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List of abbreviations
• SIF: Sun-Induced Chlorophyll Fluorescence

• VPD: vapor pressure deficit

• SSRD: surface solar radiation downwards, referred to as radiation

• ssr: surface net solar radiation

• str: surface net thermal radiation

• t2m, temp: temperature in 2 m height

• tp: total precipitation, referred to as precipitation

• SM1-4: soil moisture, number indicates the layer, which is referred to

• AI: aridity index

• ET: evapotranspiration

• FVC: fractional vegetation cover
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Introduction

1 Introduction
Biosphere has a crucial role in the earth system, as it connects the water with
the carbon cycle. Through photosynthesis, which is sequestering carbon and at
the same time transpiring water, vegetation productivity is closely linked with
both cycles. Vegetation as part of the biosphere is influenced by different charac-
teristics: soil properties, carbon content in the atmosphere, available water and
energy. Vegetation interacts in the water cycle through evapotranspiration (ET),
transporting water from the soil to the atmosphere. As preserving the carbon
cycle, also gross primary production is used as a proxy for vegetation functioning.
There are several studies determining the main limitations of ET, stating that
they are mainly dependent on the dryness of the region. In dry regions ET is
limited by water, where in wet regions energy has a limiting effect (Denissen et al.
2020; Seneviratne et al. 2010).
A satellite observed proxy for vegetation productivity is Sun-induced Chlorophyll
Fluorescence (SIF) (Joiner et al. 2013). With this data, it can be identified,
where, when and to what extend vegetation is being productive. This allows the
combining of e.g. hydro-meteorological variables with vegetation productivity.
Several studies investigate the influence of climate extremes like droughts and/or
heatwaves on vegetation functioning using SIF as its proxy (Zhang et al. 2019; Qiu
et al. 2020; Xiaorong Wang et al. 2019). Herein, SIF-limiting variables are mainly
considered as precipitation and temperature, each study chooses additionally a few
other variables, e.g. radiation, soil moisture. Besides, W. Li et al. 2020 and X. Li
and Xiao 2020 analyzed how long-term average global vegetation productivity
is influenced by different variables. W. Li et al. 2020 emphasize the importance
of the variety of considered hydro-meteorological variables, when investigating
vegetation productivity. Additionally, it is deduced that vegetation productivity
in arid regions is water-controlled, while energy variables are the main drivers
in humid regions. This confirms the before mentioned findings of Denissen et al.
2020; Seneviratne et al. 2010.
Hence, there is increasing knowledge about climate extremes influencing vegetation
and long-term controls of its productivity. Nevertheless, vegetation productivity
extremes themselves were not yet focus of investigations. There is a lack of
information about co-variations between hydro-meteorological variables and maxi-
mum or minimum vegetation productivity. Processes leading to those vegetation
productivity extremes should be known, so that occurring mechanism can be
analysed and better understood. Additionally, knowing about the supportive or
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Introduction

inhibiting character of variables associated with vegetation productivity is relevant
in terms of securing food production and several economic interests like crop
yields and forest management. Therefore, this study aims to detect anomalies of
vegetation productivity and to determine, which hydro-meteorological variables
can be associated with these occurrences. From here, possible shifts from energy-
to water-limitation can be derived when contrasting average to extreme vegetation
productivity.
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Data and Methods

2 Data and Methods
In section 2.1 the data, which was used for the study is described. Section 2.2
explains the data processing and in section 2.3 the used climate characteristics
are introduced.

2.1 Data

Sun - Induced Chlorophyll Fluorescence is used from satellite data of the Global
Ozone Monitoring Experiment-2 (GOME-2) project (Köhler, Guanter, and Joanna
Joiner 2015). To account for small-scale noise in both time and space, SIF is used
at a monthly time scale and 0.5◦ × 0.5◦, which equals 110.6 km × 111.3 km at the
equator to 111.7 km × 19.4 km at a latitude of 80◦. As energy variables radiation,
temperature and vapor pressure deficit (VPD) are considered, highlighting different
mechanisms affecting vegetation productivity. Water variables contain of soil
moisture in different layers (SM layer 1 (0-7cm), layer 2 (7-28 cm), layer 3 (28-
100 cm) and layer 4 (100-289 cm)) and total precipitation. Precipitation, vapor
pressure deficit (VPD), temperature and radiation from ERA5 data are used at
a spatial scale of 0.5◦ × 0.5◦, and on a monthly basis ((C3S) 2017). Multi-layer
soil moisture (SM) data has the same spatial resolution, but in contrast is only
available at a daily time scale. Thus, the daily values are aggregated to monthly
means.

Table 1: Data used in this study.
Data set Version Variables Spat.

res.
Temp. res. derived

from
Reference

GOME-
2

GFZ Sun-
induced
Chloro-
phyll
Fluores-
cence
(SIF)v

0.5◦×
0.5◦

Monthly Satellite
observa-
tions

Köhler,
Guanter,

and
Joanna
Joiner
2015

ERA5 tp, ssrd,
t2m, vpd

0.5◦×
0.5◦

Monthly Reanalysis
model

(C3S) 2017

ERA5 swvl1-4,
ssr, str, tp

0.5◦×
0.5◦

Daily Reanalysis
model

(C3S) 2017

FVC FVC 0.5◦×
0.5◦

Hansen
2018
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2.2 Data Processing

The data processing, which is also illustrated in fig. 1 is applied to SIF and the
hydro-meteorological variables. Every graph shows a time series for a grid cell
with the coordinates 5◦W, 41.5◦N (Northwest Spain) from 2007 - 2015 and is
illustrating one of the processing steps.
The focus of this analysis is on variation of anomalous vegetation productivity,
which cannot be explained through the seasonal cycle. To eliminate its influence,
anomalies function as meaningful values. As these are calculated out of the initial
SIF data, long-term trends of the data set could be carried over into them and
influence the detected extremes. To prevent this, the data has to be detrended.
Using a linear model, the trend of SIF values over the whole study period is
calculated. The received slope is substracted from the initial monthly values,
resulting in a detrended time series. The effect can be seen in fig. 1b and fig.1c. In
order to calculate the anomalies, the mean monthly seasonal cycle is subtracted
from the detrended time series.
On the resulting time series (fig. 1d) three kinds of filtering are applied to secure
that grid cells with hardly any or no vegetation are excluded. The filtering meth-
ods are adopted from the study of (W. Li et al. 2020) to enable the comparison
of results. First of all, anomalies of months with an initial SIF value below
0.5 MW m−2 sr−1 nm−1, which is related to hardly any vegetation productivity, are
filtered. If after that, a grid cell has less than 16 monthly values, all remaining ones
are removed. The last step is to keep only grid cells with a fractional vegetation
cover (FVC) larger than 5 % (FVC data from Hansen 2018), effectively excluding
grid cells with hardly any vegetation. The remaining data (fig. 1e) is used to
determine the three highest and lowest anomalies in the whole time series, which
represent maximum (blue) and minimum (red) vegetation productivity (fig. 1f).
Additionally, the extreme with the highest magnitude is separated. A number of
three vegetation productivity maxima/minima ensures that co-occuring anomalies
of hydro-meteorological variables are not purely coincidental. Further, considering
more SIF maxima/minima might include less extreme ones.
After processing the data, both maximum and minimum vegetation productivity
are expected to occur in periods that have on average high productivity, as in
periods of high average productivity variability is highest. To determine at what
month-of-year the highest/lowest vegetation productivity occurred, the month in
which they are detected is plotted (fig. 2). In the northern hemisphere, where grow-
ing season is mostly during April - September, the displayed months of maximum
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(e) Filtered anomalies of SIF data.
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(f) Extreme anomalies of SIF data.

Figure 1: Processing of the initial SIF data from 2007 - 2015. a) Localisation
of the example grid cell, indicated by the crossing of black lines. b)
Long-term variation of initial SIF values, c) detrended SIF data, d)
calculated SIF anomalies and e) filtered SIF anomalies over the whole
time series. f) Long-term variation of filtered SIF anomalies, blue
lines indicate the three maximum SIF events, red lines indicate the
minimum SIF events.

and minimum vegetation productivity range within this period. In contrast, the
southern hemisphere vegetation is most active during October - March, what is in
line with the months displayed for extreme vegetation productivity. In summary,
minima and maxima occur in the growing season as expected.
Additionally, the filtering method causes regions with coarse vegetation, to be
filtered from the analysis and therefore no data to display is available, e.g. in
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northern Russia and the Poles.
The anomalies of the hydro-meteorological variables are computed like described
for the SIF data. As a final step, they are normalized to receive comparable
magnitudes of all variables. Therefore, the standard deviation is calculated over
the nine years for each of the twelve months. After that, the anomalies of every
month are divided by their standard deviation, which rids the variables of their
respective units, now expressed in standard deviations and therefore comparable.

100 200 300 400 500 600 700

50
15

0
25

0
35

0

Longitude

La
tit

ud
e

0

2

4

6

8

10

(a) Maximum.

100 200 300 400 500 600 700
50

15
0

25
0

35
0

Longitude

La
tit

ud
e

0

2

4

6

8

10

(b) Minimum.

Figure 2: Global map indicating the months in which extreme SIF events oc-
curred.

2.3 Climate characteristics

Grid cells are characterized by their long-term average temperature and aridity
index (AI) to define certain climate types, between which can be distinguished.
To calculate the long-term average temperature for a grid cell, daily temperature
values are averaged over the whole time period. Temperature levels range from
−10 ◦C to 40 ◦C in intervals of 10. Regions with a mean long-term temperature
above 10 ◦C are referred to as warm, below this threshold they are considered as
cold.
To compute the aridity index, long-term means of net radiation are divided
by long-term means of precipitation, resulting in a dimensionless ratio. The
data for precipitation and radiation is from ERA5 on a daily time scale with a
spatial resolution of 0.5◦ × 0.5◦ ((C3S) 2017). As the AI is thought as ratio of
evapotranspiration to precipitation, a value higher than 1 needs evaporation to
be larger then the water available through precipitation, what accounts for arid
regions. The opposite accounts for humid regions, where precipitation needs to
provide more water than what can be lost through evapotranspiration. Of course,
there are transitional regimes, where partly arid, partly humid conditions prevail.
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In this study five aridity classes are chosen: 0-0.5, 0.5-1, 1-2, 2-4, 4-8. To address
the different AIs, regions with an AI > 0.5 are considered as humid, 0.5 < AI <1
as semihumid, 1 < AI < 2 as semiarid and > 2 as arid.
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3 Results

3.1 Development of hydro-meteorological variables around
extreme vegetation productivity

As described in 2.2 the largest positive and negative anomalies of SIF values are
determined per grid cell to detect extreme vegetation productivity. To compare
the SIF extremes together with hydro-meteorological variables, the normalized
anomalies of SIF are used. The data are collected during extreme vegetation
productivity as well as two months before and after, resulting in a time series
of five months. The illustration 3 gives an idea about the onset and legacy
of the vegetation extreme and the hydro-meteorological variables. The course
of energy and water controls can be used to derive possible hypotheses about
interactions with vegetation productivity. The development is shown for maximum
and minimum events in Germany and on the Iberian Peninsula. The two locations
are chosen because of their different climate conditions. Central Germany has
an AI = 0.84 and a mean long-term temperature of 8.85 ◦C. The climate of the
northwest Spain is characterized by an AI = 2.06, with an average temperature of
12.95 ◦C. Where the SIF magnitude is highest in Germany, VPD and temperature
decrease but remain within the positive range. In contrast, soil moisture in
layer 1-3 is lower than usual but increasing. Additionally, a strong increase
of precipitation leads to a weakly positive anomaly. However, soil moisture in
layer 4 as well as radiation decrease, reaching their average values during the
vegetation productivity maximum. Similarities can be found in fig 3b. Vegetation
productivity co-variates with decreasing VPD and temperature, where radiation
is on its average range. Water variables are increasing (except for soil moisture 4),
but below their mean values.
The minimum vegetation productivity is illustrated by the fig. 3c and 3d. The two
graphs display what is suggested in the hypothesis regarding humid regions being
energy controlled and arid regions, where water variables prevail. In Germany the
vegetation productivity minimum is accompanied by low radiation and VPD but
high amounts of soil moisture in all layers. In contrast, on the Iberian Peninsula
the vegetation productivity minimum is associated by extreme low soil moisture,
especially in the surface layers. Deep soil moisture is general extreme low during
the whole time period. One month before the vegetation productivity minimum
emerges, there is an energy surplus, VPD, radiation and temperature show
high positive anomalies. In the month of the minimum vegetation productivity,
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Figure 3: Development of SIF and hydro-meteorological variables before and
after extreme vegetation productivity, which is displayed at month = 0.

radiation is still higher than usual, whereas VPD and temperature decrease,
resulting in average or even negative anomalies.

3.2 Global maps

After determining the three highest and lowest SIF events, the normalized anoma-
lies of hydro-meteorological variables are averaged, thereby obtaining robust
estimates of these variables over three maxima and minima. The resulting eight
values per extreme can be sorted by their magnitude. An example is given in tab. 2.
It is assumed that the variable with the largest normalized anomaly is exerting
the largest influence on vegetation productivity. To create a global map of the
dominant variables, every grid cell is colored in the specific color of its dominant
variable. Additionally, the normalized anomalies of the dominant variables are
plotted, where the magnitude of the value is indicated by a color ramp. The aim
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here is to create an impression, where surpluses and where deficiencies of water or
energy occur.

Table 2: Mean value of normalized anomalies of each variable during three mini-
mum SIF events for a grid cell in central Germany.
SSRD Temp VPD SM1 SM2 SM3 SM4 TP
-0.95 -0.29 -0.62 0.73 0.70 0.50 -0.10 0.12

The described visualisation process creates the global maps in fig. 4. Comparing
fig. 4a and 4b, both appear similar regarding the regions where water or energy
prevails. Vegetation above 60◦N seems mainly energy controlled, whereas below
soil moisture is dominant. Especially, in the region of north Asia the border
between energy and water limitation is clearly visible.
Below 45◦N both maps are quite noisy. However, for the vegetation productivity
maximum, one could detect a few, weak spatial patterns. In Mexico, east Africa
and central Australia soil moisture in the upper layers is dominant. These pat-
terns are not detectable anymore, when switching to the vegetation productivity
minimum.
The contrasting of the maps illustrating the normalized anomalies of the dominant
variables during the extreme events (fig. 4c and 4d) reflects that dominant
variables during maxima are usually positive and vice versa for minima. The
normalized anomalies during maximum vegetation productivity indicate surpluses
of dominant variables, especially in the areas of Mexico, east Africa and Australia.
Contrary, the minimum vegetation productivity is characterized by deficits of
dominant variables. Thus, maximum events are indicated by surpluses of their
controlling variables, while minimum events are mainly dominated by deficits of
their main drivers.
Through the fact that the analysis is averaged over three extremes, it is tried to
minimize the chance that a certain variable is dominant because of simple coinci-
dence. But simultaneously, the magnitude of the averaged hydro-meteorological
anomalies is lowered in most cases. Hence, both of the maps display anomalies
around +/ − 1 over wide ranges.
Bringing together both maps for maximum vegetation productivity, the detected
regions where soil moisture in shallow layers prevails, occur together with nor-
malized anomalies with high positive magnitudes. In consequence, maximum
vegetation productivity here was initiated by a surplus of soil moisture. Focusing
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on the region in North Asia the energy-controlled as well as the water-controlled
region are characterized by high positive anomalies. Thus, in energy-limited
areas energy surpluses cause the maximum productivity of vegetation, while in
water-limited water surplus does. In contrast, looking at the same region during
minimum vegetation productivity, deficits of energy or water are constraining.
Regarding the ratio of energy- versus water-limited regions, the barplots indicate
during both extremes more water-limited regions than those more influenced by
energy.
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Figure 4: Dominant hydro-meteorological variable and its magnitude during
extreme vegetation productivity.

3.3 Temperature-aridity plots, dominant variable

To expose the sensitivity of SIF extremes to hydro-meteorological variables ac-
cording to long-term climate characteristics, all grid cells are sorted into boxes of
the temperature-aridity plot. Within one box with a defined AI and long-term
average temperature, the grid cells are grouped together by their dominant vari-
able. Variables are assumed as dominant, when they are represented by the most
grid cells in a box and therefore indicate the controlling factor for vegetation
productivity in this climate type. They are displayed by the respective color.
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These plots aggregate information across several climate regimes that correspond
to the single boxes, and hence provide a more condensed illustration.
Like the global map, the temperature-aridity plot can also illustrate the magnitude
of the controlling variable. Therefore, the median of normalized anomalies of all
grid cells which represent the prevailing variable of the specific climate type is
computed. The resulting value can be displayed on a color ramp, which serves to
color the boxes.
To determine how representative the results are, it is decided to plot the percentage
of grid cells representing the dominant variable.
Fig. 5a indicates for vegetation productivity maximum, water variables in regions
with an aridity larger than two (arid) as most controlling. Mainly soil moisture in
layer 2 enhances vegetation productivity. In very warm arid regions, soil moisture
in a deeper layer and precipitation become more dominant. In semi-arid regions
the influence of hydro-meteorological variables depends on the mean tempera-
ture. If it is below 10 ◦C, vegetation productivity is energy-controlled, above
this threshold, water variables are the main drivers of productivity. However, in
humid and semihumid regions energy-variables represent the strongest influences
on vegetation productivity. But their controlling effects get weaker with increasing
temperature, as in warm climate conditions also soil moisture in layer 4 controls
maximum vegetation productivity.
Compared to the vegetation minimum in fig. 5b, the main patterns remain the
same. But interestingly, there are also some climate boxes changing from energy
to water control and vice versa. Also in the warm, arid regions VPD as an energy
variable diminishes vegetation productivity, where in humid regions precipitation
as water variable has a controlling character. Considering the normalized anoma-
lies of the controls of minimum vegetation productivity in fig. 5f, reveals that
precipitation in humid regions influences vegetation productivity negatively due
to a high positive anomaly, the same accounts for VPD in warm, arid regions.
Though, the percentage of grid cells in these climate types, which are controlled
by these variables is between 15 % to 20 %, which is relatively low compared to
other boxes in the temperature-aridity plot.
Also noteworthy is the fact that in a climate regime with a mean temperature
between 0 ◦C and 10 ◦C and an aridity between 4 and 8 a positive soil moisture
anomaly in layer 4 causes the maximum as well as the minimum of vegetation
productivity, only the magnitude of the anomaly differs. This can also be seen
for climate conditions with an average temperature between −10 ◦C and 0 ◦C.
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Figure 5: Temperature-aridity plots for extreme vegetation productivity.

Here, the soil moisture layer changes when comparing minimum and maximum
productivity, but in both extremes a positive amount of soil moisture is causing
the extreme.
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While during maximum vegetation productivity a huge surplus of soil moisture in
layer 2 is the largest co-occuring variable for 20 % to 30 % grid cells in several arid
regions, a deficit of it could lead to the minimum productivity in those climate
conditions. The latter is represented only by 15 % to 20 % of grid cells across
different of the arid climate conditions.
The normalized anomalies plotted in fig. 5e and 5f strengthen the impression,
which is gained from the global maps (fig. 4c and 4d). During maximum vegetation
productivity there is a surplus of the controlling hydro-meteorological variables.
In contrast, minimum productivity of vegetation is mainly driven by deficits of
the dominant variables, except for the before mentioned exceptions.
For the maximum vegetation productivity it can be stated that the dominant
variables plotted in fig. 5a are shared by more grid cells than the variables which
are plotted for minimum vegetation productivity, as fig. 5c and 5d illustrate. This
accounts especially for cold and arid regions. In both graphs climate regimes with
a mean temperature between 10 ◦C to 30 ◦C, dominant variables are represented
by a lower percentage of grid cells. For the maximum vegetation productivity this
only pertains for climate regimes which are characterized by a long-term aridity
below 2.

3.4 Temperature-aridity plots: second dominant variable

In this section the second most represented variable per box is displayed in the
temperature aridity plots, the median of their normalized anomalies as well as
the percentage of grid cells, which had this variable as most important. Fig. 6a
and 6b illustrate the prevailing of deep soil moisture across all climate types.
This impression is evoked by the illustration of both extremes. A clear border
between arid and humid regions is not visible anymore. The percentage of grid
cells showing this variables as most important is mainly between 10 % to 20 %.
During maximum vegetation productivity in arid regions up to 25 % of all grid
cells in the box have soil moisture in layer 3 as main driver. The normalized
anomalies of the second most represented variable confirm the patterns seen for
the most represented variable. The maximum vegetation productivity is mainly
driven by surpluses, while deficits lead to the minimum of it.
During maximum vegetation productivity surpluses of deep soil moisture are the
main drivers, except for cold, humid regions, where slight deficits occur.
Minimum vegetation productivity is mostly characterized by deficits of deep soil
moisture. But in cold, arid regions and also in humid regions, surpluses of deep
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soil moisture limit the vegetation functioning. The effect of dominant energy
variables depends on the aridity, below 2 deficits of energy cause the minimum
vegetation productivity, whereas above 2 a temperature surplus leads to it.

3.5 Difference between dominant and second-most
represented variable

Finally, the percentages of first- and second-most represented variables are sub-
tracted to reveal how representative the dominant variable of a certain climate
type is. The differences of the percentages of first-most and second-most variables
are displayed in fig. 7. If the differences are below 1 %, the most dominant variable
is assumed as not representative.
For a better comparison of dominant and second-most represented variables and
the difference of their percentages, all graphs are displayed together in the attach-
ments (fig. 10).
Especially in cold, humid regions the most represented variables are by far the
dominant controls of vegetation productivity. In contrast, across warm climate
regimes the difference between first and second most represented variable is much
smaller. Particularly for the minimum vegetation productivity the most and
second-most variable are similar often represented.
For maximum vegetation productivity differences occur under warm climate con-
ditions. For example, in warm semihumid regions, the first dominant variable
would not imply a shift from energy to water limitation when contrasting average
to extreme productivity, but the second-most dominant does. The percentage
difference states that in this climate regime the second dominant variable is being
similar important, as the difference is less than 1 %. The second most represented
variable is soil moisture layer 4, thus a shift from energy to water-limitation could
be very likely.
Also in warm arid regions, first and second-most dominant variable have a very
similar representation. Hence, the detected similarities between average and
maximum vegetation productivity remain in the sense being water-controlled, but
differ in the depth of soil moisture which is most important.
For the minimum vegetation productivity in warm regions the similarities of
percentages of grid cells showing the most and second-most represented variable
increase. In warm, humid regions the detected shifts from energy to water limita-
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Figure 6: Temperature-aridity plots for extreme vegetation productivity, second
most represented hydro-meteorological variable.
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tion when contrasting average and first-dominant variable can be confirmed by the
second-most represented variable. The latter also indicates the dominance of water
variables. So not only the most represented variable, but also the second-most
represented one displays a shift from energy- to water-limitation in warm, humid
regions.
However, also contradicting results can be deduced. During vegetation productiv-
ity minimum in semi-arid regions with a long-term average temperature between
0 ◦C and 10 ◦C the dominant variable suggests a shift from energy- to water limi-
tation. Even so, the second dominant variable, which represents less than 1 % less
grid cells, does not show such a shift. In contrast, it illustrates the maintenance
of water-limitation.
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Figure 7: Difference between percentage of grid cells with most represented
variable and second-most represented variable.
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4 Discussion
In the following section, the deduced results are interpreted within the different
categories from grid cell, over global maps to temperature-aridity plots.

4.1 Developments of hydro-meteorological variables before
and after extreme vegetation productivity

From the figures 3a and 3b it can be derived that maximum vegetation productiv-
ity occurs while energy decreases and water availability increases. The different
climate conditions would actually substantiate the hypothesis that Germany as a
humid region is energy-limited and therefore a higher amount of energy would lead
to a maximum vegetation productivity and vice versa for the Iberian Peninsula.
With an aridity index of 0.84, Germany could also be counted as semihumid
region. This would imply that Germany seasonally transitions between semihumid
and semiarid conditions, what would partly explain the similarities with the
development of variables on the Iberian Peninsula. Sticking with this assumption,
an increase in soil moisture could benefit the vegetation towards a productivity
maximum, what can be seen in the graph 3a.
The Iberian Peninsula is in the long term an arid region. Fig. 3b illustrates clearly
how vegetation productivity increases, where VPD and temperature are strongly
decreasing to almost zero. Assuming the Iberian Peninsula as an arid region with
vegetation productivity being water-limited and enhanced by a surplus of water,
is contradicted by the results of fig. 3b indicating soil moisture being lower than
usual in all layers during maximum vegetation productivity. The assumption
would suggest water variables show positive anomalies with large magnitude, when
vegetation productivity is at its maximum. The simultaneous increase of water
variables and decrease of energy variables might boost vegetation to its maximum
productivity. It could also be possible that during bad persistent weather the grid
cell has been energy-limited for a couple of months. Even so, the soil moisture
development would not support this hypothesis, as it is lower than usual, implying
that there has been less precipitation and more radiation.
However, focusing on minimum vegetation productivity both grid cells confirm
the hypothesis of arid regions being water-controlled, whilst in humid regions
energy variables dominate. Germany, as an example for humid regions experi-
ences a vegetation productivity minimum due to low radiation and VPD. At the
same time, water availability is higher. As Seneviratne et al. 2010 state, above a
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critical level, evapotranspiration is no longer influenced by soil moisture but by
energy. Understanding evapotranspiration as proxy for vegetation productivity,
the minimum would thus be caused by low energy availability. Even so, according
to the magnitude of the normalized anomalies, fig 3c could create the impression
that soil moisture in upper layers is the main driver of minimum productivity,
even if the grid cell is semihumid and thus water variables should not be the
main co-variates. To evaluate this uncertainty, it is referred to the mean values of
every variable after averaging over the three minimum vegetation productivity
occurrences (tab. 2). Here, radiation is the most important variable, a results
that supports the assumption of Germany being energy-limited and is in line with
the findings of Seneviratne et al. 2010. Therefore, it is possible that the displayed
grid cell and the dominance of soil moisture in this case might co-occur with the
vegetation productivity minimum per coincidence.
The vegetation productivity minimum on the Iberian Peninsula occurs alongside
minima in multi-layer soil moisture, corroborating the hypothesis that vegetation
productivity in this grid cell is associated with water variables. They clearly indi-
cate the largest magnitudes and hence are thought to display the most influencing
variables. Finally, it can be concluded that those graphs are able to illustrate the
development of hydro-meteorological variables and give insights on how vegetation
productivity interacts with its drivers. But as they are based on one event, three
out of four results show unexpected results, which is why their representative
character may be limited.

4.2 Global maps

The regions detected in section 3.2 (Mexico, East Africa and Australia) state
examples for dry, arid regions being mainly water-controlled during maximum
vegetation productivity. This confirms the findings of W. Li et al. 2020 and
X. Li and Xiao 2020, where vegetation in arid regions is dominated by water
availability. Also, again considering evapotranspiration as proxy for vegetation
productivity, the results of Denissen et al. 2020 and Seneviratne et al. 2010
emphasize, evapotranspiration being water-controlled in regions with dry soil.
Thus, their results would also suggest a strong coupling of water availability and
vegetation productivity in arid regions.
As the in section 3.2 presented maps illustrate dominant controls on vegetation
productivity extremes, a comparison with a map of dominant controls on average
vegetation productivity could reveal certain differences. Fig. 8 shows the latter
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ones. The used data for this graph are half-monthly SIF values, ranging from
2007-2018 with a 0.5◦ × 0.5◦ spatial scale. Hence, the plotted data only differs
in temporal resolution, time period of data and the way of detrending it. All
other characteristics match, making the global maps comparable. In general, fig. 8
shows much stronger spatially cohesive patterns, suggesting average vegetation
productivity being more equally controlled in adjacent grid cells than extreme
productivity. Also, it has to be considered, that the variables co-occurring with
average vegetation productivity are calculated over much more time points than
the variables associated with extreme vegetation productivity, as the latter are
only computed out of three events. Contrasting the barplots of energy- and
water-limitation between average and extreme conditions, a slight change in the
direction of water-controlling can be detected for the extremes.
The prevailing from soil moisture in layer 2 in water-limited regions is outstanding
(8). Relics of these patterns can be found in the maximum vegetation productivity
map, for example in Mexico, East Africa, Australia and central Russia.
Clear changes are visible when comparing south Africa and southern mid-US
in the minimum vegetation productivity map to the map of W. Li et al. 2020.
During the minimum, energy variables are main drivers of vegetation productivity,
while under average conditions shallow soil moisture controls it. Hence, here shifts
from water-limited to energy-limited conditions are detectable. The combination
of fig. 4b and 4d reveals high anomalies of temperature and VPD as dominant
control of the vegetation minimum productivity. The increasing restrictive effects
of high VPD on vegetation functioning due to an increase in temperature are also
clearly stated by Novick et al. 2016.
Both extreme vegetation productivity maps indicate a clear transition between
energy- and water limitation in Russia. The results of Flach et al. 2018, analysing
the Russian heat wave of 2010, confirm the presence of this border. In their
study, different reactions of the biosphere were detected. The part north of the
transition zone experienced a higher gross primary production, while the part
below had a diminished gross primary production. This is in line with the patterns
displayed fig. 4a and 4b. In the northern part of Russia, the maximum vegetation
productivity is associated with energy surpluses. Hence, a heatwave would cause
an energy surplus, which may lead to the increasing vegetation productivity. In
contrast, in the region south of the border, minimum vegetation productivity
co-variates with water deficits, which could be triggered by a heatwave, and
therefore leading to less gross primary production.
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Figure 8: Dominant variables for average vegetation productivity (W. Li et al.
2020).

4.3 Temperature-aridity plots

The previous section already stated differences in controlling hydro-meteorological
variables between different regions. The temperature-aridity plots of the dominant
variables confirm these results. In arid climate conditions water variables limit
or enhance vegetation productivity, while in humid climate conditions energy
variables prevail. In regions with an aridity index between 1-2, the controlling
elements of maximum vegetation productivity differ along a temperature gradi-
ent. Above 10 ◦C temperature is not anymore the main driver, instead deep soil
moisture prevails. This change from energy to water-limitation with increasing
temperatures could be due to the dependency of vegetation productivity on an
optimal temperature. Huang et al. 2019 find average optimal temperatures ranging
globally between 10 ◦C and 30 ◦C. As cold, semiarid regions have not reached the
lower limit of this range, this might explain the strong impact of temperature on
vegetation productivity in those climate regimes.
During vegetation productivity minimum, fig. 5b shows water variables associated
with actually energy-limited regions and VPD co-variating with vegetation in
water-limited climate conditions. This might disagree with the general assumption
that evapotranspiration as proxy for photosynthesis is water-controlled in dry
regions and energy-controlled in wet regions (Denissen et al. 2020; Seneviratne
et al. 2010). But, there could also be a strong coupling between the certain energy
and water variables. Liu et al. 2020 highlight in their study that VPD can just
reduce vegetation productivity if a strong coupling with soil moisture is assumed.
Therefore, the high VPD causing the vegetation productivity minimum might
co-occur with a low availability of soil moisture, which would match the overall
patterns and is line with the results of Denissen et al. 2020; Seneviratne et al.
2010.
An explanation for the negative influence of high precipitation on vegetation
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productivity in humid regions could be given by Roderick et al. 2001. Here, the
authors state that clouds have a huge reducing influence on the proportion of
direct radiation, which reaches the surface and is therefore usable for vegetation.
As high precipitation is linked to the occurrence of clouds, one could also assume
a link between high precipitation and low radiation and hence reduced vegetation
productivity in humid regions. For the explanation of precipitation surpluses
co-variating with vegetation productivity minimum in humid regions, this would
mean high positive precipitation anomalies reduce vegetation productivity through
decreasing the amount of radiation reaching the surface.
Comparing the extreme productivity controls to those of average vegetation
productivity in fig. 9 several differences become visible. Maximum vegetation
productivity in warm humid regions is associated with soil moisture in layer 4,
whereas the driver of average productivity within those climate conditions is
radiation, so a shift from energy to water limitation can be deduced. Additionally,
vegetation productivity in those climate regimes is no longer increased by radiation
but through temperature. Across all climate types, an association between in-
creasing deep soil moisture and vegetation productivity maximum can be detected.
To further interpret these co-variations regarding their causes, information about
the vegetation type and its rooting depth would be needed. Therefore, dominant
variables could be displayed in an rooting depth- or vegetation cover-aridity plot.
Positive soil moisture in layer 4 co-variates with both extremes, so the same
occurrence has contrary effects on vegetation productivity. Only the magnitude of
anomalies differs. Regarding to the Feddes model (Feddes, Kowalik, and Zaradny
1978) it could be assumed, that surplus associated with maximum vegetation
productivity is within the content of soil moisture benefiting vegetation produc-
tivity. While the surplus, which leads to the minimum could be so large, that soil
moisture is limiting vegetation productivity (Feddes, Kowalik, and Zaradny 1978).
For vegetation productivity minimum shifts from energy to water limitation occur
in warm, humid regions and temperature is partly replacing radiation as dominant
control. Furthermore, in the semi-arid regions the transition from climate condi-
tions where water prevails to those where energy prevails is shifted into colder
regions. Now, low deep soil moisture in regions with a mean temperature between
0 ◦C and 10 ◦C diminishes vegetation productivity the most. The explanation of
Huang et al. 2019 that there is an optimal temperature for vegetation productivity
can be applied to explain maximum vegetation productivity in those climate
conditions. But for vegetation productivity minima temperature is not anymore
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Figure 9: Temperature-aridity plot of the controlling variables for average vege-
tation productivity (W. Li et al. 2020).

the most co-variating variable.

4.4 Second-most dominant variable and differences to the
dominant variable

On the one hand the illustrations of the second most dominant variables for both
extremes confirms several changes from energy- to water limitation, as those shifts
are not only seen for the most represented but also for the second most represented
variable. On the other hand, they also reveal limits of the analysis. In some cases,
first and second-dominant variables had almost the same percentage of grid cells,
but shifts between water- and energy-control detected with the first dominant
variable contradict with drivers of vegetation productivity represented by the
second-most dominant variable. For example, the most represented variable shows
a change from energy- to water-limitation, but this is not seen for the second
most represented variable, even if they have similar high percentages of grid cells
within the climate regime. This insight is very useful as it highlights the need for
further investigations and calculations to indicate the robustness of the determined
variables, which co-occur with vegetation productivity extremes. At the same time
it is emphasized that there is not necessarily causality between the most dominant
variables and vegetation productivity, but that only the largest anomalies of
hydro-meteorological variables co-variate with vegetation productivity extremes.

28



Conclusion

5 Conclusion
After analyzing single grid cells, global maps and in the end different climate
conditions, four major points can be stated regarding to co-variations between
hydro-meteorological variables and vegetation productivity extremes:

• Vegetation productivity maxima are associated with surpluses of the prevail-
ing variables, while minima co-occur with deficits of hydro-meteorological
variables.

• Deep soil moisture shows an increasing importance during extreme vegetation
productivity.

• Shifts from energy- to water-limitation and vice versa can be detected, when
contrasting average to extreme vegetation productivity.

• The robustness of these shifts has to be figured out, as in some cases
second-most represented variables are dominant in a similar number of grid
cells.

For a further interpretation, the results could be linked to vegetation parameters
within the different regions like tree cover and root depth. This could benefit
a better understanding, why deep soil moisture gains importance. Also, the
variables with the second largest normalized anomaly in grid cells could be plotted.
This would offer the possibility to check the couplings mentioned in the discussion,
like precipitation-radiation or soil moisture-VPD.
Especially, the last two findings indicate the importance to remember that the
shown results represent associations between variables and vegetation productivity,
but not necessarily causalities between the variables and vegetation productivity.
To state this, further investigations are needed.
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Comparison of first and second-most represented variable
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(a) Dominant variable, maximum.

−10

0

10

20

30

40

0 0.5 1 2 4 8
Aridity

Te
m

pe
ra

tu
re

 in
 C

el
si

us

Variables

SM 1
SM 2
SM 3
SM 4
TP
SSRD
Temp.
VPD
Insufficient 
 data

(b) Dominant variable, minimum.

−10

0

10

20

30

40

0 0.5 1 2 4 8
Aridity

Te
m

pe
ra

tu
re

 in
 C

el
si

us

(c) Second dominant variable, max-
imum.
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(d) Second dominant variable, min-
imum.
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Figure 10: First and second dominant variables in various climates conditions
and the difference between percentages of grid cells representing them.
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