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SFig. 1. Sample characterization: (a) Secondary electron microscopy image. (b) Raman

spectrum. (c) Photoluminescence spectrum.

I SAMPLE GROWTH AND CHARACTERIZATION

Graphene samples were grown on N-doped 6H-SiC(0001) with a miscut below 0.5◦ bought

from SiCrystal GmbH. The substrate was first cleaned and smoothed via etching in hydrogen

atmosphere and then graphitized by annealing in argon atmosphere [1] until a carbon buffer

layer with a (6
√

3× 6
√

3)R30◦ surface reconstruction was formed. The carbon buffer layer

was then decoupled from the substrate via hydrogen intercalation at 800◦C [2] in order to

obtain a quasi-free-standing graphene monolayer. The whole process was carried out in a

commercial Black Magic� reactor from Aixtron. The WS2 growth was carried out in a

standard hot-wall reactor by chemical vapor deposition (CVD) [3, 4]. WO3 and S powders

with a weight ratio of 1:50 were used as precursors. The WO3 and S powders were kept at

900◦C and 120◦C, respectively. The WO3 powder was placed close to the substrate. Argon

was used as carrier gas with a flow of 80 sccm. The pressure in the reactor was kept at

1 mbar. The synthesis process took 30 min. The samples were characterized with secondary

electron microscopy, Raman, and photoluminescence spectroscopy. The results are shown

in SFig. 1.

II TIME- AND ANGLE-RESOLVED PHOTOEMISSION SPECTROSCOPY DATA

ANALYSIS

experimental setup

We performed the tr-ARPES experiments in an 2 eV-pump/XUV-tr-ARPES-probe setup

based on a 1 kHz Titanium:Sapphire amplifier (Coherent Legend Elite Duo). Extreme ul-
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traviolet (XUV) pulses were obtained from high harmonics generation (HHG) in an argon

gas jet. Probe pulses at 26 eV photon energy with a nominal pulse duration of 100 fs were se-

lected with a grating monmochromator. Pump pulses were obtained by frequency doubling

of the signal output of an optical parametric amplifier (HE-TOPAS from Light Conversion).

The pump fluence range employed in the present study was limited by noise on the lower

side and pump-induced space charge on the upper side. ARPES snapshots were measured

with a hemispherical analyzer (SPECS Phoibos 100). The photocurrent is detected on a

two-dimensional detector as a function of emission angle θ and kinetic energy Ekin of the

photoelectrons. The emission angle θ is related to the in-plane momentum of the electrons

inside the solid via k|| =
√

2me
~ sin θ

√
Ekin, where me is the electron mass. The binding energy

EB of the electrons inside the solid can be obtained from EB = ~ω − Ekin − φ, where ~ω

is the photon energy and φ is the work function of the analyzer, that — in the absence

of space charge effects — determines the kinetic energy where the Fermi level appears in

the measurement. The energy resolution of the tr-ARPES measurements was determined

from Fermi-Dirac fits of the carrier distribution inside the Dirac cone at negative pump-

probe delay. The fitting function consisted of the Fermi-Dirac distribution convolved with

a Gaussian to account for the finite energy resolution. These fits revealed that the kinetic

energy at which the Fermi level appeared in the measurement (SFig. 4a) as well as the en-

ergy resolution (SFig. 4b) depend on the applied pump fluence. The temporal resolution of

the tr-ARPES measurements of 200 fs was deduced from the full width at half maximum

(FWHM) of the width of the derivative of the rising edge of the photocurrent integrated over

the area marked by the red box in Fig. 1f. The conversion of the measured photocurrent

from (Ekin, θ) to (EB, k||) relies on an accurate value for the kinetic energy of the Fermi

level that is commonly used as energy reference in ARPES data. To solve this issue, we

extrapolated the kinetic energy of the Fermi level in SFig. 4a to zero pump fluence, yielding

EF,0 = 17.48 eV.

treatment of raw data

The qualitiy of the tr-ARPES raw data in the present study was impaired by three main

factors: (1) a featureless background due to dark counts on the detector as well as photo-

electrons emitted from the pump rather than the probe pulse, (2) fluctuating ARPES counts
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SFig. 2. Treatment of raw data: (a) Tr-ARPES snapshot at negative pump-probe delay taken

with a pump fluence of 1.63 mJ/cm2. The pink box is used to extract Ibox(t) in panel (b). The

orange box captures the carriers at the bottom of the conduction band shown in panel (d). (b)

Photocurrent Ibox(t) integrated over the area marked by the pink box in (a) together with its

average for negative pump-probe delays < Ibox >. (c) Normalization factor f =< Ibox > /Ibox(t)

as a function of pump-probe delay. (d) Effect of the raw data correction on the time dependence of

the photocurrent integrated over the area marked by the orange box in panel (a). (e) Ratio of the

reference intensities Iref,gr and Iref,WS2 as defined in SFig. 3c and a, respectively, for the datasets

obtained with different pump fluences.

due to shot-to-shot intensity variations of the XUV pulses, and (3) variations of the relative

intensity of WS2 and graphene bands due to sample inhomogeneity. These problems were

solved as follows:

(1) We measured the photocurrent with pump but without probe pulse and subtracted this

background from the tr-ARPES snapshots.

(2) We integrated the counts over the area marked by the pink box in SFig. 2a where the

photocurrent is expected to be zero after background subtraction. This yields a photocurrent

Ibox(t) that fluctuates with time t (SFig. 2b). Next, we averaged Ibox(t) at negative delays

yielding < Ibox >. We then multiplied each tr-ARPES snapshot with a factor f =< Ibox >

/Ibox(t) (SFig. 2c). The effect of this procedure on the transient photocurrent at the bottom

of the conduction band obtained by integrating the tr-ARPES data over the area marked

by the orange box in SFig. 2a is illustrated in SFig. 2d.

(3) As the WS2 coverage in our WS2/graphene heterostructure is not uniform, the relative

intensity of the WS2 and the graphene bands varies from spot to spot and, hence, between

different tr-ARPES runs. In order to turn our results independent of the precise value of

the WS2 coverage we divided the pump-probe traces shown in Fig. 2a by the integrated
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SFig. 3. Determination of transient band positions: (a) EDCs extracted along the dashed

green line in Fig. 1a at t < 0 fs (light green) and at t = 200 fs (dark green) together with Gaussian

fit (black) in the WS2 VB region. The shaded areas indicate the three individual Gaussians used

to fit the data. The area of the dark-shaded Gaussian Iref,WS2 was used to turn the measured

photocurrent independent of the WS2 coverage. (b) EDCs extracted along the dashed green line

in Fig. 1a from the differential tr-ARPES data shown in the lower panel of Fig. 1 in the WS2 CB

region for t < 0 fs (dark orange) and t = 200 fs (light orange) together with Gaussian fit (black).

(c) MDCs extracted along the dashed red line in Fig. 1a for t < 0 fs (dark red) and t = 200 fs (light

red) together with Lorentzian fit. The area of the dark-shaded Lorentzian Iref,gr was used to turn

the measured photocurrent independent of the WS2 coverage. The data was obtained for a pump

fluence of 2.85 mJ/cm2.

intensity of the upper WS2 valence band Iref,WS2 from SFig. 3a and the pump-probe trace

shown in Fig. 2b by the integrated intensity of the Dirac cone Iref,gr from SFig. 3c. The ratio

Iref,gr/Iref,WS2 for the different tr-ARPES runs with different pump fluences is shown in

SFig. 2c. The measurement with the highest pump fluence was done on a sample area where

the WS2 coverage was particularly low. This reduced the absolute number of photoexcited

electron-hole pairs and, hence, the absolute number of holes that were transferred to the

graphene layer as well as the measured shift of the Dirac cone. For this reason, the high flu-

ence data point in SFig. 10c and d was set in brackets and not included for the determination

of the guide to the eye.

k-space conversion and experimental resolution

The photocurrent is detected on a two-dimensional detector as a function of emission angle

θ and kinetic energy Ekin of the photoelectrons. The emission angle θ is related to the

in-plane momentum of the electrons inside the solid via k|| =
√

2me
~ sin θ

√
Ekin, where me is
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SFig. 4. Space charge effects: (a) Position of the Fermi level at negative delays as a function

of pump fluence. The gray line is used to extrapolate the position of the Fermi level to zero pump

fluence. The data point in brackets was obtained on an area of the sample where the WS2 coverage

was particularly low. The error bars are smaller than the symbol size. (b) Energy resolution for

different pump fluences.

the electron mass. The binding energy EB of the electrons inside the solid can be obtained

from EB = ~ω − Ekin − φ, where ~ω is the photon energy and φ is the work function of

the analyzer, that — in the absence of space charge effects — determines the kinetic energy

where the Fermi level appears in the measurement. The energy resolution of the tr-ARPES

measurements was determined from Fermi-Dirac fits of the carrier distribution inside the

Dirac cone at negative pump-probe delay. The fitting function consisted of the Fermi-Dirac

distribution convolved with a Gaussian to account for the finite energy resolution. These

fits revealed that the kinetic energy at which the Fermi level appeared in the measurement

(SFig. 4a) as well as the energy resolution (SFig. 4b) depend on the applied pump fluence.

The temporal resolution of the tr-ARPES measurements of 200 fs was deduced from the full

width at half maximum (FWHM) of the width of the derivative of the rising edge of the

photocurrent integrated over the area marked by the red box in Fig. 1f. The conversion

of the measured photocurrent from (Ekin, θ) to (EB, k||) relies on an accurate value for the

kinetic energy of the Fermi level that is commonly used as energy reference in ARPES data.

To solve this issue, we extrapolated the kinetic energy of the Fermi level in SFig. 4a to zero

pump fluence, yielding EF,0 = 17.48 eV.

determination of population dynamics in Fig. 2a

The red box in Fig. 1b follows the transient down-shift of the Dirac cone. For that reason

the sign change of the pump-probe signal observed in Fig. 3(2) in our previous work [5] is

not observed in Fig. 2a. This effect is illustrated in Fig. 5.
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SFig. 5. Extraction of gain signal in graphene: (a) Pump-induced changes of the photocur-

rent at the peak of the pump-probe signal (+0.2ps). The red box indicates the area of integration

for the pump-probe traces shown in (c). Thin dashed lines represent the calculated band structures

of graphene [6] and WS2 [7]. (b) Transient shift of the Dirac cone as a function of pump-probe

delay. (c) Graphene gain signal obtained by integrating the counts over the area marked by the

red box in (a) as a function of pump-probe delay for the static box (blue) and for the box following

the transient shift of the Dirac cone (red).

determination of transient band positions

In SFig. 3 we show examples for the fits used to determine the transient peak positions in

Fig. 2. The EDCs in SFig. 3a were obtained by integrating the tr-ARPES data in the first row

of Fig. 1 over a momentum interval of 0.05 Å−1 centered at the green dashed line in Fig. 1a. A

total of three Gaussians (one for the upper and lower WS2 VB, respectively, and one for the

background) was used to fit the spectra. While the lower and upper VB are nicely resolved

at negative pump-probe delays, the broadening of the spectrum after photoexcitation makes

a correct determination of the transient peak positions difficult. This difficulty could be

avoided by constraining the parameters of the fit as follows. (1) No peak was allowed to

gain spectral weight with respect to negative pump-probe delay. (2) Only the upper valence

band (VBA) was allowed to loose spectral weight as a result of photoexcitation. (3) No peak

was allowed to narrow with respect to negative pump-probe delay. (4) The separation of the

upper and lower WS2 was fixed at 430 meV. (5) The position of the third Gaussian for the

background was fixed at E = −2.5 eV. The EDCs in SFig. 3b were obtained by integrating

the differential tr-ARPES data in the second row of Fig. 1 over a momentum interval of

0.1 Å−1 centered at the green dashed line in Fig. 1a. These spectra were fitted with a single

Gaussian for all pump-probe delays where the CB was found to be occupied. The integration
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range for the MDCs in SFig. 3c was ±0.06 eV around E = −0.5 eV. The MDCs were fitted

with a single Lorentzian peak.

Fermi-Dirac fits of electron distribution inside Dirac cone

In SFig. 6 we provide an example for Fermi-Dirac fits of the transient electron distribution

inside Dirac cone used to determine the electronic temperature and the chemical potential

in SFig. 9. The fitting function consisted of a Fermi-Dirac distribution convolved with a

Gaussian to account for the finite energy resolution. From these fits the number holes

transferred from the WS2 into the graphene layer was determined as follows. The transient

shift of the chemical potential referenced with respect to the graphene Dirac point µe(ED) was

calculated by subtracting the band shift in Fig. 2c from the chemical potential in SFig. 9b

that is referenced with respect to the vacuum level. From µe(ED)(t) and Te(t) (SFig. 9a) we

can then directly calculate the change of the total number of electrons in the graphene layer

via

∆ne(t) =

∫ ∞
−∞

dE ρ(E) [fFD(E, µ(t), T (t))− fFD(E, µ0, T0)]

where ρ(E) = 2Ac
π
|E−ED|
~2v2F

is the density of states with the unit cell are Ac = 3
√

3a2

2
and

the lattice constant a = 1.42 Å. The equilibrium chemical potential is µ0 = −0.3 eV. The

transient chemical potential is given by µ(t) = µ0+∆µe(ED)(t). The equilibrium temperature

is T0 = T (t < 0 ps) = 300 K. The number of transferred holes shown in SFig. 9c is then given

by ∆nh(t) = −∆ne(t).

possible impact of Te 6= Th 6= Tgraphene

Assuming that Te, Th, and Tgraphene at least exhibit a similar exponential decay, Te =

Th 6= Tgraphene would only modify the y-axis scaling in Fig. 4c and d. As the y-axis scaling

is in arbitrary units, this would not be important. If Te 6= Th our conclusion that the hole

transfer is faster than the electron transfer because of the smaller barrier height for holes

might be too simple. In particular, our conclusion would break down, if Te ≥ 2.4Th, i.e. if

the temperature difference became big enough to compensate for the difference in barrier

height. However, this situation should not occur: As the WS2 band structure is roughly
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SFig. 6. Fermi-Dirac fits: EDCs obtained by integrating the counts over the momentum width

of the yellow box in Fig. 1a at t < 0 fs (color) and t = 200 fs (color) together with Fermi-Dirac fits

(black).

electron-hole symmetric at the K-point, we expect the initial electron and hole temperatures

to be quite similar. This situation might change during charge separation. Because hole

transfer is found to be much faster than electron transfer, we expect the remaining holes in

WS2 to cool much faster than the electrons. This means that Te = Th at t = 0 will change

to Te > Th for later pump-probe delays. Therefore, Te ≥ 2.4Th is not expected to occur at

any time. In conclusion, even if our assumptions Te = Th and Te = Tgraphene turned out not

to be entirely applicable for all times, the main message of our study would not be affected.

additional tr-ARPES data for other pump fluences

The fluence dependent data corresponding to Fig. 2 is shown in SFigs. 7-8. SFig. 9 shows

the fluence dependence of the hot carrier dynamics in graphene. The fluence dependence of

various parameters at the peak of the pump-probe signal is shown in SFig. 10. A comparison

of the fluence dependence of the gain above the equilibrium position of the upper WS2 VB

and the charging-induced shift of the VB is shown in SFig. 11.

fit function for exponential decay

The fitting function is given by
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SFig. 7. Fluence dependence of the population dynamics: (a) Gain in the CB (orange)

and loss in the VB (green) of WS2. (b) Graphene dynamics: Gain above the Fermi level (red) and

loss below the Fermi level (blue). (c) Gain above the equilibrium position of the upper WS2 VB.

Thin black lines are single exponential fits to the data.

f(t) =
a

2

(
1 + erf

(
(t− t0)τ − σ2

σ τ

))
exp

(
σ2 − 2(t− t0)τ

2τ 2

)
(1)

where a is the amplitude of the pump-probe signal, σ is related to the full width at half

maximum (FWHM) of the derivative of the rising edge via FWHM = 2
√

2 ln 2 σ, t0 is the

middle of the rising edge, erf is the error function, and τ is the exponential lifetime. This

fitting function is obtained by convolving the product of a step function and an exponential

decay with a Gaussian to account for the finite rise time of the signal. In Fig 11 we show

that the gain above the equilibrium position of the upper WS2 VB from Fig. 2c and the WS2

charging shift from Fig. 2b exhibit the same fluence dependence. Hence, the lifetime of the

gain above the equilibrium position of the upper WS2 VB is a measure for the lifetime of

the charge separated state.

evidence for in-gap defect states

In SFig. 12 we show an energy distribution curve through the K-point of WS2 in the energy

region of the conduction band. At negative delay the WS2 conduction band is unoccupied.

At t = 0.2 ps we observe a pronounced Gaussian peak at E = 0.96 eV for the transiently

populated WS2 conduction band, as well as two other smaller Gaussians at E = 0.29 eV
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SFig. 8. Fluence dependence of the transient band positions: (a) Position of the WS2

CB. (b) Position of the WS2 VB. (c) Transient band gap of WS2. (d) Shift of the WS2 CB due to

charging of the WS2 layer. (e) Shift of the upper WS2 VB due to charging of the WS2 layer. (f)

Shift of the Dirac cone.

and E = 0.54 eV that we attribute to Sulfur vacancies in good agreement with scanning

tunneling spectroscopy data in Ref. [8].

III COMPARISON WITH LITERATURE

In this section we compare our tr-ARPES data to other pump-fluence dependent experimen-

tal studies on similar vdW heterostructures [9, 10] and discuss whether the models proposed

in literature [11–13] might also apply in our case.

Reference [9] investigated an epitaxial MoS2/graphene heterostructure on SiC(0001) with

tr-ARPES. They observed a considerable band gap renormalization that increased with

increasing hole density with a maximum value of −450 meV at nh = 1.5× 10−12 cm−1 with

pump fluences in the mJ/cm2 regime. These values are of the same order of magnitude
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SFig. 9. Fluence dependence of hot carrier dynamics in graphene: (a) Electronic temper-

ature, (b) chemical potential referenced with respect to the vacuum level, (c) chemical potential

referenced with respect to the Dirac point, and (d) number of holes transferred from WS2 to

graphene as a function of pump-probe delay for different pump fluences.

as our data presented in SFig. 10b. Unlike the present study, Ref. [9] did not observe any

indication for charge separation. We speculate that this might be related to the azimuthal

alignment between the TMD and the graphene lattice which was 30◦ in [9] and which is 0◦

or 60◦ in the present study.

Reference [10] performed transient absorption measurements on CVD-grown WS2/graphene

heterostructures on SiO2 but observed no systematic pump fluence dependence of the re-

laxation times with pump fluences in the µJ/cm2 regime. The authors proposed a model

where the electric field across the interface that builds up due to charge separation caused

by ultrafast hole transfer from WS2 to graphene increases the transfer rate for the electrons

which can be reconciled with our observation in Fig. 3b. However, this model cannot explain

our observation that the hole transfer rate also increases with increasing fluence (see Fig. 3a).
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SFig. 10. Fluence dependence of different parameters at the peak of the pump-probe

signal (t = 0.2 ps): (a) Pump-induced change of photocurrent inside colored boxes from Fig. 1f.

(b) Change of the WS2 band gap from Fig. 2a. (c) Number of holes transferred into the graphene

layer from SFig. 9c. (d) Charging-induced WS2 and graphene band shifts from Figs. 2e and f. (e)

Peak electronic temperature of Dirac carriers from SFig. 9a. Light gray lines are guides to the eye.

The datapoints in brackets were obtained on areas of the sample with lower WS2 coverage.

SFig. 11. Direct comparison of fluence dependence of gain above equilibrium position of upper

WS2 VB (purple) and WS2 charging shift (green).
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SFig. 12. Evidence for in-gap defect states. EDCs through the K-point of WS2 in the

conduction band region at negative delay and at the peak of the pump-probe signal at t = 0.2 ps.

Gray lines indicate the Gaussian peaks used to fit the spectrum at t = 0.2 ps. The two Gaussians

marked with black arrows are attributed to in-gap defect states due to Sulfur vacancies.

References [11–13] proposed a coherent phonon-driven charge transfer mechanism for ultra-

fast charge separation in vdW heterostructures with type II band alignment. The frequency

of the associated coherent oscillations, however, is too high to be resolved given the limited

temporal resolution of 200 fs in the present study.

IV MICROSCOPIC MODEL OF CHARGE TRANSFER

In the second quantization formalism, the Hamilton operator describing electron tunneling

from one layer (l) to another (l̄) is

HT =
∑
lλkq

T λll̄kq a
†
λ,l̄,k+q

aλ,l,k, (2)

where λ = v, c is the valence/conduction band, k the momentum of the initial state and q

the momentum transfer of the process. The tunneling matrix element reads T λll̄kq = 〈l̄, λ,k+

q|VT |l, λ,k〉 with the tunneling potential VT = Vl + Vl̄ being the sum of the potential of

each layer. In order to find an expression for T λ,WS2→g
kq , we use a tight-binding approach to

describe the electronic wavefunctions in graphene and WS2 [14]

ψg
λk(r) =

1√
Ng

∑
j=A,B

cjλk
∑
Rj

eik·Rjφg
λ(r −Rj), (3)
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ψWS2
λk (r) =

1√
NWS2

∑
RW

eik·RWφWS2
λ (r −RW). (4)

Here Nl is the number of unit cells in layer l, cjλk are graphene’s tight-binding coefficients, Rj

are the atomic positions, and φlλ(r) is the linear combination of atomic orbitals contributing

to the band λ. Graphene’s tight binding coefficients around the K point read cAλk = 1√
2

and cBλk = 1√
2
σλe

iθk−Kg , where θk−Kg is the angle of k with respect to graphene’s K point.

While for graphene the wavefunction has contributions from A and B lattice points, in

semiconducting TMDs the main orbital contributions come from the metal atoms [15, 16].

Introducing the respective electronic wavefunctions, the tunneling matrix element reads

T λ,WS2→g
kq =

∫
d3r

[
ψg
λk+q(r)

]∗
VT (r)ψWS2

λk (r)

=
1√

NgNWS2

∑
jRjRW

(
cjλk+q

)∗
e−i(k+q)·Rjeik·RW

×
∫
d3r [φg

λ(r −Rj)]
∗ VT (r)φWS2

λ (r −RW) (5)

Using VT = Vl + Vl̄ and the periodicity of Vl in the lattice of l and writing the orbital

wave functions in terms of their in-plane Fourier transform, φ(r) = 1
A

∑
p eip·r‖φp(z), we

can define a tunneling parameter hλp that contains the overlap between the orbital wave

functions and the tunneling potential. The tunneling matrix element now reads

T λ,WS2→g
kq =

1

NgNWS2

∑
jRjRWp

(
cjλk+q

)∗
e−i(k+q−p)·Rjei(k−p)·RWhλp, (6)

with the tunneling parameter

hλp = tWS2,g
λp +

(
tg,WS2

λp

)∗
, tll̄λp =

1√
NgNWS2

∫
d3reip·r‖

[
φl̄λp(z)

]∗
Vl(r)φlλ(r) (7)

We perform the summation over the lattice points of each layer using 1
Nl

∑
Rlj

eik·Rlj =∑
Gl

eiGl·δjlδk,Gl and determine the allowed momentum exchange δq,Gg−GWS2
, whereGl is the

reciprocal lattice vector of the layer l. The lattice offsets δjl are defined as δA = −δW = 1
2
R0
A

and δA = 1
2
R0
A + τAB = 1

2
R0
B, with τAB being a vector from an A lattice point to a nearest
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neighbor B. This yields

T λ,WS2→g
kq =

∑
jGgGWS2

(
cjλ,k+q

)∗
ei

1
2

(Gg·R0
j+GWS2

·R0
A)hλ,k+GWS2

δq,Gg−GWS2
. (8)

In a practical scenario, the initial momentum k will lie in the vicinity of KWS2 . Assuming

that the tunneling parameter decays quickly with momentum, the significant reciprocal

lattice vectors will be those connecting two K points of the Brillouin zone, i.e. Kl +Gl =

Cn
3Kl. Hence we can reduce the allowed scattering transitions to δq,Cn3 ∆K−∆K . Finally, the

rotational symmetry of the orbitals yields hλ,Cn3KWS2
= hλ,KWS2

eiϕn , with ϕλ,n = 2π
3
n(MWS2

λ −

Mg
λ), where M l

λ is the rotational quantum number. Defining the Moiré phase Φj,n = 1
2
(Gg ·

R0
j +GWS2 ·R0

A), the tunneling matrix element now reads

T λ,WS2→g
kq =

2∑
j,n=0

(
cjλ,k+q

)∗
eiΦj,neiϕλ,nhλ,KWS2

δq,Cn3 ∆K−∆K . (9)

Now we choose the offset R0
A = 0, resulting in ΦA,n = 0, ΦB,n = −2π

3
n. Introducing

graphene’s tight-binding coefficients, we obtain

T λ,WS2→g
kq =

2∑
n=0

(
1 + σλe

iθk+q−Kge−i
2π
3
n
)

eiϕλ,nhλ,KWS2
δq,Cn3 ∆K−∆K . (10)

Finally, we are interested in the squared absolute value of the tunneling matrix element.

Note that the condition q = Cn
3 ∆K − ∆K cannot be fulfilled by more than one n-value

simultaneously. Hence the phase ϕλ,n will in fact be a global phase which cancels out when

computing the absolute value. Thus, we can write our final expression for the tunneling

matrix element as

|T λ,WS2→g
kq |2 =

2∑
n=0

|hλ,KWS2
|2
[
1 + σλ cos

(
θk−Kg+q −

2π

3
n

)]
δq,Cn3 ∆K−∆K . (11)

Here σλ = ±1 for the conduction (+) and the valence (−) bands, θk−Kg+q is the angle of k+q

with respect to the closest grapheneKg point, ∆K = Kg−KWS2 is the momentum difference

between graphene’s and WS2’s K points, Cn
3 is a 2π/3 rotation operator, and hλ contains the

overlap of the wavefunctions with the tunneling potential. From this expression we obtain
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the behaviour shown in Fig. 5a-b, i.e. the tunneling is efficient for holes but suppressed for

electrons. This effect, together with the cosine dependence, is a manifestation of graphene’s

pseudospin.

In order to calculate tunneling rates, we insert the tunneling Hamilton operator in the

Heisenberg’s equation together with the carrier occupation ρlλk in the density matrix for-

malism [17]. Within a second-order Born-Markov approximation [18], we find the following

Boltzmann-like equation:

ρ̇lλk =
2π

~
∑
q

|T λll̄kq |2
[
ρl̄λ,k+q(1− ρlλ,k)− ρlλ,k(1− ρl̄λ,k+q)

]
δ(εlλ,k − εl̄λ,k+q). (12)

We approximate the carrier distribution in the conduction band in WS2 with a Boltzmann

distribution. Integrating over momentum leads to a rate equation for the carrier density.

We thus find that the carrier density that tunnels from WS2 to graphene follows

ṅWS2
λ

∣∣
WS2→g

= −τ−1
λ nWS2

λ , (13)

where

τ−1
λ =

2π

~AnWS2
λ

∑
kq

|T λll̄kq |2ρ
WS2
λ,k (1− ρg

λ,k+q)δ(ε
WS2
λ,k − ε

g
λ,k+q) (14)
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[15] A. Kormányos, G. Burkard, M. Gmitra, J. Fabian, V. Zólyomi, N. D. Drummond, and
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