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Supplementary Materials and Methods 

Section 1: Model of oscillating Gilbert damping above TC.  

The oscillatory Gilbert damping in normal metal (NM)/ferromagnet (FM)/NM 

heterostructures arising from quantum interference effect is analyzed based on previous theory by 

Mills (36). Within the linear response theory, the enhanced Gilbert damping is related to the 

dynamical spin susceptibility (���(�)) of conduction electrons in a FM, 

 ��� =
�����

2��ℏ��
Λ� (S1) 

where Λ� = Im �
����(�)

��
�

���
�. Using one dimensional model, we obtain  
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1
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where ��(�, ��, ��) is the Green’s function for conduction electrons with �-spin at the Fermi 

energy (��). In a FM, ��(�, ��, ��) is related to the exchange energy. 
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For the FM film with a thickness dFM in − dFM/2 < x < dFM/2, the Green’s function satisfies the 

relation  

 ��(�, ��, ��) = ��(��, �, ��) = ��(−�, −��, ��) (S4) 

Hence, the imaginary part of the Green’s function could be expressed by 

 Im[��(�, ��, ��)] = −π{���cos [���(�−��)] + ���
� cos [���(�+��)]}     (S5) 

where ��� = �
��

ℏ� (�� ∓ ���) is the Fermi wave-vector in the FM, ��� and ���
�  are equivalent to 

the density of states and the modulation amplitude of the local density of states, respectively. For 

the same position of x, the local density of states is equal to 

 ��(�, ��) = ���+���
� cos [2����] (S6) 

Since ��� is much smaller compared to ��, the spatial modulation of the local density of states is 

negligible. The combination of equations (S2) and (S5) leads to 

Λ� = ∫ �������� �⁄

���� �⁄
{��↑ cos[��↑(�−��)]} ∗ {��↓ cos[��↓(�−��)]}        (S7) 
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Clearly, the enhanced Gilbert damping is expected to oscillate as a function of the FM 

thickness with two periods of  2�/[��↑ − ��↓] and 2�/[��↑ + ��↓]. For real FM materials, such as 

NiFe with (��↑ + ��↓) ≫ (��↑ − ��↓), the second term in the equation (S7) could be negligible, 

leaving only one oscillating period of 2�/[��↑ − ��↓] . When the FM thickness is equal to 

2��/[��↑ − ��↓], a lower Gilbert damping is obtained. On the other hands with FM thickness of 

(2� + 1)�/[��↑ − ��↓], a larger Gilbert damping is obtained.  

Section 2: Calculation of the enhanced Gilbert damping in Nb/NiFe/Nb by spin pumping via 

Andreev bound states (ABS).  

As the reciprocal process of the spin transfer torque, conventional spin pumping is achieved 

by the magnetization torques provided by the driven quasiparticle carriers (29, 52-54), which are 

the electrons in the normal metals. In SC/FM heterostructures, however, the quasiparticle carriers 

can be either Bogoliubov quasiparticles or ABS (42), which lie above and within the 

superconducting gaps, respectively. Therefore, it is desirable to formulate and estimate the 

contribution to the spin pumping via the ABS (26), when the temperature is much smaller than the 

superconducting critical temperature.  

Without loss of generality, we start the analysis from a left-propagating electron of energy � 

and spin � = {↑, ↓} = {+, −,}. When the Zeeman splitting J is much smaller than the Fermi energy 

EF, it has momentum 

 �� = �� + (� + ��)/(ℏ��),                                                             (S8) 

where �� is the Fermi velocity of the electron. When one electron goes from the FM to the SCs, it 

is reflected as a hole by the Andreev reflection at the right FM/SC interface; this hole has a phase 

shift χ = − arccos(�/Δ) with respect to the electron (55), where Δ is the superconducting gap. 

Similarly, when a hole goes from the metal to the superconductor at the left FM/SC interface, an 

electron can be reflected. With a proper energy, the Andreev reflections can form a closed path, as 

a result of which the ABS forms. This requires that the phase accumulated in the reflections 

satisfies the Sommerfeld quantization condition, i.e. in the ballistic regime, 
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where � is the phase difference between the two superconductors, dNiFe is the thickness of the FM 

layer and n is an integer. Since ℏ��/∆  ≥ 100 nm with �� = 2.2 × 105 m/s and ∆ = 1 meV at T = 4 

K in our experiment (17, 56, 57), dNiFe < 19 nm << ℏ��/∆ such that the first term in Eq. (S9) can 

be safely disregarded. For the FMR measurements with open-circuited configuration, the junctions 

always stay in the ground states (43-45). For �-junctions, there is a �-phase shift in the current-

phase relationship curves compared to zero-junctions, i.e., the properties of � = 0 of a �-junction 

is the same as those of � = � of a zero-junction. Since this �-phase shift is already taken into 

account by the FM exchange field, the ABS energy of the �-junctions can be obtained at � = 0 in 

the ground states, which is similar to that of � = � of zero-junctions. Hence, the energy of the ABS 

can be described by   ε� = ±∆cos (
������

ℏ��
)  for ideal case with perfect transparency of 

electrons/holes.  

In reality, the interfacial scattering and transport conditions (ballistic or diffusive regimes) of 

FM could affect the energy of the ABS. Following previous studies (42, 58), a transmission 

coefficient (D) could be introduced to describe this issue, which is close to unity in the ballistic 

regime but can also be large in the diffusive regime with an ideal transparency at the interface (43, 

59, 60). In this work, we focus on the ideal cases with perfect transparency of electrons/holes. The 

energy of the ABS oscillates from the edge of the superconducting gap to the zero-energy with 

respect to the FM thickness (fig. S9A).  

The pumped spin current reads (29, 52-54), 

��(�) =
ℏ

��
����

↑↓ � ×
��

��
,                                                          (S10) 

where m is the magnetization unit vector, and we define the effective mixing spin conductivity 

����
↑↓  at the finite temperature via the zero-temperature one �↑↓ by (26, 53)  

  ����
↑↓ = �� ∫ ��

��(�)

��
Re[�↑↓(�)].                                              (S11) 

Here, n0 is the number of the conduction channel that roughly corresponds the conduction electron 

density at the interface and �(�) = 1/{exp [�/(���)] + 1}  is the Fermi-Dirac distribution of 

electron at the temperature T. Importantly, in the ballistic limit Re[�↑↓(�)] = 1 when � = ��; it 



 
 

has width ∆� depending on the FM thickness dNiFe in the ballistic regime or the mean free path �� 

in the diffusive regime. By the uncertainty principle, ∆�∆� = 2�ℏ , where ∆� = ��/��  is the 

propagation time of the electron in the junction, leading to  ∆� ~ 2�ℏ��/�� . By further 

considering the degeneracy due to spin (×2) and the existence of two interfaces (×2), we thus can 

estimate 

    ����
↑↓  ~ 8���

ℏ��

��

��(��)

��
.                                                         (S12) 

The pumped spin current carries the angular momentum away from the precessing magnetization 

and hence cause an enhanced Gilbert damping, which is described by  

�� = 2�
ℏ���

���������

��(��)

��
 ,                                                      (S13) 

where �  is electron gyromagnetic ratio and ��  is the saturated magnetization of the ferromagnet. 

      We are now ready to estimate the contribution of ABS to the Gilbert damping at T = 4 K with 

varying transmission coefficient. We take �� =0.5 × 1016 m−2 following Ref. 44, ��~ 3 nm, ��= 

2.2 × 105 m/s, J = 400 meV and ���� ≈ 1 �  from previous experimental results (17). With 

superconducting gaps ∆ ≈ 1 meV at T = 4 K for Nb (56, 57), Fig.S8A plots the normalized energy 

of ABS by the superconducting gap at T = 4 K as a function of dNiFe for the ideal transparency case. 

The oscillation of the Gilbert damping can be resolved by using the FM exchange field-induced 

phase shift of 
������

ℏ��
 (fig. S9B). For simplicity, we have disregarded the possible thickness 

dependence of the superconducting gaps and magnetizations. To be noted, our theoretical 

estimation is based on a simplified model that assumes D = 1. For the diffusive regime or the case 

of non-perfect transparency of electrons at the interface (42, 43), similar oscillating behaviors of 

ABS (or DOS) in the SCs can also be preserved. For example, the oscillating ABS (or DOS) in the 

SCs have been shown to exist in the diffusive regime theoretically (6, 46), and indeed, the zero to 

� transitions have been experimentally observed in both the ballistic and diffusive regimes from 

the supercurrent measurements (11, 17). To fully understand the experimental observation of the 

oscillatory Gilbert damping in the diffusive regime, further theoretical studies are needed. 

 

 



 
 

Section 3: Measurement of the Josephson coupling in Nb/NiFe/Nb.  

The Nb/NiFe/Nb Josephson devices are fabricated using the shadow mask techniques during 

the films growth. As shown in figs. S7A and S7B, the Josephson devices have a junction area (A) 

of ~ 80 μm × 80 μm, and the other areas are electrically isolated by a 100 nm AlOx layer. The 

Josephson current is measured by standard a.c. lock-in technique. The normalized differential 

resistances (dV/dI) measured on the Nb/NiFe (5 nm)/Nb junction at various temperatures are 

shown in fig. S7C. The critical current (Ic) is defined as point where the differential resistance 

increases above the value for the zero-bias current. The normal resistance (Rn) is determined to be 

the saturated value of the normal states of the Josephson coupling measurement. The measured 

area-resistance product (RnA) of ~  5 × 10��� Ω��  is higher than that reported in metallic 

Josephson junction (17, 61), and comparable to that of FM Josephson junction with a thin tunnel 

barrier (62). This behavior indicates that there is more likely a thin NiFeOx layer (indicated by Fig. 

S8B) in the junction formed during the AlOx growth step in the presence of oxygen gas. As the 

temperature increases, Ic and the characteristic voltage (IcRn) decrease (figs. S7C and S7D). Clear 

Josephson currents are observed on the Nb/NiFe (5 nm)/Nb junction and Nb/NiFe (10 nm)/Nb 

junction (figs. S7E and S78F). And the estimated SC gap energy is ~ 0.9 meV at T = 2 K (1, 43), 

which is comparable to the value of ~1.36 meV at T = 0 K estimated from TC of ~ 8.5 K (fig. S4). 

On the other hand, no Josephson current could be observed in the Nb/NiFe (30 nm)/Nb junction 

(figs. S7E and S7F). The absence of Josephson current in Nb/NiFe (30 nm)/Nb junction indicates 

that there is no long-range spin-triplet Josephson coupling in the Nb/NiFe/Nb heterostructures in 

our experiment.  

  



 
 

 

 

 
fig. S1. The crystalline properties of the Nb/NiFe/Nb heterostructures. (A) The θ-2θ X-ray 

diffraction results measured on the typical Nb/NiFe (12 nm)/Nb sample, where Nb (110) and NiFe 

(111) peaks are observed. (B) High-resolution transmission electron micrographs measured on the 

typical Nb/NiFe (12 nm)/Nb sample. The dashed lines show the interfaces between Nb and NiFe 

layers. The red bars indicate the deviation of NiFe at the interface. 

 
 

 
 
 
 

  



 
 

 

 
 

fig. S2. Gilbert damping measurement of Nb/NiFe/Nb heterostructures at T = 10 K. (A) The 

typical FMR spectra as a function of magnetic field with microwave frequency (f) of 10, 12, 14, 

16, and 18 GHz, respectively. (B) The typical FMR spectrum measured with f = 12 GHz (black 

circles) and the Lorentz fitting curve (red line). ΔH is the half linewidth of the FMR signal. (C) 

The determination of the Gilbert damping from ΔH vs. f. The red line indicates the best linear-

fitting curve. These results are obtained on the typical Nb/Py (12 nm)/Nb sample. 

  



 
 

 
 

 
 
fig. S3. NiFe thickness dependence of Gilbert damping at T = 50 K.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

 

fig. S4. NiFe thickness dependence of TC for the Nb/NiFe/Nb heterostructures. The TC is 

determined from the zero-resistance temperature via four-probe resistance measurement.  

 



 
 

 

fig. S5. Measurement of the Gilbert damping of Nb/NiFe/Nb heterostructures at T = 4 K. (A) 

The typical FMR spectra as a function of magnetic field with microwave frequency (f) of 10, 12, 

14, 16, and 18 GHz, respectively. (B) The typical FMR spectrum measured with f = 12 GHz (black 

circles) and the Lorentz fitting curve (red line). ΔH is the half linewidth of the FMR signal. (C) 

The determination of the Gilbert damping from ΔH vs. f. The red line indicates the best linear-

fitting curve. These results are obtained on the typical Nb/Py (12 nm)/Nb sample. 

  



 
 

 

 

fig. S6. The effect of FMR measurement on the TC of Nb/NiFe/Nb heterostructures. The four-

probe resistances vs. temperature are probed from the typical Nb/NiFe (12 nm)/Nb sample 

with/without the presence of the in-plane magnetic field and microwave power.  



 
 

 
 

fig. S7. The measurement of Josephson coupling in Nb/NiFe/Nb junctions. (A) The optical 

image of a typical Nb/NiFe/Nb Josephson device and schematic of the electrical measurement 

geometry. (B) The cross-section of the Josephson devices with a junction area of ~ 80 μm × 80 

μm. At the junction, a thin oxide layer of NiFeOx is mostly liked formed on the top surface of NiFe 

during the growth of AlOx in the presence of oxygen. (C) The normalized differential resistance 

(dV/dI) as a function of the bias current measured on the Nb/NiFe (5 nm)/Nb junction from T = 2 

to 6 K. (D) The temperature dependence of the characteristic voltage (IcRn) of the Nb/NiFe (5 

nm)/Nb Josephson junction. (E) The normalized differential resistance as a function of the bias 

current of the Nb/NiFe/Nb junctions (dNiFe = 5, 10 and 30 nm) at T = 2 K. (F) The NiFe thickness 

dependence of the characteristic voltages at T = 2 K. 

 



 
 

 

 

 

fig. S8. Illustration of magnetization dynamics and spin pumping in the SC/FM/SC 

heterostructures due to Bogoliubov quasiparticles (A) and equal spin-triplet Cooper pairs 

(B). The dark and light balls represent the electron-like and hole-like quasiparticles respectively. 

The red and blue arrows indicate the spin up and spin down respectively. 

  



 
 

  

fig. S9.  Calculation of the enhanced Gilbert damping due to spin pumping via the ABS at T 

= 4 K. (A) The normalized energy of ABS by the superconducting gap at T = 4 K as a function of 

dNiFe for the ideal transparency case. (B) The enhanced Gilbert damping via ABS as a function of 

dNiFe.  

  



 

 
 

fig. S10. Gilbert damping of control sample of bilayer Nb/NiFe junctions. (A) Gilbert damping 

of bilayer Nb/NiFe junctions at T = 4, 5, and 10 K. (B) Comparison of the Gilbert damping of 

bilayer Nb/NiFe and trilayer Nb/NiFe/Nb junctions at T = 4 K. 

 

 
 
 
 
 
 
 



 
 

 

fig. S11. Thickness dependence of gyromagnetic ratio (and g factor) (A), effective 

magnetization (B) and inhomogeneous half-linewidth (C). The blue, black, green and red 

dotted-lines represent to temperature of T = 10, 7, 5 and 4 K, respectively. 
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