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BOTTOM OF SPECTRA AND COVERINGS

OF ORBIFOLDS

WERNER BALLMANN AND PANAGIOTIS POLYMERAKIS

Dedicated to Shiing-shen Chern, a great mathematician and a great man

Abstract. We discuss the behaviour of the bottom of the spectrum of
scalar Schrödinger operators under Riemannian coverings of orbifolds.
We apply our results to geometrically finite and to conformally compact
orbifolds.
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1. Introduction

Spectral invariants of orbifolds are a classical issue in number theory, but
have not yet attracted so much attention in Riemannian geometry. The
prime examples in number theory are closed or finite volume quotients of
Riemannian symmetric spaces of non-compact type with the modular surface
as the most classical one. Our investigations were motivated by our article
[5], in which the bottom of the spectrum of an orbifold quotient occurred in
one of the applications and where the value of that number was in question
(answered by Theorem A.1 below). Most of our results are known in the case
of manifolds, the point of the present article is their extension to orbifolds.
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These extensions do not come for free, and even some of the fundamentals
have to be prepared appropriately.

We consider a covering p : O1 → O0 of Riemannian orbifolds, where O0 is
connected, a scalar Schrödinger operator S0 = ∆+ V0 on O0 and its lift S1
to O1. We assume throughout that S0 is bounded from below (on C∞

c (O0)).
The orbifold fundamental group Γ0 = πorb1 (O0) of O0 acts on the fibers of p,
and we say that the covering is amenable if the action on fibers over regular
points of O0 is amenable. It is noteworthy that a normal covering between
connected orbifolds is amenable if and only if its deck transformation group
is amenable. The reader not familiar with these notions is referred to the
body of the text below, where we discuss them in some detail.

For a Lipschitz function f 6= 0 with compact support on an orbifold O
and a scalar Schrödinger operator S = ∆+ V on O,

RS(f) =

∫

O(|∇f |
2 + V f2)

∫

O f
2

(1.1)

is called the Rayleigh quotient of f (with respect to S). We then call

λ0(S,O) = inf RS(f)(1.2)

the bottom of the spectrum of S, where the infimum is taken over all non-
zero f ∈ C∞

c (O), or, equivalently, over all non-zero Lipschitz functions f on
O with compact support. In the case of the Laplacian, we also write R(f)
and λ0(O) instead of R∆(f) and λ0(∆, O), respectively.

If S is bounded from below, that is, λ0(S,O) > −∞, then the Friedrichs
extension S̄ of S in L2(O) is defined and λ0(S,O) is equal to the bottom of
the spectrum σ(S,O) of S̄. To state our main result, we will also need the
notion of the bottom inf σess(S,O) of the essential spectrum of S. It is given
by

λess(S,O) = supλ0(S,O \K),(1.3)

where the supremum is taken over all compact subsets K of O.
In the case of coverings as above, we always have that

λ0(S1, O1) ≥ λ0(S0, O0),(1.4)

as we will see in Section 7. This result is known in many cases; see our
survey article [4] for references.

By (1.4), S1 is also bounded from below so that both, λ0(S1, O1) and
λ0(S0, O0), realize the bottom of the spectrum of their respective Friedrichs
extension.

Theorem A. Let p : O1 → O0 be a Riemannian covering of orbifolds, where
O0 is connected, and S0 and S1 be compatible scalar Schrödinger operators
on O0 and O1, respectively, where S0 is bounded from below. Then we have:

(1) if p is amenable, then λ0(S1, O1) = λ0(S0, O0);
(2) if λ0(S1, O1) = λ0(S0, O0) < λess(S0, O0), then p is amenable.

The study of the behaviour of λ0 under Riemannian coverings was initi-
ated by Brooks [10, 11]. For connected Riemannian manifolds, Theorem A.1
and A.2 are [2, Theorem 1.2] and [21, Theorem 4.1]. (The latter is also [22,
Theorem 1.2].) For further comments and references, we refer to [4].
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Note that we do not assume that O1 is connected. This is important in
our proof, where the case that O1 is–possibly–not connected occurs at an
intermediate stage, but it also seems important in some applications. We
do assume, however, that the orbifolds considered here are second countable
so that they have at most countably many connected components.

Corollary B. If O0 contains a compact domain K such that the funda-
mental groups of the connected components of the complement O0 \ K are
amenable, then there are the following two cases:

(1) if λ0(S0, O0) < λess(S0, O0), then λ0(S1, O1) = λ0(S0, O0) if and
only if p is amenable;

(2) if λ0(S0, O0) = λess(S0, O0), then λ0(S1, O1) = λ0(S0, O0).

For manifolds, Corollary B is [4, Corollary D]. Using Theorem A, the
proof there extends to orbifolds.

Let O be a complete and connected Riemannian orbifold with sectional
curvature −b2 ≤ KO ≤ −a2. Then O is a quotient Γ\X, where X is a simply
connected Riemannian manifold and Γ a properly discontinuous group of
isometries of X. For such an O, let Ω be the complement of the limit set of
Γ in the sphere at infinity of X. Following Bowditch [8], we say that O and
Γ are geometrically finite if Γ\(X ∪ Ω) has finitely many ends and each of
them is parabolic (in the sense of [8, Section 5.1]).

We say that a Riemannian orbifold O is hyperbolic if it can be written
as a quotient Γ\X, where X is one of the hyperbolic spaces Hn

F with F ∈
{R,C,H,O}, endowed with its canonical Riemannian metric, which is unique
up to scale. We normalize it so that maxKX = −1. Then the number

hX = m+ dimR F − 2,(1.5)

where m = dimX = n dimR F , is equal to the asymptotic volume growth
of X. For any hyperbolic space X and non-compact, geometrically finite
orbifold O = Γ\X, we have

λess(O) = λ0(X) = h2X/4.(1.6)

For manifolds, the lower estimate λess(O) ≥ h2X/4 is contained in Hamen-
städt [17, p. 282: Corollary], the equality is explained in J. Li [19, Remark
1.2]. It is likely that their arguments extend to the orbifold case. How-
ever, the orbifold case is also contained in [6, Theorem B], which contains
corresponding estimates for more general kinds of operators over orbifolds,
including the Hodge-Laplacian on differential forms.

Corollary C. Let p : O1 → O0 be a Riemannian covering of complete and
connected Riemannian orbifolds. Assume that there is a non-compact and
geometrically finite hyperbolic orbifold O′

0 = Γ\X such that O0 \K is iso-
metric to O′

0 \K
′ for some compact domains K ⊆ O0 and K ′ ⊆ O′

0. Then
there are the following two cases:

(1) if λ0(O0) < h2X/4, then λ0(O1) = λ0(O0) if and only if p is amenable;
(2) if λ0(O0) = h2X/4, then λ0(O1) = λ0(O0).

For manifolds, Corollary C is contained in [4]. Using the characterization
of λess(O0) in (1.3), Corollary C is an immediate consequence of Theorem A
and (1.6).
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Consider now a compact and connected Riemannian orbifold P with
boundary ∂P 6= ∅ and a smooth non-negative function ρ on N defining
∂N , that is,

∂P = {ρ = 0} and ∂νρ > 0(1.7)

along ∂P , where ν denotes the inner unit normal of P along ∂P with respect
to the given metric h on P . Let O be the interior of P , endowed with the
conformally equivalent metric

g = ρ−2h(1.8)

on O. The metric g is complete since any point in O has infinite distance to
∂P with respect to g. Metrics of this kind were introduced by Mazzeo, who
called them conformally compact. In [20, Theorem 1.3] he determines the
essential spectrum of the Hodge-Laplacian of conformally compact mani-
folds. In particular, for functions he obtains that the essential spectrum of g
is [a2(m− 1)2/4,∞), where a = min ∂νρ > 0 and m = dimO. It seems that
his arguments also go through for orbifolds. However, by an easy argument,
we will obtain

λess(Õ) ≤ λess(O) = (m− 1)2a2/4,(1.9)

for any connected and conformally compact Riemannian orbifold of dimen-
sion m, where a = min ∂νρ as above and Õ denotes the universal covering
space of O. Note the converse monotonicity in (1.9) in comparison to (1.4).

Corollary D. Let p : O1 → O0 be a Riemannian covering of orbifolds of
dimension m. Assume that O0 is conformally compact with a = min ∂νρ as
above. Then we have:

(1) if λ0(O0) < (m− 1)2a2/4, then λ0(O1) = λ0(O0) if and only if p is
amenable;

(2) if λ0(O0) = (m− 1)2a2/4, then λ0(O1) = λ0(O0).

For manifolds, Corollary D is [3, Theorem 1.10]. Corollary D is an imme-

diate consequence of Theorems A and (1.9), using that λ0(O1) ≤ λ0(Õ) ≤
λess(Õ) for the second assertion.

1.1. Structure of the paper. In Sections 2–6, we discuss the structure of
orbifolds; in particular, what we need about the geometry of Riemannian
orbifolds, the analysis of Schrödinger operators on orbifolds, and coverings
of orbifolds. In Section 3.3, we discuss also the Bishop-Gromov volume and
Cheng eigenvalue comparison theorems. In the short Section 7, we show
the monotonicity (1.4) of the bottom of the spectrum under coverings. In
Sections 8–10, we present the proof of Theorem A. The proof of (1.9) is
contained in Section 11.

2. Preliminaries on orbifolds

Our exposition of orbifolds follows mostly [26, Chapter 13]; further good
references are [9, Section G], [16], [18, Chapter 6], [23, Chapter 13], and [25,
§2].

An (m-dimensional orbifold) chart of a Hausdorff space O consists of an

open subset U of O, a connected m-dimensional manifold Û with boundary
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(possibly empty), a finite subgroup G of the diffeomorphism group of Û ,

and a continuous map π : Û → U such that π induces a homeomorphism
G\Û → U . The information about such a chart is captured by the diagram

(2.1)

Û

U G\Û

π

∼=

Note that G\Û and U are connected since Û is connected.

For a chart a = (U, Û ,G, π) of O, we call U the domain, Û the codomain,
G the group, and π the projection of a.

Since G is finite, Û carries a G-invariant Riemannian metric. Hence, given
x ∈ Û , an element g ∈ G is determined by its value gx and derivative dg|x.

Two m-dimensional charts (U, Û ,G, π) and (U ′, Û ′, G′, π′) of O are said

to be compatible if, for any x ∈ Û and x′ ∈ Û ′ with π(x) = π′(x′), there

is a local diffeomorphism f from Û to Û ′ (a diffeomorphism between open

subsets of Û and Û ′), called a change of charts, with f(x) = x′ and π′f = π.
If the domain of f is (chosen to be) connected, then f is unique up to
composition with a g ∈ G′ [9, p. 588: Exercise 1.5.1].

Assume from now on that O is endowed with an (m-dimensional orbifold)
atlas of O, that is, a collection A of m-dimensional charts of O such that the
domains of the charts from A cover O and all the charts of A are compatible
with each other. Since any two charts, which are compatible with each
chart from A, are also compatible with each other, A determines a unique
maximal atlas S, a so-called orbifold structure, namely the atlas consisting of
all charts compatible with all charts from A. The pair (O,S) is called an (m-
dimensional) orbifold with boundary (possibly empty). Since A determines
S uniquely, we usually view O together with A also as an orbifold.

Convention: We assume throughout that orbifolds with boundary are
second countable, although paracompactness would be sufficient in most
places. Moreover, we follow the corresponding tradition for manifolds and
speak of orbifolds when assuming that their boundaries are empty.

Let O be an orbifold with boundary. Then for any y ∈ O, chart a of O
as above with y ∈ U , and point x ∈ Û with π(x) = y, the order |Gx| of
the stabilizer Gx of x in G does not depend on x and a and is called the
order of y, denoted by |y|. A point z in O is called regular if it has order
one, otherwise it is called singular. The regular set, that is, the set R = RO

of regular points, is open and dense in O. The complement S = SO is the
singular set.

The orbifold structure of a manifold M with boundary, given by the
connected components of M , where the corresponding groups G are trivial
and the maps π the identity, will be called the trivial (orbifold) structure
(of M). In the context of orbifolds, manifolds are always endowed with the
trivial structure, unless specified otherwise.

A map f : O′ → O between orbifolds with boundary is called smooth if,
for all charts (U ′, Û ′, G′, π′) of O′, (U, Û ,G, π) of O, and points x′ ∈ Û ′ and

x ∈ Û with f(π′(x′)) = π(x), there is a smooth map ϕ from a neighborhood
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of x′ in Û ′ to Û such that πϕ = fπ′. A map f : M → O between a manifold
M with boundary and an orbifold O with boundary is smooth if it is smooth
as a map between orbifolds with boundary, where M is endowed with its
trivial orbifold structure. It is clear by the definition of smoothness that
the rank of a smooth map f is well defined. In particular, we can speak of
regular points and regular values of f and can apply the implicit function
and Sard theorems.

Using charts in an analogous way, we define tensor fields on orbifolds
with boundary. For example, a Riemannian metric on an orbifold O with
boundary consists of a family of Riemannian metrics on the codomains of the
charts from an atlas of O such that the actions of the corresponding groups
G on the codomains and the changes of charts are isometric. An orbifold
with boundary together with a Riemannian metric is called a Riemannian
orbifold with boundary.

2.1. Domains in orbifolds. A connected subset D of an orbifold O is
called a domain with smooth boundary if the topological boundary ∂D of
D admits a covering by adapted charts a = (U, Û ,G, π) of O, that is, Û =

(−ε, ε) × V̂ with G acting trivially on (−ε, ε),

π−1(D ∩ U) = (−ε, 0] × V̂ , and π−1(∂D ∩ U) = {0} × V̂ .(2.2)

The vector field ∂/∂r, where r denotes the variable in (−ε, ε), is invariant

under G and vanishes nowhere in Û . This restricts the nature of points
which can be boundary points of domains with smooth boundary. Clearly,
any domain in O with smooth boundary is the sublevel set of a regular value
of a smooth function on O. Note also that π−1

W (∂D ∩W ) is a submanifold

of Ŵ , for any chart b = (W, Ŵ ,H, πW ) of O.
The adapted charts turn ∂D into an orbifold, and regular and singular

set of ∂D are equal to R∂D = ∂D ∩RO and S∂D = ∂D ∩ SO, respectively.

3. Riemannian orbifolds

As defined above, an orbifold O with boundary together with a Riemann-
ian metric on O is called a Riemannian orbifold with boundary.

3.1. Distance and completeness. Given a Riemannian orbifold O with
boundary, the length of a piecewise smooth curve is defined to be the sum
of the lengths of the local lifts of the curve to codomains of charts. The
distance d(x, y) of two points x, y ∈ O is defined to be the infimum of the
lengths of piecewise smooth curves in O joining x to y. SinceO is a Hausdorff
space, the distance function d is a metric on O in the standard sense if O is
connected. It is then easy to see that O is an interior metric space, that is,
d(x, y) is the infimum of the lengths of rectifiable curves in O joining x to
y.

In what follows, let O be a Riemannian orbifold with boundary.

Lemma 3.1. Let (U, Û ,G, π) be a chart for O and c : [a, b] → U be a rec-

tifiable curve. Then there is a lift σ : [a, b] → Û of c such that L(σ|[s,t]) =
L(c|[s,t]), for all a ≤ s, t ≤ b.
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Proof. We can assume without loss of generality that c has unit speed.
For any ε > 0, there are a partition a = t0 < · · · < tk = b of [a, b], points

pi ∈ Û above c(ti), and minimizing geodesics σi : [ti−1, ti] → Û from pi−1 to
qi such that π(qi) = c(ti) and

∑

L(σi) = L(c)± ε.

By rearranging the points pi, we can assume that qi = pi. Then

σ = σ1 ∗ · · · ∗ σk

is a continuous curve in Û . Since the σi are minimizing, we have

L(σi) ≤ L(c|[ti−1,ti]) ≤ ti − ti−1.

It is not hard to see that we may apply the Arzela-Ascoli theorem to a
sequence of such curves, where ε = εn → 0, to get a lift σ of c as asserted. �

The following result is an immediate consequence of Cohn-Vossen’s gen-
eralization of the Hopf-Rinow Theorem [14] ([1, Section I.2]).

Theorem 3.2. If O is connected, then the following are equivalent:

(1) O is complete as a metric space;
(2) any minimizing geodesic c : [0, 1) → O can be extended to [0, 1];
(3) for some x ∈ O, any minimizing geodesic c : [0, 1) → O with c(0) = x

can be extended to [0, 1];
(4) bounded subsets of O are relatively compact.

Moreover, each of these properties implies that, for any pair x, y ∈ O, there
is a minimizing geodesic from x to y.

The proof of the following result is close to the proof of the corresponding
result for manifolds.

Proposition 3.3. Any orbifold with boundary admits a complete Riemann-
ian metric.

3.2. Riemannian measure. Let O be a Riemannian orbifold of dimension
m. Then the volume element dv of the Riemannian metric of O is well
defined on the manifold R of regular points of O, and we define the (m-
dimensional) measure of a Borel set B of O by

|B| = |B|m =

∫

R
dv(z)χB(z),(3.4)

where χB denotes the characteristic function of B. To justify this definition,
we observe that O can be covered by the domains of countably many charts
of O and that, in the codomain of each chart of O, the set of singular points
has measure zero. With (3.4), we obtain a positive measure dv on the σ-
algebra of Borel sets of O. Furthermore, if B ⊆ O is a Borel set which is
contained in the domain U of a chart (U, Û ,G, π), then

|G||B| =

∫

Û
dv(z)χB(π(z)) = |π−1(B)|,(3.5)

where the right hand side denotes the Riemannian volume of π−1(B).
Suppose that D is a compact domain with smooth boundary ∂D in O as

in Section 2.1. Then adapted charts turn ∂D into an orbifold, endowed with
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the induced Riemannian metric. Hence by (3.4), applied to ∂D, we obtain
an ((m− 1)-dimensional) measure on the σ-algebra of Borel sets in ∂D,

|B| = |B|m−1 =

∫

∂D∩R
dvm−1(z)χB(z),(3.6)

where dvm−1 denotes the induced volume element of the submanifold ∂D∩R
in the Riemannian manifold R. Here we recall that ∂D ∩R = R∂D.

Let now b = (V, V̂ ,H, πV ) be an adapted chart for ∂D, a = (U, Û ,G, πU )
an arbitrary chart of O, z ∈ U ∩ V a singular point, x ∈ π−1

U (z), and y ∈

π−1
V (z). Then there is a local diffeomorphism ϕ respecting the projections

from a neighborhood of x in Û to a neighborhood of y in V̂ . In particular,
ϕ(x) = y. Moreover, ϕ respects the order of points so that ϕ maps regular

and singular points in Û to respective points in V̂ . In particular, since the
set of singular points in π−1

V (∂D) has (m − 1)-dimensional measure zero in

V̂ , the same is true for the set of singular points in the submanifold π−1
U (∂D)

in Û . Therefore, if B ⊆ ∂D is a Borel set which is contained in U , then

|G||B|m−1 =

∫

π−1

U
(∂D)

dvm−1(z)χB(π(z)) = |π−1
U (B)|m−1,(3.7)

where the right hand side denotes the Riemannian volume of π−1
U (B) in the

manifold π−1
U (∂D) with the induced Riemannian metric.

Lemma 3.8 (Coarea formula). For f ∈ C∞(O) and ϕ ∈ C0
c (O)

∫

O
|∇f |dvm ϕ =

∫

R

∫

{f=t}
dt dvm−1 ϕ.

Proof. Only the regular points of f matter. In the neighborhood of such
a point x, we may introduce coordinates by using the local flow (Fs) of
X = ∇f/|∇f |2, that is, (s, y) ∼ Fs(y) with y ∈ {f(y) = t}, where f(x) = t.
In such coordinates, we have |∇f |dvm = dtdvm−1. �

3.3. Cut locus and two comparison results. Let O be a connected
Riemannian orbifold (that is, orbifold with empty boundary). It is then
easy to see that a curve c : I → O, that is minimizing locally, has local lifts
to codomains of charts over it and that, up to parametrization, these local
lifts are geodesics in the usual sense.

Proposition 3.9 (Proposition 15 in [7]). If c : [a, b] → O is a minimal
geodesic and c(t) ∈ S for some t ∈ (a, b), then c is contained in S.

Assume for the rest of this subsection that O is complete. Let x ∈ O
and c be a (non-constant) geodesic starting at x. Then the first point on c
behind which c is not a minimal connection to x anymore is called the cut
point of x along c. The set C(x) of all cut points of x along geodesics from
x is called the cut locus of x.

Proposition 3.10. We have:

(1) for any direction v at x, the time t0(v) > 0, at which the unit speed
geodesic from x in the direction of v stops being minimizing, depends
continuously on v;
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(2) for any y ∈ O \ C(x), there is a unique minimal geodesic from x to
y;

(3) C(x) is closed and |C(x)|m = 0, where m = dimO;
(4) if x ∈ R, then S ⊆ C(x).

Proof. Mutatis mutandis, (1)–(3) follow easily from corresponding argu-
ments in the case of Riemannian manifolds. Proposition 3.9 implies (4). �

The Bishop-Gromov volume and Cheng eigenvalue comparison theorems
extend to orbifolds. Denote by Br(k) the ball of radius r in Mm

k , the model
space of dimension m = dimO and constant sectional curvature k.

Theorem 3.11 (Bishop-Gromov volume comparison). Assume that Ric ≥
(m− 1)k on Bs(x). Then

|Bs(x)|

β(s)
≤

|Br(x)|

β(r)
−−−→
r→0

1

|x|

for all 0 < r < s, where β(r) = |Br(k)| . Moreover, equality on the left holds
for some 0 < r < s if and only if Bs(x) is isometric to G\Bs(k), where G
is a finite group of isometries of Mm

k fixing the center of Bs(k).

Except for the equality discussion, Theorem 3.11 is [7, Proposition 20].

Theorem 3.12 (Cheng eigenvalue comparison). Assume that Ric ≥ (m −
1)k on Br(x). Then

λ0(Br(x)) ≤ λ0(Br(k)).

Moreover, equality holds if and only if Br(x) is isometric to G\Br(k), where
G is a finite group of isometries of Mm

k fixing the center of Br(k).

Sketch of proofs of Theorems 3.11 and 3.12. Recall that the standard proofs
of Theorems 3.11 and 3.12 in the manifold case are obtained via integrating
associated inequalities along radial geodesics; see [13, Theorem 1.1] for The-
orem 3.12. Using Proposition 3.10, the same procedure leads to the above
assertions for orbifolds. �

3.4. Cheeger constants. The Cheeger constant of a Riemannian orbifold
O of dimension m is defined to be

h(O) = inf
A

|∂A|m−1

|A|m
,(3.13)

where the infimum is taken over all compact domains A of O with smooth
boundary, and where |.|k indicates k-dimensional Riemannian volume. The
Cheeger constant is related with the bottom of the spectrum of the Laplacian
on O via the Cheeger inequality,

λ0(O) ≥
1

4
h(O)2.(3.14)

For the convenience of the reader, we present a short proof of (3.14). Namely,
for the Rayleigh quotient R(f) of a non-vanishing function f ∈ C∞

c (O),
∫

O
|∇f2| =

∫

O
2|f ||∇f |

≤ 2

(
∫

O
f2

)1/2 (∫

O
|∇f |2

)1/2

≤ 2R(f)1/2
∫

O
f2,
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by the Schwarz inequality. On the other hand, by Lemma 3.8, the definition
of h(O), and Cavalieri’s principle, respectively,

∫

O
|∇f2| =

∫ ∞

0
|{f2 = t}|m−1 dt

≥ h(O)

∫ ∞

0
|{f2 ≥ t}|m dt = h(O)

∫

O
f2.

We conclude that h(O)2 ≤ 4R(f)2. Now λ0(O) is the infimum of Rayleigh
quotients R(f) over non-vanishing f ∈ C∞

c (O), hence (3.14) follows.
In analogy with (1.3), we define the asymptotic Cheeger constant of O by

hess(O) = suph(O \K),(3.15)

where the supremum is taken over all compact subsets K of O. In (4.9), we
obtain an analogue of (3.14), relating the asymptotic Cheeger constant to
the bottom of the essential spectrum of O.

Recall that, for a relatively compact open domain D in a Riemannian
manifold M , the Cheeger constant of D with respect to Neumann boundary
condition is defined to be

hN (D) = inf
|∂A ∩D|

|A|
,(3.16)

where the infimum is taken over all domains A ⊆ D with |A| ≤ |D|/2 and
smooth intersection ∂A ∩D.

Lemma 3.17 (Lemma 5.1 of Buser [12]). If M is of dimension m and
complete with Ricci curvature bounded from below by 1 − m, D ⊆ M is
starlike with respect to a point x ∈M , and Br(x) ⊆ D ⊆ BR(x), then

hN (D) ≥ C1+R
m

rm−1

Rm
.

4. Analysis on orbifolds

Throughout this section, let O be a Riemannian orbifold. Then the
Laplace operator ∆ is well defined on C∞(O).

Lemma 4.1. For functions f, g ∈ C∞(O) and a compact domain D ⊆ O
with smooth boundary ∂D, we have

∫

D
f∆g =

∫

D
〈∇f,∇g〉 −

∫

∂D
f∂νg.

Proof. Using a smooth partition of unity on O, the proof reduces to the
two cases where the support of f is contained in a coordinate domain in the
interior of D or in one for the boundary of D. We only discuss the less trivial
second case, where the codomain Û = V̂ ×[0, ε) with the corresponding finite
group G acting trivially on the factor [0, ε). We obtain

|G|

∫

D
f∆g =

∫

Û
f̂∆ĝ

=

∫

Û
〈∇f̂ ,∇ĝ〉 −

∫

V̂
f̂∂ν ĝ

= |G|

∫

D
〈∇f,∇g〉 − |G|

∫

∂D
f∂νg,
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where f̂ = f ◦ π, ĝ = g ◦ π and ν denotes the exterior normal vector field of
Û and D, respectively. �

We consider a Schrödinger operator S = ∆+V on O with smooth poten-
tial V . In view of Lemma 4.1, the operator

S : D(S) ⊆ L2(O) → L2(O)

with domain D(S) = C∞
c (O) is symmetric. It is evident that S is bounded

from below if V is bounded from below.
Assume from now on that S is a Schrödinger operator on O that is

bounded from below, and choose β ∈ R such that

〈Sf, f〉L2 ≥ β‖f‖2L2

for any f ∈ C∞
c (O). Denote by HS ⊆ L2(O) the completion of C∞

c (O) with
respect to the inner product

〈f, h〉HS
= 〈f, h〉L2 + 〈(S − β)f, h〉L2 .

Since ‖f‖HS
≥ ‖f‖L2 , we view HS ⊆ L2(O). The Friedrichs extension of S

is the self-adjoint operator

S̄ : D(S̄) ⊆ L2(O) → L2(O)

with S̄ = S∗ on its domain D(S̄) = HS ∩ D(S∗), where S∗ denotes the
adjoint of S.

We denote by λ0(S) the bottom of the spectrum of S̄. The Rayleigh
quotient of a non-zero f ∈ HS with respect to S is defined by

RS(f) =
‖f‖2HS

‖f‖2
L2

+ β − 1.(4.2)

It is well known from functional analysis that

λ0(S) = inf RS(f),(4.3)

where the infimum is taken over all non-zero f ∈ C∞
c (O) or over all non-zero

f ∈ HS .

Lemma 4.4. Any compactly supported Lipschitz function on O belongs to
HS.

Proof. It suffices to prove the assertion for any compactly supported Lips-
chitz function f such that there exists a coordinate chart (U, Û ,G, π) with

U precompact and supp f ⊆ U . Setting f̂ := f ◦ π, we compute

|f̂(x)− f̂(y)| = |f(π(x))− f(π(y))| ≤ Cd(π(x), π(y)) ≤ Cd(x, y),

where x, y ∈ Û and C is the Lipschitz constant of f . This yields that f̂ is a

Lipschitz function, and, therefore, there exists a sequence (f̂n)n∈N in C∞
c (Û)

with f̂n → f̂ in H1
0 (Û). It is evident that the functions

ĥn :=
1

|G|

∑

g∈G

f̂n ◦ g
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descend to functions hn ∈ C∞
c (O). Using that f̂ is G-invariant, we have

that ĥn → f̂ in H1
0 (Û) and, hence, that hn → f in H1

0 (U). Since the hn are
smooth,

‖hn − hm‖2HS
≤ (1− β + CV )‖hn − hm‖2L2 + ‖∇hn −∇hm‖2L2 ,

where CV is the supremum of |V | on U . Therefore hn → f in HS , as we
wished. �

As an immediate consequence of Lemma 4.4, we obtain the following
assertion from the introduction (see (1.2)).

Corollary 4.5. The bottom λ0(S) of the spectrum of S̄ is given by

λ0(S) = inf RS(f),

where the infimum is taken over all non-zero f ∈ Lipc(O).

Lemma 4.6. Suppose that O is connected and that λ0(S) is an eigenvalue
of S̄. Then any eigenfunction ϕ of S̄ corresponding to λ0(S) is smooth and
nowhere vanishing. In particular, the eigenspace corresponding to λ0(S) is
one-dimensional.

Proof. We know from elliptic regularity that any eigenfunction ϕ is smooth.
Since ϕ ∈ HS, there exists a sequence (fn)n∈N in C∞

c (O) with fn → ϕ in HS.
Then the sequence (|fn|)n∈N belongs to HS and is bounded in HS. Hence it
has a weakly convergent subsequence in HS . On the other hand, |fn| → |ϕ|
in L2(O). Therefore, |ϕ| ∈ HS and RS(|ϕ|) = λ0(S), which yields that |ϕ|
is an eigenfunction of S̄ corresponding to λ0(S), and, in particular, that
|ϕ| is smooth. From the maximum principle it follows that |ϕ| is positive,
that is, ϕ is nowhere vanishing. The second assertion is a consequence of the
first since the first implies that there are no L2-perpendicular eigenfunctions
corresponding to λ0(S). �

Lemma 4.7. Suppose that O is connected and that λ0(S) < λess(S). Let
(fn)n∈N be a sequence in Lipc(O) with ‖fn‖L2 → 1 and RS(fn) → λ0(S).
Then there exists a subsequence (fnk

)k∈N such that fnk
→ ϕ in L2(O) for

some eigenfunction ϕ of S̄ corresponding to λ0(S).

Proof. We know from Lemma 4.4 that any compactly supported Lipschitz
function can be approximated by compactly supported smooth functions
in HS. Hence, it suffices to prove the assertion for the case where the
fn ∈ C∞

c (O). Since λ0(S) < λess(S), we have that λ0(S) is an isolated
eigenvalue of S̄ of finite multiplicity. Let E be the corresponding eigenspace,
and write fn = gn + hn, where gn ∈ E and hn is L2-perpendicular to E.
From our assumption, it follows that RS(hn) ≥ λ0(S) + c for some c > 0.
Since E is one-dimensional, after passing to a subsequence if necessary, we
may assume that gn → ϕ in L2(O) for some ϕ ∈ E.

Given ε > 0, we have that RS(fn) < λ0(S)+ε for sufficiently large n ∈ N.
Using that 〈S̄hn, gn〉 = 0, we compute

(λ0(S) + c)‖hn‖
2
L2 ≤ 〈S̄hn, hn〉L2 = 〈S̄fn, fn〉L2 − 〈S̄gn, gn〉L2

≤ (λ0(S) + ε)‖fn‖
2
L2 − λ0(S)‖gn‖

2
L2

≤ λ0(S)‖hn‖
2
L2 + ε‖fn‖

2
L2
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for sufficiently large n ∈ N. This shows that hn → 0 and hence that fn → ϕ
in L2(O). �

Proposition 4.8. The bottom of the essential spectrum of S is given by

λess(S,O) = supλ0(S,O \K),

where the supremum is taken over all compact subsets K ⊆ O.

Proof. By Weyl’s criterion, λ ∈ R belongs to the essential spectrum of S̄ if
and only if there exists a Weyl sequence (fn)n∈N for λ in the domain D(S̄),
which means that ‖fn‖L2 → 1, fn ⇀ 0, and (S̄ − λ)fn → 0 in L2(O).

Given such a sequence and a compact subset K of O, we want to show
that there exists a cut off function χ ∈ C∞

c (O) such that, after passing to
a subsequence if necessary, ((1 − χ)fn)n∈N is a Weyl sequence for λ with
supports disjoint from K.

It is evident that it suffices to prove this for any compact domain K
contained in a coordinate region U of a chart (U, Û ,G, π) of O. Fix χ ∈
C∞
c (O) with χ = 1 in a neighborhood of K and suppχ ⊆ U . From elliptic

estimates (on Û), it is not hard to see that (χ̂f̂n)n∈N is bounded in H2(Û)

and that χ̂f̂n ⇀ 0 in L2(Û ), where χ̂ = χ ◦π and f̂n = fn ◦ π. After passing

to a subsequence if necessary, this yields that χ̂f̂n ⇀ 0 in H2(Û). Since

the supports of these functions are contained in a compact subset of Û , it
follows from Rellich’s lemma that χ̂f̂n → 0 in H1(Û). Therefore χfn → 0
and (S̄−λ)(χfn) → 0 in L2(O). We conclude that ((1−χ)fn)n∈N is a Weyl
sequence for λ with supports disjoint from K. In particular,

λess(S,O) ≥ λ0(S,O \K).

To finish the proof, we may assume that λ∞ = supλ0(S,O\K) is finite. Now
for any ε > 0, we may choose an exhaustion of O by compact subsets Kn

and a sequence of functions fn ∈ C∞
c (O\Kn) with pairwise disjoint supports

such that ‖fn‖L2 = 1 and RS(fn) ≤ λn + ε, where λn = λ0(S,O \Kn). We
see that the space of functions f ∈ C∞

c (O) with Rayleigh quotient at most
λ∞ + 2ε is infinite dimensional. Hence λess(S,O) ≤ λ∞. �

The asymptotic Cheeger inequality

λess(O) ≥
1

4
hess(O)2(4.9)

is an immediate consequence of (3.14) and Proposition 4.8.
Consider a positive ϕ ∈ C∞(O) satisfying Sϕ = λϕ for some λ ∈ R.

Denote by L2
ϕ(O) the L2-space of O with respect to the measure ϕ2 dv,

where dv is the measure induced from the Riemannian metric of O. It is
easy to see that the isometric isomorphism mϕ : L

2
ϕ(O) → L2(O), defined

by mϕf = fϕ, intertwines S − λ with the diffusion operator

L = m−1
ϕ (S − λ)mϕ = ∆− 2∇ lnϕ.

The operator L is called renormalization of S with respect to ϕ. The
Rayleigh quotient of a non-zero f ∈ C∞

c (O) is defined by

RL(f) =
〈Lf, f〉L2

ϕ

‖f‖2
L2
ϕ

=

∫

O |∇f |2ϕ2

∫

O f
2ϕ2

.
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Lemma 4.10. For any non-zero f ∈ C∞
c (O), we have RL(f) = RS(fϕ)−λ.

5. Coverings of orbifolds

A map p : O′ → O between orbifolds with boundary is called a covering
(of orbifolds) if, for each chart a = (U, Û ,G, π) of O with simply connected
domain U , the preimage p−1(U) is the disjoint union of connected open

subsets U ′ of O′, which belong to charts of O′ of the form a′ = (U ′, Û , G′, π′),
where G′ ⊆ G and G′ may depend on a′, such that the diagram

(5.1)

Û U ′ G′\Û

Û U G\Û

π′

q

∼=

p

π ∼=

commutes, where q denotes the identification of the codomain Û of a′ with
the codomain Û of a and the right vertical arrow and each of the composi-
tions of horizontal arrows denote the natural projections.

In contrast to standard coverings, the restrictions p : U ′ → U are, in
general, not homeomorphisms, but correspond to the projections G′\Û →

G\Û . Nevertheless, charts a and the respective open subset U of O will be
called evenly covered by the charts a′ and respective open sets U ′ as above.
Conversely, a′ will be called a lift of a or said to be above a, and similarly
for U ′ and U . We will also say that U ′ is a local leaf of p over U .

Note that coverings are smooth. An orbifold is said to be good if it admits
an orbifold covering by a manifold.

Example 5.2. If Γ yM is a properly discontinuous action of a countable
group Γ on a manifold M via diffeomorphisms, then the space O = Γ\M of
orbits is a good orbifold with M as a covering space.

A covering p̃ : Õ → O of connected orbifolds with boundary is called
universal if, for any covering p : O′ → O with O′ connected, and any points
x ∈ O, x′ ∈ O′, and x̃ ∈ Õ with p(x′) = p̃(x̃) = x, there is a covering

p′ : Õ → O′ such that p̃ = p ◦ p′ and p′(x̃) = x′.

Theorem 5.3 (Thurston, Proposition 13.2.4 in [26]). A connected orbifold
with boundary has a universal cover, and any such cover is unique up to
isomorphism.

For a covering p : O′ → O of orbifolds with boundary, we say that a
diffeomorphism τ of O′ is a deck transformation if pτ = p. We say that
p is normal, if its group of deck transformations is transitive on the fibers
of p. By definition, universal coverings of O are normal. Up to natural
isomorphism, the groups of deck transformations does not depend on the
universal covering and is called the fundamental group of O, denoted by
πorb1 (O).

5.1. Riemannian coverings. A covering p : O′ → O of Riemannian orb-
ifolds with boundary is called Riemannian if p is a local isometry.
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Lemma 5.4. Let p : O′ → O be a Riemannian covering of Riemannian
orbifolds with boundary, and assume that O′ is complete. Let c : I → O be
a minimizing geodesic, where I = [a, b] or I = [a, b). Let x′ ∈ O′ be a point
with p(x′) = c(a). Then there is a lift c′ : I → O′ with c′(a) = x′ such that
L(c′|[s,t]) = L(c|[s,t]) for all s ≤ t in I. Any such lift c′ of c is a minimizing

geodesic in O′.

Proof. We consider the case I = [a, b] first. We can assume that a = 0 and
that c has unit speed. Let A be the set of a ∈ [0, b] such that a corresponding
lift exists for c|[0,a]. By the assumption on the length of subcurves, any such
lift is of unit speed and minimizing since p does not increase distances and
c is minimizing. Furthermore, A is not empty since 0 ∈ A.

We show now that A is closed. Let (an) be an increasing sequence in A
with limit a and cn : [0, an] → O′ be lifts of c as asserted. Then form ≥ n, cm
is also such a lift on [0, an]. Since O

′ is complete, we may apply the Arzela-
Ascoli theorem and get a subsequence of the cm|[0,an] which converges to a
corresponding lift of c on [0, an]. We apply this argument again, but now to
the subsequence and for am > an. We get a subsequence of the subsequence
of the ck|[0,am] which converges, and the limit will coincide with the previous
limit on [0, an]. Iterating this argument, we get a lift of c on [0, a). By the
completeness of O′ it can be extended to [0, a], and hence a ∈ A. Therefore
A is closed.

Suppose now that a ∈ A with a < b, and let c′ : [0, a] → O′ be a lift of

c|[0,a]. Let (U, Û ,G, π) be an evenly covered chart of O with c(a) ∈ U and

(U ′, Û , G′, π′) be the associated chart of O′ with c′(a) ∈ U ′. By Lemma 3.1,

there is an ε > 0 and a lift σ to Û of c|[a,a+ε] such that L(σ) = L(c|[a,a+ε]).
Evidently, there exists g ∈ G with (π′ ◦ g ◦ σ)(a) = c′(a). Extending c′

to [a, a + ε] by π′ ◦ g ◦ σ, we obtain a lift c′ of c on [0, a + ε] such that
L(c′) = L(c|[0,a+ε]). As we observed above, c′ is minimizing since p does not
increase distances and c is minimizing.

The assertion in the case where I = [a, b) is now by reduction to the
case I = [a, bn], where the sequence of bn increases to b, and applying the
Arzela-Ascoli theorem as above. �

The next result is an immediate consequence of Theorem 3.2.2.

Proposition 5.5. For a covering p : O′ → O of connected orbifolds with
boundary, a Riemannian metric on O is complete if and only if the lifted
Riemannian metric on O′ is complete.

Proof. Suppose first that O′ is complete, and let c : [0, 1) → O be a mini-
mizing geodesic. Let c′ : [0, 1) → O′ as in Lemma 5.4. Then Theorem 3.2.2
implies that c′ can be extended to [0, 1], hence the composition of the ex-
tension with p is an extension of c to [0, 1]. Hence O is complete.

Suppose now that O is complete and let c′ : [0, 1) → O′ be a minimizing
geodesic. Then c = p ◦ c′ can be extended to [0, 1], by the completeness
of O. Then using an evenly covered chart about c(1) and the leaf above
it containing the image of c′|(1−ε,1) for some ε > 0, we see that c′ can be
extended to [0, 1]. Hence O′ is complete. �
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Proposition 5.6. Let p : O′ → O be a Riemannian covering of complete
and connected Riemannian orbifolds with boundary. Let x0, x1 ∈ O and
y0 ∈ p−1(x0). Then there is a point y1 ∈ p−1(x1) such that d(y0, y1) =
d(x0, x1).

Note that d(y0, y1) ≥ d(x0, x1) for all y1 ∈ p−1(x1) since p does not
increase distances.

Proof of Proposition 5.6. Let c : [0, 1] → O0 be a minimizing geodesic from
x0 to x1 and c′ be a lift of c to O′ with c′(0) = y0. Then c′ is minimizing
and p(c′(1)) = x1. Hence y1 = c′(1) ∈ p−1(x1) and d(y0, y1) = d(x0, x1). �

5.2. Dirichlet domains. Consider now a Riemannian covering p : O′ → O
of complete Riemannian orbifolds without boundary, where O is connected.

Lemma 5.7. If N ⊆ O has measure zero, then also p−1(N) ⊆ O′.

Fix x ∈ O. For y ∈ p−1(x), the Dirichlet domain of p centered at y is
defined to be

Dy = {z ∈ O′ | d(z, y) ≤ d(z, y′) for any y′ ∈ p−1(x)}.(5.8)

By Proposition 5.6, d(y, z) = d(x, p(z)) for any z ∈ Dy.

Proposition 5.9. If x ∈ RO and y ∈ p−1(x), then

(1) y ∈ RO′;
(2) ∂Dy = {z ∈ O′ | d(z, y) = d(z, y′) for some y′ 6= y in p−1(x)};
(3) ∂Dy ⊆ p−1(C(x)) and int(Dy) ⊆ RO′;
(4) |Dy ∩ p

−1(C(x))|m = 0;
(5) p : Dy \ p

−1(C(x)) → O \ C(x) is an isometry;
(6) for any integrable function f on O, f ◦ p is integrable on Dy and

∫

Dy

f ◦ p =

∫

O
f.

Proof. (1) is clear from the definition of coverings of orbifolds.
(2) Let z ∈ Dy be such that there is a point y′ 6= y in p−1(x) with

d(z, y′) = d(z, y). Now there is a minimal geodesic from y′ to z, by the
completeness of O1. Hence any neighborhood of z contains points which are
strictly closer to y′ than to y. This shows that the given set belongs to ∂Dy.
The converse direction is obvious.

(3) Let z ∈ ∂Dy and y′ ∈ p−1(x) be a point with d(z, y′) = d(z, y). If p(z)
is singular, then we know from Proposition 3.10 that p(z) ∈ C(x). If p(z) is
regular, consider minimizing geodesics from y to z and y′ to z. Since their
velocity vectors at z are different, their projections to O are two different
geodesics from x to p(z). By Proposition 5.6, both are minimal, and hence
p(z) ∈ C(x). The second assertion follows immediately from Proposition 3.9
since y ∈ RO′ .

(4) is clear from Proposition 3.10 and Lemma 5.7.
(5) We only need to check that p : Dy \p

−1(C(x)) → O \C(x) is bijective.
Let z 6= z′ be points in Dy, and suppose that p(z) = p(z′). Then p maps
minimal geodesics from y to z and z′ to different geodesics from x to u =
p(z) = p(z′). By Proposition 5.6, they are minimal, and hence u ∈ C(x).
Therefore p is injective on Dy \ p

−1(C(x)).
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Given u ∈ O, let c : [0, 1] → O be a minimizing geodesic from x to u.
Then the lift c′ of c starting at y is a minimizing geodesic. Since p does not
increase distances, it follows that d(y, c′(1)) = d(x, u) ≤ d(y′, c′(1)) for any
y′ ∈ p−1(x), which means that c′(1) ∈ Dy. We conclude that p : Dy → O is
surjective, and so is p : Dy \ p

−1(C(x)) → O \ C(x).
(6) is clear from (4) and (5). �

5.3. Action of the fundamental group on the fiber. Let p : O1 → O0

be a Riemannian covering of orbifolds with boundary, whereO0 is connected.
Consider a (connected) component O′

1 of O1. Then the universal covering

p0 : Õ → O0 of O0 factors through O′
1,

(5.10)

Õ O′
1

O0

p′
1

p0
p

and p′1 is the universal covering of O′
1. In general, the covering p′1 is not

unique, but we fix a choice for each component O′
1 of O1.

Recall that the fundamental group Γ0 = πorb1 (O0) of O0 is defined to be
the group of deck transformation of p0 and that Γ0 is transitive on the fibers
of p0 and simply transitive on the fibers over regular points of O0. The
corresponding statements hold for p′1, where we denote the group of deck
transformations of p′1 by Γ′

1. Since p0 = p ◦ p′1, we have Γ′
1 ⊆ Γ0.

For x0 ∈ O0, choose x̃ ∈ Õ with p0(x̃) = x0 and, for each connected
component O′

1 of O1, set x
′
1 = p′1(x̃) ∈ O′

1. Then p(x
′
1) = x0 and the part of

the fiber of p over x0 in O′
1 is given by

p−1(x0) ∩O
′
1 = p′1(Γ0x̃).(5.11)

If x0 is regular, we obtain a right action of Γ0 on p−1(x0) by setting

yg = p′1(hgx̃) for y = p′1(hx̃).(5.12)

Identifying p′1(hx̃) with Γ′
1h, this action corresponds to the right action of

Γ0 on Γ′
1\Γ0. Clearly, the action on the fiber depends on the choice of the

point x̃ over x0.
We fix a complete background metric on O0 and its lift to O1 and consider

distances and geodesics with respect to these metrics.
Fix x0 ∈ R0 and choose x̃ ∈ Õ and x′1 in the components O′

1 of O1 as
above. For r > 0, set

Gr = {g ∈ Γ0 | d(gx̃, x̃) < r} and N(r) = |Gr|.(5.13)

Note that Gr = G−1
r . For any y1, y2 ∈ p−1(x0),

d(y1, y2) < r ⇐⇒ y2 = y1g for some g ∈ Gr,(5.14)

by Proposition 5.6. For any ỹ ∈ Õ, we have

|{g ∈ Γ0 | d(gx̃, ỹ) < r}| ≤ N(2r),(5.15)

by the triangle inequality.
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Lemma 5.16. For any r > 0 and y1 ∈ O1, we have

|p−1(x0) ∩Br(y1)| ≤ N(2r).

Proof. Suppose that y1 ∈ Br(x
′
1gi), 1 ≤ i ≤ n, where the [gi] are pairwise

different in Γ1\Γ0 . Then there exist hi ∈ Γ1 such that

d(higix̃, ỹ) = d(x′1gi, y1) < r,

by Proposition 5.6, where ỹ is any point in p−1
1 (y1). Since the higi are

pairwise different, we get n ≤ N(2r), by (5.15). �

6. Amenability of actions

Consider a right action of a countable group Γ on a countable set X. The
action is called amenable if there exists an invariant mean on ℓ∞(X); that
is, a linear map µ : ℓ∞(X) → R such that

inf f ≤ µ(f) ≤ sup f and µ(g∗f) = µ(f)

for any f ∈ ℓ∞(X) and any g ∈ Γ. The group Γ is called amenable if the
right action of Γ on itself is amenable.

Clearly, any (right) action of Γ on any finite set is amenable. Furthermore,
an action of Γ on a countable set X is amenable if its restriction to a non-
empty invariant subset of X is amenable.

Amenability refers to some kind of asymptotic smallness ofX with respect
to the action of Γ. This is made precise by the following characterization,
due to Følner in the case of groups [15, Main Theorem and Remark] and
then extended to actions by Rosenblatt [24, Theorems 4.4 and 4.9]. Given a
finite G ⊆ Γ and an ε > 0, a Følner set F for G and ε is a non-empty, finite
subset of X satisfying |Fg \ F | < ε|F | for any g ∈ G.

Theorem 6.1. The action of Γ on X is amenable if and only if, for any
finite G ⊆ Γ and ε > 0, there exists a Følner set for G and ε.

In particular, it follows that the action of Γ on X is amenable if and only
if the restriction to any finitely generated subgroup of Γ is amenable.

Let p : O1 → O0 be a covering of orbifolds with boundary, where O0

is connected, but O1 possibly not. As explained in Section 5.3, for any
connected component O′

1 of O0, we have for the fundamental groups that
Γ′
1 ⊆ Γ0. The covering p is called amenable if the right action of Γ0 on

the disjoint union of the Γ′
1\Γ0 is amenable, where union is taken over all

connected components O′
1 of O1. After fixing a regular x0 ∈ O0, an x̃ ∈ Õ

over x0, and a covering p′1 : Õ → O′
1 for any connected component O′

1 of
O1, the aforementioned action coincides with the action of Γ0 on p−1(x0),
defined in (5.12). Therefore, the covering p is amenable if and only if the
latter action is amenable.

Example 6.2. For any covering p : O1 → O0 (where O0 is connected),

p ⊔ id : O1 ⊔O0 → O0

is an amenable covering.
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Recall that Følner’s condition allows us to characterize amenability of
an action of a group Γ in terms of the restriction of the action to finitely
generated subgroups of Γ. In the context of coverings, this is reflected by
the following characterization of amenability.

Proposition 6.3. Let p : O1 → O0 be a covering with O0 connected, and
K1 ⊆ K2 ⊆ · · · be an exhaustion of O0 by compact domains with smooth
boundary. Then p is amenable if and only if the restrictions p : p−1(Kn) →
Kn of p are amenable.

Proof. Endow O0 with a complete Riemannian metric and fix a regular
point x0 in the interior of K1. Denote by p0 : Õ → O0 and pn : K̃n → Kn

the universal coverings, and choose x̃ ∈ p−1
0 (x0) and xn ∈ p−1

n (x0). Given
r > 0, consider the finite set Gr defined in (5.13) and the finite sets

Gr,n := {g ∈ πorb1 (Kn) | d(gxn, xn) < r}.

Assume first that p is amenable and let n ∈ N. Given ε > 0 and a finite
subset G′ of πorb1 (Kn), there exists r > 0 such that G ⊆ Gr,n. Let F be a
Følner set for Gr and ε/|Gr|. It follows from (5.14) that dp−1(Kn)(y, yg

′) < r

for any y ∈ p−1(x0) and g
′ ∈ Gr,n. In particular, dO1

(y, yg′) < r and (5.14)
yields that there exists g ∈ Gr with yg′ = yg. Therefore, for any g′ ∈ Gr,n,
we have that Fg′ is contained in the union of Fg with g ∈ Gr, and in
particular,

|Fg′ \ F | ≤
∑

g∈Gr

|Fg \ F | < ε,

which yields that the covering p : p−1(Kn) → Kn is amenable.
Conversely, consider ε > 0 and a finite subset G of πorb1 (O0). Then there

exists r > 0 such that G ⊆ Gr and n ∈ N such that B(x0, r) ⊆ Kn. Since
p : p−1(Kn) → Kn is amenable, there exists a Følner set F for Gr,n and
ε/|Gr,n|. For y ∈ F and g ∈ Gr, we obtain from (5.14) that dO1

(yg, y) < r.
Since B(x0, r) ⊆ Kn, it follows that any minimizing geodesic from y to yg
lies in p−1(Kn), and hence, dp−1(Kn)(yg, y) < r. In view of (5.14), we obtain

that there exists g′ ∈ Gr,n such that yg = yg′, which means that Fg is
contained in the union of Fg′ with g′ ∈ Gr,n. We conclude that F is a
Følner set for G and ε, which yields that p is amenable. �

Proposition 6.3 illustrates the importance of considering non-connected
covering spaces. Namely, the preimage p−1(K) of a compact domain K in
O0 with smooth boundary may not be connected even if O1 is.

7. Monotonicity of λ0

In our standard setup of a Riemannian covering p : O1 → O0 of Rie-
mannian orbifolds with compatible Schrödinger operators S1 = ∆+ V1 and
S0 = ∆+ V0, respectively, let f ∈ C∞

c (O1), and define a function f0 ≥ 0 on
O0 by

f20 (x) =
∑

y∈p−1(x)

|x|

|y|
f2(y)(7.1)

on O0. We call f0 the pushdown of f .
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Lemma 7.2. Given a non-zero f ∈ C∞
c (O1), its pushdown f0 is a Lipschitz

function on O0 with compact support such that f20 is smooth and

RS0
(f0) ≤ RS1

(f).

Since λ0(S0, O0) and λ0(S1, O1) are the infimum of Rayleigh quotients
of non-vanishing compactly supported Lipschitz or smooth functions on O0

and O1 (either way), (1.4) is an immediate consequence of Lemma 7.2.

Proof of Lemma 7.2. Let U = Û/G be an evenly covered domain of O0.

Denote by Vj ∼= Û/Gj , j ∈ J , the connected components of p−1(U), by pj
the restriction p|Vj

, and by π : Û → U and πj : Û → Vj the projections.

Given x ∈ U and u ∈ π−1(x),

(f20 ◦ π)(u) = f20 (x) =
∑

j∈J

∑

y∈p−1

j (x)

|x|

|y|
f2(y)

=
∑

j∈J

∑

y∈p−1

j (x)

|x|

|y|

1

|π−1
j (y)|

∑

v∈π−1

j (y)

(f2 ◦ πj)(v)

=
∑

j∈J

|x|

|Gj |

∑

v∈π−1(x)

(f2 ◦ πj)(v)

=
∑

j∈J

1

|Gj |

∑

g∈G

(f2 ◦ πj)(gu),

where we use that pjπj = π and |y||π−1
j (y)| = |Gj | for the penultimate

equality and that |x||π−1(x)| = |G| for the last. It follows that f20 ∈ C∞
c (O0).

For h ∈ C∞(O0), let h1 = h ◦ π be its lift to O1. Using that the set R0

of regular points of O0 and its preimage in O1 are of full measure and that
the preimage is contained in the set R1 of regular points of O1, we get

∫

O0

hf20 =

∫

R0

hf20 =

∫

R0

Σy∈p−1(x)h1(y)f
2(y) =

∫

O1

h1f
2.

Therefore

‖f0‖L2(O0) = ‖f‖L2(O1) and

∫

O0

V0f
2
0 =

∫

O1

V1f
2.

Moreover

f20 (x) =
∑

y∈p−1(x)

f2(y)

on R0, hence

|∇f0(x)|
2 ≤

∑

y∈p−1(x)

|∇f(y)|2

on R0 ∩ {f20 6= 0}. This shows that f0 is non-negative on O0, and smooth
with bounded gradient on {f20 6= 0}, and thus, f0 is Lipschitz. Furthermore,
it follows that

∫

O0

|∇f0|
2 ≤

∫

O1

|∇f |2.
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In conclusion, RS0
(f0) ≤ RS1

(f). �

8. Stability of λ0 for amenable coverings

The aim of the section is the proof of Theorem A.1. To that end, fix
a complete background metric on O0 and consider its lift to O1. In what
follows, distances and geodesics are taken with respect to the given complete
background metrics. However, gradients, Laplace operators, volumes, and
integrals are taken with respect to the original metrics, since the main issue
of our discussion are Rayleigh quotients with respect to the original metrics.
Fix a regular point x0 ∈ O0, a point in the universal covering space above
it, and recall the definition of Gr ⊆ Γ0 and N(r) from (5.13).

For r > 0 and y ∈ p−1(x0), consider the function ψy on O1 defined by

ψy(z) =











1 if d(z, y) ≤ r,

r + 1− d(z, y) if r ≤ d(z, y) ≤ r + 1,

0 if d(z, y) ≥ r + 1,

a Lipschitz function with Lipschitz constant 1. For any z ∈ O1, there are
at most N(2r + 3) points y ∈ p−1

0 (y0) with z ∈ suppψy, by Lemma 5.16.
Hence the function

ψ1 = max







0, 1−
∑

y∈p−1(x)

ψy







on O1 is well-defined and admits N(2r + 3) as a Lipschitz constant. Thus
we obtain a partition of unity on O1 consisting of

ϕ1 =
ψ1

ψ1 +
∑

y∈p−1(x) ψy
and the ϕy =

ψy

ψ1 +
∑

y∈p−1(x) ψy
(8.1)

with y ∈ p−1(x), the partition of unity corresponding to r > 0. Clearly
suppϕy = suppψy and

∑

y∈p−1(x) ϕy = 1 in Br(y) for any y ∈ p−1(x).

Lemma 8.2. The functions ϕy admit Lipschitz constant 3N(2r + 3), the
function ϕ1 admits Lipschitz constant 9N(2r + 3)2.

Proof. The numerator of ϕy in (8.1) takes values in [0, 1] and admits 1 as
a Lipschitz constant, the denominator takes values in [1, N(2r + 3)] and
admits 2N(2r + 3) as a Lipschitz constant. The first assertion follows now
from an easy calculation. Since ϕ1 = 1−

∑

ϕy, the second is an immediate
consequence. �

For a finite subset P ⊆ p−1(x0) consider the non-negative function

χ =
∑

y∈P

ϕy(8.3)

and the sets

Q+ = {y ∈ p−1(x) | χ = 1 in Br(y)},

Q− = {y ∈ p−1(x) | 0 < χ(z) < 1 for some z ∈ Br(y)},
(8.4)

In virtue of Lemma 8.2, we obtain that χ admits 3N(2r+3)2 as a Lipschitz
constant.
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Proposition 8.5. Suppose that p : O1 → O0 is amenable, and let ε > 0.
Then there exists a finite subset P ⊆ p−1(x0) such that |Q−| < ε|Q+|.

Proof. Since the right action of Γ0 on p−1(x0) is amenable, there exists a
finite subset P ⊆ p−1(x0) such that |Pg \ P | < ε|P | for all g ∈ G2r+2.

Let y ∈ Q− and z ∈ Br(y) such that 0 < χ(z) < 1. Since
∑

y∈p−1(x0)

ϕy(z) = 1,

it follows that there is y0 ∈ P and y1 ∈ p−1(x0) \ P , such that ϕyi(z) > 0,
i = 0, 1. This yields that d(yi, z) < r+1, and, in particular, that d(y0, y1) <
2r + 2. In view of (5.14), we obtain that there exists g ∈ G2r+2 such that
y1 = y0g, which shows that y1 ∈ Pg r P , for some g ∈ G2r+2. Hence, there
exist at most εN(2r+2)|P | such y1. Since d(y, y1) < 2r+1, it follows from
Lemma 5.16 that, for any such y1, there exist at most N(4r + 2) such y.
Therefore, we obtain that

|Q−| ≤ εN(4r + 2)N(2r + 2)|P | ≤ εN(4r + 2)N(2r + 2)|Q− ∪Q+|,

where we use that P ⊆ Q− ∪ Q+. Proposition 8.5 is an immediate conse-
quence of this inequality. �

Proof of Theorem A.1. Let f ∈ C∞
c (O0), f 6= 0, and f1 = f ◦ p be the lift

of f to O1. Choose x0 ∈ R0 and r > 0 such that supp f ⊆ Br(x0). Then f1
has support in the neighborhood Ur(p

−1(x0)) of radius r about p−1(x0).
Consider the partition of unity on O1 corresponding to r as in (8.1). Given

ε > 0, choose the finite set P ⊆ p−1(x0) according to Proposition 8.5 with
χ as in (8.3) and Q− and Q+ as in (8.4). Then χ has compact support
contained in the closed neighborhood Nr+1(P ) of radius r+1 about P , and
admits Lχ = 3N(2r + 3)2 as a Lipschitz constant.

Since supp f ⊆ Br(x0), it is easy to see that supp f1∩Dy ⊆ Br(y) for any
y ∈ p−1(x0). This yields that supp(χf) is contained in the union of Dy with
y ∈ Q = Q+ ∪Q−.

We want to extimate the Rayleigh quotient RS1
(χf1). Since the intersec-

tion of different Dy’s is of measure zero, we compute

RS1
(χf1) =

∫

O1
χf1S1(χf1)
∫

O1
(χf1)2

=

∫

O1
{|∇(χf1)|

2 + χf1V1χf1}
∫

O1
χ2f21

=

∑

y∈Q

∫

Dy
{|∇(χf1)|

2 + V1χ
2f21 }

∑

y∈Q

∫

Dy
χ2f21

≤

∑

y∈Q

∫

Dy
{|∇(χf1)|

2 + V1χ
2f21 }

∑

y∈Q+

∫

Dy
χ2f21

.

We now estimate the terms arising from the right hand side. Since χ = 1
on By(y) for any y ∈ Q+, we have that χf1 = f1 in a neighborhood of
supp(χf1) ∩Dy. This, together with Proposition 5.9.6, yields that
∫

Dy

χ2f21 =

∫

O0

f2 and

∫

Dy

{|∇(χf1)|
2 + V1χ

2f21} =

∫

O0

{|∇f |2 + V f2}
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for any y ∈ Q+. Denote by Lχ and Lf the respective Lipschitz constants of
χ and f and by Cf and CV the respective maximum of |f | and of |V | on
supp f . It is easy to see that (at any point of O1)

|∇(χf1)|
2 + V1χ

2f21 ≤ 2χ2
1|∇f1|

2 + 2f21 |∇χ|
2 + |V1|χ

2f21

≤ 2L2
f + 2C2

fL
2
χ + CV C

2
f =: C,

where we use that 0 ≤ χ ≤ 1. Therefore, using again Proposition 5.9.6, we
obtain that

∫

Dy

{|∇(χf1)|
2 + V1χ

2f21 } ≤ C| supp f |

for any y ∈ Q−. From the above estimates, we conclude that

RS1
(χf1) ≤ RS0

(f) +
C| supp f |
∫

O0
f2

|Q−|

|Q+|
< RS0

(f) +
C| supp f |
∫

O0
f2

ε.

This shows that, for any δ > 0, we have RS1
(χf1) = RS0

(f)+δ if ε is chosen
sufficiently small. The proof is completed by (1.2). �

9. Stability implies amenability: the case of a closed base

Let p : O1 → O0 be a Riemannian covering with O0 closed (that is, com-
pact and without boundary) and connected, and O1 possibly non-connected.
The aim of this section is to prove the following:

Theorem 9.1. If λ0(O1) = 0, then p is amenable.

We have the right action of πorb1 (O0) on the right cosets of the fundamental
group of any connected component of O1 in πorb1 (O0), and, by definition,
amenability of p means that this action on the disjoint union of these cosets
is amenable. Recall that this action is equivalent to the action on the fiber
of p, presented in Section 5.3. After fixing a regular point x0 ∈ O0 and
a point in the universal covering space above it as in Section 5.3, for any
y1, y2 ∈ p−1(x0), we have that d(y1, y2) < r if and only if y2 = y1g for some
g ∈ Gr.

Cover O0 with finitely many evenly covered, coordinate systems πi : Ûi →
Ui = Ûi/Gi, which are extensible; that is, each πi can be extended to an

evenly covered, coordinate system πi : V̂i → Vi, where V̂i ⊆ Rn is bounded
and the closure of Ûi contained in V̂i. Since O0 is compact, there exists
r0 > 0 such that for any x ∈ O0, we have that B3r0(x) is contained in some
Ui. It should be noticed that for any y ∈ O1 there exists a lifted coordinate
system πij : Ûi → Vij = Ûi/Gij such that B3r0(y) ⊆ Vij.

Since O0 is closed, it has Ricci curvature bounded from below, by 1−m,
say, and so does O1.

Lemma 9.2. There exists a constant C > 0 such that, for any i, x ∈ Ui

and x̂ ∈ π−1
i (x), we have that

hN (Br0(x̂)) ≥ C and hN (B2r0(x̂)) ≥ C.

Proof. We may extend the Riemannian metrics on the Ûi to complete Rie-
mannian metrics on R

n such that there Ricci curvature is bounded from
below. Then we can apply Lemma 3.17 to arrive at Lemma 9.2. �
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Recall that a subset X of an orbifold O is called a complete 2r-separated
subset if X is a maximal subset with the property d(x, y) ≥ 2r for any x 6= y
in X. It is clear that if X is a complete 2r-separated subset of O, then the
balls B2r(x) with x ∈ X cover O.

Corollary 9.3. There exists C(r0) > 0 such that for any complete 2r0-
package X of O1, we have that any x ∈ O1 belongs to at most C(r0) of the
balls B2r0(y) with y ∈ X.

Proof. Given a complete 2r0-package X and x ∈ O1, set Ex := {y ∈ X :
x ∈ B2r0(y)}. It is evident that the disjoint balls Br0(y) with y ∈ Ex, are
contained in B3r0(x). It should be observed that |Br0(y)| ≥ |Br0(p(y))| ≥
c > 0, since O0 is closed. We conclude from Proposition 3.11 that

c|Ex| ≤
∑

y∈Ex

|Br0(y)| ≤ |B3r0(x)| ≤
1

|Γx|
β(3r0) ≤ β(3r0),

as we wished. �

We are ready to prove an analogue of a special version of Buser’s [12,
Lemma 7.2].

Proposition 9.4. If h(O1) = 0, then for any ε, r > 0, there exists open
bounded A ⊆ O1 such that |Ur(∂A)| < ε|A|.

Proof. In view of the volume comparison theorem, it suffices to prove the
assertion for any ε > 0 and a fixed r > 0. Set r = r0 from the beginning of
this section, and

C0 := max
i

|Gi|,

where Gi are the groups corresponding to the coordinate systems in the
beginning of this section. Since h(O1) = 0, we have that for any ε > 0,
there exists a smoothly bounded, compact domain A ⊆ O1 with

|∂A|

|A|
< δ := min

{

Cβ(r)ε

2C2
0β(4r)

,
Cβ(r)ε

2C(r)C0β(2r)

}

(9.5)

We partition O1 into the sets

A+ = {x ∈ O1 | |A ∩Br(x)| >
1

2C0
|Br(x)|},(9.6)

A0 = {x ∈ O1 | |A ∩Br(x)| =
1

2C0
|Br(x)|},(9.7)

A− = {x ∈ O1 | |A ∩Br(x)| <
1

2C0
|Br(x)|}.(9.8)

Clearly, |A ∩Br(x)| 6= 0 for all x ∈ A+ ∪A0. Since |Br(x)| and |A ∩Br(x)|
depend continuously on x, a path from A− to A+ will pass through A0.
Since A is bounded, A+ and A0 are bounded. Moreover, ∂A+ ⊆ A0, A+

and A− are open, and A0 is closed, hence compact. We will show that A+

satisfies the asserted inequality. By passing from A to A+, we get rid of a
possibly “hairy structure” along the “outer part” of A. We pay by possibly
losing regularity of the boundary.

We now choose a 2r-separated subset X of O1 as follows. We start with a
2r-separated subset X0 ⊆ A0 such that A0 is contained in the union of the
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balls B2r(x) with x ∈ X0. (If A0 = ∅, then X0 = ∅.) We extend X0 to a 2r-
separated subset X0 ∪X+ of A0 ∪A+ such that A0 ∪A+ is contained in the
union of the balls B2r(x) with x ∈ X0 ∪X+. (If A+ = ∅, then X+ = ∅.) We
finally extend X0∪X+ to a complete 2r-separated subset X = X0∪X+∪X−

of O1. (If A− = ∅, then X− = ∅.) By definition, X+ ⊆ A+ and X− ⊆ A−.
Since A is bounded and |A∩Br(x)| 6= 0 for all x ∈ X0∪X+, the sets X0 and
X+ are finite. By the same reason, the set Y of x ∈ X− with |A∩B2r(x)| 6= 0
is finite.

The neighborhood U2r(A0) is covered by the balls B4r(x) with x ∈ X0.
Using Proposition 3.11 and (9.7), we therefore get

|U2r(A0)| ≤
∑

x∈X0

|B4r(x)|

≤
β(4r)

β(r)

∑

x∈X0

|Br(x)|

=
2C0β(4r)

β(r)

∑

x∈X0

|A ∩Br(x)|.

For any x ∈ X0 there exists a (lifted) coordinate system πij : Ûi → Vij =

Ûi/Gij with B3r(x) ⊆ Vij . Fixing x̂ ∈ π−1
ij (x), we compute

|π−1
ij (A) ∩Br(x̂)| ≤ |π−1

ij (A ∩Br(x))| = |Gij ||A ∩Br(x)| =
|Gij |

2C0
|Br(x)|.

It is easily checked that

|Br(x)| =
1

|Gij |
|π−1

ij (Br(x))| ≤
1

|Gij |

∑

z∈π−1

ij (x)

|Br(z)| ≤ |Br(x̂)|,

which shows that

|π−1
ij (A) ∩Br(x̂)| ≤

1

2
|Br(x̂)|.(9.9)

From Lemmas 9.2 and 3.7 we derive that

|∂A ∩Br(x)|

|A ∩Br(x)|
≥

1

|Gij |

|π−1
ij (∂A) ∩Br(x̂)|

|π−1
ij (A) ∩Br(x̂)|

≥
C

C0
(9.10)

for any x ∈ X0, where we used that Gij is a subgroup of Gi. Hence

|U2r(A0)| ≤
2C2

0β(4r)

Cβ(r)

∑

x∈X0

|∂A ∩Br(x)|

≤
2C2

0β(4r)

Cβ(r)
|∂A|

≤
2C2

0β(4r)

Cβ(r)
δ|A| ≤ ε|A|

(9.11)

where we use that A satisfies (9.5).
Since any curve from A+ to A− passes through A0, A+ has distance at

least 2r to A− \ U2r(A0). Hence A− \ U2r(A0) is covered by the open balls
B2r(x) with x ∈ X−.
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With Y as above, we let Z = X0 ∪ Y . Again, for any x ∈ Z there exists
a (lifted) coordinate system πij : Ûi → Vij = Ûi/Gij with B3r(x) ⊆ Vij.
Arguing as above, using (9.7) and (9.8), we readily see that

|π−1
ij (A) ∩Br(x̂)| ≤

1

2
|Br(x̂)|

for any x̂ ∈ π−1
ij (x). Letting Ac = O1 \ A, we obtain from Proposition 3.11

that

|π−1
ij (A)c ∩B2r(x̂)| ≥ |π−1

ij (A)c ∩Br(x̂)| ≥
1

2
|Br(x̂)|

≥
β(r)

2β(2r)
|B2r(x̂)| ≥

β(r)

2β(2r)
|π−1

ij (A) ∩B2r(x̂)| > 0.

for any x ∈ Z. With the constant C from Lemma 9.2, we therefore get

C ≤ hN (B2r(x̂))

≤
|π−1

ij (∂A) ∩B2r(x̂)|

min{|π−1
ij (A) ∩B2r(x̂)|, |π

−1
ij (A)c ∩B2r(x̂)|}

≤
2β(2r)

β(r)

|π−1
ij (∂A) ∩B2r(x̂)|

|π−1
ij (A) ∩B2r(x̂)|

≤
2C0β(2r)

β(r)

|∂A ∩B2r(x)|

|A ∩B2r(x)|

(9.12)

for any x ∈ Z, and the last inequality follows similarly to (9.10). Using
Corollary 9.3, (9.12) and (9.5), we conclude that

|A ∩ (A− \ U2r(A0))| ≤
∑

x∈Z

|A ∩B2r(x)|

≤
2C0β(2r)

Cβ(r)

∑

x∈Z

|∂A ∩B2r(x)|

≤
2C(r)C0β(2r)

Cβ(r)
|∂A|

<
2C(r)C0β(2r)

Cβ(r)
δ|A| ≤ ε|A|,

(9.13)

where we use (9.5) in the last step.
Since A ⊆ A+ ∪ U2r(A0) ∪ (A ∩ (A− \ U2r(A0))), we obtain

|A+| ≥ |A| − |U2r(A0)| − |A ∩ (A− \ U2r(A0))|

≥ (1− 2ε)|A|.

In particular, A+ is not empty. Since ∂A+ ⊆ A0, we conclude that

|U2r(∂A+)| ≤ |U2r(A0)| ≤ ε|A| ≤
ε

1− 2ε
|A+|.

In conclusion, A+ is a bounded open subset of O1 that satisfies the asserted
inequality, albeit with 2ε in place of ε (assuming w.l.o.g. that ε < 1/4). �

We are now ready to prove the main result of the section. As a conse-
quence of the Cheeger inequality, if λ0(O1) = 0, then h(O1) = 0. We know
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from Lemma 9.4 that for any ε > 0 and r > 2 diamO0 there exists an open,
bounded A ⊆ O1 with |U3r(A) \ A| ≤ |U3r(∂A)| < ε|A|.

Fix a regular point x ∈ O0 and consider the finite set F := p−1(x)∩Ur(A).
Taking into account that

diamDy ≤ 2 diamO0 < r,

it is immediate to verify that A is contained in the union of Dy, with y ∈ F .
Moreover, given g ∈ Gr, it is easy to see that any y ∈ Fg \ F belongs to
U2r(A)\Ur(A), which shows that U3r(A)\A contains the corresponding Dy.
Using that |Dy| = |O0| and that the intersection of different Dy’s is measure
zero, we conclude that

|Fg \ F ||O0| ≤ |U3r(A) \ A| < ε|A| ≤ ε|F ||O0|

for any g ∈ Gr. Since any finite subset G of πorb1 (O0) is contained in Gr for
some r > 2 diamO0, this implies that the covering is amenable.

10. Stability implies amenability: the role of λess

Let K0 be a compact and connected Riemannian orbifold with non-empty
boundary. Let p : K1 → K0 be a Riemannian covering of orbifolds, where we
do not assume that K1 is connected. We assume that λ0(K1) = λ0(K0) = 0,
where we recall the notation λ0(K) = λ(∆,K), where we use the definition
of λ0 as the infimum of the usual Rayleigh quotients over non-zero functions
f in C∞

c (K1) and C
∞
c (K0), respectively. Note that we do not require that

the functions f vanish on the corresponding boundary.
Change the given Riemannian metric on K0 in a neighborhood U ∼=

[0, ε) × ∂K0 of ∂K0 so that the new metric is a product metric dr2 + g0
on U , where g0 is a Riemannian metric on ∂K0, and endow K1 with the
lifted metric. Since K0 is compact, the old and new Riemannian metrics on
K0 and K1 are uniformly equivalent, and hence λ0(K1) = λ0(K0) = 0 with
respect to the new metric.

Denote by 2K0 and 2K1 the doubles of K0 and K1. Since the new Rie-
mannian metrics above are product metrics in neighborhoods of the bound-
aries, they fit together to define Riemannian metrics on 2K0 and 2K1 so
that p extends to a Riemannian covering 2p : 2O1 → 2O0. Since λ0(K1) = 0
with respect to the new metric and test functions in C∞

c (K1) can be doubled
to test functions in Lipc(2K1) with the same Rayleigh quotient, we get that
λ0(2K1) = 0. Since 2K0 is closed, we conclude from Theorem 9.1 that the
covering 2p is amenable. It follows from Proposition 6.3 that the restriction
of 2p over K0, which is the original covering p, is amenable. Hence, we arrive
at the following:

Theorem 10.1. If λ0(K1) = 0, then p is amenable.

Proof of Theorem A.2. Assume that

λ0(S1, O1) = λ0(S0, O0)

and, to arrive at a contradiction, that p is non-amenable. According to
(1.2), there exists a sequence (fn)n∈N in C∞

c (O1) with L2-norm one and
RS1

(fn) → λ0(S1, O1). Since the covering is non-amenable, we obtain from
Proposition 6.3 that there exists a smoothly bounded, compact domain
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K ⊆ O0 such that the covering p : p−1(K) → K is non-amenable. Then
Theorem 10.1 implies that λ0(p

−1(K)) > 0.
We know from Lemma 4.6 that there exists a positive ϕ0 ∈ C∞(O0) with

L2-norm one and S0ϕ0 = λ0(S0, O0)ϕ0. Denote by ϕ1 the lift of ϕ0 to O1

and by L the renormalization of S1 with respect to ϕ1. Since ϕ1 is positive,
we may write fn = hnϕ1, and in view of Lemma 4.10 we have that

RL(hn) =

∫

O1
|∇hn|

2ϕ2
1

∫

O1
h2nϕ

2
1

= RS1
(fn)− λ0(S0, O0) → 0.

Denoting by c1, c2 > 0 the minimum and the maximum of ϕ0 on K, respec-
tively, we have that

∫

p−1(K) |∇hn|
2ϕ2

1
∫

p−1(K) h
2
nϕ

2
1

≥
c21
c22
λ0(p

−1(K)) > 0,

which shows that
∫

p−1(K)
h2nϕ

2
1 → 0 and

∫

O1rp−1(K)
h2nϕ

2
1 → 1.

Let K0 be a compact domain (of positive measure) in the interior of K
and consider χ0 ∈ C∞

c (O1) with χ0 = 1 in a neighborhood of K0 and
suppχ0 ⊆ K. Denote by χ1 the lift of χ0 to O1 and set h′n = hn(1− χ1). It
is not difficult to verify that

∫

O1

(h′n)
2ϕ2

1 → 1 and

∫

O1

|∇h′n|
2ϕ2

1 → 0,

and hence RL(h
′
n) → 0. Now setting f ′n = h′nϕ1, we derive from Lemma 4.10

that RS1
(f ′n) → λ0(S0, O0). It should be noticed that ‖f ′n‖L2 → 1 and

supp f ′n ∩ p−1(K0) = ∅.
It is easy to see that the sequence (gn)n∈N in Lipc(O0), consisting of

the pushdowns of f ′n as defined in (7.1), satisfies ‖gn‖L2 → 1, supp gn ∩
K0 = ∅, and RS0

(gn) → λ0(S0, O0). Now we see the role of λess. Namely,
by Lemma 4.7, the assumption that λ0(S0, O0) < λess(S0, O0) yields that
gn → ϕ0 in L2(O0), after passing to a subsequence if necessary. This is
a contradiction since ϕ0 is positive, whereas K0 has positive measure and
supp gn ∩K0 = ∅. �

11. Conformally compact orbifolds

Let O = P \ ∂P , ∂P = {ρ = 0}, and g = h/ρ2 as in the introduction.
Then the normalized gradient field X = ∇ρ/|∇ρ| of ρ with respect to h
is well defined in a neighborhood of ∂P , and V = ρX is the normalized
gradient field of ρ with respect to g. The divergence of V with respect to g
is given

divg V =
m

2
V (ln(1/ρ2)) + div V

=
m

2

ρ

|∇ρ|
d(ln(1/ρ2)(∇ρ) + div V

= −m|∇ρ|+ div V

= −(m− 1)|∇ρ|+ ρdivX.
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Proof of (1.9). Since divX is a smooth function in a neighborhood of ∂P
and ∂P = {ρ = 0}, we conclude that, for any ε > 0, there is a neighborhood
U of ∂P such that

divg V = −(m− 1)|∇ρ| ± ε ≥ −a(m− 1)− ε

in U . By the divergence formula, we have

min div V |D|m ≤

∫

D
div V =

∫

∂D
〈V, ν〉 ≤ |∂D|m−1

for any compact domain in U with smooth boundary and hence

hess(O) ≥ (m− 1)a.

Using the Cheng eigenvalue comparison Theorem 3.12 for orbifolds, the
proof of the inequalities λess(Õ), λess(O) ≤ a2(m − 1)2/4 is the same as
that for the corresponding inequalities for λ0 in the case of manifolds in
[3, Theorem 1.10]. The Cheeger inequality (4.9) then implies the asserted
equality λess(O) = a2(m− 1)2/4. �
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Misha Brin. DMV Seminar 25. Birkhäuser Verlag, Basel, 1995. viii+112 pp.

[2] W.Ballmann, H.Matthiesen, and P.Polymerakis, On the bottom of spectra under
coverings. Math. Zeitschrift 288 (2018), 1029–1036.

[3] W.Ballmann, H.Matthiesen, and P.Polymerakis, Bottom of spectra and amenability
of coverings. Geometric Analysis, 17-35, Prog. Math. 333, Birkhäuser, 2020.

[4] W.Ballmann and P.Polymerakis, Bottom of spectra and coverings. Surv. Differ.
Geom. 23 (2020), 1–33.

[5] W.Ballmann and P.Polymerakis, Equivariant discretizations of diffusions and har-
monic functions of bounded growth. Israel J. Math., to appear.

[6] W.Ballmann and P.Polymerakis, On the essential spectrum of differential operators
over geometrically finite orbifolds. MPI-Preprint 2021-9, arxiv.org/abs/2103.13704.

[7] J. Borzellino, Orbifolds of maximal diameter. Indiana Univ. Math. J. 42 (1993), no.
1, 37–53.

[8] B.H.Bowditch, Geometrical finiteness with variable negative curvature. Duke Math.

J. 77 (1995), no. 1, 229–274.
[9] M.Bridson and A.Haefliger, Metric spaces of non-positive curvature. Grundlehren

der Mathematischen Wissenschaften 319. Springer-Verlag, Berlin, 1999. xxii+643 pp.
[10] R.Brooks, The fundamental group and the spectrum of the Laplacian. Comment.

Math. Helv. 56 (1981), no. 4, 581–598.
[11] R.Brooks, The bottom of the spectrum of a Riemannian covering. J. Reine Angew.

Math. 357 (1985), 101–114,

[12] P.Buser, A note on the isoperimetric constant. Ann. Sci. École Norm. Sup. (4) 15
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