there exists an trivialization ωX/S ≃ OX . By
Corollary 2.6.4, f∗ωX/S is locally free, with formation commuting with base change. It is
therefore a line bundle. Consider the adjunction map

α : f∗f∗ωX/S −→ ωX/S .

Its restriction to every fiber Xs is an isomorphism by assumption. Since α is a morphism
between line bundles, it is an isomorphism.

For (a), consider the relative evaluation map

f ′∗ H om(FX/S,∗OX ,OX′) −→ f ′∗OX′ −→ OS .

It is enough to show that this map is an isomorphism. Grothendieck duality for the finite
flat morphism FX/S yields an identification

f ′∗ H om(FX/S,∗OX ,OX′) ≃ f ′∗FX/S,∗ω
1−p
X/S = f∗ω

1−p
X/S .

By the first paragraph and Corollary 2.6.4, f∗ω
1−p
X/S is a line bundle whose formation

commutes with base change. The composite morphism

f∗ω
1−p
X/S ≃ f

′
∗ H om(FX/S,∗OX ,OX′) −→ OS

is a morphism of line bundles which is an isomorphism at closed points, and hence an
isomorphism.

For assertion (b), we note that the proof of (a) furnishes a canonical trivialization τ of

ω1−p
X/S . Trivializations of ωX/S whose (1−p)-th power equals τ form the desired µp−1-torsor

on S. �

2.7. Hodge F -crystals. Let
∼
S = SpfW2(k)[[t1, . . . , tr]]. The following is a version of the

definition in [Del81, 1.1.1, 1.1.3, 1.3.5] adapted to the case ‘mod p2.’ Since p2 = 0, our
definition works well only if one is interested in the first two levels of the Hodge filtration.
We assume p > 2, so that the change of Frobenius formula (2.7.1) takes a particularly
simple form.

Definition 2.7.1. A Hodge F -crystal H = (H,∇, F •, ϕ) on
∼
S consists of:

(a) a finitely generated free O ∼
S-module H,

(b) a nilpotent integrable connection ∇ : H → H ⊗ Ω1
∼
S
,

(c) a decreasing filtration F i of H by direct summands,
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(d) for every lifting of Frobenius F ∼S on S, an O ∼
S-linear map

ϕ(F ∼S) : F
∗
∼
S
H −→ H

satisfying the following conditions:

(i) ϕ(F ∼S) is horizontal,

(ii) F i satisfies Griffiths transversality : ∇F i ⊆ F i−1 ⊗ Ω1
∼
S
,

(iii) F i ⊗ k coincides with the image of (ϕ(F ∼S)F
∗
∼
S
)−1(piH) for i = 0, 1, 2,

(iv) the maps ϕ(F ∼S) for different F ∼S satisfy the change of Frobenius formula [Del81,
1.1.3.4]:

(2.7.1) ϕ(F ∼S)F
∗
∼
S
x = ϕ(F ′

∼
S
)(F ′

∼
S
)∗x+ p

r
∑

i=1

(F ∗
∼
S
(ti)− (F ′

∼
S
)∗(ti))ϕ(F

′
∼
S
)(F ′

∼
S
)∗(∇ ∂

∂ti

x).

If
∼
X/

∼
S is smooth and projective satisfying (NCT) and (DEG) and such that the Hodge

groups are free, then H = Hn
dR(

∼
X/

∼
S) endowed with the Gauss–Manin connection, the

Hodge filtration, and the crystalline Frobenius is a Hodge F -crystal over
∼
S. (All statements

except (iii) are standard. For (iii), we observe that the statement only concerns the
Frobenius on the crystalline cohomology of the reduction mod p. Therefore we may apply
the results of Mazur–Ogus [BO78, 8.26] mentioned in §2.2, valid over a torsion-free base,
and then reduce them mod p2.) Note that for H we also have the basic divisibility
estimates

ϕ(F ∼S)F
∗
∼
S
(F 1) ⊆ pH, ϕ(F ∼S)F

∗
∼
S
(F 2) ⊆ p2H if p > 2.

3. Relative Witt vectors

Let S be a scheme over Fp, and let
∼
S be a lifting of S over Z/p2Z. Consider a smooth

scheme X over S. We let FX/S : X → X ′ denote the relative Frobenius of X/S. If S
is perfect, then using the isomorphism F ∗

S : OX
∼−→ OX′ one can consider the length two

Witt vectors W2OX as a square-zero extension

0 −→ FX/S,∗OX
V
−−→W2OX −→ OX′ −→ 0

of OX′ by FX/S,∗OX . The first goal of this section is to construct a natural extension of
the above type

(3.0.1) 0 −→ FX/S,∗OX
V
−−→W2(OX/

∼
S) −→ OX′ −→ 0

for a general
∼
S, lying above the given lifting

0 −→ OS −→ O ∼
S −→ OS −→ 0.

The second goal concerns comparison with zeroth crystalline cohomology. Let
∼
X be

a lifting of X over
∼
S. We have a canonical isomorphism [BO78, §7]

H
q
dR(

∼
X/

∼
S) ≃ Rqu∗OX/

∼
S

where u : (X/
∼
S)cris → XZar is the canonical projection, and H

q
dR(

∼
X/

∼
S) is the q-th coho-

mology sheaf of the de Rham complex of
∼
X/

∼
S. If, in addition, S is perfect, one has Katz’s

isomorphism [IR83, III 1.4]
Rqu∗OX/

∼
S ≃W2Ω

q
X

where W2Ω
•
X is the de Rham–Witt complex of X. Setting q = 0, we obtain an identifica-

tion
W2OX = O

d=0
∼
X

= {f ∈ O ∼
X | df = 0 ∈ Ω1

∼
X/

∼
S
}.

The right hand side makes sense if S is not perfect, so one could try and define

W2(OX/
∼
S) = O

d=0
∼
X

= u∗OX/
∼
S
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which by the last equality is manifestly independent of the choice of the lifting
∼
X . One

quickly realizes however that Od=0
∼
X

is not quite of the required type, and that one in fact
gets an extension

0 −→ OX′ −→ O
d=0
∼
X
−→ OX′′ −→ 0

with a double Frobenius twist on the right hand side (compare [Ols07, p. 103]). For

example, if
∼
X = A1

∼
S

with coordinate t, then one obtains

0 −→ OS [x
p]

p
−−→ O ∼

S [x
p2 , pxpi] −→ OS[x

p2 ] −→ 0.

We shall prove in §3.2 that W2(OX/
∼
S) is a canonical Frobenius untwist of u∗OX/

∼
S , i.e.

that u∗OX/
∼
S ≃W2(OX′/

∼
S).

Remark 3.0.1. By the same method as given below, one could define longer Witt vectors
relative to a lifting of S modulo pn. For the sake of brevity, we decided to include only
the case relevant to our applications.

3.1. Construction. Let X be a smooth scheme over S as before, and let
∼
X be a lifting

over
∼
S. We set

(3.1.1) W ∼
X = {f ∈ O ∼

X | f mod p ∈ OX′} ⊆ O ∼
X .

In other words, W ∼
X is the pullback

W ∼
X

//

��
�

OX′

F ∗

X/S

��
O ∼
X

// OX ,

so that we have a diagram with exact rows (morphism of square-zero extensions)

0 // OX
// W ∼

X
//

��

OX′
//

F ∗

X/S

��

0

0 // OX
// O ∼

X
// OX

// 0.

In particular, W ∼
X is an extension of the desired type (3.0.1). Our goal is to get rid of its

apparent dependence on the lifting
∼
X.

We note that f ∈ O ∼
X lies in W ∼

X if and only if df ∈ Ω1
∼
X/

∼
S

is divisible by p, so that we
also have a pullback square

W ∼
X

//

��
�

Ω1
X/S

p

��
O ∼
X d

// Ω1
∼
X/

∼
S
.

Lemma 3.1.1. Let f : X → Y be a map between smooth schemes over S, let
∼
X and

∼
Y be

liftings of
∼
X and

∼
Y over

∼
S, and let f̃1, f̃2 :

∼
X →

∼
Y be two liftings of f . Then the induced

maps f̃1, f̃2 : W ∼
X →W ∼

Y are equal.

In particular, if α :
∼
X →

∼
X is an automorphism of the lifting

∼
X (i.e. an isomorphism

of schemes over
∼
S reducing to the identity on X), then the induced map α : W ∼

X →W ∼
X is

the identity.

Proof. We can write f̃2(x) = f̃1(x)+p ·ψ(xmod p) for a derivation ψ : OY → f∗OX . Since
FY/S induces the zero map F ∗

Y/SΩ
1
Y ′/S → Ω1

Y/S, the derivation ψ annihilates the image of

OY ′ . Thus if x ∈W ∼
Y , i.e. xmod p ∈ OY ′ , then

f̃2(x) = f̃1(x) + p · ψ(xmod p) = f̃1(x). �
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The above lemma allows us to assemble the W ∼
X into a global thickening W2(OX/

∼
S) in

the following way. Choose an open cover X =
⋃

Ui and liftings
∼
U i over

∼
S. Let {Uijk}k

be an affine open cover of Ui ∩ Uj . Since Uijk are affine, there exists an isomorphism of
liftings

αijk :
∼
U i|Uijk

−→
∼
U j |Uijk

.

Consider the schemes W ∼
U i

; over Uijk, the above maps induce isomorphisms

αijk : W ∼
Ui
|Uijk

−→ W ∼
Uj
|Uijk

.

which are independent of αijk by Lemma 3.1.1. Another application of Lemma 3.1.1
implies that these isomorphisms necessarily satisfy the cocycle condition, and therefore
they can be glued to obtain a global thickening W2(OX/

∼
S).

It is easy to see that this construction does not depend on the choice of the open covering
and the liftings

∼
U i. We have thus proved:

Proposition 3.1.2. Let X be a smooth scheme over S. The construction outlined above
yields a thickening

0 −→ FX/S,∗OX −→W2(OX/
∼
S) −→ OX′ −→ 0

over

0 −→ OS −→ O ∼
S −→ OS −→ 0.

If
∼
X is a lifting of X over

∼
S, there is a canonical isomorphism

W2(OX/
∼
S) ≃W ∼

X = {f ∈ O ∼
X | f mod p ∈ OX′} ⊆ O ∼

X .

Moreover, the construction of W2(OX/
∼
S) is functorial in the sense that if f : X → Y is

a morphism of smooth schemes over S, then we get a canonical map f∗ : W2(OY /
∼
S) →

W2(OX/
∼
S) fitting in the diagram of sheaves on the space Y = Y ′

0 // FY/S,∗OY

��

// W2(OY /
∼
S) //

��

OY ′
//

��

0

0 // f∗FX/S,∗OX
// f∗W2(OX/

∼
S) // f∗OX′

// 0.

3.2. Comparison with zeroth crystalline cohomology. Let X be a smooth scheme
over S. We denote by

u : (X/
∼
S)cris −→ XZar

the natural projection from the crystalline site of X relative to
∼
S to the Zariski site of X.

This functor takes an open U ⊆ X to the trivial PD-thickening (U,U). If
∼
X is a lifting of

X over
∼
S, there is a canonical isomorphism [BO78, §7]

Ru∗OX/
∼
S ≃ Ω•

∼
X/

∼
S
.

We denote by H 0
dR(

∼
X/

∼
S) the kernel of the map d : O ∼

X → Ω1
∼
X/

∼
S
. The restriction map

H 0
dR(

∼
X/

∼
S)→H 0

dR(X/S) = OX′ has image OX′′ and the following sequence is exact

0 −→ FX′/S,∗OX′

“p”
−−→H

0
dR(

∼
X/

∼
S) −→ OX′′ −→ 0.

Proposition 3.2.1. There exists a unique morphism of sheaves of rings

λ : W2(OX′/
∼
S) −→ u∗OX/

∼
S
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compatible with restriction to open subsets, and such that whenever
∼
F :

∼
X →

∼
X ′ is a lifting

of FX/S : X → X ′, then the diagram

O ∼
X′

∼
F ∗

// O ∼
X

W ∼
X′

∼
F ∗

//
?�

OO

H 0
dR(

∼
X/

∼
S)

?�

OO

W2(OX′/
∼
S)

∼

OO

λ

∼ // u∗OX/
∼
S

∼

OO

is commutative. This map is an isomorphism.

Proof. We define the morphism λ locally by the diagram above, and then prove this is
independent of the choices. To this end, we first take two liftings

∼
F 1,

∼
F 2 :

∼
X →

∼
X ′ of the

Frobenius morphism FX/S . By Lemma 3.1.1 the morphisms
∼
F ∗

1,
∼
F ∗

2 : W ∼
X ′ →W ∼

X coincide.

We check that they map W ∼
X′ onto H 0

dR(
∼
X/

∼
S) ⊂ W ∼

X : if f ∈ W ∼
X′ , then df = p · ω for

some ω ∈ Ω1
X′/

∼
S
, therefore

d(
∼
F i

∗(f)) =
∼
F i

∗(df) = p · F ∗
X′/S(ω) = 0.

Finally, since the following diagram is obviously commutative

0 // FX′/S,∗OX′
// W ∼

X′
//

∼
F i

∗

��

OX′′
// 0

0 // FX′/S,∗OX′
// H 0

dR(
∼
X/

∼
S) // OX′′

// 0,

we conclude that W ∼
X′ →H 0

dR(
∼
X/

∼
S) is an isomorphism. �

Corollary 3.2.2. If S is perfect, then W2(OX/
∼
S) ≃W2OX .

4. F -splittings and canonical liftings mod p2

We come to the key construction in this paper.

4.1. Construction. Let S be an Fp-scheme, and let
∼
S be a flat lifting of S over Z/p2Z.

Let (X,σ) be a pair consisting of an S-scheme X and a relative F -splitting

σ : FX/S,∗OX −→ OX′ .

Such pairs form a category FSplitS, cf. [AWZ17, §2.5]. Consider the ring of relative Witt

vectors W2(OX/
∼
S), fitting in an exact sequence

0 −→ FX/S,∗OX
V
−−→W2(OX/

∼
S) −→ OX′ −→ 0.

The subsheaf

Iσ = V (ker(σ)) ⊆W2(OX/
∼
S).

is an ideal in W2(OX/
∼
S) — this is because V (FX/S,∗OX) is an ideal of square zero inside

W2(OX/
∼
S), and ker(σ) ⊆ FX/S,∗OX is an OX′-submodule. We define the sheaf of rings

O ∼
X(σ) as the quotient

O ∼
X(σ) =W2(OX/

∼
S)/Iσ .
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By construction, it fits inside a commutative diagram with exact rows

0 // FX/S,∗OX
V //

σ

��

W2(OX/
∼
S) //

��

OX′
// 0

0 // OX′
// O ∼

X(σ)
// OX′

// 0

lying over

0 // OS
// O ∼

S
// OS

// 0.

We deduce the following.

Proposition 4.1.1. The ringed space
∼
X(σ) = (X,O ∼

X(σ)) is a scheme, and the surjection

O ∼
X(σ) → OX′ exhibits

∼
X(σ) as a flat lifting of X ′ over

∼
S. The construction defines

a functor

(X,σ) 7→
∼
X(σ) : FSplitS −→ Sch ∼

S

together with a natural isomorphism between the two compositions in the square below

FSplitS
//

forget

��

Sch ∼
S

−× ∼
SS

��
SchS

F ∗

S

// SchS ,

i.e.
∼
X(σ)× ∼

S S ≃ X
′.

Remark 4.1.2. One can check that SpecW2(OX/
∼
S) represents the following functor on

the category of square-zero thickenings of X ′ over
∼
S and closed immersions:

0→M → OY → OX′ → 0 7→ {surjections α : FX/S,∗OX →M |α(1) = p}.

In particular F -splittings of X/S are in natural bijection with
∼
S-liftings of X ′ endowed

with a closed immersion to SpecW2(OX/
∼
S) over

∼
S. This should be contrasted with the

fact that (for S perfect) maps from SpecW2(OX/
∼
S) control Frobenius liftings.

Combining this with Corollary 2.6.5(a), we obtain:

Corollary 4.1.3. The canonical lifting functor from Proposition 4.1.1 produces a functor
X 7→

∼
X from smooth X/S whose geometric fibers are 1-ordinary varieties with trivial

canonical class to smooth
∼
X/

∼
S with the same property, together with a functorial isomor-

phism
∼
X × ∼

S S ≃ X
′.

4.2. First properties. As a consequence of functoriality of
∼
X(σ), we obtain the following.

Lemma 4.2.1. Let S and
∼
S be as in §4.1, and let (X,σ) be an F -split scheme over S. Let

Y ⊆ X be a closed subscheme which is compatible with σ in the sense that σ(FX/S,∗IY ) ⊆

I ′Y . Then σ induces an F -splitting σY on Y relative to S, and
∼
Y (σY ) is a closed subscheme

of
∼
X(σ) lifting Y ′ ⊆ X ′.

We shall not use the above result, as the unique F -splitting on a 1-ordinary variety
with trivial canonical class cannot be compatible with a non-empty proper subvariety. In
contrast, the following will be quite useful.

Lemma 4.2.2. Let S be a perfect scheme over Fp and let
∼
S = W2(S). Let (X,σ) be an

F -split scheme over S. Then the composition of the Teichmüller lift

[−] : OX′ −→W2(OX) =W2(OX/
∼
S)
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with the restriction map W2(OX)→ O ∼
X(σ) yields multiplicative sections of the restriction

maps
O ∼
X(σ) −→ OX′ and O

×
∼
X(σ)

−→ O
×
X′ .

Consequently, for every r ≥ 0, the restriction map

Hr
ét(
∼
X(σ),Gm) −→ Hr

ét(X
′,Gm)

admits a natural section. In particular, line bundles and log structures on X ′ have canon-
ical liftings to

∼
X(σ).

Lemma 4.2.3. Let S be a noetherian Fp-scheme and let
∼
S be a flat lifting of S over

Z/p2Z. Let (X,σ) be an F -split scheme over S such that X is proper over S. Then the
restriction maps

i∗ : H∗(X,W2(OX/
∼
S)) −→ H∗(

∼
X,O ∼

X)

are isomorphisms.

Proof. The restriction map i∗ : W2(OX/
∼
S)→ O ∼

X fits into a short exact sequence

0 −→ BΩ1
X/S −→W2(OX/

∼
S) −→ O ∼

X −→ 0.

By Proposition 2.3.1, we haveH∗(Xs, BΩ1
Xs

) = 0 for all s ∈ S, and henceH∗(X,BΩ1
X/S) =

0 by [Har77, Theorem 12.11] and the Leray spectral sequence for X/S. �

Lemma 4.2.4. Let X/k be a 1-ordinary variety with trivial canonical class, and let
∼
X/W2(k) be its canonical lifting. Suppose that Hd(X,WOX) is torsion-free. Then ω ∼X/W2(k)

≃

O ∼
X .

Proof. The assumption on torsion implies that Hd(X,W2OX) is a free W2(k)-module. On

the other hand, by Lemma 4.2.3, we have Hd(X,W2OX) ≃ H
d(
∼
X,O ∼

X), thus the latter is

locally free. Since d = dimX, the formation of Rdf∗O ∼
X commutes with base change. The

rest of the argument follows the lines of proof of Corollary 2.6.4 (for i = 0). �

5. Frobenius and the Hodge filtration (I)

Let S be a noetherian affine k-scheme and let
∼
S be a flat lifting of S over W2(k). Let

(X,σ) be a smooth projective F -split scheme over S endowed with an F -splitting σ. We

endow
∼
S with the natural PD-structure on the ideal (p). The key property of the canonical

lifting
∼
X(σ)/

∼
S defined in the previous section, which will enable us to get our hands on

the associated crystal, is the following.

Theorem 5.0.1. For every lifting F ∼S :
∼
S →

∼
S of the Frobenius of S, the crystalline

Frobenius
ϕ(F ∼S) : H

n
dR(

∼
X(σ)/

∼
S) −→ Hn

dR(
∼
X(σ)/

∼
S)

maps F 1Hn
dR(

∼
X(σ)/

∼
S) into itself for every n ≥ 0

The proof of Theorem 5.0.1 occupies §5.1–5.5. In §5.6, we relate the Hodge filtration to the
Hodge–Witt filtration in the case S = Speck, which is used to characterize the canonical
lifting in §5.7. In the subsequent §5.8, we apply this theorem to relate ϕ to the first higher
Hasse–Witt operation. In Section 7.1, we will revisit this idea for the modular lifting
of Frobenius acting on the crystal associated to a universal deformation of a 1-ordinary
variety with trivial canonical class.

Example 5.0.2. If
∼
X is a smooth and projective scheme over

∼
S = SpecW2(k) admitting

a lift of Frobenius
∼
F , then the crystalline Frobenius ϕ coincides with the map

∼
F ∗ : H∗

dR(
∼
X/

∼
S) −→ H∗

dR(
∼
X/

∼
S)

and hence it preserves the Hodge filtration. In fact,
∼
X ′ is canonically isomorphic to

∼
X(σ)

for any F -splitting σ, see [AWZ17, Theorem 3.6.5].
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5.1. Proof of Theorem 5.0.1: first steps. Let
∼
X =

∼
X(σ) and ϕ = ϕ(F ∼S) for brevity,

and denote by
i :
∼
X →֒W2(X/

∼
S) = SpecW2(OX/

∼
S)

the canonical closed immersion. By the definition of F 1, the projection Ω•
∼
X/

∼
S
→ O ∼

X
induces an injection

Hn
dR(

∼
X/

∼
S)/F 1 →֒ Hn(

∼
X,O ∼

X).

To prove the required assertion, it thus suffices to produce a dotted arrow below making
the square commute

(5.1.1) Hn
dR(

∼
X/

∼
S) //

ϕ

��

Hn(
∼
X,O ∼

X)

��

Hn
dR(

∼
X/

∼
S) // Hn(

∼
X,O ∼

X).

On the other hand, by Lemma 4.2.3, the map i∗ induces an isomorphism

i∗ : Hn(X,W2(OX/
∼
S)) ∼−−→ Hn(

∼
X,O ∼

X),

while the pair (FX , F ∼S) induces by functoriality of W2(OX/
∼
S) a map

F : Hn(X,W2(OX/
∼
S)) −→ Hn(X,W2(OX/

∼
S)).

Consequently, it suffices to construct a morphism in the derived category

(5.1.2) t : Ω•
∼
X/

∼
S
−→W2(OX/

∼
S)

such that the diagrams

(5.1.3) Ω•
∼
X/

∼
S

t //

ϕ

��

W2(OX/
∼
S)

F

��

Ω•
∼
X/

∼
S t

// W2(OX/
∼
S).

and

(5.1.4) W2(OX/
∼
S)

i∗

��
Ω•
∼
X/

∼
S

t

99sssssssssss
// O ∼

X .

commute. This will be our strategy for the proof in §5.2–5.5.

5.2. Review of crystalline theory. To construct (5.1.2) and prove the commutativity
of (5.1.3), we first need to explicate the construction of the crystalline Frobenius ϕ(F ∼S)
(e.g. [Ill79, 0 3.2]).

Let e :
∼
X →

∼
Y be a closed immersion into a smooth

∼
S-scheme

∼
Y , and let Ȳ be the

PD-envelope of e. Then the map induced by ē :
∼
X → Ȳ ,

Ω•
∼
Y /

∼
S
|Ȳ −→ Ω•

∼
X/

∼
S
,

is a quasi-isomorphism. On the other hand, Ȳ coincides with the PD-envelope of X in
∼
Y . Consequently, if now F ∼Y :

∼
Y →

∼
Y is a lifting of Frobenius compatible with F ∼S , then

by functoriality of the PD-envelope F ∼X naturally descends to a map FȲ : Ȳ → Ȳ . The
crystalline Frobenius ϕ(F ∼S) is the composition

ϕ(F ∼S) : Ω
•
∼
X/

∼
S
≃ Ω•

∼
Y /

∼
S
|Ȳ

F ∗
∼
Y−−→ Ω•

∼
Y /

∼
S
|Ȳ ≃ Ω•

∼
X/

∼
S
.
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It is independent of the choice of (
∼
Y , e, F ∼Y ). Such data exist if

∼
X is projective (take

∼
Y to

be a projective space and F ∼Y be the map raising the coordinates to the p-th power).

5.3. Construction of the map t (5.1.2). Let
∼
Y be a smooth

∼
S-scheme endowed with

a Frobenius lifting F ∼Y commuting with F ∼S . By definition, W2(OY /
∼
S) is identified with

the subsheaf W ∼
Y (3.1.1) of O ∼

Y , and the image of F ∗
∼
Y
: O ∼

Y −→ O ∼
Y is contained in W ∼

Y . We
obtain a natural map

t(F ∼Y ) : O ∼
Y −→W2(OY /

∼
S).

The following square commutes

(5.3.1) O ∼
Y

F ∼Y
��

t(F ∼Y )
// W2(OY /

∼
S)

FY

��

O ∼
Y t(F ∼Y )

// W2(OY /
∼
S).

If S = Speck, this is the Cartier morphism [Ill79, 0 1.3.21].

Let now e :
∼
X →

∼
Y be a closed immersion into a smooth

∼
S-scheme and let Ȳ be the

PD-envelope of e, which is the same as the PD-envelope of X in
∼
Y . The closed immersion

X →֒W2(X/
∼
S) is a PD-thickening of X over S →֒

∼
S fitting inside a commutative diagram

of solid arrows

(5.3.2) X

��

// Ȳ // ∼Y

W2(X/
∼
S) //

t̄

;;

W2(Y/
∼
S).

t(F ∼Y )

OO

By the universal property defining the PD-envelope, we obtain a unique dotted arrow
making the above diagram commute. We define now the desired map t as the composition

(5.3.3) t : Ω•
∼
X/

∼
S
≃ Ω•

∼
Y /

∼
S
|Ȳ −→ OȲ

t̄∗
−−→ W2(OX/

∼
S).

5.4. Commutativity of (5.1.3). By the description of the crystalline Frobenius §5.2, the
left square below commutes

Ω•
∼
X/

∼
S

ϕ(F ∼S)

��

Ω•
∼
Y /

∼
S
|Ȳ

∼oo //

F ∗

Ȳ

��

OȲ
t̄∗ //

F ∗

Ȳ

��

W2(OX/
∼
S)

FX

��

Ω•
∼
X/

∼
S

Ω•
∼
Y /

∼
S
|Ȳ

∼oo // OȲ
t̄∗ // W2(OX/

∼
S)

Since the horizontal compositions equal t, we are left with checking the commutativity of
the remaining two squares. The middle square commutes by the definition of FȲ . For
the right square, note that by the commutativity of (5.3.1) we get a morphism of solid
diagrams (5.3.2), and hence a morphism of diagrams with the dotted arrows, i.e. the
commutativity in question.

5.5. Commutativity of (5.1.4). The diagram in the derived category can be described
in terms of maps of complexes as

(5.5.1) Ω•
∼
Y /

∼
S
|Ȳ

∼

��

// OȲ
t̄∗ //

ē∗
##❍

❍❍
❍❍

❍❍
❍❍

❍❍
W2(OX/

∼
S)

i∗

��
Ω•
∼
X/

∼
S

// O ∼
X
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where the left cell clearly commutes. Interestingly, the right cell commutes on the level of
sheaves only for certain lifts of Frobenius F ∼Y .

Definition 5.5.1. Let (
∼
Y , e, F ∼Y ) be as in §5.2. We call such data retracting if the diagram

below commutes

∼
X

i
��

e // ∼Y

W2(X/
∼
S) e

// W2(Y/
∼
S).

t(F ∼Y )

OO

It is easy to construct retracting triples (
∼
Y , e, F ∼Y ): take any such triple and replace the

embedding e with the composition

e′ :
∼
X

i
−−→W2(X/

∼
S) −→W2(Y/

∼
S)

t(F ∼Y )
−−−−→

∼
Y .

Let (
∼
Y , e, F ∼Y ) be a retracting triple. By the universal property of the PD-envelope, we

see that the triangle in the diagram below commutes

∼
X

i
��

ē // Ȳ // ∼Y

W2(X/
∼
S) //

t̄

;;

W2(Y/
∼
S),

t(F ∼Y )

OO

which is precisely the assertion that the right cell in (5.5.1) commutes. This finishes the
proof of Theorem 5.0.1.

Remark 5.5.2. The name ‘retracting’ is justified by the case
∼
X =

∼
Y , e = id, in which

case it simply states that t(F ∼X) : W2(X/
∼
S)→

∼
X is a retraction of the closed immersion i.

If
∼
X admits a Frobenius lifting, it also admits a retracting one, and consequently retracting

Frobenius liftings exist locally on
∼
X .

If S = Speck, the space of retracting Frobenius liftings is either empty or a torsor under
Hom(Ω1

X , B
1
X). For example, if X is an abelian variety and σ is the unique F -splitting,

then
∼
X(σ) admits multiple Frobenius liftings, but exactly one of them is retracting. This

is the Serre–Tate canonical lifting.

5.6. Comparison with de Rham–Witt theory. Let S = Spec k. We finish the dis-
cussion of Theorem 5.0.1 by comparing the map t : Ω•

∼
X/

∼
S
→ W2OX (5.3.3) constructed

in the proof with the map t′ obtained by composing the canonical quasi-isomorphism
Ω•
∼
X/

∼
S
≃ Ru∗OX/

∼
S with crystalline cohomology, the quasi-isomorphism Ru∗OX/

∼
S ≃W2Ω

•
X

coming from de Rham–Witt theory, and the projection W2Ω
•
X →W2OX .

To this end, let (
∼
Y , e, F ∼Y ) be a triple as in §5.2. By definition [Ill79, p. 600], the

isomorphism Ω•
∼
X/

∼
S
≃ Ru∗OX/

∼
S ≃W2Ω

•
X equals the composition

Ω•
∼
X/

∼
S
≃ Ω•

∼
Y /

∼
S
|Ȳ

t(F ∼Y )
−−−−→ Ω•

W2X −→W2Ω
•
X .

After projecting to the 0-th term in each complex, we see that t = t′. Combining this
with the commutativity of (5.1.4) (a priori for a retracting triple), we obtain:
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Corollary 5.6.1. The following diagram commutes in the derived category

W2Ω
•
X

// W2OX

i∗

��

Ru∗OX/
∼
S

∼
%%❏❏

❏❏
❏❏

❏❏
❏❏

∼
99ssssssssss

Ω•
∼
X/

∼
S

// O ∼
X .

5.7. Uniqueness of the canonical lifting. Using Ogus’ results on Griffiths transver-
sality in crystalline cohomology [Ogu78b], we can show that for 1-ordinary varieties with
trivial canonical class in odd characteristic, the property expressed in Theorem 5.0.1 char-
acterizes the canonical lifting.

Theorem 5.7.1. Suppose that p > 2. Let X/k be a 1-ordinary variety with trivial canon-

ical class of dimension d, and let
∼
X/W2(k) be the canonical lifting of X ′, i.e.

∼
X =

∼
X(σ)

for the unique F -splitting σ on X. Suppose that for every lifting of X to W2(k), the Hodge

groups are free and the Hodge spectral sequence degenerates. Then
∼
X is the unique lifting

of X over W2(k) for which the crystalline Frobenius ϕ preserves F 1Hd
dR(

∼
X/W2(k)).

Proof. Since the Frobenius is bijective on Hd(X,W2OX), we obtain a decomposition

Hd
cris(X/W2(k)) ≃ H

d(X,W2OX)⊕H
d(X,W2Ω

•≥1
X )

where the Frobenius is divisible by p on the second summand. By Corollary 5.6.1, we see
that F 1Hd

dR(
∼
X/W2(k)) coincides with the second summand. Consequently, F 1Hd

dR(
∼
X/W2(k))

is the unique Frobenius-stable lifting of F 1Hd
dR(X/k).

It remains to show that different liftings ofX give rise to different liftings of F 1Hd
dR(X/k).

More precisely, if X̄/W2(k) is another lifting such that the image F̄ 1 of F 1Hd
dR(X̄/W2(k))

under the crystalline isomorphism

Hd
dR(X̄/W2(k)) ∼−−→ Hd

dR(
∼
X/W2(k))

equals
∼
F

1
= F 1Hd

dR(
∼
X/W2(k)), then X̄ ≃

∼
X . The obstruction to F̄ 1 =

∼
F

1
is the map

F̄ 1 → Hd
dR(

∼
X/W2(k))/

∼
F

1
, which since F̄ 1 =

∼
F

1
mod p vanishes mod p and hence factors

through a map F 1Hd
dR(X/k) → Hd

dR(X/k)/F
1. Since p > 2, by Griffiths transversality

[Ogu78b] this map vanishes on F 2, and hence factors through a map

η(X̄) : Hd−1(X,Ω1
X) ≃ gr1Hd

dR(X/k) −→ gr0Hd
dR(X/k) ≃ H

d(X,OX ).

Varying X̄ ∈ DefX(W2(k)), writing v = X̄ −
∼
X ∈ H1(X,TX) we obtain a map

v 7→ η(
∼
X + v) : H1(X,TX ) −→ Hom(Hd−1(X,Ω1

X ),Hd(X,OX)).

By [Ogu78b, Corollary 2.12], this map coincides with map obtained by cup product, which
is an isomorphism in our case. �

Corollary 5.7.2. In the situation of Theorem 5.7.1, if X is either an abelian variety
or a K3 surface, then the canonical lifting

∼
X agrees modulo p2 with the canonical lifting

constructed in [Del81].

Remark 5.7.3. Extending the arguments in [Ogu78b, §2], one can show that if X0/k is
a proper smooth variety for which the map

H1(X0, TX0
) −→ Hom(H∗−k(X0,Ω

k
X0

),H∗−k+1(X0,Ω
k−1
X0

))
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is injective, and if X and X ′ are two liftings of X0 to Wn(k) satisfying (DEG) and with
free Hodge groups, then X ≃ X ′ if and only if the crystalline isomorphism

H∗
dR(X/Wn(k)) ≃ H

∗
dR(X

′/Wn(k))

identifies F kH∗
dR(X/Wn(k)) with F kH∗

dR(X
′/Wn(k)).

Specializing to the case X0 a 1-ordinary variety with trivial canonical class of dimension
d satisfying (NCT) and (DEG), ∗ = d and k = 1, we see that there exists exactly one
lifting of F 1Hd

dR(X0/k) to Hd
cris(X0/Wn(k)) preserved by Frobenius (arguing as in the

proof above), and that this lifting comes from at most one lifting of X0 over Wn(k). It
is unclear however whether such a lifting of X0 exists if n > 2, unless X0 is an abelian
variety or a K3 surface.

5.8. The first higher Hasse–Witt operation. Let (X,σ) be an F -split smooth pro-

jective scheme over k, and let
∼
X =

∼
X(σ) be the canonical lifting of X ′ to W2(k). Suppose

that p > 2, that the Hodge groups of
∼
X are free and that its Hodge spectral sequence

degenerates. Let H = Hn
dR(

∼
X/W2(k)) for some n ≥ 0 and let

ϕ : H −→ H

be the crystalline Frobenius. By the easy case of the divisibility estimates [Maz73], ϕ
maps F 1 into pH and vanishes on F 2 (as p > 2). Moreover, by Theorem 5.0.1, we have
ϕ(F 1) ⊆ F 1, so that ϕ(F 1) ⊆ pH ∩ F 1 = pF 1 since F 1 is a direct summand of H. There
is therefore a unique morphism

β =
ϕ

p
: Hn−1(X,Ω1

X)→ Hn−1(X,Ω1
X )

such that the following diagram commutes

H

ϕ

��

F 1? _oo

ϕ

��

// // F 1 ⊗ k // //

��

(F 1/F 2)⊗ k
∼ //

��

Hn−1(X,Ω1
X)

β
��

H F 1? _oo F 1 ⊗ k? _

×p
oo // // (F 1/F 2)⊗ k

∼ // Hn−1(X,Ω1
X).

In addition, the Hasse–Witt operation HW(0): Hn(X,OX )→ Hn(X,OX ) is bijective by
Proposition 2.3.1, so that the first higher Hasse–Witt operation (2.4.1)

HW(1): Hn−1(X,Ω1
X) −→ Hn−1(X,Ω1

X)

is defined.

Proposition 5.8.1. We have β = HW(1).

Proof. Let x ∈ F 1, and let y be its image in (F 1/F 2) ⊗ k = Hn−1(X,Ω1
X). The element

β(y) is characterized by

ϕ(x) = p · β(y) mod F 2.

Let z ∈ F1/F0 be the image of y under the isomorphism (2.1.3)

C−1 : Hn−1(X,Ω1
X ) ∼−−→ F1/F0.

By [BO78, 8.26.3], we have z = ϕ(x)/p mod F0. The element HW (1)(y) is constructed as
follows: there exists a unique t ∈ F1∩(F

1⊗k) lifting z, and HW (1)(y) is the image of t in
(F 1/F 2)⊗k. Since ϕ preserves F 1, we must have ϕ(x) = pt, so that β(y) = t = HW (1)(y)
modulo F 2. �
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6. Modular Frobenius liftings

In this section we show how the construction of the canonical lifting produces certain
‘modular’ liftings of Frobenius modulo p2. For motivation, suppose that there exists
a fine moduli space

∼
M over W2(k) parametrizing certain 1-ordinary varieties with trivial

canonical class, and that the morphism
∼
M → SpecW2(k) is flat. Let

∼
X/

∼
M be the universal

family, and let X/M be its reduction modulo p. The construction of the relative canonical

lifting yields a family
∼
X ′/

∼
M lifting X ′ = F ∗

MX. Since M is a fine moduli space, there

exists a unique morphism
∼
F :

∼
M →

∼
M such that

∼
X ′ ≃

∼
F ∗ ∼X. This morphism is the desired

lifting of Frobenius on the moduli space
∼
M .

There are two ways of avoiding the problem of the non-existence of a fine moduli space.
First, one can consider a suitable moduli stack M . Second, one can try to construct the
Frobenius lifting

∼
F on the base of a family X/M which is no longer universal, but which

is universal formally locally at every point. We find the second approach more useful, and
we deal with it first, coming back to stacks in §6.2.

Before proceeding, let us recall the following result, which implies that the data of the
modular Frobenius lifting is the same as the assignment of a canonical lifting

∼
X/

∼
S of X ′

to every family X/S.

Proposition 6.0.1 ([AWZ17, Proposition 3.5.3]). Let
∼
M be a flat W2(k)-scheme endowed

with a Frobenius lifting F ∼M :
∼
M →

∼
M , and let M =

∼
M ⊗ k. Then for every flat W2(k)-

scheme
∼
S endowed with a map f : S → M there exists a canonically defined morphism

g :
∼
S →

∼
M lifting FM ◦ f :

∼
S

f̃

//

g

""
∼
M

F ∼M // ∼M

S

OO

f
// M

FM

//

OO

M.

OO

This lifting g is functorial, and it commutes with every Frobenius lifting on
∼
S. If f̃ is

a lifting of f , then g = F ∼M ◦ f̃ .

The morphism g is defined as the composition

∼
S

θ
−−→ W2(S)

W2(f)
−−−−→W2(M)

t(
∼
F )
−−−→

∼
M

where on functions θ(x0, x1) = x̃p0 + px̃1 for arbitrary liftings x̃0, x̃1 ∈ O ∼
S , and where t(

∼
F )

is the Cartier map, defined by t(
∼
F )(y) = (y, δ(y)) where

∼
F (y) = yp + pδ(y). This defines

a mapping
{

liftings of Frobenius on
∼
M
}

−→
{

functorial associations f 7→ g as in Proposition 6.0.1
}

which is a bijection, with inverse given by evaluation at idM , at least if M is smooth over
k (so that f̃ exists locally on

∼
S).

6.1. Frobenius liftings in modular families. Let
∼
M be a flat W2(k)-scheme locally of

finite type, equipped with a flat family
∼
X/

∼
M whose fibers are 1-ordinary varieties with

trivial canonical class. Suppose that this family is ‘formally universal’ in the following
sense: for every m̄ ∈M(k̄), the natural transformation

Spf Ô ∼
M⊗W2(k̄),m̄

−→ DefXm̄/W2(k̄)

induced by the base change of
∼
X/

∼
M to Spf Ô ∼

M⊗W2(k̄)
, is an isomorphism. Let

∼
X ′/

∼
M be

the canonical lifting of X ′ (Corollary 4.1.3).
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Proposition 6.1.1. There exists a unique lifting of Frobenius F ∼M :
∼
M →

∼
M such that the

families F ∗
∼
M

∼
X/

∼
M and

∼
X ′/

∼
M are locally isomorphic.

Proof. The uniqueness is clear, as any two such lifts have to coincide on Spf Ô ∼
M⊗W2(k̄),m̄

for every m̄ ∈M(k̄). This implies that the existence of F ∼M can be checked locally. We let
∼
P = Isom ∼

M×
∼
M (π∗1

∼
X,π∗2

∼
X ′);

this is the scheme representing the functor associating to S/W2(k) the set of triples

(α : S →
∼
M,β : S →

∼
M, ι : α∗ ∼X ′ ≃ β∗

∼
X).

Being an open subscheme of the Hilbert scheme of the product family π∗1
∼
X × π∗2

∼
X ′, it is

a scheme locally of finite type over W2(k). We let π :
∼
P →

∼
M be the projection mapping

(α, β, ι) to α.
The problem of constructing F ∼M can now be restated as follows: the data (idM , FM , id)

produces a section σ : M → P of π : P →M , and we wish to extend it to a section
∼
M →

∼
P

locally on M . For this, it is enough to show that π is smooth along the image of σ.
To this end, we can replace the base

∼
M with Spf Ô ∼

M⊗W2(k̄),m̄
. By pro-representability,

there exists a unique β : Spf Ô ∼
M⊗W2(k̄),m̄

→ Spf Ô ∼
M⊗W2(k̄),m̄

such that
∼
X ′ ≃ β∗

∼
X. Fix

such an isomorphism ι0, then the base change of
∼
P to Spf Ô ∼

M⊗W2(k̄),m̄
becomes identified

with the automorphism scheme of
∼
X ′, which is smooth by [Ser06, Theorem 2.6.1]. �

Remark 6.1.2. The lifting of Frobenius F ∼M :
∼
M →

∼
M corresponds to a morphism

t(F ∼M ) : W2(M)→
∼
M,

and hence yields a natural extension of X/M to W2(M). See [BG16] for similar consider-
ations.

6.2. Frobenius liftings on moduli stacks. Consider the stack M on the big étale site
of Z/p2Z associating to a scheme S over Z/p2Z the groupoid of flat schemes X/S whose
geometric fibers are 1-ordinary varieties with trivial canonical class. We wish for M to be
a flat (or even smooth) Deligne–Mumford stack, but this is false already for K3 surfaces.
In any case, the diagonal of M is representable by schemes locally of finite type.

To circumvent this difficulty, we choose an open substack U ⊆M which is a Deligne–
Mumford stack and flat over Z/p2Z. In simple terms, there exists a flat algebraic space
S over Z/p2Z and a surjective étale map f : S → U . The map f corresponds to a family
X/S ∈M (S) which is formally universal.

We note that there exists a largest such substack U : take S0 to be the disjoint union
of all flat algebraic spaces over Z/p2Z endowed with an étale map to M , and let S1 =
S0 ×M S0 (which is an algebraic space, since the diagonal of M is representable). Then

S1 //// S0

defines a groupoid presentation of an open substack U ⊆M . A 1-ordinary variety with
trivial canonical class X/k defines a point in U (k) if e.g. H2(X,OX ) = 0 and its formal
deformation functor is pro-representable and flat over W2(k).

The Frobenius liftings constructed in §6.1 on S1 and S0 descend to produce a lifting of
Frobenius FU : U → U .

Remark 6.2.1. Since abelian varieties and K3 surfaces possess non-algebraic deforma-
tions, the above construction does not apply on the nose to the moduli stacks of such
varieties. However, it can be adapted to produce Frobenius liftings on the moduli of prin-
cipally polarized abelian varieties: a principal polarization is an isomorphism A → A∨

and it is clear that such a structure is preserved by the construction of the canonical lift-
ing. Similarly, for ordinary K3 surfaces in characteristic p > 2, the formal subscheme of
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DefX where a given line bundle L deforms is preserved by the Frobenius lifting by [Del81,
2.2.2], and hence one can construct a Frobenius lifting modulo p2 on the moduli stack of
polarized ordinary K3 surfaces in odd characteristic.

7. Frobenius and the Hodge filtration (II)

7.1. The modular Frobenius lifting preserves F 1. Let X0/k be a 1-ordinary variety

with trivial canonical class. Suppose that the deformation functor
∼
S = DefX/W2(k) is

pro-representable and smooth over W2(k). Corollary 4.1.3 applied to the reduction X/S

of the universal family
∼
X/

∼
S yields a family

∼
X ′ lifting X ′ = F ∗

SX, which is isomorphic to

F ∗
∼
S

∼
X for a unique Frobenius lifting F ∼S : S → S.

Theorem 7.1.1. The crystalline Frobenius map induced by the Frobenius lifting F ∼S

ϕ(F ∼S) : H
d
dR(

∼
X/

∼
S) −→ Hd

dR(
∼
X/

∼
S)

maps F 1Hd
dR(

∼
X/

∼
S) into itself.

This should be contrasted with the fact that for the canonical lift of a family X/S, every

Frobenius lifting on
∼
S preserves F 1 (Theorem 5.0.1). Interestingly, we deduce Theo-

rem 7.1.1 from this fact.

Proof. We have to show that the map of OS-modules

F ∗
∼
S
F 1 →֒ F ∗

∼
S
Hd

dR(
∼
X/

∼
S)

ϕ(F ∼S)−−−−→ Hd
dR(

∼
X/

∼
S)→ Hd

dR(
∼
X/

∼
S)/F 1

vanishes. Since F ∼S :
∼
S →

∼
S is faithfully flat, it is enough to check this after pull-back by

F ∼S . On the other hand, F ∗
∼
S

∼
X is by definition of F ∼S the canonical lifting of the family

X/S. By Theorem 5.0.1, we know that

ϕ(F ∼S) : H
d
dR(F

∗
∼
S

∼
X/

∼
S) −→ Hd

dR(F
∗
∼
S

∼
X/

∼
S)

preserves F 1. But Hd
dR(F

∗
∼
S

∼
X/

∼
S) ≃ F ∗

∼
S
Hd

dR(
∼
X/

∼
S) compatibly with Frobenius, and hence

the result. �

Our remaining goal in this section will be to employ the above result in order to relate
the Frobenius lifting F ∼S to the first higher Hasse–Witt operation of X (§7.2). This will
be then applied in §7.3 to show that X can be deformed to a 2-ordinary variety, and to
show that the property of preserving F 1 actually characterizes F ∼S . This in turn allows
us to compare F ∼S with the classical construction in the case of abelian varieties and K3
surfaces.

7.2. The modular Frobenius lifting and the first higher Hasse–Witt operation.
Let

∼
S = SpfW2(k)[[t1, . . . , tr]] and let F ∼S :

∼
S →

∼
S be a Frobenius lifting. Let H =

(H,∇, F •, ϕ) be a Hodge F -crystal over
∼
S (Definition 2.7.1). Let

ψ : T ∼S −→ Hom(F 1/F 2,H/F 1)

be the map induced by ∇. Suppose that the Frobenius map

ϕ(F ∼S)F
∗
∼
S
: H −→ H

maps F 1 into F 1 and vanishes on F 2, yielding maps

ϕ0 : H/F
1 −→ H/F 1 and ϕ1 : F

1/F 2 −→ F 1/F 2.

Suppose in addition that the map ϕ0 is bijective.
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Proposition 7.2.1. In the above situation, the following square commutes

T ∼S
ψ //

dF ∼S
��

Hom(F 1/F 2,H/F 1)

γ

��
F ∗
∼
S
T ∼S F ∗

∼
S
ψ

// Hom(F ∗
∼
S
(F 1/F 2), F ∗

∼
S
(H/F 1)),

where γ maps a homomorphism f : F 1/F 2 → H/F 1 to the composition

F ∗
∼
S
(F 1/F 2)

ϕ1

−−→ F 1/F 2 f
−−→ H/F 1 ϕ−1

0−−−→ F ∗
∼
S
(H/F 1).

Proof. Let v ∈ TA, we show that the two images of v in Hom(F ∗
∼
S
(F 1/F 2), F ∗

∼
S
(H/F 1))

agree after post-composition with ϕ0 : F
∗
∼
S
(H/F 1)→ H/F 1. Let x ∈ F 1, then

ϕ0(γ(ψ(v))(F
∗
∼
S
(x) mod F 2)) = (∇vϕ(F ∼S)(x)) mod F 1

while

ϕ0(F
∗
∼
S
(ψ)(dF ∼S (v))F

∗
∼
S
(x) mod F 2)) = ϕ(F ∼S)(F

∗
∼
S
∇dF ∼S(v)x) mod F 1.

Thus the assertion follows from the fact that ϕ(F ∼S) is horizontal, i.e.

∇v(ϕ(F ∼S)(F
∗
∼
S
x)) = ϕ(F ∼S)(∇vF

∗
∼
S
x) = ϕ(F ∼S)(F

∗
∼
S
∇dF ∼S(v)x). �

Corollary 7.2.2. Let X be a 1-ordinary variety with trivial canonical class with unob-
structed deformations over W2(k). Suppose that p > 2 and that the assumptions in §2.7
are satisfied. Then the following square commutes

H1(X,TX )
∼ //

ξ (1.5.2)
��

Hom(Hd−1(X,Ω1
X),H

d(X,OX ))

Hom(HW(1),HW(0)−1)
��

H1(X,TX )
∼

// Hom(Hd−1(X,Ω1
X ),Hd(X,OX)).

Consequently, X is 2-ordinary if and only if the Frobenius lifting F ∼S is ordinary (Defini-
tion 8.1.3).

7.3. Applications. If
∼
S is a smooth scheme over W2(k) with a Frobenius lift F ∼S , then the

induced map ξ = 1
pF

∗
∼
S
: F ∗

SΩ
1
S′/k → Ω1

S/k is injective and hence generically an isomorphism.

We deduce that the 2-ordinary locus is a dense open subset in the moduli of 1-ordinary
varieties as in Corollary 7.2.2. More formally, we have:

Corollary 7.3.1. Every 1-ordinary variety X as in Corollary 7.2.2 admits a formal de-
formation over k[[t]] whose generic fiber is 2-ordinary.

Corollary 7.3.2. Under the assumptions of Corollary 7.2.2. The Frobenius lifting F ∼S in

Theorem 7.1.1 is the unique Frobenius lifting on
∼
S for which ϕ(F ∼S) preserves F 1Hd

dR(
∼
X/

∼
S).

Proof. Suppose that F is another Frobenius lifting preserving F 1 and write
∼
S = SpfW2(k)[[t1, . . . , tr]], F ∼S(ti) = tpi + pfi, F (ti) = tpi + pf ′i .

We have to prove that fi = f ′i for all i. Proposition 7.2.1 implies that dF ∼S = dF , so that

fi − f
′
i = gpi for some gi ∈ k[[t1, . . . , tr]]. Let v =

∑

gi
∂
∂ti

; if F ∼S 6= F , then v 6= 0. Since
the ‘Kodaira–Spencer’ map

gr∇ : T ∼S −→ Hom(F 1/F 2,H/F 1)

is an isomorphism, there exists an x ∈ F 1 such that ∇vx /∈ F
1.
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As p > 2, the ‘change of Frobenius’ formula (2.7.1) gives

ϕ(F ∼S)F
∗
∼
S
x = ϕ(F )F ∗x+

r
∑

i=1

p(fi − f
′
i)ϕ(F )F

∗(∇ ∂
∂ti

x)

= ϕ(F )F ∗x+ pϕ(FS)F
∗
S(∇vx) for x ∈ H.(7.3.1)

Since the Frobenius of S induces an isomorphism on H/F 1 ⊗ k, we have

ϕ(F )F ∗(∇vx) /∈ F
1

so the corresponding term in (7.3.1) is not in F 1, a contradiction. �

Applying [Del81, Appendix], we obtain:

Corollary 7.3.3. In the situation of Theorem 7.1.1, if p > 2 and X is either an abelian
variety or a K3 surface, then the Frobenius lifting F ∼S on

∼
S = DefX/W2(k) agrees with the

restriction modulo p2 of the Serre–Tate Frobenius lifting constructed in [Del81].

8. Canonical coordinates

8.1. Ordinary liftings of Frobenius. Let
∼
S = SpfW2(k)[[t1, . . . , tr]], and let S be its

reduction mod p.

Lemma 8.1.1. Let
∼
F :

∼
S →

∼
S be a lifting of Frobenius. There exists a unique map over

W2(k)
f : SpfW2(k) −→

∼
S

which commutes with the Frobenius lifts.

Proof. This is standard. See e.g. [Kat73, §1.1]. �

Definition 8.1.2. We call f the Teichmüller point associated to
∼
F , and denote the ideal

of its image by J ∼F ⊆ O ∼
S .

Since the map
∼
F ∗ :

∼
F ∗Ω1

∼
S
→ Ω1

∼
S

vanishes modulo p, there exists a unique mapping

ξ : F ∗
SΩ

1
S −→ Ω1

S

such that
∼
F ∗(ω) = p · ξ(ωmod p), as in (1.5.1). Explicitly, if

∼
F (ti) = tpi + pfi then

ξ(dti) = tp−1
i dti + dfi.

Definition 8.1.3 ([Moc96, III §1]). We call a lifting of Frobenius
∼
F :

∼
S →

∼
S ordinary if

the map ξ is an isomorphism.

Remarks 8.1.4. 1. The determinant of ξ sends the generator
∼
F ∗(dt1 ∧ . . . ∧ dtr)

to
(tp−1

1 dt1 + df1) ∧ . . . ∧ (tp−1
r dtr + dfr),

which equals df1 ∧ . . . ∧ dfr modulo (t1, . . . , tr) · Ω
1
S . In particular, the lifting

∼
F is

ordinary if and only if the Jacobian

det

[

∂fi
∂tj

]

∈ OS

has invertible constant term.
2. If

∼
F is ordinary, the fixed point set of ξ

{ω ∈ Ω1
S | ξ(ω) = ω}

is an Fp-vector space of dimension r, and any basis yields a basis of Ω1
S as an OS-module.

3. An easy calculation using the fact that
∼
F ∗ vanishes on Ω2

∼
S

shows that d ◦ ξ vanishes.

In particular, forms fixed by ξ are always closed.
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8.2. Comparison with the p-th power map. We are interested in identifying the group
Q(
∼
F ) consisting of q ∈ O

×
∼
S

for which
∼
F ∗(q) = qp. For this, we note first that ‘subtracting’

the diagrams with exact rows

0 // OS
1+pf //

F ∗

X

��

O
×
∼
S

//

∼
F

∗

��

O
×
S

//

F ∗

X

��

1

0 // OS
1+pf // O×

∼
S

// O×
S

// 1

and 0 // OS
1+pf //

0

��

O
×
∼
S

//

f 7→fp

��

O
×
S

//

f 7→fp

��

1

0 // OS
1+pf // O×

∼
S

// O×
S

// 1

yields

0 // OS

F ∗

S

��

// O×
∼
S

//

f 7→
∼
F ∗(f)/fp

��

O
×
S

//

1

��

1

0 // OS
// O×

∼
S

// O×
S

// 1.

Snake lemma then gives an exact sequence

0 −→ Q(
∼
F ) −→ O

×
S

δ
−−→ OS/O

p
S .

The composition of δ with the injective map d : OS/O
p
S → ZΩ1

S maps f to ξ(df)f−p −
d log f , which vanishes precisely if ξ(d log f) = d log f . This gives

Q(
∼
F ) ∼−→ {f ∈ O

×
S | ξ(d log f) = d log f}.

Lemma 8.2.1. Suppose that ω ∈ Ω1
S satisfies ξ(ω) = ω. Then ω = d log q for some

q ∈ O
×
S , uniquely defined up to O

×p
S .

Proof. Since dω = 0 (Remark 8.1.4.3), we have C(ω) = C(ξ(ω)) = ω. On the other hand,
we have the short exact sequence [Ill79, Corollaire 2.1.18, p. 217]

1 −→ O
×
S /O

×p
S −→ ZΩ1

S
C−1
−−−→ Ω1

S −→ 0.

which yields the result. �

8.3. Canonical multiplicative coordinates. We will call a tuple of elements q̃1, . . . , q̃r ∈
O ∼
S multiplicative coordinates if

(q̃1 − 1, . . . , q̃r − 1, p)

is the maximal ideal of W2(k)[[t1, . . . , tr]].

Multiplicative coordinates give rise to the Frobenius lifting
∼
F defined by

∼
F ∗(q̃i) = q̃pi

which is easily seen to be ordinary. For the converse, we have the following result, whose
version ‘over W (k)’ was proved in [Del81, Corollaire 1.4.5] under the assumption p > 2.

Proposition 8.3.1. Let
∼
F : A→ A be an ordinary lifting of Frobenius and let ω1, . . . , ωr

be a basis of {ω ∈ Ω1
S | ξ(ω) = ω} ∼= Frp.

(a) There exist multiplicative coordinates q1, . . . , qr ∈ OS, unique up to O
×p
S , such that

ωi = d log qi. They admit unique liftings to multiplicative coordinates q̃i ∈ O ∼
S such

that
∼
F ∗(q̃i) = q̃pi .

(b) The ideal J ∼F is generated by q̃i − 1.
(c) If q′1, . . . , q

′
r ∈ OS have the same property, then

q̃i − q̃
′
i ∈

∼
F (J ∼F ) = (q̃p1 − 1, . . . , q̃pr − 1)
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Proof. The first assertion follows directly from Lemma 8.2.1. For the second, by Lemma 8.1.1
it is enough to note that the map W2(k)[[q̃1 − 1, . . . , q̃r − 1]]→ W2(k) sending all qi to 1
commutes with the Frobenius lift. For the last assertion, again by Lemma 8.2.1 we have
q′i = upi qi for some 1-units ui ∈ OS. Let ũi ∈ O ∼

S be a lifting such that ũi − 1 belongs to
(q1 − 1, . . . , qr − 1) = J ∼F . Then q̃′i = ũpi q̃i, so

q̃′i − q̃i = q̃i(ũ
p
i − 1) = q̃i

∼
F ∗(ũi − 1) ∈

∼
F (J ∼F ). �

9. Applications to isotriviality

In this section, we deduce certain ‘hyperbolicity’ properties of the 2-ordinary locus of the
moduli of d-dimensional varieties with trivial canonical class satisfying the conditions

(9.0.1) H1(X,OX) = H2(X,OX ) = Hd(X,Ω1
X) = 0.

More precisely, suppose that S is a simply connected base with no non-zero global one-
forms. We prove that a family of 2-ordinary varieties with trivial canonical class, smooth
deformation space, and satisfying the above conditions and conditions (NCT) and (DEG)
over S is necessarily isotrivial. We remark that results in a similar direction appear in
[Ogu78a, Theorem 3.4]. The essential point of the argument is that the moduli space
classifying varieties in question is a smooth Deligne–Mumford substack of U (defined in
§6.2) equipped with an ordinary Frobenius lifting (see Definition 8.1.3). We denote this
stack by U sm.

First, we state a general lemma which we shall then use for the above stack.

Lemma 9.0.1. Let S be a smooth simply connected variety such that H0(S,Ω1
S) = 0.

Suppose that M is a Deligne–Mumford stack admitting an isomorphism F ∗Ω1
M

∼−→ Ω1
M

.
Then for every morphism f : S →M the differential df : f∗Ω1

M
→ Ω1

S is zero.

Proof. Let f : S → M be a morphism. The pullback of the given isomorphism induces
an isomorphism F ∗

Sf
∗Ω1

M
→ f∗Ω1

M
. By the results of [LS77] this implies that f∗Ω1

M
is

étale trivializable, and hence trivial because S is simply connected. Consequently, the
differential df : On

S ≃ f
∗Ω1

M
→ Ω1

S is induced by a collection of sections Ω1
S, and therefore

is zero. �

Remark 9.0.2. In characteristic zero the assumptionH0(S,Ω1
S) = 0 follows from πét1 (S) =

0. This is no longer true in characteristic p, for example for supersingular Enriques surfaces
in characteristic 2 [Ill79, Proposition III 7.3.8, p. 658].

We now apply the above lemma for the stack U sm. By §6.2, we know that U sm is a
smooth Deligne–Mumford stack, and admits an isomorphism F ∗Ω1

U sm → Ω1
U sm induced

by the differential of the modular Frobenius lifting.

Proposition 9.0.3. Let S be a smooth simply connected variety over a perfect field k of
characteristic p > 2 such that H0(S,Ω1

S) = 0. Then there are no non-isotrivial families
over S of 2-ordinary varieties with trivial canonical class satisfying conditions (NCT),
(DEG), and (9.0.1).

Proof. SupposeX → S is a non-isotrivial family of 2-ordinary Calabi–Yau varieties satisfy-
ing conditions (9.0.1), and let f : S → U sm be the corresponding non-constant morphism.
The dual of the differential df : f∗Ω1

U sm → Ω1
S can be identified with the Kodaira–Spencer

class KSX/S , and therefore we may apply the following reasoning repeatedly. Either, df
is non-zero and we obtain a contradiction with Lemma 9.0.1 or df is zero, which by the
mentioned identification, allows us to apply to Theorem B.0.1 to descend X → S via the
relative Frobenius FS/k : S → S′, that is, construct a factorization f = f ′ ◦ FS/k with
f ′ : S′ → U sm non-constant. We now substitute f with f ′ and reiterate the argument.
By Lemma 9.0.4 given below, the second situation can only happen finitely many times
and therefore the proof is finished. �
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Lemma 9.0.4. Let f : X → Y be a non-constant morphism (i.e., it does not factor
through Spec(k) on any étale chart) of noetherian Deligne–Mumford stacks, with X con-
nected. Then there exists an integer n ≥ 0 such that f does not factorize via the n-th
power of the Frobenius morphism Fn

X /k : X → X (n)

Proof. Let X → X and Y → Y be the étale charts such that f lifts to a morphism of
schemes g in the diagram

X
g //

��

Y

��
X

f
// Y .

Assume that f factors through the n-th power of the Frobenius morphism Fn : X →X (n).
By [SGA 5, XIV=XV §1 n◦2, Pr. 2(c)] this implies that g factors through the n-th power
of the Frobenius of X. For noetherian schemes, the claim is then clear using Krull’s
intersection theorem. �

The following remark was suggested to us by Yohan Brunebarbe.

Remark 9.0.5. It is conjectured that on simply connected varieties all F -isocrystals are
trivial (see [ES15] for a proof in a special case), and hence the Newton polygon does not
change among the fibers. Consequently, in a family of varieties with trivial class satisfying
assumption (NCT) – necessary for Hodge polygons to be constant, if one geometric fiber
is 2-ordinary then all the fibers are. The conjecture and our results therefore imply that
no simply connected variety intersects the 2-ordinary locus of the moduli space of varieties
with trivial canonical class.

9.1. Alternative version. In what follows we give a more direct proof of the above
results without any reference to the moduli stack. Let S be an integral scheme over k,
and let f : X → S be a family of smooth varieties of dimension d, such that the Hodge
sheaves

Rd−if∗Ω
i
X/S 0 ≤ i ≤ d

are locally free, and the relative Hodge to de Rham spectral sequence

Rjf∗Ω
d−i
X/S =⇒ Hd

dR(X/S)

degenerates. Using [DI87, §4], we see these conditions are satisfied if the family lifts mod
p2 and is of relative dimension d < p, or if all the fibers satisfy assumptions (NCT) and
(DEG).

Using [Kat72, §2.3], the conditions imply that the Hasse–Witt operators can be defined
in the relative setting. In order to define HW(0)X/S , we let f ′ : X ′ → S be the Frobe-

nius twist of X/S. The base change map induces a morphism F ∗
SR

df∗OX → Rdf ′∗OX′

whose composition with the natural map Rdf ′∗OX′ → Rdf ′∗FX/S,∗OX = Rdf∗OX gives
a morphism

HW(0)X/S : F
∗
SR

df∗OX → Rdf∗OX ,

whose specialization for every s ∈ S is identified with the p-linear map

HW(0): Hd(Xs,OXs)→ Hd(Xs,OXs) (cf. §2.3).

Once HW(i− 1)X/S is an isomorphism, we can define

HW(i)X/S : F
∗
SR

d−if∗Ω
i
X/S → Rd−if∗Ω

i
X/S ,

which specializes to HW(i) on the fibers.
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Proposition 9.1.1. Suppose S is a smooth simply connected variety over a perfect field k
of characteristic p > 0 such that H0(S,Ω1

S) = 0. Then there are no non-isotrivial families
over S of 2-ordinary varieties with trivial canonical class satisfying (NCT) and (DEG).

Proof. First, we observe that the conditions required to define relative Hasse–Witt opera-
tors are satisfied. Since the fibers are 2-ordinary, the maps HW(0)X/S and HW(1)X/S are
well-defined and yield isomorphisms

F ∗
S(R

df∗OX) ∼−→ Rdf∗OX F ∗
S(R

d−1f∗Ω
1
X/S)

∼−→ Rd−1f∗Ω
1
X/S .

By [LS77], this implies that Rdf∗OX ≃ f∗ωX/S and Rd−1f∗Ω
1
X/S are trivial vector bundles.

Consequently, using the fact that the fibers have trivial canonical class and Corollary 2.6.4,
we see that the dual

(Rd−1f∗Ω
1
X/S)

∨ ≃ R1f∗(TX/S ⊗ ωX/S) ≃ R
1f∗TX/S .

is also trivial. As in the above proof, using the Frobenius descent (see Theorem B.0.1), we
may assume that Kodaira–Spencer map TS → R1f∗TX/S is non-zero. Its dual therefore
furnishes a non-zero differential 1-form on S which finishes the proof. �

10. Serre–Tate theory a’la Nygaard

Let X/k be a 2-ordinary variety with trivial canonical class defined over an algebraically
closed field k. We set

d = dimX, r = dimHd−1(X,Ω1
X ) = dimH1(X,TX ).

In addition to (NCT) and (DEG), we assume that

Hd−1(X,OX) = 0 = Hd(X,Ω1
X),

(equivalently, H1(X,OX ) = 0 = H0(X,TX), i.e. Pic(X) and Aut(X) are reduced and
discrete). The first assumption implies that the Artin–Mazur formal group ΦX is pro-
representable (see §2.5). The second one implies that DefX is pro-representable, and
follows from the first if Hodge symmetry holds for X.

The goal of this section is to show that Nygaard’s construction of Serre–Tate theory
for K3 surfaces [Nyg83] (see [War14] for the Calabi–Yau threefold case) works without
much change for varieties X as above under the assumption that the deformation space
is smooth. We keep the discussion quite brief; in particular, we avoid any mention of
enlarged Artin–Mazur groups, though they are still ‘morally’ present in the background
(see Remark 10.2.3).

10.1. Hodge–Witt and flat cohomology. The following two Zp-modules will be of key
importance:

U = Hd
cris(X/W (k))ϕ=1, E = Hd

cris(X/W (k))ϕ=p.

We shall relate U and E to the Hodge–Witt cohomology Hd(X,WOX) andHd−1(X,WΩ1
X)

and the cohomology groups Hd
ét(X,Zp) and Hd

fl(X,Zp(1)). Recall (e.g. from [Ill79, II 5.1])
that the latter group is by definition the inverse limit of the flat cohomology groups
Hd

fl(X,µpn), which by the pn-Kummer sequence can be identified with the Zariski coho-

mology groups Hd−1(X,O×
X/O

×pn

X ), and that the maps

d log[−] : O
×
X/O

×pn

X −→WnΩ
1
X

define by passing to the limit a map d log : Hd
fl(X,Zp(1))→ Hd−1(X,WΩ1

X).

Lemma 10.1.1. The Zp-modules Hd
ét(X,Zp) and Hd

fl(X,Zp(1)) are torsion free, the maps

Hd
ét(X,Zp) −→ Hd(X,WOX)

F=1, Hd
fl(X,Zp(1))

d log
−−−→ Hd−1(X,WΩ1

X)
F=1
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are bijective and induce isomorphisms

Hd
ét(X,Zp)⊗W (k) ∼−→ Hd(X,WOX), Hd

fl(X,Zp(1)) ⊗W (k) ∼−→ Hd−1(X,WΩ1
X).

Proof. A careful analysis of the proof of [BK86, Lemma 7.1] shows that the cohomology
vanishings given by Proposition 2.3.1(ii) and Lemma 2.4.3 are sufficient to obtain the
required assertions. �

The 2-ordinarity assumption implies by Proposition 2.4.1 that we have a decomposition

(10.1.1) (Hd
cris(X/W (k)), ϕ) ≃ (U ⊗W (k), 1⊗ σ)⊕ (E ⊗W (k), p ⊗ σ)⊕ (H≥2, p

2ϕ′).

On the other hand, under certain soon to be verified assumptions [IR83, Cor. 4.4 p. 201],
the slope and conjugate de Rham–Witt spectral sequences yield a decomposition

(10.1.2) Hd
cris(X/W (k) ≃ Hd(X,WOX )⊕Hd−1(X,WΩ1

X)⊕H
d(X, τ≥2WΩ•

X)

Proposition 10.1.2. The decompositions (10.1.1) and (10.1.2) coincide. Consequently,

U ≃ Hd(X,WOX)
F=1 ≃ Hd

ét(X,Zp)

is a free Zp-module of rank one and

E ≃ Hd−1(X,WΩ1
X)

F=1 ≃ Hd
fl(X,Zp(1)).

is a free Zp-module of rank r.

Proof. To apply [IR83, Cor. 4.4 p. 201] we need to check that Hd−1(X,ZWΩ1
X) and

Hd(X,ZWΩ1
X) are finitely generated W -modules and that the inclusion induces an iso-

morphism Hd−1(X,ZWΩ1
X)

∼−−→ Hd−1(X,WΩ1
X). By [IR83, (1.3.1), p. 174], we have

H∗(X,ZWΩ1
X)

∼−→ lim
←−
F

H∗(X,WΩ1
X).

The required assertions follow now from the fact that F is bijective on the finitely generated
W -modules Hd−1(X,WΩ1

X) and Hd(X,WΩ1
X)(= 0). Since a decomposition of the type

(10.1.1) is unique, we obtain the desired assertion. �

We note for future reference that the above assertions imply in particular that the
composition

E ≃ Hd
fl(X,Zp(1)) −→ Hd

fl(X,µp) ≃ H
d−1
ét (X,O×

X/O
×p
X )

d log
−−−→ Hd−1(X,Ω1

X)

induces an isomorphism E ⊗Zp k
∼−→ Hd−1(X,Ω1

X).

10.2. Serre–Tate theory for 2-ordinary varieties. Recall that by §2.5 we have an
isomorphism ΦX ∼−→ U ⊗ Ĝm inducing the identity Hd(X,OX ) = Hd(X,OX ) on the

tangent spaces. By rigidity, for every deformation
∼
X of X over an Artinian local ring A

with residue field k, there exists a unique isomorphism Φ ∼
X

∼−→ U ⊗ Ĝm,A extending the
given one.

Let
∼
X/A be as above, and let n ≥ 0 be such that m

n
A = 0. We have a short exact

sequence

(10.2.1) 0 −→ 1 +mAO ∼
X −→ O

×
∼
X
/O×pn

∼
X
−→ O

×
X/O

×pn

X −→ 0.

We let βn be the composition

βn : H
d
fl(X,µpn) ≃ H

d−1(X,O×
X/O

×pn

X )
δ
−−→ Hd(X, 1 +mAO ∼

X) = Φ ∼
X(A) = U ⊗ (1 +mA).

where δ is the connecting homomorphism induced by (10.2.1). The sequence of maps βn
for n≫ 0 induces a homomorphism on the inverse limit

β : E = Hd
fl(X,Zp(1)) = lim

←−
Hd

fl(X,µpn) −→ Φ ∼
X(A) = U ⊗ (1 +mA).
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Varying A and
∼
X , we obtain a natural transformation

γ : DefX −→ T,

where T = Hom(E,U) ⊗ Ĝm is the formal torus with co-character group Hom(E,U).

Proposition 10.2.1. The map γ induces an isomorphism on tangent spaces

γ : DefX(k[ε]/(ε
2)) ∼−−→ T (k[ε]/(ε2)).

Proof. We note first that using Proposition 10.1.2 and Lemma 10.1.1 the target can be
identified with

HomZp(H
d
fl(X,Zp(1)),H

d(X, 1 + εOX)) = HomFp(H
d
fl(X,µp),H

d(X,OX))

= HomFp(H
d−1
ét (X,O×

X/O
×p
X )),Hd(X,OX))(10.2.2)

= Homk(H
d−1(X,Ω1

X ),Hd(X,OX)).(10.2.3)

On the other hand, a deformation
∼
X ∈ DefX(k[ε]/(ε

2)) corresponds to an element KS ∼X ∈

H1(X,TX ). Cup product with KS induces a homomorphism

∪KS: Hd−1(X,Ω1
X) −→ Hd(X,OX),

which coincides with the boundary homomorphism coming from the short exact sequence

0 −→ OX
dε
−−→ Ω1

∼
X
−→ Ω1

X −→ 0.

This defines a bijection

(10.2.4) DefX(k[ε]/(ε
2)) ≃ H1(X,TX ) ∼−−→ Homk(H

d−1(X,Ω1
X),H

d(X,OX )).

We shall prove that this map equals γ under our identification (10.2.3).
The short exact sequence above fits inside a commutative diagram with exact rows

0 // 1 + εOX

log

��

// O×
∼
X
/O×p

∼
X

d log

��

// O×
X/O

×p
X

d log

��

// 0

0 // εOX
// Ω1

∼
X/k

// Ω1
X/k

// 0,

which induces a commutative square

Hd−1(X,O×
X/O

×p
X )

δ //

d log
��

Hd(X, 1 + εOX)

log∼

��
Hd−1(X,Ω1

X) ∪KS ∼X

// Hd(X,OX ).

Since δ above corresponds to γ(
∼
X) under the identification (10.2.2), it follows that KS ∼X

corresponds to γ(
∼
X) under the identification (10.2.3), as desired. �

Corollary 10.2.2. If X has unobstructed deformations over Wm(k) for some m ≥ 1,
then γ induces an isomorphism

(10.2.5) γ : DefX/Wm(k)
∼−−→ T ⊗Wm(k).

Remark 10.2.3. In the above discussion, we chose to be as direct as possible. In par-
ticular, the reader might be surprised by the absence of p-divisible groups. The enlarged
formal group ΨX generalizing the one used by Nygaard can be reconstructed as follows.
Let

∼
X/A be deformation of X, corresponding to a homomorphism

β : Hd
fl(X,Zp(1)) −→ Φ ∼

X(A) = Hd(
∼
X, 1 +mAO ∼

X).
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One can construct a morphism β̄ making the diagram below commute.

0 // Hd
fl(X,Zp(1))

//

β
��

Hd
fl(X,Zp(1))⊗Qp

//

β̄
��

Hd
fl(X,Zp(1)) ⊗Qp/Zp //

��

0

0 // Hd(
∼
X, 1 +mAO ∼

X)
// Hd

fl(
∼
X,µp∞) // Hd

fl(X,µp∞) // 0.

By a reasoning analogous to [Nyg83, Corollary 1.4], the right arrow is an isomorphism,

thus setting Ψ ∼
X(B) = Hd

fl(
∼
X ⊗B,µp∞) as in [Nyg83, Corollary 1.5], the bottom row can

be interpreted as the extension of p-divisible groups

0 −→ Φ ∼
X −→ Ψ ∼

X −→ Hd
fl(X,Zp(1)) ⊗Qp/Zp −→ 0,

which is the pushout of the top row above under β. Consequently, this extension corre-
sponds to β under Messing’s isomorphism

HomZp(H
d
fl(X,Zp(1)),Φ ∼

X ) ∼−−→ Ext1A(H
d
fl(X,Zp(1))⊗Qp/Zp,Φ ∼

X),

and our torus T is identified with the deformation space of ΨX .

Question 10.2.4. Let L be a line bundle on X. The assumption that Hd−1(X,OX ) = 0
is equivalent to H1(X,OX) = 0, so the forgetful transformation DefX,L → DefX ≃ T
is a closed immersion. Is its image preserved by the Frobenius lifting on DefX , e.g. the
kernel of a character of T ?

This is the case for K3 surfaces [Del81, 2.2.2]: the crystalline Chern class c1(L) lies in

E = H2(X/W (k))F=p. If χ ∈ Hom(T, Ĝm) = Hom(U,E) maps a basis element of U ≃ Zp
to c1(L), then DefX,L = kerχ.

A positive answer would provide the moduli spaces of polarized 2-ordinary varieties
with trivial canonical class with a natural Frobenius lifting.

10.3. Comparison with canonical liftings constructed in §4. Corollary 10.2.2 gives
in particular a notion of a canonical lifting: we denote by Xm/Wm+1(k) the lifting of X
corresponding to the neutral element of T (Wm+1(k)) under γ (10.2.5).

Proposition 10.3.1. The canonical lifting
∼
X/W2(k) constructed in §4 is isomorphic to

X ′
1. In particular, the crystalline Frobenius preserves F 1Hd

dR(X1/W2(k)).

Proof. Recall from Lemma 4.2.2 that the restriction map O
×
∼
X
→ O

×
X′ admits a section.

Consequently, the sequences (10.2.1) are split, and hence β = 0. �

Question 10.3.2. Does the crystalline Frobenius preserve F 1Hd
dR(Xm/Wm+1(k)) form >

1? Does the Frobenius lifting on DefX corresponding to the p-th power map on T under
(10.2.5) satisfy the natural analog of Theorem 7.1.1?

For abelian varieties and K3 surfaces [Del81], the answer is to both questions is positive.
For more general varieties with trivial canonical class, one runs into the problem that not
every lifting of F 1Hd

dR(X/k) to Hd
cris(X/Wm(k)) comes from a lifting of X. We were

able to overcome this difficulty (an avatar of Griffiths transversality constraints on period
maps) only modulo p2.

Appendix A. Finite height

In [Yob17], Yobuko defines the notion of a quasi-F -splitting, more general than an F -
splitting, and proves that a smooth quasi-F -split variety can be lifted modulo p2, gen-
eralizing the argument for smooth F -split varieties [Ill96, §8.5]. He also shows that for
Calabi–Yau varieties, being quasi-F -split is equivalent to the height of the associated
Artin–Mazur formal group being finite. In this section, we give a somewhat different
point of view on Yobuko’s construction. Based on this, we extend our construction of
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a canonical lifting associated to an F -splitting to quasi-F -split varieties, thus showing
that there is a preferred lifting mod p2. In particular, we show that the smoothness as-
sumption used by Yobuko is not necessary. Some of our results were observed earlier by
Adrian Langer (unpublished).

It would be interesting to extend this construction to families and to generalize the
Serre–Tate theory discussed in this paper to varieties with trivial canonical class of finite
height in the spirit of [NO85].

A.1. The canonical lifting. Yobuko defines a quasi-F -splitting of level m on an Fp-scheme
X as an additive map σ : WmOX → OX satisfying σ(1) = 1 and which is F -linear in the
sense that

σ(Fx · y) = x0 · σ(y).

We have a short exact sequence

0 −→WmOX
V
−−→Wm+1OX

Rm

−−→ OX −→ 0.

Lemma A.1.1. Let σ : WmOX → OX be a quasi-F -splitting of level m on an Fp-scheme
X. Then the image of ker(σ) under V is an ideal in Wm+1OX .

Proof. Suppose that x ∈WmOX satisfies σ(x) = 0, and let y ∈Wm+1OX . Then

y · V (x) = V (F (y) · x)

and

σ(F (y) · x) = y · σ(x) = 0. �

Corollary A.1.2. Let σ : WmOX → OX be a quasi-F -splitting of level m on an Fp-scheme
X. Then the quotient

O ∼
X =Wm+1OX/V (ker σ)

defines a lifting of X over Z/p2Z, fitting inside a pushout diagram of exact sequences

0 // WmOX

σ

��

V // Wm+1OX

π

��

Rm
// OX

// 0

0 // OX
// O ∼

X
// OX

// 0.

Proof. Since σ is surjective, the left square is a pushout. To prove that O ∼
X is a lifting, we

need to check that the composition

O ∼
X −→ OX −→ O ∼

X

equals multiplication by p. Let f̃ ∈ O ∼
X be the image of

f = (f0, . . . , fm) ∈Wm+1OX .

Then the image of f̃ in OX is f0, which is the image under σ of

Ff = (fp0 , . . . , f
p
m) ∈WmOX .

This in turn has image V (Ff) = pf in WmOX , which maps to pf̃ under π. �

Definition A.1.3. We call the lifting
∼
X constructed in Corollary A.1.2 the canonical

lifting associated to the quasi-F -splitting σ.
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A.2. The sheaf FmOX and Witt vectors mod p. Suppose now that X is a smooth
scheme over a perfect field k of characteristic p. We denote by

C : ZΩ1
X −→ Ω1

X

the Cartier operator. The sheaf ZmΩ
1
X ⊆ F

m
∗ Ω1

X consists of local sections ω such that

ω,C(ω), . . . Cm−1(ω)

are closed. The subsheaf BmΩ
1
X ⊆ ZmΩ

1
X consists of local sections ω such that Cm−1(ω) ∈

B1
X . The map

Dm : F∗WmOX −→ BmΩ
1
X , (f0, . . . , fm−1) 7→ fp

m−1−1
0 df0 + . . .+ dfm−1

is WmOX -linear, and there is a short exact sequence of WmOX -modules

0 −→WmOX
F
−−→ F∗WmOX

Dm−−→ BmΩ
1
X −→ 0.

In this situation, Yobuko defined a natural extension of OX-modules (denoted (em))

0 −→ OX −→ FmOX −→ BmΩ
1
X −→ 0

and showed that OX -linear splittings of this sequence correspond to quasi-F -splittings as
defined previously. The exact sequence (em) is defined by the pullback diagram

0 // OX
// FmOX

//

��

BmΩ
1
X

Cm−1

��

// 0

0 // OX
// F∗OX

// B1Ω
1
X

// 0.

In particular, if X is F -split, the bottom row is, and hence so is (em). Yobuko observes
that (em) can also be defined as a pushout

0 // WmOX

Rm−1

��

F // F∗WmOX

��

Dm // BmΩ
1
X

// 0

0 // OX
// FmOX

// BmΩ
1
X

// 0.

It follows that quasi-F -splittings are precisely OX-linear splittings of (em).
We shall now elucidate the sheaf Fm and its OX -algebra structure. Let X be an Fp-

scheme. Following [HM03, §3], we denote by

WmOX =WmOX/p ·WmOX

the mod-p reduction of the ring of Witt vectors of length m over OX . Recall from op.cit.
that the p-th power of the Teichmüller map

[−]p : OX −→WmOX

is additive modulo p, and therefore induces an OX-algebra structure

ρ = [−]pmod p : OX −→WmOX

on WmOX . In addition, the following triangle commutes

OX
ρ //

F ##❍
❍❍

❍❍
❍❍

❍❍
WmOX

Rm−1

��
OX .
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Consequently, ρ is injective if X is reduced. We denote its cokernel by Bm, so that there
is a short exact sequence of OX-modules

0 −→ OX −→WmOX −→ Bm −→ 0.

The formula

V (x) · V (y) = V (FV (x) · V (y)) = p · V (xy)

implies that the multiplication in WmOX is highly degenerate.

Remark A.2.1. The existence of ρ can be also seen as follows (cf. [OV07, §1.1]): the
kernel VWm−1OX of Rm−1 : WmOX → OX has a natural divided power structure, and
hence so does the kernel I of

Rm−1 : WmOX −→ OX .

It follows that fp = 0 for every f ∈ I, and hence the absolute Frobenius of WmOX factors
naturally through OX .

Proposition A.2.2. The following diagram is a pushout square

WmOX
F //

Rm−1

��

WmOX

π
��

OX ρ
// WmOX .

Proof. The commutativity of the diagram follows from the formula

F (f0, . . . , fm−1) = (fp0 , . . . , f
p
m−1)

= [f0]
p + V F (f1, . . . , fm−1)

= [f0]
p + p · (f1, . . . , fm−1) ≡ ρ(f0)mod p.

Since the vertical arrows are surjective, it remains to check that the induced map

F : kerRm−1 −→ ker π

is an isomorphism. This follows from

F (kerRm−1) = F (V (Wm−1OX)) = p ·Wm−1OX . �

Corollary A.2.3. Suppose that X is a smooth scheme over k. There are natural isomor-
phisms

WmOX ≃ FmOX and Bm ≃ BmΩ
1
X

fitting inside a commutative diagram

0 // OX
ρ // WmOX

∼

��

// Bm

∼

��

// 0

0 // OX
// FmOX

// BmΩ
1
X

// 0.

We can therefore rephrase the definition of a quasi-F -splitting as follows.

Definition A.2.4. Let X be an Fp-scheme. A quasi-F -splitting of level m on X is an

OX-linear splitting σ : WmOX → OX of the map

ρ : OX −→WmOX .
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Appendix B. Families with vanishing Kodaira–Spencer

Let k be a perfect field of characteristic p > 0 and let S be a smooth k-scheme. Let
f : X → S be a smooth morphism. Applying Rf∗ to the short exact sequence on X

(B.0.1) 0 −→ TX/S −→ TX/k −→ f∗TS/k −→ 0

yields an exact sequence on S

(B.0.2) 0 −→ f∗TX/S −→ f∗TX/k −→ f∗f
∗TS/k

δ
−→ R1f∗TX/S .

The Kodaira–Spencer map of X/S is the map

KSX/S : TS/k −→ R1f∗TX/S

obtained as the composition of the adjunction map TS/k → f∗f
∗TS/k and the map

δ : f∗f
∗TS/k → R1f∗TX/S .

Theorem B.0.1 (compare [Ogu78a, Lemma 3.5]). Suppose that KSX/S = 0 and f∗TX/S =
0. Then there exists a canonical cartesian diagram

(B.0.3) X

��

// Y

��
S

FS/k

// S′.

Proof. The assumptions KSX/S = 0 and f∗TX/S = 0 combined with the exactness of
(B.0.2) show that the adjunction map TS/k → f∗f

∗TS/k factors uniquely through a map
u : TS/k → f∗TX/k. By another adjunction, we obtain a map v : f∗TS/k → TX/k which
splits (B.0.1). We check that v defines a 1-foliation (see [Eke88, I.1, p. 104]), i.e. that
its image is closed under the Lie bracket and p-th iterates. The respective obstructions
[op.cit. Lemma 1.4, p. 105] are maps

∧2f∗TS/k −→ TX/S and F ∗
Xf

∗TS/k −→ TX/S

by adjunction correspond to maps

∧2TS/k −→ f∗TX/S and F ∗
STS/k −→ f∗TX/S

which both vanish because the target is zero. We define Y to be the quotient by this
1-foliation. �

Remark B.0.2. As the example S = P1
k and X = P(OS ⊕ OS(1)) → S shows, the

assumption that f∗TX/S = 0 is necessary. Note that in this example X/S still descends
along FS/k Zariski-locally on S. To produce examples which do not descend even locally,

one can take X/S a Brauer–Severi variety whose corresponding class in H2
ét(S,Gm) is not

divisible by p.
Of course, if KSX/S = 0, then the adjunction map TS/k → f∗f

∗TS/k can locally be lifted
to a map u : TS/k → f∗TX/k (since TS/k is locally free). However, for the above proof to
work, we need the lifting u to be compatible with the restricted Lie algebra structures.
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