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A SUPPORT THEOREM FOR THE HITCHIN FIBRATION:
THE CASE OF GLn AND KC

MARK ANDREA A. DE CATALDO, JOCHEN HEINLOTH AND LUCA MIGLIORINI

Abstract. We compute the supports of the perverse cohomology sheaves of the Hitchin
fibration for GLn over the locus of reduced spectral curves. In contrast to the case of
meromorphic Higgs fields we find additional supports at the loci of reducible spectral
curves. Their contribution to the global cohomology is governed by a finite twist of
Hitchin fibrations for Levi subgroups. The corresponding summands give non-trivial
contributions to the cohomology of the moduli spaces for every n ≥ 2. A key ingredient
is a restriction result for intersection cohomology sheaves that allows us to compare the
fibration to the one defined over versal deformations of spectral curves.
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1. Introduction

In the study of the geometry of the Hitchin fibration a recurring problem has been to
determine how much of this geometry is determined by the smooth part of the fibration.
Ngô’s support theorem provides a tool to formulate and sometimes to prove a precise
version of this question for general fibrations equipped with an action of a family of
polarized abelian group schemes (see [31]). In particular, for variants of the fibration
parameterizing Higgs bundles with poles, Chaudouard and Laumon in [9] proved that
the only perverse cohomology sheaves appearing in the decomposition of the direct image
of the constant sheaf are the intermediate extensions of the local systems on the smooth
locus, that is the perverse cohomology sheaves are supported over the whole base. In
particular, all of the cohomology is determined, in principle, by the monodromy of the
cohomology of the smooth fibers. As is explained in the last section of [9], unfortunately,
this method does not apply to the original symplectic (no poles) version of the Hitchin
fibration. Motivated by the P = W conjecture [11], one would like to understand the
perverse filtration of the fibration better and for this it is important to determine whether
this result extends to this case as well. Surprisingly, we do find new supports as well as
new cohomological contributions for any rank n ≥ 2.
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Before we explain the general strategy of our approach, let us state our main result.
In order to do this, let us briefly introduce the standard notation that we use, which is
recalled in more detail in Section 2. We fix a smooth projective curve C and denote by
hn : Md

n → An the Hitchin fibration for GLn and an integer d coprime to n, i.e., Md
n is

the moduli space of semistable Higgs bundles of rank n and degree d on C. The base
An is an affine space parameterizing spectral curves Ca ∈ T ∗C that are of degree n over
C. For any partition n = (ni)i=1,...,r of n there is the closed subvariety Sn ⊂ An, closure
of the subset S×

n ⊂ Sn of reducible nodal curves having smooth irreducible components

of degree ni over C (see Section 2.3). Also we denote by Ared
n ⊂ An the open subset

parameterizing reduced spectral curves.
The decomposition theorem implies that the complex Rhn∗Q is a direct sum of its

perverse cohomology sheaves pH r(Rhn∗Q), which in turn are direct sums of irreducible
perverse sheaves. These summands are thus supported on closed subvarieties of An

and the subvarieties that occur in this way are called the supports of Rhn∗Q. Using
these notions our main results can be summarized as follows (note that according to our
convention in §2, the local systems given by the r-th cohomology of the smooth fibers of
hn contribute to pH r(Rhn∗Q), the r-th perverse cohomology sheaf):

Theorem (Proposition 4.1 and Theorem 6.11). Let hn : Md
n → An be the Hitchin map.

The supports of Rhn∗Q on An that meet the reduced locus Ared
n are exactly the strata Sn.

Moreover, for every partition n of n, the stratum Sn is a support for all of the sheaves

p
H

k(Rhn∗Q) with δaff(n) ≤ k ≤ 2 dimAn − δaff(n)

where δaff(n) =
∑

i<j ninj(2g − 2) − r + 1 is the dimension of the affine parts of the

Picard group of the spectral curves defined by points of S×
n . The corresponding perverse

summands are the intermediate extensions of local systems on S×
n whose stalks can be

described explicitly in terms of the cohomology of the spectral curve and its dual graph.

A more precise statement describing the local systems appearing in the above state-
ment appears in Theorem 6.11, and refined information on the monodromy is given in
Corollary 6.20. In particular, it turns out that the local systems corresponding to par-
titions with pairwise distinct ni and k maximal have trivial monodromy and therefore
these contribute to H∗(Md

n) = H∗(Rhn∗Q). For n = 2 we describe the contributions of
the summands supported on S(1,1) explicitly (Remark 6.21).

The key idea that allows us to get a hold on the supports of the perverse cohomology
sheaves pH k(Rhn∗Q) of the direct image, is to compare the Hitchin fibration with a
“larger” fibration. In our situation, the description of Higgs bundles as sheaves on spectral
curves allows us to use the fibration of compactified Jacobians for a versal deformation
of singular spectral curves. As is proved in [27], for those families only the full base is a
support. To use this, we then study how the intersection cohomology sheaves on the versal
family decompose under restriction to the Hitchin base. We prove a simple restriction
result (Proposition 5.4) which we can then use for an explicit computation, because the
Cattani–Kaplan–Schmid complex gives a rather explicit combinatorial description of the
contribution to the top cohomology sheaves in the case of nodal curves. Interestingly, the
combinatorial description is related to the bond matroid of the dual graph of the spectral
curve, which luckily had been studied for entirely different reasons before.

It may be interesting to note that there is a simple geometric explanation for the
different behavior between the Hitchin fibration we consider and the version with poles
treated in [9]: If a ∈ Sn corresponds to a reducible nodal spectral curve Ca with r
nonsingular irreducible components, let V be the base of its versal deformation. Then,
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the codimension in V of the stratum V × where all the nodes persist, equals the number of
nodes, whereas the codimension of Sn in the Hitchin base is smaller, it is equal to δaff(n)
which differs from the number of nodes by r − 1 (Lemma 2.6). In other words, locally
around a point a ∈ S×

n the family of spectral curves over the Hitchin base An defines a
morphism to the base of the versal defomation V , but the image of this morphism is not
transversal to the stratum V ×. This does not happen in the Hitchin fibration with poles,
and it is precisely this lack of transversality which is responsible for the splitting of the
restriction of the intersection cohomology sheaves into summands (Remark 5.2).

An elementary example of this phenomenon may be seen in the deformation of a
curve consisting of two rational components meeting transversally in two nodes. The
versal deformation has dimension two, every curve in the family except the central one is
irreducible, and it is easily seen that only the full base is a support. In particular, denoting
by R1 the local system of first cohomology on the smooth locus, there is a non vanishing
cohomology sheaf H1(IC(R1)) at the origin, accounting for the extra component. If
we restrict this map to a disc passing through the origin, the total space of the family
remains nonsingular but the restriction of IC(R1) splits into two summands, one of which,
supported at the origin, is precisely H1(IC(R1)).

The structure of the article is as follows. In Section 2, we set up notation and con-
ventions. In Section 3 we recall the main result from [26], that constrains the potential
supports of our perverse cohomology sheaves in terms of higher discriminants. The sym-
plectic structure of Hitchin fibrations allows us to describe these in terms of the action
of Jacobians of spectral curves. For this we use that the differential of the Hitchin mor-
phism hn is dual with respect to the symplectic form on Md

n to the infinitesimal action
of the abelian group schemes acting on the fibres. As it is hard to find this property
of the Hitchin fibration explicitly in the literature, we include an algebraic proof in the
more general setup of the Hitchin fibration for complex reductive groups in the appendix
(Proposition 7.12). See also [13], where this duality is established for a large class of
integrable systems, including our Hitchin fibration for GLn. In Section 4, we combine
the Ngô support theorem and results on compactified Jacobians to identify the strata Sn

as the only potential supports in Ared
n . Next, in Section 5 we prove the restriction result

for IC-sheaves mentioned above (Proposition 5.4) and show that it applies to the Hitchin
fibration by computing the Kodaira–Spencer map for the universal family of spectral
curves. In Section 6 we use the Cattani–Kaplan–Schmid complex for the versal family to
translate the problem of determining the generic fibers of the summands supported on Sn

into a combinatorial problem that we can then solve (Theorem 6.11). In Section 6.3 we
describe the monodromy of these summands, in order to prove that the new summands
contribute to the global cohomology of the Hitchin fibration for any n ≥ 2.
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Mark Andrea de Cataldo, who is partially supported by NSF grants DMS-1600515 and
1901975, would like to thank the Max Planck Institute for Mathematics in Bonn and the
Freiburg Research Institute for Advanced Studies for the perfect working conditions; the
research leading to these results has received funding from the People Programme (Marie
Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007-
2013) under REA grant agreement n. [609305]. Jochen Heinloth was partially supported
by RTG 45 of the DFG.
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2. Notation and setup

Throughout this article we work over the complex numbers C. We will use the ana-
lytic topology in order to work with constructible sheaves of Q-vector spaces. Readers
preferring the étale topology, could recover all of our results in that topology by using
Qℓ-coefficients.

2.1. Conventions on intersection cohomology. We start by recalling the basic re-
sults on intersection cohomology that we need. To reduce the appearance of shifts of
complexes in our results we will employ the following numbering convention for intersec-
tion cohomology sheaves, which differs from the one used in [2]: Let X be an algebraic
variety, Y →֒ X be a closed subvariety and L a local system on a smooth open subset
j : Y ◦ →֒ Y . We denote by IC(Y,L) the intersection cohomology complex with the
normalization such that IC(Y,L)|Y = L[− codimY ]. In particular a local system on an
open subset of X will be put in cohomological degree 0. With this convention the strong
support condition reads

Hl(IC(Y,L)) = 0 if l < codimY,

HcodimY (IC(Y,L)) = j∗L,

codimSuppHl(IC(Y,L)) > l for l > codimY,

i.e., this is the usual t-structure, but shifted by dimX . This will be useful for us, as we
will study restrictions of perverse sheaves to closed subvarieties and we can then avoid to
shift the constant sheaf.

A semisimple perverse sheaf on a complex variety X is a complex of the form P =⊕
α IC(Yα, Lα), where Yα ⊆ X are irreducible closed subvarieties and Lα are semisimple

local systems defined on dense open subsets of the Yα’s. The generic points of the Yα’s
are called the supports of P .

If h : M → X is a proper map between smooth varieties, the decomposition theorem
of [2] says that

Rh∗Q ≃
⊕

k≥0

p
H

k(Rh∗Q)[−k]

and in addition for all k the k-th perverse cohomology sheaf pH k(Rh∗Q) is a semisimple
perverse sheaf. The union of supports of the perverse sheaves pH k(Rh∗Q) is the set of
supports of the map h (see [30, §7]).

We say that a semisimple complex K =
⊕

k
pH k(Rh∗Q)[−k] has no proper supports

if X is the only support of K.

2.2. The Hitchin fibration. We fix a nonsingular, connected, projective curve C of
genus g ≥ 2, an integer n ∈ Z≥1, and an integer d ∈ Z such that gcd(n, d) = 1. We
denote by KC the canonical bundle of C.

We denote by Higgsdn the moduli stack of Higgs bundle of rank n and degree d on C,
i.e., it parametrizes pairs (E, φ) where E is a vector bundle of rank n and degree d on C
and φ ∈ H0(C,End(E)⊗KC).

We denote by Md
n the coarse moduli space of stable Higgs bundles of rank n and degree

d, where as usual, stability is defined by imposing the inequality deg(F )/rank(F ) <
deg(E)/rank(E) for every φ-invariant proper sub-bundle F ⊆ E.

Because of our assumption that n and d are coprime Md
n is (see [33, Theorem 6.1

and Proposition 7.4]; for the irreducibility, see [10, §2.1]) an irreducible, nonsingular,
4



quasi-projective variety of dimension

(1) dim(Md
n) = n2(2g − 2) + 2 =: 2dn.

The cotangent space T ∗N d
n of the moduli space N d

n of stable rank n and degree d vector
bundles on C is a dense open subvariety of Md

n. The Hitchin base is defined to be the
vector space

(2) An :=
n∏

i=1

H0(C,K⊗i
C ),

which has dimension

(3) dim(An) =
1

2
dim(Md

n) = n2(g − 1) + 1 = dn.

The Hitchin morphisms

(4) hd
n : Higgsdn → An and hd

n : Md
n → An

assigns to any Higgs bundle (E, φ), the coefficients of the characteristic polynomial of
φ. The morphism hd

n is proper, flat of relative dimension dn = n2(g − 1) + 1 (e.g. [33,
Theorem 6.1],[17, Theorem II.5]), by Stein factorization and the description of the generic
fiber of hn recalled below (Theorem 2.2) it has connected fibers, and it is often called the
Hitchin fibration.

Since the degree d doesn’t play any role in what follows, as long as it is coprime to the
rank n, we will not indicate it from now on, and simply write Mn for Md

n and hn for hd
n.

2.3. Spectral curves and the BNR-correspondence. As the key to the geometry
of the fibers of the Hitchin fibration hn is their description as compactified Jacobians
of spectral curves through the Beauville–Narasimhan–Ramanan–correspondence ([1]) we
also recall this briefly.

Any closed point a ∈ An defines a curve Ca, called spectral curve, in the total space
of the cotangent bundle T ∗C = TotC(KC) by viewing a as a monic polynomial of degree
n with coefficient of the degree n − i term in H0(C,K⊗i

C ). This defines a flat family
CAn

→ An of projective curves. We will denote the fiber over any, not necessarily closed
point a ∈ An by Ca. Everything we recall below for spectral curves over closed points
holds for these as well, after base change to the residue field k(a) of a.

The natural projection π : Ca → C, exhibits the spectral curve as a degree n cover
of C, but Ca can be singular, non-reduced and reducible. As by construction π∗OCa

∼=
⊕n−1

r=0K
⊗−r
C the family CA is a family of curves of arithmetic genus n2(g − 1) + 1 = dn.

We denote by Ared
n ⊂ An the subset corresponding to reduced spectral curves, by

Aint
n ⊂ Ared

n the subset corresponding to integral spectral curves and by A×
n ⊂ An the

open subset corresponding to spectral curves whose singularities are at worst nodes. For
us reducible spectral curves will be of particular interest.

When viewed as an effective divisor on the surface T ∗C, any spectral curve Ca can be
written uniquely as

(5) Ca =
r∑

k=1

mkCak ,

where the ak are the distinct irreducible factors of the characteristic polynomial and mk

their multiplicities. In particular, the Cak are integral and pairwise distinct curves which
5



are spectral curves of some degree nk. We then have

(6) n =
r∑

k=1

mknk.

For n = (nk)k ∈ Zr
>0 we write

An :=
r∏

k=1

Ank

Then, for n,m ∈ Zr
>0 satisfying (6), multiplication of polynomials (pk)k 7→

∏
pmk

k defines
a finite morphism

multm,n : An → An

and we denote by Sm,n its image. For our results the case m = 1 = (1, . . . , 1) is the
most important one, as in this case the generic point of the image consists of reduced
spectral curves. We will thus abbreviate

Sn := S1,n and multn := mult1,n .

The generic spectral curves defined by points in these subsets are rather simple.

Lemma 2.1.
(1) For every a ∈ A the spectral curve Ca is connected.
(2) For every n,m satisfying

∑
mknk = n there is a dense open subset

S×
m,n ⊂ Sm,n

such that for a ∈ S×
m,n the reduced curve Cred

a ⊂ Ca is nodal and with nonsingular
irreducible components.
In particular, since every irreducible component of Ca has genus g ≥ 2, the

curves Cred
a are stable curves in the sense of Deligne-Mumford [14] for all a ∈ S×

m,n.

Proof. This is a consequence of Bertini’s theorem: The spectral curves Cak ⊂ T ∗C ⊂
P := PC(OC ⊕ KC) are defined by general sections of the relative O

P

(nk) which has
global sections H0(C, Symnk(OC ⊕KC)). In particular for nk > 1 it induces a morphism
to projective space that embeds T ∗C and thus the generic hyperplane section Cak is
smooth and connected. For nk = 1 all spectral curves Cak are smooth and connected,
as C is. Again by positivity of Knk

C the open subset of An where the curves intersect
transversally is non-empty. �

We will also need to recall the correspondence between Higgs bundles and torsion free
sheaves on spectral curves, that was proved in increasing generality by Hitchin, Beauville–
Narasimhan–Ramanan, and Schaub. Given a Higgs bundle (E, φ) with hn(E, φ) = a we
can consider E as a coherent sheaf on Ca, because sheaves on T ∗C can be viewed as OC-
modules equipped with an action of the OC-algebra ⊕i≥0K

−⊗i
C . The Cayley–Hamilton

theorem then says that the module FE,φ defined by φ is supported on Ca and it is a
torsion free sheaf of rank 1 on Ca, i.e., the restriction map from local sections of FE,φ

to the preimage in Ca of the generic point of C is injective and at all generic points of
Ca the sheaf has the same length as the structure sheaf OCa

(a notion that in the case
of non-reduced curves was introduced by Schaub [34, Définition 1.1 and Définition 1.2]).
Conversely given F a torsion free sheaf of rank 1 on Ca the sheaf E = π∗F is a vector
bundle, because it is a torsion free OC-module on the smooth curve C, it is of rank n,
because this is the length at the generic point of C and it comes equipped with a Higgs
field φ induced from the OCa

-module structure.
6



These constructions are inverse to each other and work without change for flat families
of sheaves. Since π : Ca → C is a finite morphism, H∗(Ca,F) ∼= H∗(C, π∗F) and thus the

Euler characteristic of F and the induced Higgs bundle E agree. Denoting by Cohtf
1,CA

→
A the stack of torsion free sheaves of rank 1 on spectral curves, we can summarize this
as follows:

Theorem 2.2 ([20][1][34, Proposition 2.1]). The functor (E, φ) 7→ FE,φ induces an equiv-

alence Higgsn
∼= Cohtf

1,CA
. Under this equivalence the stack Higgsdn is identified with the

substack of torsion free sheaves of rank 1 and Euler characteristic χ = d+ n(1− g).

In [34, Théorème 3.1] (see [9, Remarque 4.2]) it was explained how stability of Higgs
bundles translates into a stability condition for sheaves on spectral curves.

Let a ∈ Sn be a point that defines a reducible, reduced spectral curve Ca with irre-
ducible components Ca1 , . . . , Car . In this case a torsion-free rank 1 sheaf F on Ca defines
a stable Higgs bundle of degree d if and only if for all proper subcurves CI = ∪i∈ICai ( C
we have

χ(FCI
) ≥

∑

i∈I

ni · (
d

n
+ 1− g),

where χ is the Euler characteristic and FCI
is the maximal torsion-free quotient of

F|CI
. This coincides with the usual stability condition for Higgs bundles, as χ(FCI

) =
deg(π∗FCI

) +
∑

i∈I ni(1 − g). In [34, Théorème 3.1] this formula is written in terms of
a normalized degree function degX(F) = χ(F) − χ(OX), which simplifies to the above
inequality as χ(OCI

) = (
∑

i∈I ni)
2(1− g).

Remark 2.3. This notion of stability coincides with a stability notion for compactified
Jacobians (see e.g., [23, Definition 2.11]) with respect to the polarization q := (ni · (

d
n
+

1− g))i, which is a general polarization as gcd(n, d) = 1.
In particular the restriction of the Hitchin fibration hn : Mn → An to Ared is a fine

relative compactified Jacobian for the family CA|Ared in the sense of Esteves [16, Theorem
A].

Finally we recall the δaff-invariant of our spectral curves. For any spectral curve Ca

we denote by Ja := Pic0Ca
the generalized Jacobian of Ca, which is the group scheme

parameterizing line bundles on Ca that have degree 0 on all irreducible components of
Ca. The Ja are the fibers of a group scheme JA → An over A which acts on Mn.

For every a the connected group scheme Ja has a canonical filtration

0 → Jaff
a → Ja → Jproj

a → 0

where Jaff
a is affine, Jproj

a is projective and both are connected (e.g. [7, Section 9.2,
Corollary 11]). One defines

δaff(Ca) := dim(Jaff
a ).

Remark 2.4. [7, Section 9.2, Example 8] If Ca is a reduced, connected curve and ν : C̃a →
Ca is the normalization, then ν∗ defines an isomorphism Jproj

a
∼= Pic0

C̃a
and Jaff

a = ker(ν∗).

In this case

(7) δaff(Ca) = dimH0(C, ν∗OC̃a
/OC) + 1−#(π0(C̃a)).

If furthermore, the only singularities of Ca are nodes, we have

(8) δaff(Ca) = #(nodes) + 1−#(π0(C̃a)) = 1− χ(Γ) = dimH1(Γ),

where Γ is the dual graph of the curve Ca.
7



The function a 7→ δaff(Ca) is upper semi-continuous by [15, X, Remark. 8.7], i.e. there
are closed subsets

A≥δ
n := {a ∈ An|δ

aff(Ca) ≥ δ} ⊆ An.

Notation 2.5. For a flat family CY → Y of projective curves over an irreducible scheme
Y with generic point ηY , we will denote by δaff(Y ) := δaff(CηY ) and call it generic δaff-
invariant on Y .

Lemma 2.6. Let n be a partition of n and ηn ∈ Sn the generic point then we have

codimSn = δaff(Cηn) =: δaff(n)

and

δaff(n) =
∑

i<j

ninj(2g − 2)− r + 1.

Proof. We know that dimSn = dimAn =
∑r

i=1(n
2
i (g − 1) + 1).

By Lemma 2.1 for a general a = (ai) ∈ An the spectral curve Ca is a connected curve
which has r smooth components intersecting transversally. As each component is defined
by a polynomial in Ani

= ⊕ni

k=1H
0(C,K⊗k

C ) we have

#(Cai ∩ Caj ) = ninj(2g − 2).

By Remark 2.4 this implies δaff(n) =
∑

i<j ninj(2g − 2)− r + 1 and thus we find

dimSn + δaff(Ca) =

(
r∑

i=1

n2
i (g − 1)

)
+ r +

∑

i<j

2(ninj)(g − 1)− r + 1

= n2(g − 1) + 1 = dimAn.

�

Notation 2.7. For a partition n of n we will denote by Γn the dual graph of any spectral
curve given by a point of S×

n , i.e., it is the graph with vertices {1, . . . , r} corresponding to
the irreducible components of the curve and ninj(2g − 2) edges between the vertices i, j,
corresponding to the intersection points of the components.

3. The supports have to be δ-loci

In this section, we show that supports of the complex Rh∗Q can only be irreducible
components of the subschemes A≥δ

n ⊂ An of spectral curves of δaff invariant at least δ.
A result of this type appears in [9]. Here, we give a different argument, relating the
computation of the higher discriminants of the Hitchin fibration to the δaff invariant.

Let us recall the notion of higher discriminants of a map from [26, Section 1.3]:

Definition 3.1. Let f : X → Y be a proper map between complex nonsingular varieties.
For any i ≥ 1, the i-th discriminant ∆i(f) is the locus of y ∈ Y such that there is no
(i − 1) dimensional subspace of TyY transverse to dfx(TxX) for every x ∈ f−1(y), i.e.
such that the preimage of an (i− 1)-dimensional disc around y would be nonsingular of
codimension dimY − i+ 1.

The i-th discriminants ∆i(f) form a decreasing sequence of closed subsets and moreover
∆1(f) is the discriminant locus of the map f , i.e. the complement of the biggest open
subset of Y where the restriction of the morphism f is a smooth morphism. As explained
in [25, Section 8], the existence of Whitney stratifications [40, Theorem 4.14] implies that

8



there is a stratification of An by smooth locally closed subvarieties such that the preimage
under h of transversal slices to the strata are smooth and therefore

(9) codim∆k(f) ≥ k for all k.

The relevance of higher discriminants stems from the following:

Theorem 3.2. [26, Theorem B] Let f : X → Y be a projective map between smooth
varieties. Then any support of Rf∗Q that has codimension k in Y has to be an irreducible
component of ∆k(f).

For the Hitchin fibration, the higher discriminants turn out to be δ-loci.

Theorem 3.3. Let hn : Mn → An be the Hitchin map. The i-th discriminant of hn is
equal to

(10) ∆i(hn) = A≥i
n = {a ∈ An such that δaff(Ca) ≥ i}.

Proof. To prove that ∆i(hn) ⊇ A≥i
n let us denote by act : JAn

×An
Mn → Mn the action

given by the tensor product of line bundles with torsion free sheaves. By Proposition
7.12 the differential d act is dual to the differential dhn of hn with respect to the sym-
plectic form ωHiggs on Mn, i.e., for any point m ∈ Mn with hn(m) = a the differential
d actm : Lie(Ja) → TmMn of the action actm : Ja → Mn given by actm(j) = j.m is dual
to dhn,m : TmMn → TaAn.

For any a ∈ An we defined δaff(Ca) to be the dimension of the affine part Jaff
a of

Ja = Pic0(Ca) and this group scheme acts on the projective fiber hn
−1(a) ⊂ Mn. By

Borel’s fixed point theorem there exists a fixed point m = (E, φ) ∈ hn
−1(a) for the action

of the commutative affine group scheme Jaff
a . Therefore Lie(Jaff

a ) is in the kernel of d actm
and by the duality this implies that a ∈ ∆δaff (Ca).

Conversely we know that for any m ∈ hn
−1(a) the stabilizer StabJa(m) is affine (e.g.,

because for a rank 1 torsion free sheaf F on Ca and any line bundle L ∈ Ja the pull
backs ν∗F and ν∗(F ⊗ L). to the normalization of Cred

a can only be isomorphic if ν∗L
is m-torsion for some m ≤ n). Thus we know that at any point m the kernel of d act is
contained in Lie(Jaff

a ) and therefore by duality we have ∆δ(hn) ⊆ An
≥δ. �

Since we have already noted that codim∆k(f) ≥ k for all k (Eq. (9)), the following is
an immediate consequence of Theorem 3.3:

Corollary 3.4. Let hn : Mn → An be the Hitchin map then the codimension of the δ-loci
of the Hitchin base satisfy

(11) codimA≥i
n ≥ i.

In particular, since the relative Picard group of the spectral curve family CA is polarizable
(see [30, Proposition 4.12.1][10, Theorem 3.3.1 ]), the Hitchin map is a δ-regular weak
abelian fibration in the sense of Ngô [31, Section 7.1].

Remark 3.5. By Lemma 2.6, the subvarieties Sn have codimension equal to their generic
δaff invariant δaff(n). By Theorem 3.3 it follows that they are δaff(n)-codimensional com-

ponents of ∆δaff (n)(hn). In view of Theorem 3.2, this makes these subvarieties potential
supports of Rhn,∗Q.

4. The supports have to be partition strata

Recall that Ared is the open subset of A parameterizing reduced spectral curves. The
main result of this section is the following proposition:

9



Proposition 4.1. If a subvariety Y ⊂ A with Y ∩Ared 6= ∅ is a support of Rh∗Q, then
Y = Sn for some partition n of n.

The proof of this result will be a simple combination of Ngô’s support theorem with
information on irreducible components of compactified Jacobians. Let us recall these
results. Ngô proved a general result on the supports for the cohomology of a projective
morphism h : X → Y which is a δ-regular weak abelian fibration. By Corollary 3.4 this
condition is satisfied for the Hitchin fibration hn : Mn → An and in this case the result
reads as follows. Recall that due to the nonsingularity of Mn, the constant sheaf Q on
it is self-dual, i.e. it coincides with its own Verdier dual, up to shift.

Theorem 4.2 ([30, Theorem 7.2.1]). If Y ⊂ An is a support of Rh∗Q then the highest
cohomology sheaf Rtoph∗Q contains a summand supported at Y .

For us the main aspect of this theorem is that supports can only appear where the
set of irreducible components of the fibers is not locally constant, more precisely for
any stratification of Ared

n such that the restriction of Rtoph∗Q to every stratum is locally
constant, the supports of Rh∗Q meeting Ared

n have to be among the closures of the strata.
By decomposing reduced spectral curves into their irreducible components we know

that Ared
n is the union of the images of the maps multn : (

∏r
k=1A

int
nk
)red → Ared

n where n
runs through the partitions of n. As the generic points of these images are the generic
points of the strata Sn, we can prove Proposition 4.1 simply by showing that the restric-
tion of the highest cohomology sheaf Rtoph∗Q is locally constant on these images. By
proper base change this follows from the following Lemma.

Lemma 4.3. For any partition n of n let multn : (
∏r

k=1A
int
nk
)red → Ared

n be the restriction

to Ared
n of the morphism given by the multiplication of characteristic polynomials. Then

the sheaf mult∗nR
toph∗Q is constant.

Proof. As h is flat and proper the formation of Rh∗Q = Rh!Q commutes with base
change and therefore the stalks of mult∗nR

toph∗Q = mult∗nR
toph!Q have a basis indexed

by the irreducible components of the fibers. As explained in Remark 2.3 the BNR-
correspondence shows that h−1(Ared) → Ared is a fine relative compactified Jacobian
for the family of spectral curves which have planar singularities. This property is stable
under any base change by definition. By [23, Corollary 2.20] the subvariety parameterizing
locally free sheaves on the spectral curves is dense in every fiber and therefore the sheaf
of irreducible components of the compactified Jacobian is a subsheaf of the sheaf of
components of the Jacobian of the spectral curve. Moreover the irreducible components
of the Jacobian of a spectral curve are indexed by the degrees of the restrictions of the line
bundles to the irreducible components of the underlying curve [7, Section 9.3, Corollary
14] and by definition stability is determined by a numerical condition on these degrees.
As the sheaf of irreducible components of Ca is constant on (

∏r
k=1A

int
nk
)red we deduce

that the sheaf of irreducible components of the Jacobians of Ca is also constant on this
space and thus the same is true for the components of the fibers of h. This shows our
claim. �

5. Comparison with versal families

To check that the strata Sn ⊂ Ared
n corresponding to reducible and generically reduced

spectral curves are supports we will compare the family of spectral curves at a general
point of Sn to a versal deformation. For the versal family of nodal curves we know from

10



[27, Theorem 1.8] that the cohomology of the corresponding family of compactified Jaco-
bians has full support and that the Cattani–Kaplan–Schmid complex allows to compute
the fibers of the corresponding intersection cohomology complexes at every point.

In order to deduce the decomposition also for the Hitchin fibration, we need to control
the behavior of the intersection cohomology complexes under restriction and compute the
Kodaira–Spencer map for the family of spectral curves. These results are proven in this
section.

5.1. Splitting the restriction of an intersection cohomology complex. We begin
with an easy fact concerning restriction of a semisimple intersection cohomology complex
under the hypothesis that the restriction remains semisimple and satisfies a Hard Lef-
schetz type symmetry. This happens for example if the complex arises from a projective
morphism and the restriction is taken to a closed subvariety with a smooth preimage.

The argument is reminiscent of the characterization of supports as “relevant strata” in
a semismall map in [6, 12]. As in these references we will denote by Db

c(X) the category
of bounded complexes with constructible cohomology sheaves on a variety X . We start
with an easy observation.

Lemma 5.1. Let L be a semisimple local system on an open dense subset U ⊂ X and let
P = IC(L) be its intersection cohomology complex. Let ι : Z →֒ X be a closed subvariety
such that:

(1) U
⋂
Z is Zariski dense in Z.

(2) The complex ι∗P is perverse semisimple.

Then

ι∗P = ⊕k IC(Z
k,Lk)

where Zk is the union of the irreducible components of SuppHk(P )
⋂
Z of codimension

k in Z and Lk = Hk(ι∗P ) on the smooth part of the dense open subset of Zk where this
sheaf is a local system.

Proof. Recall that, if Q is a perverse semisimple sheaf on Z, then we have a canonical
decomposition

(12) Q =

n⊕

k=0

IC(Zk,Lk)

where, for every k, Zk is a closed subvariety of Z of codimension k, and Lk is a semisimple
local systems on an open set Zk,◦ of Zk. Note that Zk is allowed to be reducible and Lk

may have different rank on the different components of Zk,◦.
The subsets Zk and local systems Lk afford an easy characterization, which follows

immediately from the strong support condition for the intersection cohomology complex
(Section 2.1), i.e.: For every k, the closed subset Zk is the union of the k-codimensional
components of SuppHk(Q) and if x ∈ Zk,◦, then there is a canonical isomorphism Lk

x =
Hk(Q)x. Taking Q = ι∗P this proves our claim. �

Remark 5.2. Notice that, by the support condition (see Section 2.1) for the intersection
cohomology complex, we have that codimSuppHk(IC(L)) ≥ k+1. Thus, for a sufficiently
generic closed subvariety Z we have SuppHk(IC(L))

⋂
Z has codimension at least k + 1

in Z and therefore it cannot contribute a perverse summand. On the other hand, if
codimSuppHk(IC(L))

⋂
Z < k, then ι∗ι

∗IC(L) is not perverse. So if ι∗IC(L) is perverse
on Z then the summands with smaller support occur because Z is not transversal to the
supports of the cohomology sheaves.

11



In our application the condition of the above lemma will follow from a relative hard
Lefschetz theorem. We formalize this as follows.

Definition 5.3. We write RHL(X) ⊆ Db
c(X) for the collection of semisimple complexes

such that there exists an integer m and a decomposition

(13) K =
2m⊕

i=0

p
H

i(K)[−i]

that is RHL symmetric for m in the sense that

(14) p
H

m+i(K) ≃ p
H

m−i(K)(−i) for every i = 0, . . . , m

where we denoted the i-th Tate twist by (i).

Using this definition, we can state the main result of this section, which allows to
describe the restriction of a complex K in RHL(X) to a closed subscheme Z in terms of
the cohomology sheaves of K under the condition that the restriction happens to lie in
RHL(Z).

Proposition 5.4. Let X be an algebraic variety of dimension n, K ∈ RHL(X) a complex
with no proper supports and U ⊂ X a dense open subset small enough to assure that
K ≃

⊕
IC(Li)[−i] for some local systems Li on U .

Assume ι : Z →֒ X is a closed locally complete intersection subvariety of codimension
c in X such that Z

⋂
U is dense in Z and with the property that

(15) ι∗K ∈ RHL(Z).

For every i, k set

(16) Z̃k
i = SuppHk(IC(Li))

⋂
Z

and let Zk
i be the union of the k-codimensional components of Z̃k

i in Z.
Then we have

(17) p
H

k(ι∗K) ≃ ι∗ p
H

k(K) =
⊕

k

IC(Zk
i ,L

k
i )

where

(18) Lk
i = Hk(IC(Li))

on the dense open set of Zk
i where Hk(IC(Li)) is a non-zero local system.

The statement Eq. (17) implies that the restrictions ι∗ IC(Li) are again perverse sheaves.

In particular all irreducible components of Z̃i

k
have codimension ≥ k. In the special case

k = dimZ the result can therefore be rephrased as follows.

Corollary 5.5. In the hypotheses above, let p ∈ Z be a closed point. Then p is the
support of a summand in the decomposition Eq. (17) if and only if HdimZ(IC(Li))p 6= 0
for some i.

Proof of Proposition 5.4: By Lemma 5.1 we only need to show that the restriction ι∗ pH k(K)
is still a perverse sheaf. Applying c times [2, Corollaire 4.1.10], we have that, for every i,

ι∗ p
H

k(K) ∈ Db
c(Y )[0,c].

Suppose k0 is the biggest integer for which ι∗ pH k0(K) is not perverse. By the symmetry
assumption we can assume k0 ≥ m. Moreover, as by our semisimplicity assumption

ι∗ p
H

k0(K) = ⊕d
j=0Pj[−j]

12



for some perverse sheaves Pj, a non-zero summand Pj with j > 0 would contribute a
summand in pH k0+j(ι∗K) which violates the RHL symmetry. �

Remark 5.6. In the situation of Proposition 5.4 assume K is pure of weight 0 so that
by our assumptions ι∗K is pure of weight 0 too. Then the local systems Lk

i are pure of
weight i+ k. Notice that since Li is of weight i, by purity we have

weight(Hk(IC(Li)))x ≤ i+ k,

therefore the local systems Lk
i are the maximal weight quotients of the cohomology sheaves.

Remark 5.7. The assumptions of Proposition 5.4 are met when K = Rf∗Q for a pro-
jective map f : M → X from a smooth variety M such that Rf∗Q has no proper supports
and Z ⊂ X is a local complete intersection such that f−1(Z) is nonsingular, as in this
situation the decomposition theorem and the relative hard Lefschetz theorem apply to both
f and its restriction f|f−1(Z) : f

−1(Z) −→ Z.

5.2. The Kodaira–Spencer map for spectral curves. We want to apply Remark
5.7 to compare the cohomology of the Hitchin fibration to the cohomology of relative
compactified Jacobians for versal families of spectral curves. To verify the assumptions
that Z is a local complete intersection we need to describe the Kodaira–Spencer map for
the family of spectral curves over An. (An introduction to Kodaira-Spencer maps can be
found in [38, Section 3], for the general deformation theory see [21, Chapitre III].)

For any point a ∈ An we denote by ICa
⊂ OT ∗C the ideal sheaf defining Ca ⊂ T ∗C.

Recall that embedded deformations of Ca ⊂ T ∗C are described by the cotangent complex

LCa/T ∗C = [ICa
/I2

Ca
→ 0]

which is concentrated in degree −1. Considering the composition Ca →֒ T ∗C → Spec k
we see that the cotangent complex of Ca is

LCa
=
[
ICa

/I2
Ca

→ (ΩT ∗C |Ca
)
]
.

Now the universal spectral curve over An defines a Kodaira–Spencer map

KSa : TaAn → H1(Ca,L
∨
Ca
) = Ext1(LCa

,OCa
).

We know that the Gm-action on An and the translation action H0(C,KC) × An → An

lift to the universal spectral curve CAn
→ An and therefore induce trivial deformations

of Ca. Let us denote by

dmult : H0(C,OC) → TaAn
∼= ⊕n

i=1H
0(C,K⊗i

C )

the derivative of the Gm-action and by

dshift : H0(C,KC) → TaAn
∼= ⊕n

i=1H
0(C,K⊗i

C )

the derivative of the translation. We will show in Lemma 5.8 below that the span of the
image of these maps is the kernel of the Kodaira–Spencer map.

Let us also recall that Sn,1 ⊂ An is the locus of spectral curves that are given by the
n-th infinitesimal neighborhood of a section in T ∗C.

Lemma 5.8 (Kodaira–Spencer map for Ca).
(1) For any point a ∈ An − Sn,1 the kernel of the Kodaira–Spencer map KSa is the

direct sum of the images of dmult and dshift, i.e., the map KSa factors as

TaAn ։ (TaAn)/(H
0(C,OC ⊕KC)) →֒ H1(Ca,L

∨
Ca
).
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(2) For a ∈ Sn,1 ⊂ An the kernel of the Kodaira–Spencer map KSa is equal the image
of dshift, i.e., the map KSa factors as

TaAn ։ (TaAn)/(H
0(C,KC)) →֒ H1(Ca,L

∨
Ca
).

Proof. Let us first describe the sheaves occurring in LCa
more explicitly. The cotangent

bundle T ∗C is the relative spectrum of the OC algebra

Sym•K⊗−1
C = ⊕∞

r=0K
⊗−r
C

and the spectral curve Ca ⊂ T ∗C is defined by the ideal generated by the image of the
morphism K⊗−n

C → ⊕∞
r=0K

⊗−r
C defined by α 7→ α+ a1α+ · · ·+ anα. Therefore, denoting

by πa : Ca → C the projection we see that

πa,∗OCa
∼= ⊕n−1

r=0K
⊗−r
C

and

ICa
|Ca

= ICa
/I2

Ca

∼= π∗
aK

⊗−n
C .

The dual of the canonical map

LCa
=
[
ICa

/I2
Ca

→ (ΩT ∗C |Ca
)
]
→ [ICa

/I2
Ca

→ 0] = LCa/T ∗C

is given by

[0 → (ICa
/I2

Ca
)∨] → [TT ∗C |Ca

→ (ICa
/I2

Ca
)∨].

Note that

H0(Ca, (ICa
/I2

Ca
)∨) ∼= H0(C,⊕n

r=1K
⊗r
C ) = TaAn

is the space of embedded deformations of Ca ⊂ T ∗C.
Taking cohomology of the exact triangle of complexes:

→ [0 → (ICa
/I2

Ca
)∨] → L

∨
Ca

p
−→ [TT ∗C |Ca

→ 0] →

we obtain a long exact sequence:
(19)

0 → H0(Ca,L
∨
Ca
)
H0(p)
−→ H0(Ca, TT ∗C |Ca

)
δ

−→ H0(Ca, (ICa
/I2

Ca
)∨)

KSa−→ H1(Ca,L
∨
Ca
) → . . .

To conclude we will compute the dimension of H0(Ca, TT ∗C |Ca
) and then compare it to

the dimension of the image of dmult and dshift.
Restricting the relative tangent sequence 0 → π∗KC → TT ∗C → π∗TC → 0 on T ∗C to

Ca we get

0 → π∗
aKC → TT ∗C |Ca

→ π∗
aK

⊗−1
C → 0.

Applying πa,∗ and the projection formula we find:

0 → ⊕n−1
r=0K

⊗(1−r)
C → πa,∗(TT ∗C |Ca

) → ⊕n−1
r=0K

⊗(−1−r)
C → 0.

In particular we see that

H0(Ca, TT ∗C |Ca
) ∼= H0(Ca, π

∗
aKC) = H0(C,KC)⊕H0(C,OC).

Thus we have an exact sequence:

(20) H0(Ca, π
∗
aKC) = H0(C,KC)⊕H0(C,OC)

δ
−→ TaAn

KSa−→ H1(Ca,L
∨
Ca
),

where the map δ is determined by the differential in the cotangent complex L∨
Ca
.

Now let us determine the dimension of the image of dmult and dshift. The Gm action
is given by the action of weight i on H0(C,K⊗i

C ), so at a the element c ∈ C = Lie(Gm)
defines the tangent vector (ai + iai · ǫ) ∈ TaAn ⊂ An(C[ǫ]/(ǫ

2)).
14



Similarly as a is given by the coefficients of a characteristic polynomial the translation
by an element ω ∈ H0(C,KC) sends a polynomial p(t) to p(t − ω). Thus the derivative
at a = (ai) is (ai − (n− i+ 1)ωai−1 · ǫ) where we put a0 := 1.

In particular these vector fields are linearly independent unless ai = (−1)i
(
n
i

)
ωi, i.e.,

a ∈ Sn,1. This shows that the the kernel of KSa has dimension ≥ g + 1 for a 6∈ Sn,1. By
equation (20) we know that the dimension is ≤ g + 1, so this shows the first claim.

If a is the n−fold multiple of a section, then the spectral curve Ca admits a continuous
family of automorphisms, given by multiplication of the nilpotent generator therefore
H0(Ca,L

∨
Ca
) which is the tangent space to the automorphism group of Ca is at least 1

dimensional. From the above computation of the image of dshift we know that the image
of δ has to be at least g dimensional. Combining these two observations with the exact
sequence (19), we see that both estimates have to be equalities. This implies the second
claim. �

Let us now apply this result to the restriction of the Hitchin fibration to the subset of
nodal curves. We denote by M dn the stack of stable curves of genus dn = dimAn. Then
by Lemma 2.1 the flat universal family of spectral curves CAn

induces a morphism

f× : A×
n → M dn .

Recall from Remark 2.3 that for any a ∈ A× the stability condition for Higgs bundles
corresponds to the stability condition for rank 1 torsion free sheaves on the curve Ca

defined by the general polarization q = (ni · (
d
n
+ 1 − g))i. Here ni is the degree of the

irreducible component Ci of Ca over C. The arithmetic genus of a spectral curve of degree

ni is g(Ci) = n2
i (g− 1)+1 (see 3) and therefore ni =

√
g(Ci)−1
g−1

can be expressed in terms

of the genus of Ci. Similarly a union of components CI = ∪i∈ICi defines a spectral curve

of degree nI :=
∑

i∈I ni over C and therefore we again have nI =
√

g(CI )−1
g−1

.

This allows us to define a compatible family of polarizations on the Zariski open neigh-
borhood U ⊂ M gn of f×(A

×
n ) parameterizing nodal curves with irreducible components

of arithmetic genus equal to g(CI) for some I ⊂ {1, . . . r}, as follows. For u ∈ U corre-
sponding to a curve Cu with irreducible components (Cj)j=1,...l of genus gj = g(CIj) define

qj :=
√

gj−1

g−1
· ( d

n
+1− g). As we have seen above, the terms

√
g(CI )−1

g−1
are integers and qj

is a generic polarization in the sense of [23] and by construction these polarizations are
compatible under deformations of subcurves as in [23, Definition 5.3].

The following is a consequence of the work of Esteves [16, Theorem A] and Melo–
Rapagnetta–Viviani [23, Theorem C].

Proposition 5.9. Over the open neighborhood U ⊂ M gn of f×(A×
n ) defined above there

exists a regular and irreducible Deligne-Mumford stack π : JU(q) → U that étale locally is
a relative compactified Jacobian parametrizing q-stable rank 1 torsion free sheaves.

Proof. We first observe that it suffices to know that for any point a ∈ U there exists an
étale neighborhood U → U such that a regular and irreducible compactified Jacobian
exists over U . As these spaces are geometric coarse moduli spaces of the algebraic stack
of q-stable rank 1 torsion free sheaves they are canonically isomorphic on the intersections

of these neighborhoods and therefore define an étale covering of a stack JU(q) → U .
Now by [16, Theorem A], compactified Jacobians exist for any family of proper reduced

curves, when stability is taken with respect to a polarization induced from a vector bundle
over the family of curves; moreover, any polarization is locally of this form ([23, Remark
2.16]), because étale locally one can construct vector bundles having specified degrees
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on the irreducible components (e.g., one can use direct sums of line bundles defined by
suitable local sections through smooth points of the irreducible components).

The regularity of JU(q) can be checked locally. By [23, Theorem C] for any general

polarization q the relative compactified Jacobians JSpecR(q) are regular and irreducible
whenever R is the complete local ring given by an effective versal deformation of a reduced
locally planar curve and this implies the regularity of JU(q). �

Combining this result with our computation of the Kodaira–Spencer map for the family
CAn

(Lemma 5.8) we deduce:

Corollary 5.10. For every non-trivial partition n of n, let a ∈ S×
n (see Lemma 2.1).

Given a subvariety Σa of A×
n passing through a and intersecting S×

n transversally, the

classifying map fΣa
: Σa → U ⊂ M gn is unramified on an open neighborhood of a in Σa.

Furthermore we have a cartesian diagram

(21) hn
−1(Σa)

hn|Σa
''❖❖

❖❖
❖❖

❖❖
❖❖

❖❖
❖

≃
// JU(q)×U Σa

//

��

JU(q)

π

��
Σa

fΣa
// U .

Proof. The strata S×
n are invariant under the scaling action of Gm and the translation by

elements in H0(C,KC). Thus, the tangent space of Σa, which is assumed to intersects
S×
n transversally at a, will be transversal to the kernel of the Kodaira-Spencer map KSa

at a by Lemma 5.8, i.e., fΣa
is unramified at a and therefore the same holds in an open

neighborhood of a. �

Corollary 5.11. With the notation and assumptions of Corollary 5.10 we have for any
k ∈ Z:

pHk(Rhn|Σa,∗Q) ∼= f ∗
Σa

(
pHk(Rπ∗Q)

)
.

Proof. As Σa and U are smooth and the map fΣa
is unramified it is étale locally a closed

embedding [39, Tag 04HJ] of a smooth variety and therefore it is étale locally a local
complete intersection morphism. As perverse cohomology sheaves can be determined
étale locally, the complexes Rhn|Σa,∗Q andRπ∗Q satisfy the RHL condition (Remark 5.7).
Moreover, we noted in the beginning of this section that [27, Theorem 1.8] says that the
cohomology of compactified Jacobians over U , which is a versal family of nodal curves, has
full support, so that the restriction result for semisimple complexes Proposition 5.4(17)
thus applies to fΣa

: Σa → U . �

6. The partition strata are supports

Our next aim is to use the restriction result of the previous section to show that the
strata Sn are supports and to describe the local systems that give rise to the summands
supported on Sn. The starting point is the main result of [27] that shows that for a
versal family of nodal curves the corresponding family of compactified Jacobians has full
supports and moreover the corresponding IC complexes have a rather explicit descrip-
tion in terms of the Cattani–Kaplan–Schmid (CKS) complex. Applying the restriction
theorem of the previous section to this explicit description we reduce the computation to
a combinatorial problem, that can be formulated in terms of matroids and drawing from
results on matroids we can then conclude our main result.

Throughout this section we will consider the following setup. We will denote by π : C →
B a flat projective versal family of locally planar curves and by U ⊂ B the open subscheme
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over which the morphism π is smooth. The local system over U defined by the first
cohomology group of the fibers of π will be abbreviated as

R1 := (R1π∗Q)|U .

In this setting the main theorem of [27] reads as follows.

Theorem 6.1 ([27, Theorem 5.12]). Let π : C → B be a projective versal family of curves
with locally planar singularities and arithmetic genus g, and let πJ : JC → B be a relative
fine compactified Jacobian. Then we have

RπJ
∗Q =

2g⊕

i=0

IC(
i∧
R1)[−i],

i.e., the complex RπJ
∗Q has no proper supports on B.

6.1. Description of the IC complexes for families with full support. In order to
use this we now recall the explicit description of IC(

∧i R1) in terms of the CKS complex
introduced in [8, 22] and described for deformations of nodal curves in [27, Section 3].

Let us first recall the general result. Assume B is a complex manifold of dimension
n, D ⊂ B is a normal crossing divisor D, and L is a local system on B r D with
unipotent monodromies {Ti} around the components of D. We work locally, near a
point p ∈ D. After picking a holomorphic chart U ⊂ B in a neighborhood of p, we
may assume p to be the origin in a polydisc ∆n and the divisor D to have equation∏l

i=1 zi = 0. Thus U
⋂
(B r D) ≃ (∆∗)l × ∆n−l, where ∆∗ is the punctured unit-disc.

Up to taking a slice transverse to the stratum of D to which p belongs, we may assume
l = n, and denote ip : {∗} → B the closed embedding. The local system on (∆∗)n is
described by the stalk at a base point, a vector space L, and n commuting nilpotent
endomorphisms Ni = log Ti : L → L. Given a subset {i1, · · · ik} = I ⊂ {1, · · · , n}, with
1 ≤ i1 < i2 < · · · , < ik ≤ n, we set NI = Ni1Ni2 · · ·Nik , where we remark that the order
of the composition doesn’t matter as the endomorphisms commute. We denote by |I| the
cardinality of I, and consider the complex

(22) C•({Nj}, L) := {0 → L →
⊕

|I|=1

ImNI →
⊕

|I|=2

ImNI → · · · → ImN{1,··· ,n} → 0},

where L is in degree zero, and where the differentials are given up to the standard signs
by

(23) Nr : ImNi1 · · ·Nik → ImNrNi1 · · ·Nik if r /∈ {i1, · · · , ik}.

If the local system underlies a variation of pure Hodge structures of weight k, C•({Nj}, L)
is in a natural way a complex of mixed Hodge structures ([22, §4]) isomorphic to i∗p IC(L)
[22, Corollary 3.4.4], and its cohomology sheaves Hr(i∗p IC(L)) have a natural mixed
Hodge structure and its weight filtration satisfies:

(24) Hr(i∗p IC(L)) = Wr+kH
r(i∗p IC(L)),

([22, Theorem 4.0.1]).

Remark 6.2. The weight filtration used in [22] differs by a shift from the one used in
[8]. The one in [22] gives the statement in the form of Eq. (24), which is compatible
with the MHS on the fibre via the decomposition theorem, while the one in [8] gives
Hr(i∗p IC(L)) = WkHr(i∗p IC(L)), [8, Corollary 1.13].
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We describe the complex of mixed Hodge structures C•({Nj}, L) in the case of a family
of relative Jacobians associated with a family of stable curves.

We start from a stable nodal curve C×, of arithmetic genus g and dual graph Γ. We
abbreviate δaff := δaff(C×), which, since C× is connected, equals dimH1(Γ) by Eq. (8).

Let p̃ : C̃× → C× be the normalization map. Let Mg ⊆ Mg be the moduli stack of

semistable curves of genus g. Let B be an étale neighborhood of [C×] ∈ Mg on which
there exists a universal family π : C → B, and let D be the preimage of the boundary
divisor Mg r Mg in B.

If B is small enough, the irreducible components of D are in natural one-to-one corre-
spondence with the nodes of C×: given a node e, the general point of the corresponding
irreducible component De of D corresponds to a curve of the family where the node e
persists while the other nodes are smoothed. On U := B rD we have the local system

R1 := (R1π∗Q)|U .

The stalk of R1 at a base point η ∈ U is H1(Cη,Q), a rational vector space of dimension
2g(Cη) endowed with a family of unipotent commuting endomorphisms: for each node
e there is {Te}e, the monodromy around the component De. The space H1(Cη,Q) is
endowed with the weight filtration

(25) W0 = H1(Γ,Q) ⊆ W1 = H1(C×,Q) ⊆ W2 = H1(Cη,Q),

described as follows:
The first inclusion is induced by the short exact sequence of sheaves on C× associated

with the normalization map:

(26) 0 → QC× → p̃∗QC̃×
→ ⊕p∈Nodes(C×)Qp → 0,

which induces the sequence:

0 → H1(Γ,Q) → H1(C×,Q) → H1(C̃×,Q) → 0,

giving the weight filtration of the Mixed Hodge structure H1(C×). The second inclusion
in Eq. (25) is induced by the exact sequence arising from the specialization sequence
that computes H∗(Cη,Q) as cohomology of nearby cycles on C× (see [27, Section 3.0.2]):

0 → H1(C×,Q) → H1(Cη,Q) → H1(Γ,Q)(−1) → 0.

The graded quotients associated with the filtration Eq. (25) are:

GrW0 H1(Cη,Q) = H1(Γ,Q),

GrW1 H1(Cη,Q) = H1(C̃×,Q),

GrW2 H1(Cη,Q) = H1(Γ,Q)(−1).

Here H1(Γ,Q) andH1(Γ,Q) are endowed with a pure Hodge-Tate structure of type (0, 0).
More precisely, if E (resp. V) denote the vector space generated by the edges (resp. the

vertices) of the dual graph, choosing an orientation of the edges we obtain the complexes

(27) 0 → E→ V→ 0, 0 → V

∗ → E

∗ → 0,

computing respectively the homology and the cohomology of Γ, so that we identify
H1(Γ,Q) with a subspace of E and H1(Γ,Q) with a quotient of E∗. For every node
e there is an operator Ne := log(Te) : H

1(Cη,Q) → H1(Cη,Q)(−1), which, by the Picard–
Lefschetz formula, factors as

(28) H1(Cη,Q) ։ H1(Γ,Q)(−1)
N ′

e−→H1(Γ,Q)(−1) ⊂ H1(Cη,Q)(−1),
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and is given by

(29) N ′
e : H1(Γ,Q)(−1) →֒ E

t7→〈e∗,t〉·e∗

−−−−−−→ E

∗
։ H1(Γ,Q)(−1)

where e is an orientated edge e∗ is its dual element in E∗ (note that the formula above
for Ne is independent of the choice of orientation of e).

Remark 6.3. With every one-dimensional family of nonsingular curves degenerating to
C× is associated a limit mixed Hodge structure ([35, 36]) on the rational cohomology of a
general fibre, more canonically on the cohomology of the nearby fibre. It follows from the
above Picard–Lefschetz formula (Eq. (29) and Eq. (28)) that the filtration on H1(Cη,Q)
defined above (Eq. (25)) coincides with the weight filtration of the limit mixed Hodge
structure with respect to any smoothing family. The factorization Eq. (28) corresponds
to the fact that the logarithm of monodromy is an endomorphism of type (−1,−1) on the
limit mixed Hodge structure [35, Theorem 6.16].

The direct image local systems for the relative compactified Jacobian family over U
are the exterior powers

∧i R1 for i = 0, · · · , 2g(Cη). For every subset I of edges we have

the operators NI on
∧i H1(Cη,Q), induced by the operators Ne. The restriction of the

intersection complex of
∧i R1 to the point of B that corresponds to the nodal curve C×

is computed by the complex C•({Nj},
∧i H1(Cη,Q)) (Eq. (22)). The weight filtration on∧i H1(Cη,Q) induced by the one on H1(Cη,Q) has a highest weight quotient given by:

GrW2i (

i∧
H1(Cη,Q)) = (

i∧
H1(Γ,Q))(−i) if i < δaff ,

(30)

GrWi+δaff (
i∧
H1(Cη,Q))) = (

δaff∧
H1(Γ,Q))(−δaff)⊗

i−δaff∧
H1(C̃×,Q) for δaff ≤ i ≤ 2g(Cη)− δaff .

(31)

We recall a key observation from [27], which is a simple linear algebra computation
using the explicit formula for the Ne:

Lemma 6.4 ([27, Lemma 3.6]). The vector space ImNI ⊆
∧i H1(Cη,Q)(−|I|) is non-zero

only if |I| ≤ i and ΓrI is connected. In particular, ImNI = 0 if |I| > δaff = dimH1(Γ,Q)
for every i.

Moreover, if Γ r I is connected, the highest weight quotient GrWtop(ImNI) of ImNI is
isomorphic to

GrW2i (ImNI) ∼=
(∧i−|I|H1(Γr I,Q)

)
(−i) if i ≤ δaff

GrWi+δaff (ImNI) ∼=
(∧δaff−|I|H1(Γr I,Q)

)
(−δaff)⊗

∧i−δaff H1(C̃×,Q) if δaff ≤ i ≤ 2g(Cη)− δaff

Remark 6.5. For 2g(Cη)−δaff < i ≤ 2g(Cη) the highest weight quotients are most easily
described through the relative hard Lefschetz theorem and Theorem 6.1, as Tate twist of
the i′-th exterior power for i′ = 2g(Cη)−i < δaff . In this case the highest weight is 2g(Cη).

Lemma 6.4 justifies the following definition:

Definition 6.6. Given a connected graph Γ, with set of edges E, we write C (Γ) for the
collection of subsets of E whose removal does not disconnect Γ. In other words, a subset
I ⊆ E belongs to C (Γ) if and only if Γr I is connected.
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Remark 6.7. In the literature (e.g. [4]) the collection C (Γ) is called the family of inde-
pendent subsets in what is known as the bond, or cographic, matroid of the graph Γ. The
set C (Γ) is partially ordered with respect to inclusions and we denote by |C (Γ)| the associ-
ated simplicial complex, i.e., the complex whose k-dimensional faces are the (k+1)-tuples
of edges belonging to C (Γ).

The rank of C (Γ) is the cardinality of the complement of a spanning tree, namely
|E| − |V| + 1, which, in the case of the dual graph of a nodal curve C× equals δaff(C×),
hence the simplicial complex |C (Γ)| is of dimension δaff(C×) − 1. We denote the chain

complex computing the reduced cohomology of C (Γ) by C̃•(Γ).
Let us summarize:

Proposition 6.8. Let C× be a nodal stable curve, Γ its dual graph and δaff := δaff(C×).
Let B be an étale neighborhood of [C×] ∈ M g on which there exists a universal family

π : C → B and small enough such that the preimage D of the boundary divisor M g rMg

in B has irreducible components indexed by the nodes of C×. Then the fiber of IC(
∧i R1)

at the point [C×] is given by the CKS complex C•({Nj},
∧iH1(Cη,Q)) (Eq. (22)) and for

every i = 0, . . . ,2g(Cη) we have

(1) Hr(C•({Nj},
∧i H1(Cη,Q))) = 0 for r > min{i, δaff}.

(2) For δaff ≤ i ≤ 2g(Cη)− δaff the highest weight quotient of C•({Nj},
∧iH1(Cη,Q))

is given by

GrWi+δaff (C
•({Nj},

i∧
H1(Cη,Q))) =

i−δaff∧
H1(C̃×,Q)⊗ C̃•(Γ)(−δaff)

Proof. The first statement follows from Lemma 6.4, as ImNI = 0 for |I| > δaff and NI = 0
for |I| > i.

To prove (2) we use the description of the highest weight quotient given in Lemma 6.4.
As the differentials in the complex were defined in terms of the operators Ne the highest
weight quotient GrWi+δaff (C

•({Nj},
∧i H1(Cη,Q))) for i > δaff is the tensor product of the

corresponding quotient for i = δaff with
∧i−δaff H1(C̃×,Q), and it therefore suffices to

consider the case i = δaff .
In this case observe that

∧δaff H1(Γ,Q) is one-dimensional, since δaff = dimH1(Γ,Q).

Similarly, for any I ∈ C(Γ) the space
∧δaff−|I|(H1(Γ−I,Q)) is also one dimensional. So for

every k, the degree k part of the complex has a basis consisting of the non-disconnecting
cardinality k subsets of the edges set, namely precisely the (k − 1)-cells of |C (Γ)|. It is

easy to check that the boundary maps coincide with the maps of the complex C̃•(Γ) that
computes the reduced cohomology of |C (Γ)|, which proves (2). �

Remark 6.9. As the local system ∧iR1 is a pure local system, the intersection cohomology
complex IC(∧iR1) is a pure complex and therefore the cohomology sheaves in degree k are
of weight ≤ i+k. Thus the cohomology of the highest weight quotient described in (2) above
is concentrated in the top degree. We will see below (Theorem 6.16, Proposition 6.17) that
results on matroids allow to compute the cohomology of |C(Γ)| directly and in particular
to deduce that the cohomology in the top degree is non-zero.

6.2. Description of the summands supported on the partition strata. Before we
apply the results let us recall a well known, elementary estimate:

Lemma 6.10. Let π : C → B be a flat projective family of locally planar reduced curves
of arithmetic genus g such that compactified Jacobian family πJ : JC → B, relative to
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a choice of a fine polarization exists and has nonsingular total space. Let U ⊂ B be a
dense open set such that the restriction π : CU → U is smooth, and denote by R1 the local
system on U :

R1 := R1π∗Q|U .

Then

(32) Hr(IC(
i∧
R1)) = 0 for r > i.

Proof. It follows from the decomposition theorem for πJ : JC → B that for i = 0, . . . 2g(C)
the complex IC(

∧iR1))[−i] is a direct summand in RπJ
Q:

(33) IC(

i∧
R1))[−i] ⊂ RπJ

∗Q

Assume Hr(IC(
∧i R1))b 6= 0 for b ∈ B and some r > i. It then follows from the relative

Hard Lefschetz theorem that we may assume i ≥ g(C). Taking stalks of the cohomology
sheaf Hr+i at b in the above Eq. (33) we have

0 6= Hr(IC(

i∧
R1))b ⊂ Hr+i(JC(b),Q).

which is a contradiction since r + i > 2i ≥ 2g(C) = 2 dimJC(b). �

We can now prove one of the main results of this paper. To state the result let us
recall that for a partition n = (n1, . . . , nr) of n we introduced the stratum S×

n ⊂ An

parametrizing spectral curves with r smooth irreducible components Ci of degree ni over
C intersecting transversally in ninj(2g − 2) nodes (Lemma 2.6) and the dual graph of
these curves is denoted by Γn (Notation 2.7).

Theorem 6.11. Let hn : Mn → An be the Hitchin map. For every partition n of n, the
stratum Sn is a support for all the sheaves

(34) p
H

i(Rhn∗Q) with δaff(n) ≤ i ≤ 2 dimAn − δaff(n)

More precisely, for every i in the range of (34), there is a direct summand in pH i(Rhn∗Q)
which is the intermediate extension of the local system Li,n on the open set S×

n ⊂ Sn,
whose stalk at a point a ∈ S×

n is

(Li,n)a = Hδaff (n)−1 (|C (Γn)|,Q) (−δaff(n))⊗

i−δaff (n)∧
H1(C̃a,Q)

and underlying a variation of pure Hodge structures of weight i+ δaff(n).

Remark 6.12. Theorem 6.11 holds in the context of M. Saito’s mixed Hodge modules (see
[13, Appendix]). In particular, the resulting direct summands of the pure Hodge structures
given by the cohomology groups Hk(Mn,Q) (these are pure since they coincide with the
cohomology of the nilpotent cone (fiber of the Hitchin map over the origin), see e.g. [19,
Theorem 1] for a short argument) are pure Hodge substructures.

Remark 6.13. The local systems Li,n that determine the summands supported on Sn arise

as a tensor product. The monodromy of the combinatorial part Hδaff (n)−1 (|C (Γn)|,Q)

turns out to be finite and we will determine it in Corollary 6.20. The cohomology of C̃a

is the sum of the cohomology groups of the irreducible components which are the generic
spectral curves for the Hitchin fibration for bundles of rank n1, . . . , nr, so that the IC
complexes of these local systems appear in the Hitchin fibration for the Levi subgroup∏

GLnj
⊂ GLn.
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Proof. We have seen in Proposition 4.1 that either pH i(Rhn∗Q) has a summand which
is fully supported at Sn or none of its summands intersect S×

n , therefore it is enough to
consider a general point a ∈ S×

n corresponding to a nodal spectral curve Ca with r smooth
components. Let Σa as in Corollary 5.10 be a transversal slice to Sn at a. Since Sn has
codimension δaff(n), we have dimΣa = δaff(n). Furthermore, by transversality, h−1

n (Σa)
is nonsingular, and we have the diagram (21). Let Usm ⊂ U be the open set where the
universal curve π : CU → U is smooth, and denote as before by R1 the local system

R1 := R1π∗QUsm .

Since the family π : CU → U is versal, we have, by [27, Theorem 5.11], which we recalled
in Theorem 6.1, that

(35) RπJ
∗Q ≃

2dn⊕

i=0

IC(

i∧
R1)[−i].

By proper base change and the isomorphism in Diagram (21) we have that

(36) (Rhn∗Q)|Σa
≃ R(hn|Σa

)∗Q ≃ f ∗
Σa
(RπJ

∗Q)

is split semisimple. From Corollary 5.11 we also know that

(37) p
H

i(Rhn∗Q|Σa
) =p

H
i(f ∗

Σa
RπJ

∗Q) = f ∗
Σa

IC(

i∧
R1).

By stratification theory it is clear that Sn is a support for pH i(Rhn∗Q) if and only if a
is a support for pH i(Rhn∗Q|Σa

). Since dimΣa = δaff(n), by Corollary 5.5 and Eq. (37),
this happens if and only if

(38) Hδaff (n)(IC(
i∧
R1))a 6= 0.

By Lemma 6.10 and the relative hard Lefschetz isomorphism this is possible only if
δaff(n) ≤ i ≤ 2 dimAn − δaff(n). On the other hand, when this is the case, Proposition 6.8
and Remark 6.9 tell us that

Hδaff (n)(IC(
i∧
R1))a ∼=

i−δaff∧
H1(C̃a,Q)⊗Hδaff−1(|C(Γn)|,Q)(−δaff).

This gives the claimed formula for the local system Li,n and to conclude we only need

to observe that these are non-trivial. We already know that dimH1(C̃a,Q) = 2(g(Ca)−
δaff(Ca)) = 2 dimAn−2δaff(n) (Lemma 2.6), so that the contribution of this group is non-
trivial for i in the given range. The non-vanishing of the cohomology of the combinatorial
complex C(Γn) will be recalled in Proposition 6.17. �

Corollary 6.14. For every n, and for k = δaff(n) or k = 2dim(An)− δaff(n), the pull
back of the local systems Lk,n to the preimage A×

n of S×
n in An has trivial monodromy .

Proof. The irreducible components of the Jacobian of the spectral curve Ca are indexed
by the degrees of the restriction of the line bundles to the components of Ca. Therefore,
the sheaf of irreducible components of Ca is constant on A×

n . The local system

(L2dim(An)−δaff (n),n)a = Hδaff (n)−1 (|C (Γn)|,Q) (−δaff(n))⊗

2 dimAn−2δaff (n)∧
H1(C̃a,Q)

appears in the top cohomology of Rhn∗Q and it is a subsheaf of the Q-linearizaton of the
sheaf of irreducible components (see Lemma 4.3), therefore its pullback to A×

n is constant.
This is also true for Lδaff (n),n which is isomorphic to it (up to a Tate twist). �
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Remark 6.15. The generic Galois group of the finite map multn : A×
n −→ S×

n is the sub-
group of the symmetric group Sr stabilizing the partition n of n. Writing n = 1α1 · · ·nαn,
i.e. letting αi be the number of elements in n equal to i, this subgroup is

(39)
∏

i

Sαi
⊆ Sr.

In particular the sheaves Lδaff (n),n and L2 dimAn−δaff (n),n are constant if ni 6= nj for all
i 6= j.

We are now left to compute the rank of the local systems Lk,n and determine their
monodromy in order to show that some summands do contribute to the cohomology of
Mn.

6.3. The monodromy and the rank of the new local systems. We start by the
computation of the cohomology of the complex |C(Γn)| appearing in Theorem 6.11. Recall
from Notation 2.7 that Γn is a graph with multiple edges between any two vertices. As
we remarked in Remark 6.7 the poset C(Γn) is by definition the collection of independent
subsets of the bond matroid of the graph Γn (for terminology about matroids see [32],
but we will try to spell out the notions we use in the case we need).

For any matroid M the simplicial complex | In(M)| of its independent subsets has
special properties:

Theorem 6.16. [4, Theorem 7.3.3, Theorem 7.8.1] The simplicial complex | In(M)| of
independent subsets associated with a rank δ matroid has the homotopy type of a bouquet
of δ − 1-dimensional spheres.

Let us denote by Γr the complete graph on r vertices for r ≥ 2. As before we will
denote by |C (Γr)| the simplicial complex defined by the cographic matroid of Γr, i.e., its
k-simplices are the subsets of k + 1 edges of Γr that do not disconnect the graph.

The following result is a combination of well known results on matroids and a result
of Stanley.

Proposition 6.17. For any r ≥ 2 the cohomology group Htop(|C (Γr)|,Q), has rank
(r− 1)!, and, with its natural structure of Sr-module, is isomorphic to the representation
induced by a primitive character of a maximal cyclic subgroup.

To deduce this result let us introduce the simplical complex Nspan(Γr) of non-spanning
subsets of the graphic matroid of Γr, namely the subsets of edges not containing a span-
ning tree. Let us denote by Flat(Γr) the lattice of partitions of {1, . . . , r} which in
the language of matroids correspond to the poset of flats of the cographic matroid, be-
cause a flat in this case is a partition into complete subgraphs. To this lattice one
attaches the simplicial complex ∆(Flat(Γr)) whose k−simplices are chains of partitions
pdisc < p1 < · · · < pk < ptriv where pdisc is the discrete partition and ptriv is the trivial
partition.

We need the following result which is a general fact on matroids:

Lemma 6.18. Let N =
(
r
2

)
denote the number of edges of Γr We have natural isomor-

phisms

(40) H i(|C (Γr)|,Q) ≃ HN−3−i(|Nspan(Γr)|,Q) ≃ HN−3−i(|∆(Flat(Γr))|,Q).

The second isomorphism is Sr-equivariant, while in the first isomorphism the Sr-repre-
sentations differ by the sign character.
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Proof. Consider the boundary of the complex of all subsets of the edges of Γr. Its geo-
metric realization is the boundary of an N −1-simplex, i.e. an N −2-dimensional sphere.

The first isomorphism is the content of [4, Exercise 7.43 on page 278] and amounts to
combinatorial Alexander duality, once one notices that C (Γr) and Nspan(Γr) are Alexan-
der dual complexes in ∂∆N−1 (see [5] for a quick proof of Alexander duality which is
adapted to this context). We see that the isomorphism is twisted by the sign represen-
tation considering the action of Sr on the top cohomology of the ambient sphere ([37,
Theorem 2.4]).

The second isomorphism, due to Folkman, is ([18, Theorem 3.1]), using that the set
of edges of Γr forms a crosscut of the partition lattice. To see that this isomorphism is
Sr-equivariant we briefly recall Folkman’s argument.

Note that for any edge e the subcomplex Le of ∆(Flat(Γr)) formed by the simplices
that are contained in a simplex that satisfies p1 = e is contractible. Moreover, for any
non-spanning subset I of edges the intersection ∩e∈ILe is contractible to the 0-simplex
given by the partition defined by the subgraph I (see [18, Section 3]).

Thus the cohomology of ∆(Flat(Γr)) can be computed from the nerve of the covering
given by the subcomplexes Le and this agrees with the cohomology of |Nspan(Γr)|. �

Proof. (of Proposition 6.17) Applying the previous lemma, the computation reduces to
the computation of the homology of the lattice of partitions which was determined in
[37, Theorem 7.3] to be the representation induced by a primitive character of a maximal
cyclic subgroup tensored with the sign representation. (See [28, Section 6] for a more
detailed exposition of the argument.) �

The dual graph Γn of a spectral curve in S×
n contains a complete graph on the vertices,

but it will have multiple edges between the vertices.
Let us therefore fix some notation. Given a graph Γ and I a subset of edges let us

denote by Γ̂I the graph obtained by doubling the edges in I, i.e. for every edge e ∈ I we
add an edge ê connecting the same vertices as e.

Proposition 6.19. Let Γ be a graph, let I be a non-empty subset of edges. Let |C (Γ)|

and |C (Γ̂I)| be the simplicial complexes associated to Γ and Γ̂I. Then, for every ℓ, there
is a canonical isomorphism

(41) Hℓ (|C (Γ)|,Q) ≃ Hℓ+|I|(|C (Γ̂I)|,Q).

If a finite group G acts on Γ preserving I, the action extends to Γ̂I and the isomorphism
is G–equivariant with respect to the induced actions.

Proof. It is a direct application of the deletion-contraction sequence: Let us first assume

that I = {e} consists of a single edge. Then the set of faces in C (Γ̂I) is the disjoint union
of the set of those which contain a doubled edge ê and those who don’t. The subcomplex

of those faces not containing ê is the simplicial complex of the graph Γ̂I/ê obtained by
removing ê and collapsing the vertices joined by ê. We therefore get an exact sequence

of cochain complexes (we again denote the reduced cochain complex of C (Γ̂) by C̃•(Γ))

(42) 0 −→ ˜C•−1(Γ) −→ C̃•(Γ̂I) −→
˜C•(Γ̂I/ê) −→ 0.

Note that the edge e becomes a loop in the graph Γ̂I/ê, hence |C (Γ̂I/ê)| is a cone and
has vanishing reduced cohomology.
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By induction this shows that the G–equivariant morphism ˜C•−|I|(Γ) → C̃•(Γ̂I) induced

by mapping those faces in Γ̂I that contain all of the doubled edges to its intersection with
Γ induces an isomorphism in cohomology. �

We will apply this to the graph Γn which can be obtained from the complete graph
on r vertices, by successively doubling subsets of edges that are preserved by the sub-
group of Sr that preserves the partition n. Thus the representation of this subgroup on
Htop(|C (Γn)|,Q) is the restriction of the representation of Sr on the corresponding group
for the complete graph described in Proposition 6.17. Thus we find:

Corollary 6.20. Let n = n1 ≥ n2 ≥ · · · ≥ nr = 1α1 · · ·nαn be a partition of n. The rank
of the local system Lδaff (n)+i,n is

(43) rankLδaff (n)+i,n = (r − 1)!

(
2(dimAn − δaff(n))

i

)
.

The monodromy of the (isomorphic) local systems Lδaff (n),n and L2 dimAn−δaff (n),n is given
by the restriction to the subgroup

∏
i Sαi

⊆ Sr of the representation of Sr induced by a
primitive character of a maximal cyclic subgroup. In particular, if n is a partition with
pairwise distinct ni the monodromy of these sheaves is trivial, so that the corresponding
summand of Rhn∗Q contributes to the cohomology of Mn.

Remark 6.21. If n = 2 and Γ(1,1) is the graph with two vertices joined by 2g − 2 edges,
it is immediately seen that |C (Γ1,1)| is a sphere of dimension 2g − 4. The corresponding
representation is, for g 6= 2, the sign representation. Similarly for g = 2 we have a
zero-dimensional sphere, namely two points, and the relevant representation is the sign
representation on reduced cohomology.

For n = 2, g ≥ 2 and the partition n = (1, 1) the normalization C̃a of a spectral

curve Ca in S×
(1,1) is a disjoint union of two copies of C. Thus we have H1(C̃a,Q) =

H1(C,Q)⊕H1(C,Q) and the monodromy of the corresponding system is the permutation
representation induced from interchanging the components, i.e., the representation of S2

is the sum of 2g trivial representations and 2g sign representations. Therefore for 0 <

j < 4g the sign representation appears in
∧j H1(C̃a,Q) and thus Li,(1,1) has non zero

invariant sections for all i satisfying δaff +1 ≤ i ≤ 2 dimAn− δaff −1. In particular these
Li,(1,1) contribute non trivially to the cohomology of M2.

7. Appendix: The derivative of the Hitchin morphism is dual to the

derivative of the action

The duality statement from the title of the section is certainly known, but we could not
find a reference for it. Although we only apply the result for the group GLn it turns out
that the proof is most easily explained in the more general setting of Higgs bundles for
reductive groups. This is because in the case of GLn it is easy to loose track of implicit
identifications between the Lie algebra and its dual.

7.1. Reminder on G-Higgs bundles. We keep working over C and use our fixed
smooth projective curve C. In addition let G be a connected reductive group with Lie
algebra g = Lie(G). We will denote the dual of g by g∗.

Given a G-torsor P → C and a representation ρ : G → GL(V ) with V a finite dimen-
sional complex vector space, we will denote by P(V ) := P ×G V the associated vector
bundle.
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Of course, if G = GLn, then the frame bundle P = Isom(On, E) of a vector bundle E
is a GLn-torsor and we get E back by taking V = Cn to be the standard representation.
In this case P(g) = End(E) ∼= P(g∗).

AG-Higgs bundle on C is a pair (P, φ) where P → C isG-torsor and φ ∈ H0(C,P(g∗)⊗
KC) is a global section of the coadjoint bundle twisted by KC . We denote by

HiggsG :=
〈
(P, φ) | P ∈ BunG(C), φ ∈ H0(C,P(g∗)⊗KC)

〉

the stack of G-Higgs bundles over C, which is the cotangent stack to the stack of G-
bundles on C.

Remark 7.1. The above definition follows the convention of [3]. In the literature on
G-Higgs bundles it is also common to choose a G-invariant inner product (, ) on g and
use it to identify g ∼= g∗. To state the results in an invariant form it seems to be most
convenient to avoid this choice. As a consequence we will formulate some notions for
the dual g∗ that are commonly used for g for Higgs bundles, i.e., to use coadjoint orbits
instead of adjoint orbits.

Let us recall from [29] how to view G-Higgs bundles as sections of a morphism of stacks.

Lemma 7.2. The category of Higgs bundles (P, φ) on C is equivalent to the category of
2-commutative diagrams

[g∗/G×Gm]

��
C

KC

//

(P,φ)
99
sssssssssss

BGm,

where BGm is the classifying stack of line bundles, KC is the map defined by the canonical
bundle on C and [g∗/G×Gm] is the quotient stack defined by the product of the coadjoint
action of G on g∗ and the standard scaling action of Gm on the vector space g∗.

Proof. This is not hard to unravel: By definition a G-torsor on C is the same as a map
C → BG = [SpecC/G], so the pair P, KC defines a map C → [B(G × Gm)]. Now
for any representation ρ : G × Gm → GL(V ) the associated bundle is the pull back of
the morphism [V/G × Gm] and applying this to the representation on g∗ we see that
P(g∗) ⊗ KC = C ×B(G×Gm) [g

∗/(G × Gm)]. Therefore the datum of a section of this
bundle is equivalent to a section of

[g∗/G×Gm]

��

C
(P,KC)

//

(P,φ)
99
sss

ss
sss

sss

B(G×Gm).

�

7.2. Deformations of G-Higgs bundles. As the main aim of the section is to compare
derivatives of morphisms from and to HiggsG we need to recall the basic results on
deformations of Higgs bundles.

To a Higgs bundle (P, φ) we attach the complex of vector bundles on C

C(P, φ) := [P(g)
ad∗( )(φ)
−→ P(g∗)⊗KC ],

where ad∗ : g× g∗ → g∗ denotes the coadjoint action of g on g∗.
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Lemma 7.3 ([33]). The tangent space of the deformation functor of G-Higgs bundles
at (P, φ) ∈ HiggsG is given by H1(C, C(P, φ)) and automorphisms of deformations that
extend the identity of (P, φ) are given by H0(C, C(P, φ)).

Proof. The deformation theory argument for the computation of the tangent space to
HiggsG can be found in [33]. In the language of Lemma 7.2 we have a cartesian diagram:

[g∗ ⊗KC/G]

pKC

��

// [g∗/G×Gm]

p

��

C
KC

// BGm = [Spec k/Gm]

and Higgs bundles are sections of the map pKC
.

Now the tangent stack to any quotient stack [X/G] can be described as the quotient of
the complex of G-vector bundles Lie(G)×X → TX on X , which we think of a complex
in degree [−1, 0].

Therefore the tangent complex to the stack [g∗/G] (which lives in degree [−1, 0]) is
given by the G-equivariant complex

[g
ad∗

−→ g∗]

on g∗ and thus the tangent complex to pKC
over g∗ ⊗KC is given by

[g⊗OC → g∗ ⊗KC ].

Deformations of (P, φ) are deformations of the corresponding section (P, φ) : C →
[g∗ ⊗KC/G] and the pull back of the tangent complex at this section is

[P(g)
ad∗( )(φ)
−→ P(g∗)⊗KC ].

�

Remark 7.4. For any Higgs bundle (P, φ) the complex C(P, φ) is self-dual with respect
to the duality defined by Hom( · , KC[1]). Therefore Serre-duality induces pairings

H i(C, C(P, φ))×H2−i(C, C(P, φ)) → C

that for i = 1 define the standard 2-form ωHiggs on HiggsG = T ∗ BunG(C).

7.3. The Hitchin morphism. The Hitchin morphism for G-Higgs bundles is defined as
follows. Denote by χ the quotient map

χ : g∗ → g∗//G = car∗,

where car∗ = Spec(Sym• g)G.

Remark 7.5. As usual, a choice of homogeneous invariant polynomials would give an
isomorphism car∗ ∼= Spec k[f1, . . . , fr] ∼= A

r identifying car∗ with an affine space. The
map χ is equivariant with respect to the Gm action on g∗ and the induced action on
Spec(Sym• g)G, whose weights are given by the degrees of the invariant polynomials fi.

We denote by car∗KC
= (g∗ ×KC//G) → C the corresponding affine bundle and by

AG := H0(C, car∗KC
)

the base of the Hitchin morphism. Again, any choice of invariant polynomials for G
defines an isomorphism AG

∼= ⊕iH
0(C,Ki

C), but it will be more convenient to avoid such
a choice.
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The map χ : [g∗/G×Gm] → [car∗ /Gm] then induces a map

hG : HiggsG → AG = H0(C, car∗KC
),

which is often denoted as hG(P, φ) =: χ(φ).

7.4. The regular centralizer (local version). To define the Hitchin morphism and the
analog of the action of the Jacobian of the spectral curve we now recall the construction
of the regular centralizer groups from [29].

Let us fix the standard notations. The group G acts on g via the adjoint action, which
we will denote by Ad: G → GL(g), the derivative of this action is denoted ad: g →
End(g). Similarly Ad∗ : G → GL(g∗) denotes the dual action given by Ad∗(g)(φ)( ) :=
φ(Ad(g)−1. ), so that its derivative is ad∗(X) = − ad(X)t.

For an element ϕ ∈ g∗ we denote its centralizer in G by C(ϕ) := {g ∈ G|Ad∗(G)(ϕ) =
ϕ} and by gϕ := {A ∈ g| ad∗(A)(ϕ) = 0} its Lie algebra. The groups CG(ϕ) define a
group scheme

Cg∗ := {(g, ϕ) ∈ G× g∗|Ad∗(g)(ϕ) = ϕ} → g∗

over g∗. The set of regular elements g∗,reg ⊂ g∗ is defined to be the subset of those
elements for which dimCG(ϕ) = rank(G) is minimal.

The restriction Cg∗,reg of Cg∗ to the space of regular elements descends to a group
scheme Jcar

∗ on car∗ = g∗//G, called the regular centralizer. The group scheme Jcar
∗

comes equipped with a natural map

m : χ∗Jcar
∗ → Cg∗ ⊂ G× g∗

which is defined to be the unique regular map extending the natural isomorphism χ∗Jcar
∗|g∗,reg ∼=

Cg∗,reg . We denote by dm the induced map on Lie algebras

dm : χ∗Lie(Jcar
∗) → Lie(Cg∗) → g× g∗.

Notation 7.6. As in [29] we will need to keep track of the action of the multiplicative
group Gm on our objects. We will denote by C(n) the one dimensional vector space with
the Gm action given by the n-th power of the standard action. For any vector bundle E
with a Gm-action we will denote by E(n) := E ⊗C(n).

Remark 7.7. On g∗ the group Gm acts by scalar multiplication which induces an action
on car∗ = g∗//G. The action on g∗ also preserves centralizers and thus induces an action
on Cg∗ , given by

t.(g, ϕ) := (g, tϕ).

In particular this action preserves g∗,reg and thus Cg∗,reg even descends to a group J over
[car∗ /Gm].

Note that the formula for the Gm action shows that the derivative

dm : χ∗Lie(Jcar
∗) → g× g∗

is equivariant for the Gm–action that on g × g∗ is given by the trivial action on the
first factor g and the standard action on the second factor g∗. Therefore, identifying
g(−1)× g∗ ∼= T ∗g∗ we can interpret dm as a morphism

(44) dm : χ∗Lie(Jcar
∗)(−1) → T ∗g∗

The restriction of this map to g∗,reg is injective, as m was injective over g∗,reg.
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Remark 7.8. The map χ : g∗ → car∗ is by definition G-invariant and equivariant with
respect to the Gm action, therefore its derivative

(45) dχ : g∗ × g∗ = Tg∗ → χ∗T car∗

is also equivariant with respect to the induced Gm action and the restriction

dχ|g∗,reg : Tg
∗,reg = g∗ × g∗,reg → χ∗T car∗ |g∗,reg

is surjective, because the map χ : g∗ → car∗ admits a section κ : car∗ → g∗,reg ⊂ g∗ called
the Kostant section.

The following observation is the group theoretic origin of the duality result for the
Hitchin fibration.

Lemma 7.9. The canonical pairing

〈 , 〉 : Tg∗ ×g∗ T
∗g∗ → C

induces a G×Gm-equivariant perfect pairing

χ∗Lie(Jcar
∗)|g∗,reg(−1)×g∗ χ

∗T car∗ |g∗,reg → C(0)

and thereby an isomorphism
Lie(J)∗(1) ∼= T car∗ .

Proof. From Remarks 7.7 and 7.8 we know that χ∗Lie(Jcar
∗)|g∗,reg(−1) is a subbundle of

T ∗g∗,reg and χ∗T car∗ |g∗,reg is a quotient of Tg∗,reg and both have the same dimension.
As the map χ is constant on G-orbits, the tangent space to a G orbit is in the kernel

of dχ, i.e., for every ϕ ∈ g∗

Vϕ := Im(g
ad∗( )(ϕ)
−→ Tϕg

∗ = g∗) ⊂ ker(dχ).

If ϕ ∈ g∗,reg is regular we have dimVϕ = dim g/gϕ = dim g−dim car∗. As dχ is surjective
in this case we find Vϕ = ker(dχ) for ϕ ∈ g∗,reg.

Now G-invariance of the pairing 〈 , 〉 i.e., 〈g.ϕ, g.A〉 = 〈ϕ,A〉 for all g ∈ G,ϕ ∈ g∗, A ∈ g

implies that for all X ∈ g we have

〈ad∗(X)(ϕ), A〉 = 〈ϕ,− ad(X)(A)〉 = −〈ad∗(A)(ϕ), X〉.

This implies that V ⊥
ϕ = gϕ and this implies our claim. �

Remark 7.10. For G = GLn the above can be rephrased in terms of coordinates. In this
case car∗ ∼= An is the space of characteristic polynomials of matrices. In order to compute
the differential dχ of the map χ : gln → car∗ it is convenient to choose the coordinates
χ(ϕ) := (1

i
trace(ϕi))i=1...n. Then dχϕ : gln → kn is given by X 7→ (trace(ϕi−1X))i=1...n.

The regular centralizer group scheme can also be described explicitly: For any monic
polynomial p(t) ∈ k[t] we define Jp := (k[t]/p(t))∗ as the unit group of the algebra
k[t]/p(t), which defines an n-dimensional commutative group scheme J over An. As
a matrix ϕ is regular if and only if its characteristic polynomial pϕ is its minimal poly-
nomial, we see that the assignment Jpϕ → GLn given by f(t) 7→ f(ϕ) is injective for
regular matrices ϕ and therefore identifies Jpϕ with the centralizer of ϕ. By definition of
the regular centralizer the map χ∗(J) → I ⊂ GLn × gln is given by the unique extension
of the canonical map on glreg. As the formula f(t) 7→ f(ϕ) is well defined for all ϕ it
gives this extension.

We also observe that s ∈ Gm acts on car∗ by p 7→ s.p, where s.p is the polynomial
given by multiplying the coefficient of tn−i by si. This lifts to an action Jp → Js.p, given
by t 7→ st and this is compatible with the above map f(t) 7→ f(ϕ).
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Note that Lie(Jp) ∼= k[t]/(p(t)) (as 1+ ǫf(t) is an invertible element of k[ǫ, t]/(ǫ2, p(t))
for all f). Finally the standard basis 1, t, . . . tn−1 of k[t]/p(t) defines an isomorphism
Lie(J) ∼= kn × car.

Thus for any ϕ the map dm : kn ∼= Lie(Jp) → gln is given by (ai) 7→
∑n−1

i=0 aiϕ
i.

Finally, we use the pairing (A,B) := trace(AB) on gln. With respect to this form the
dual of the map kn ∼= Lie(Jp) → gln is therefore given by

X 7→ (trace(ϕiX))i=0...n−1

which is dχϕ.

Remark 7.11. We can reformulate the above Lemma as a duality statement on [g∗/G]:
As for any quotient stack, the tangent stack to this quotient is defined by the complex

[g× g∗
(A,φ)7→(ad∗(A)(φ),φ)

−→ Tg∗ = g∗ × g∗],

i.e., the quotient stack of these bundles is the pull-back of the tangent stack to g∗. This
complex is self-dual up to a shift by 1.

Considering χ as a morphism χ : [g∗/G] → car∗ the differential becomes the morphism

[g× g∗
(A,φ)7→(ad∗(A)(φ),φ)

−→ g∗ × g∗]
(0,dχ)
−→ [0 → T car∗].

Similarly as the morphism χ∗J → I is G-equivariant (because J was defined by de-
scending I|g∗,reg), the morphism dm defines a G-equivariant morphism

[χ∗ Lie(J) → 0]
(dm,0)
−→ [g× g∗

(A,φ)7→(ad∗(A)(φ),φ)
−→ g∗ × g∗].

Lemma 7.9 says, that these morphisms are Gm-equivariantly dual to each up to a shift
by 1 of the complex and twisting the action by (1).

7.5. The regular centralizer (global version). Let us recall the global version of the
regular centralizer as explained in [29, Section 4]: We saw that the regular centralizer
defines a group scheme J on [car∗ /Gm], that we can pull back to a group scheme Jcar

∗
KC

on car∗KC
= C ×BGm

[car∗ /Gm] which we pull back via the tautological map AG ×C →
car∗KC

to define a group scheme JAG
on AG × C.

Similarly, the pull back of the sheaf of centralizers Cg∗ on [g∗/G×Gm] under the clas-
sifying map HiggsG ×C → [g∗/G×Gm] is denoted CHiggs×C . By construction CHiggs×C =
Aut(Euniv, φuniv) is identified with the group of G-automorphisms of the universal Higgs
bundle (Euniv, φuniv) that preserve φuniv.

The map χ∗J → Cg∗ therefore induces a natural morphism

ι : (h× idC)
∗JA → Aut(Euniv, φuniv).

Over AG one defines the group scheme PAG
of JAG

-torsors on C, i.e., at a point a : C →
car∗Ω is given by the torsors of the group scheme of a∗JAG

on C. Then ι induces an action
act : PAG

×AG
HiggsG → HiggsG.

7.6. The duality statement. We can now formulate the main result of this section:

Proposition 7.12. There exists a canonical isomorphism Lie(PAG
/AG) ∼= T ∗AG such

that the morphisms
d act : h∗ Lie(PAG

/AG) → T HiggsG
and

dh : T HiggsG → h∗(TAG)

become dual to each other with respect to the symplectic form ωHiggs.
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Proof. The result follows from the local statement Lemma 7.9 as follows: The regular
centralizers Pa are defined to be a∗JA-torsors, so Lie(Pa) = H1(C,Lie(a∗JAG

)).
For any Higgs bundle (E , φ) the action of act(E,φ) : Lie(Pa) → h−1(a) is induced from

ι : (h× idC)
∗JAG

→ C(E,φ) ⊂ Aut(E/C).
Therefore applying Lie we find that the differential of the action is induced from the

morphism of complexes

[Lie(a∗JA) → 0]
(d act,0)
−→ [ad(E)

ad∗()(φ)
−→ ad(E)∗ ⊗ Ω]

after passing to H1.
By Lemma 7.9 we know that this map of complexes is up to tensoring with KC [−1]

this map is dual to the map

[ad(E)
ad∗( )(φ)
−→ ad(E)∗ ⊗KC ]

(0,dχ)
−→ [0 → T car∗KC

]

that induces dh by Remark 7.11. Therefore applying Serre-duality to H1 of the above
complexes we obtain the proposition. �

References

[1] A. Beauville, M.S. Narasimhan, S. Ramanan, Spectral curves and the generalised theta divisor. J.
Reine Angew. Math. 398 (1989), 169–179. 5, 7

[2] A. Beilinson, I.N. Bernstein, P. Deligne, O. Gabber, Faisceaux Pervers, Astérisque 100, second
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[29] B.C. Ngô, Fibration de Hitchin et endoscopie. Invent. Math. 164 (2006), 399–4539. 26, 28, 30
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