
Moltemplate: a tool for coarse-grained modeling of complex biological
matter and soft condensed matter physics
Jewett, A.I.; Stelter, D.; Lambert, J.; Saladi, S.M.; Roscioni, O.M.; Ricci, M.; ... ; Goodsell,
D.S.

Citation
Jewett, A. I., Stelter, D., Lambert, J., Saladi, S. M., Roscioni, O. M., Ricci, M., … Goodsell,
D. S. (2021). Moltemplate: a tool for coarse-grained modeling of complex biological matter
and soft condensed matter physics. Journal Of Molecular Biology, 433(11).
doi:10.1016/j.jmb.2021.166841

Version: Publisher's Version
License: Licensed under Article 25fa Copyright Act/Law (Amendment Taverne)
Downloaded from: https://hdl.handle.net/1887/3245493

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:4
https://hdl.handle.net/1887/3245493

Database
and Soft Condensed Matter Physics
0022-2836/� 2021 Elsevier L
Moltemplate: A Tool for Coarse-Grained
Modeling of Complex Biological Matter
Andrew I. Jewett 1⇑, David Stelter 2, Jason Lambert 3, Shyam M. Saladi 4,
Otello M. Roscioni 5, Matteo Ricci 5, Ludovic Autin 1, Martina Maritan 1,
Saeed M. Bashusqeh 6, Tom Keyes 2, Remus T. Dame 7, Joan-Emma Shea 8,
Grant J. Jensen 4,9 and David S. Goodsell 1,10⇑

1 - Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA

2 - Department of Chemistry, Boston University, MA, USA

3 - Department of Chemistry, University of Tennessee, Knoxville, TN, USA

4 - Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA

5 - MaterialX LTD, Bristol, UK

6 - School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran

7 - Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands

8 - Departments of Chemistry and Biochemistry and Physics, University of California, Santa Barbara, CA, USA

9 - Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, USA

10 - RCSB Protein Data Bank and Institute for Quantitative Biomedicine, Rutgers, the State University of New Jersey,

Piscataway, NJ, USA
Correspondence to Andrew I. Jewett and David S. Goodsell: Department of Integrative Structural and
Computational Biology, The Scripps Research Institute, La Jolla, CA, USA (D.S. Goodsell).jewett.aij@gmail.com
(A.I. Jewett), goodsell@scripps.edu (D.S. Goodsell)
https://doi.org/10.1016/j.jmb.2021.166841
Edited by Michael Sternberg

Abstract

Coarse-grained models have long been considered indispensable tools in the investigation of biomolec-
ular dynamics and assembly. However, the process of simulating such models is arduous because uncon-
ventional force fields and particle attributes are often needed, and some systems are not in thermal
equilibrium. Although modern molecular dynamics programs are highly adaptable, software designed
for preparing all-atom simulations typically makes restrictive assumptions about the nature of the particles
and the forces acting on them. Consequently, the use of coarse-grained models has remained challeng-
ing. Moltemplate is a file format for storing coarse-grained molecular models and the forces that act on
them, as well as a program that converts moltemplate files into input files for LAMMPS, a popular molec-
ular dynamics engine. Moltemplate has broad scope and an emphasis on generality. It accommodates
new kinds of forces as they are developed for LAMMPS, making moltemplate a popular tool with thou-
sands of users in computational chemistry, materials science, and structural biology. To demonstrate
its wide functionality, we provide examples of using moltemplate to prepare simulations of fluids using
many-body forces, coarse-grained organic semiconductors, and the motor-driven supercoiling and con-
densation of an entire bacterial chromosome.

� 2021 Elsevier Ltd. All rights reserved.
td. All rights reserved. Journal of Molecular Biology 433 (2021) 166841

mailto:jewett.aij@gmail.com
mailto:goodsell@scripps.edu
https://doi.org/10.1016/j.jmb.2021.166841
https://doi.org/10.1016/j.jmb.2021.166841

A.I. Jewett, D. Stelter, J. Lambert, et al. Journal of Molecular Biology 433 (2021) 166841
Introduction

Simulation methods are currently used to explore
biological systems from atoms to entire organisms
and beyond. Given current computational
capabilities, the representation must be tailored to
the scale level being studied. Detailed quantum
mechanical and molecular mechanics simulations
explore the details of covalent bonding, molecular
geometry and interaction, and other sub-molecular
properties.1 Molecular dynamics simulations are
widely employed to look at the dynamic properties
of entire biomolecules and their complexes,2 effec-
tively providing a “computational microscope” to
probe biomolecular processes.3,4 Moving to larger
systems and/or longer time scales often requires
coarse-graining methods that represent collections
of atoms with simpler primitives to make the simula-
tion computationally tractable. For example, popu-
lar force fields such as MARTINI5 replace
individual amino acids with a small number of
spheres, and are widely used to explore protein
folding and other dynamic processes. Currently,
even simpler representations, where individual
beads represent multiple amino acids/nucleotides,
domains, subunits or entire molecules, become
necessary when simulating even larger systems
such as entire genomes or whole cells.6 These
“coarse-grained” representations have many
advantages: they form a bridge between the atomic
properties of molecules and the continuum proper-
ties of cell biology and materials science. Some
coarse-grained models are designed with a small
number of parameters, making it easier to pinpoint
the aspects of the model or force field that lead to
emergent functional properties.7 Some coarse-
grainedmodels are carefully parameterized, match-
ing the placement of beads, force-fields parame-
ters, and (if applicable) internal state transition
rates, with atomistic simulation and experimental
data.6,8–12

The loss of resolution during coarse-graining
often results in the design and use of complex and
unconventional force fields not available in
conventional molecular modeling software.
Consequently, these coarse-grained
representations are often designed and
implemented in a one-off manner, typically by
writing large custom simulation programs to
address a system of interest. For example,
REMODELER is a specialized tool written in
20,000 lines of FORTRAN for simulating the
growth of bacterial cell walls.13 Similarly, POLY-
CHROM (https://zenodo.org/record/3579473) is a
tool for building coarse-grained simulations of
eukaryotic chromosomes. Specialized tools like
these typically require a large investment of skill
and labor for each system that the investigators
wish to study.
Numerous tools exist for building fully atomistic

simulations,14–16 however, tools for specifying
2

coarse-grained simulations are not as widely avail-
able. Specialized tools are available for building
simulations of membranes and proteins using the
MARTINI force field, including PyCGTool, a method
for adding new molecules to MARTINI,17

MERMAID18 and CHARMM-GUI Martini Maker.19

Several general tools are also available with goals
similar to the work described here. For example,
TopoTools (https://doi.org/10.5281/zenodo.
3845031) is a VMD plugin that streamlines access
to LAMMPS. mBUILD20 and ParmEd
(http://parmed.github.io/ParmEd) provide different
APIs allowing Python programmers to prepare (typ-
ically all-atom) simulations using OpenMM,21 a
powerful molecular dynamics engine.
Moltemplate is an intuitive, compact, user-

readable file format (the LT “LAMMPS-Template”
format) for storing coarse-grained molecular
models that can be simulated in LAMMPS.22 The
moltemplate software converts these moltemplate
files into files that may be run directly in LAMMPS
with minimal editing. The moltemplate file format
was conceived with several goals in mind: to be a
general as possible, to streamline coarse-grained
modeling for new and expert users, and to provide
an easy way to store and document coarse-
grained simulations to improve reproducibility. This
file format is designed to be easily extensible, com-
patible with other molecular building programs, and
to simplify the design of custom coarse-grained rep-
resentations of chemical and biological systems,
from single biomolecules to entire cells, such as
the bacterial chromosome and liposome included
in Figure 1. A simple example of a moltemplate file
is shown in Figure 2. Users can combine a variety of
point-like, rigid, and continuum-field/atomistic
hybrid representations. Building on the generality
of the LT format, moltemplate has also been widely
used for building complex atomistic simulations.
Note that coarse-grained models are only as

good as the force fields being employed.
Extensive work is required to choose particle
placement, force-field parameters, and (if
applicable) transition rates for internal state
changes.6,8–10 Moltemplate does not solve these
critically important problems; rather, moltemplate
is a tool for storing and using coarse-grained mod-
els once they are developed. This report presents
the basic concept of moltemplate, the LT file format,
and several applications to demonstrate the scope
of simulations that are possible.
Methods

Overview of moltemplate methods

Once users have created moltemplate files
describing a system they want to simulate, the
files must be converted into files that LAMMPS
understands. Moltemplate does this using a
collection of Python scripts for generating text

https://zenodo.org/record/3579473
https://doi.org/10.5281/zenodo.3845031
https://doi.org/10.5281/zenodo.3845031
http://parmed.github.io/ParmEd

Figure 1. Coarse-grained physics-based models of chromosomes and organelles. (a) Coarse-grained DNA
represented with three particles every 42 bp, including a dummy particle to represent the local superhelical state. A
rotating motor (white) applies a constant torque to four particles. 219 lines of text files were required to implement this
example, including 79 lines of moltemplate files, 43 lines to invoke the polymer generator and insert a twist motor, 32
lines of minimization and run protocols, and a short Python script to generate tabulated potentials. (b) Predicted
conformation of the entire genome of Caulobacter crescentus (4 Mbp) in the absence of DNA-binding proteins,
created by relaxing, twisting, and compressing a circular polymer that was originally stretched while confined in a tube
of radius 320 nm. Bottle-brush-like supercoils form as a result of maintaining the polymer at constant torsional tension.
This example was implemented using 397 lines of text. (c) Detail of a large, highly-branched plectonemic supercoil
(10kbp). (d and e) Simulating the formation of a lipid bilayer using theMARTINI force field. This example contains 300
lipids, 6000 waters, and requires 220 lines of text. f) A liposome with protein inclusions containing 120 proteins,
65,000 lipids, and implemented with 544 lines of text (including PACKMOL files). PACKMOL was used to randomize
the molecular positions, and moltemplate was used to assemble the LAMMPS simulation files. Files for these
examples can be downloaded at http://doi.org/10.5281/zenodo.4392267. Systems visualized using VMD and
TopoTools.

A.I. Jewett, D. Stelter, J. Lambert, et al. Journal of Molecular Biology 433 (2021) 166841
files, generating coordinates, and assigning force
field parameters. Moltemplate also includes
LAMMPS-specific tools for parsing and converting
LAMMPS files and converting arbitrary curves into
polymers in LAMMPS format. These Python
scripts can be run independently, however the
majority of them communicate with each other
through a BASH script (moltemplate.sh), which
provides the main user interface.
Moltemplate is built around a template-based

strategy that streamlines ease of use and
extensibility of the method. In order to run a
molecular simulation, a user needs to: 1) choose
the initial state of a system (including the positions
of the particles that comprise the system and any
other degrees of freedom), and 2) describe the
interactions (forces or energies) between these
particles. For systems that are driven out of
thermal equilibrium, users must also: 3) control
how these forces evolve over time. The LT file
language is designed to store these object
definitions, force fields, and process descriptions.
The template-based strategy allows users to
define subassemblies in small, manageable LT
files, and then duplicate and combine them
hierarchically to generate larger systems of interest.
Moltemplate duplicates blocks of text in LT files,

substituting user-defined counters as new copies
are created. Typically, these text blocks fall into
four or five types, defining: 1) particles (“atoms”),
2) bonds between particles, 3) higher-order
3

interactions between particles such as angles and
dihedrals, 4) the parameters needed to define or
modify these interactions during a simulation, and
(in some cases), 5) rules explaining the
circumstances when they are to be applied. Text
blocks are written directly in the file formats used
by LAMMPS. Within these text blocks, counter
variables are defined that will be incremented as
the text blocks are duplicated when molecules are
added to the system. This generates output files
with a full enumeration of the atom, bond,
interaction and force field information. A simple
example is presented in Figure 2(a), with four
“write” statements that create files with the first
four types of information. Variables with “$”
represent individual atoms or bonds and will be
incremented each time the molecule it belongs to
is duplicated, whereas variables with “@”
represent types and will not be incremented.
Moltemplate includes a rich language for
controlling the position and orientation of individual
molecules (e.g. Figure 2(c)) and customizing them
(Supplementary Figure 1). Similar commands can
be used to generate polymers and other
assemblies of arbitrary shape and connectivity.
More complex geometries can be generated using
external tools like PACKMOL or our polymer
generator “genpoly_lt.py” and imported into
moltemplate (e.g. using “moltemplate.sh system.lt
-xyz coords.xyz”). A summary of moltemplate
commands is included in Supplementary Table 1

http://doi.org/10.5281/zenodo.4392267

Figure 2. Files needed to prepare and run a LAMMPS simulation with moltemplate. (a) The “propane.lt” file
contains the definition of a coarse-grained “Propane” molecule containing three particles, two bonds, and one angular
spring. (b) A similar file defining a coarse-grained “Water” molecule includes a command to create a file (“params_sw.
txt”) containing parameters for its more complicated (many-body) force-field. (c) These molecule objects can be used
as building blocks to create text files describing more complex systems. Here, two “new” commands create a water-
hydrocarbon mixture containing 43 = 64 Propanes and 123 = 1728 Waters. Text enclosed in each “write(FILENAME)”
statement will be appended to the generated file (e.g. “Data Bonds”) each time a copy of the molecule is created, and
the counter variables ($atom:, $bond:, $angle:) will be replaced by integers and incremented. However, type variables
beginning with @ are not incremented. Interactions between water and propane are also specified. LAMMPS files
generated by moltemplate are shown in e), with rectangles enclosing the portion of text generated by each molecule
copy. (d) Command used to run moltemplate. The optional “-atomstyle” argument customizes particle attributes. (e)
Files generated by moltemplate. Note: Coordinates are modified by the move() commands in part c). “Data” files are
concatenated together by moltemplate and renamed “system.data”. (f) Command used to run LAMMPS. (g) The “run.
in” file is a LAMMPS file containing links to the files generated by moltemplate as well as LAMMPS-specific run-time
settings.

A.I. Jewett, D. Stelter, J. Lambert, et al. Journal of Molecular Biology 433 (2021) 166841
and the documentation (http://moltemplate.
org/doc). Detailed examples for all figures in this
paper are included at http://doi.org/10.5281/
zenodo.4392267. More examples are available
online (http://moltemplate.org/examples.html),
4

including coarse-grained polymer melts, proteins,
lipid membranes, and examples with custom force
fields.
Moltemplate provides a file format (documented

in the moltemplate manual) that advanced

http://moltemplate.org/doc
http://moltemplate.org/doc
http://doi.org/10.5281/zenodo.4392267
http://doi.org/10.5281/zenodo.4392267
http://moltemplate.org/examples.html

A.I. Jewett, D. Stelter, J. Lambert, et al. Journal of Molecular Biology 433 (2021) 166841
moltemplate users can use to store force field
parameters, as well as rules that describe when
these forces should be applied. These force-field
rules can automatically generate angle, dihedral,
or improper interactions between atoms whose
type and bond connectivity matches a user-
supplied template. This file format is flexible
enough to describe the many kinds of forces that
LAMMPS supports. A wide variety of popular
force fields have been converted into moltemplate
format (including OPLSAA, AMBER, COMPASS,
DREIDING, and MARTINI). However, moltemplate
does not infer force-field-specific atom types or
calculate partial charges.
Coarse-grained representations often present an

additional challenge: they may include custom
particle attributes and/or move under the influence
of unconventional forces, such as the many-body
“mW” water particle used in Figure 2(b),23 as well
as forces that drive the system out of equilibrium.
A diverse and growing list of methods exist for run-
ning non-equilibrium simulations in LAMMPS, such
as time-varying external forces, motors used to
twist DNA in Figure 1(a) and (b) (explained in the
supplemental data), the collective motion of self-
propelled colloidal particles (https://lammps.san-
dia.gov/doc/fix_propel_self.html), and chemical
reactions.24 The data required to characterize these
non-standard forces is often encoded in domain-
specific file formats that are not supported in tradi-
tional molecule builder software. In fact, themajority
of the hundreds of force field styles and features
that are available in LAMMPS have been created
by LAMMPS users, and each of these features is
controlled by text commands invented by different
users. Any program that attempts to generate text
files for all of these different formats will need to
use some form of template substitution. This is what
moltemplate does: it has wide applicability because
(for most files) it is intentionally ignorant about the
format or structure of the text files that it creates.
This allows it to make nearly any kind of text file that
LAMMPS can read. By keeping the design of
moltemplate simple and general, our goal is that
moltemplate will also retain utility for the diverse
kinds of files that future coarse-grained modelers
will need.
Moltemplate is primarily used with LAMMPS, but

it can be customized to prepare files for other
molecular dynamics engines by customizing the
~2000 lines of code that process the format and
syntax of “Data” sections of moltemplate files. For
example, we have also implemented moltemplate
tools for Espresso (http://moltemplate.org/
espresso).

Results

Sample applications

Moltemplate has been used in a wide range of
applications in materials science and biology. To
5

introduce new users to moltemplate and
LAMMPS, progressively-complex examples are
available on the moltemplate site
(https://moltemplate.org), ranging from simple all-
atom simulations of small molecules in periodic
boxes to a coarse-grained simulation of a
liposome with protein inclusions (Figure 1(f)). To
demonstrate what is possible with moltemplate,
files for running several advanced examples
have been deposited at Zenodo (http://doi.org/10.
5281/zenodo.4392267), along with the
moltemplate code and a distribution of LAMMPS
that includes several modifications needed by
the examples. The examples are described
briefly below, and in more detail in the
Supplementary Text File.
Simulating DNA superhelicity

DNA is a particularly challenging topic for study,
given the need to capture the topology of the
double-helical arrangement of strands, the specific
interaction between strands, and the complex
stiffness and non-uniform bending properties of
the helix. Moltemplate provides tools to create
DNA models of arbitrary detail and sophistication
including OxDNA2.25,26 Figure 1(a) shows a
Kratky-Porod-like polymer model of DNA27,28 con-
taining a twist motor, with three beads representing
42 bp and with dummy atoms to represent the local
superhelical twist of the chain.
The example included with this manuscript

explores supercoiling of an entire bacterial
chromosome (Figure 1(b)). This simulation
demonstrates that supercoiling caused by
enzymes like DNA gyrase is enough to
generate compact, spatially segregated circular
bottlebrush-like structures seen in prokaryotic
chromosomes such as Caulobacter
crescentus.29 Early in the process of cell divi-
sion, the new origin of replication is transported
from one end of the cell by the ParABS system
and anchored to the opposite pole and the small
amount of DNA that has been replicated is
stretched across the length of the cell (Supple-
mentary Figure 5). The stretched DNA gradually
relaxes as replication continues and more DNA
is supplied to fill the space.30 To approximate
this, we simulate a 4Mbp ring of circular DNA
that is initially stretched until it is straight. 400
twist motors are inserted evenly along the length
of the DNA. (For details about how add control
twist motors using moltemplate, see the Supple-
mental text file.) During the simulation they main-
tain torsional tension throughout the polymer.
Then the DNA is slowly relaxed, roughly mimick-
ing the process of DNA relaxation after replica-
tion in C. crescentus. In this example, the
branched plectonemic supercoils (up to ~15 kb
in length) form naturally under tension as the
DNA relaxes.

https://lammps.sandia.gov/doc/fix_propel_self.html
https://lammps.sandia.gov/doc/fix_propel_self.html
http://moltemplate.org/espresso
http://moltemplate.org/espresso
https://moltemplate.org
http://doi.org/10.5281/zenodo.4392267
http://doi.org/10.5281/zenodo.4392267

A.I. Jewett, D. Stelter, J. Lambert, et al. Journal of Molecular Biology 433 (2021) 166841
Particles with custom attributes

Mesoscale modeling requires aggressive coarse-
graining. As the size of each coarse-grained particle
grows to encompass more atoms, the state of the
system is no longer adequately described by
those particles’ X,Y,Z coordinates. Additional
degrees of freedom must be added to each
particle to compensate for the information that
was discarded.8,10 Recent “ultra-coarse-grained”
models contain particles with internal states that
change over time10,11 and LAMMPS can simulate
chemical reactions that alter particles’ types over
time (see Future Directions). LAMMPS also allows
particles to have directional attributes as well as
other custom attributes created by the user. In the
MOLC model,31 large organic molecules are repre-
sented in terms of ellipsoidal beads connected by
directional bonds. Moltemplate format is used for
storing the force-field parameters, ellipsoid shape
and orientation, and bond topology of each
coarse-grained molecule in a compact and
human-readable way, and for constructing assem-
blies from these molecules for simulation in
LAMMPS. The supplemental files include MOLC
models of simple organic molecules and organic
semiconductors, prepared using moltemplate.
Discussion

User community and usability

Moltemplate is, by design, not a black box, so
users (or 3rd-party programs) can customize the
(human-readable) LT files with a text editor. The
many worked examples distributed with
moltemplate get users started quickly, and the
simple LT syntax allows new users to add specific
interactions between molecules and other details
to customize subsequent LAMMPS simulations for
their particular application.
The success of this approach is exemplified by

the current large, diverse moltemplate user
community. Currently, moltemplate software tools
have been downloaded >70,000 times, from
>12,000 unique IP addresses from the
moltemplate.org web site (this excludes
downloads using git and pip). Moltemplate also
has a growing user community in materials
science and biology. For example, moltemplate
has been used to model the assembly of potential
drug-delivery vehicles made from ssDNA
polymers fused to dialkyl tails32 and has been used
to explore the structural transitions of genomic RNA
in HIV virions, which includes defined secondary
structure in the RNA chain and interaction with
crosslinking proteins.33 Living systems are also
not in thermal equilibrium, posing a challenge for
simulation: often, methods must be devised to
model irreversible or directional processes. For
example, moltemplate has been used in non-
equilibrium simulations to explore how ring-like
6

motors walk along DNA and remodel the conforma-
tion of eukaryotic chromosomes at the megabase
scale.34

Moltemplate is increasingly being used as a glue
or backend to connect domain-specific programs to
LAMMPS. For example, two commercial services
use moltemplate as a backend, ATB35 and Mate-
rialX (https://materialx.co.uk/). We have used
moltemplate as an essential step in a modeling
pipeline for building detailed models of entire cells
with CellPACK,36 a suite of software for the genera-
tion of structural models of entire cellular organelles
and bacterial cells (Figure 3). We have created a
tool (https://github.com/jewettaij/cellpack2moltem-
plate) that enables CellPACK to generate input files
for moltemplate so that the user need not be familiar
withmoltemplate file format to run LAMMPS simula-
tions based on CellPACK models. In collaboration
with the Covert laboratory, we are generating mod-
els of Mycoplasma genitalium cells based on dis-
crete time points from WholeCell simulations37

which can be simulated in LAMMPS. The models
contain several hundred types of molecular entities
with a variety of shapes and sizes, including long
fibers and membrane-spanning proteins. Models
are generated using CellPACKgpu,38 with DNA,
messenger RNA, and associated proteins placed
using LatticeNucleoids.39
Extensibility

Modern MD programs are written in a modular
style so that users can add new features and
force fields when needed. For example, we added
new features to LAMMPS to implement the DNA
twist motor and the directional bonded ellipsoids
used in the MOLC examples. The majority of
LAMMPS features have similarly been contributed
by users to simulate new types of representations,
and LAMMPS currently includes hundreds of user-
defined force-fields and features. This poses a
challenge, since there is no universal file format
for characterizing how these particles should
move in a coarse-grained simulation. Future
coarse-grained model builders are likely to create
their own interactions, and it is not possible to
anticipate what their file syntax will be. The
agnostic design of moltemplate fills this need,
generating the text files needed for diverse current
and future methods. Moltemplate currently
prepares files that work with the vast number of
force field styles that LAMMPS currently supports
as well as diverse exotic molecular models. More
importantly, moltemplate will likely be able to
generate the kinds of files that users invent in the
future.
Reproducibility

It has been estimated that 75%-90% of
biomedical research is not reproducible.40 How-
ever, simulation science is comparatively verifiable

https://materialx.co.uk/
https://github.com/jewettaij/cellpack2moltemplate
https://github.com/jewettaij/cellpack2moltemplate

Figure 3. Integrated pipeline for building models of
entire bacterial cells. 3D structures for the ~500 types of
proteins in a mycoplasma proteome are curated in the
online tool Mesoscope and used to create interactive
draft models in cellPACKgpu. Moltemplate, with the
utility program cellPack2moltemplate, then converts
molecular location and orientation information into a
LAMMPS input file, to perform a coarse-grained simu-
lation that eliminates steric clashes and generates more
realistic 3D models. Final models are interactively
explored with cellPACKgpu. Molecules with steric
clashes are shown in red in both model images.

A.I. Jewett, D. Stelter, J. Lambert, et al. Journal of Molecular Biology 433 (2021) 166841
and reproducible. The state of the field of coarse-
grained modeling is still quite experimental. In the
most popular and well-studied applications, such
as the MARTINI model, this ideal of reproducibility
is achieved, however, for new methods, developers
often are required to build code from scratch to
explore hypotheses, and the resultant code is often
domain-specific and not written for general use or
extensibility. The LT file format used by moltem-
plate provides a way for scientists to design and
share a general class of particle-based coarse-
grained models with their peers for verification.
Moltemplate includes approximately 50 examples
7

that can be used as templates and modified to cre-
ate new coarse-grained models. In this way,
moltemplate accelerates the pace that scientists
can innovate by taking someone’s model, modifying
it, and creating a new model to address a different
question, while at the same time, reproducibly doc-
umenting the new methods.
Future directions

LAMMPS currently has the ability to create and
destroy bonds during a simulation and modify
particle types,24 although the file format is com-
plex and difficult to master. We are currently
developing a user-friendly method to control these
simulations using only a few lines of moltemplate
code (https://github.com/jewettaij/lammps_mca_
examples). This will make it possible to simulate
“active matter” processes in the cell such as repli-
cation, transcription and translation, enzymatic
reactions, cell division machinery, cytoskeletal
dynamics, trafficking, cell signaling, and many
others. A Python API is also being developed
allowing future moltemplate users to build mole-
cules using Python syntax which is independent
of LAMMPS whenever LAMMPS-specific features
are not being used.
Code availability

Moltemplate (available at http://moltemplate.org)
is free open-source software. It is distributed
under the MIT and PSF licenses. Moltemplate
uses modern tools for public collaborative
development and has many contributors. Users
contribute suggestions, bug-reports, code, force-
fields, examples, and documentation using
GitHub. TravisCI is used for continuous-integration.
CRediT authorship contribution
statement

Andrew I. Jewett: Conceptualization, Software,
Investigation, Writing - original draft, Writing -
review & editing. David Stelter: Investigation,
Software, Writing - review & editing. Jason
Lambert: Software, Writing - review & editing.
Shyam M. Saladi: Software, Writing - review &
editing. Otello M. Roscioni: Software,
Investigation, Writing - review & editing. Matteo
Ricci: Investigation, Writing - review & editing.
Ludovic Autin: Investigation, Writing - review &
editing. Martina Saeed M. Maritan Bashusqeh:
Investigation, Writing - review & editing,
Investigation, Writing - review & editing. Tom
Keyes: Supervision, Writing - review & editing.
Remus T. Dame: Supervision, Writing - review &
editing. Joan-Emma Shea: Supervision, Writing -
review & editing. Grant J. Jensen: Supervision,
Writing - review & editing. David S. Goodsell:

https://github.com/jewettaij/lammps_mca_examples
https://github.com/jewettaij/lammps_mca_examples
http://moltemplate.org

A.I. Jewett, D. Stelter, J. Lambert, et al. Journal of Molecular Biology 433 (2021) 166841
Supervision, Writing - original draft, Writing - review
& editing.

Acknowledgements

Moltemplate was supported by NIH grants T32-
AI007354-29, GM120604 and GM122588, NSF-
MCB-1158577 and NSF-MCB-1716956, and
HFSP RGP0014/2014. We thank Valeria
Molinero, Yandong Zhang, Nathaniel Charest,
William M. Clemons Jr., David Keffer, Marcus
Martin, Paul Saxe and Robert Compton for
support and useful discussions.

Author contributions

AJ conceived, developed the original software,
and carried out simulations. DS, JL, SMS, and
OMR, contributed code improvements. OMR and
MR contributed the MOLC example. SMB
contributed the MARTINI example. MM, LA, and
DSG created the mycoplasma models. AJ and
DSG drafted the manuscript. DSG, GJJ, JES, TK,
and RTD, planned and supervised the work.

Declaration of Competing Interest

The authors declare that they have no known
competing financial interests or personal
relationships that could have appeared to
influence the work reported in this paper.

Appendix A. Supplementary data

Supplementary data to this article can be found
online at https://doi.org/10.1016/j.jmb.2021.
166841.

Received 22 September 2020;
Accepted 20 January 2021;

Available online 2 February 2021

Keywords:
coarse-grained simulation;

molecular modeling;
LAMMPS;

molecular dynamics
References

1. Senn, H.M., Thiel, W., (2009). QM/MM methods for

biomolecular systems. Angew. Chem. Int. Ed., 48, 1198–

1229.

2. Karplus, M., McCammon, J.A., (2002). Molecular dynamics

simulations of biomolecules. Nature Struct. Biol., 9, 646–

652.
8

3. Lee, E.H., Hsin, J., Sotomayor, M., et al., (2009). Discovery

through the computational microscope. Structure, 17,

1295–1306.

4. Dror, R.O., Dirks, R.M., Grossman, J.P., et al., (2012).

Biomolecular simulation: a computational microscope for

molecular biology. Annu. Rev. Biophys., 41, 429–452.

5. Marrink, S.J., Risselada, H.J., Yefimov, S., et al., (2007).

The MARTINI force field: Coarse grained model for

biomolecular simulations. J. Phys. Chem. B, 111, 7812–

7824.

6. Saunders, M.G., Voth, G.A., (2013). Coarse-graining

methods for computational biology. Annu. Rev. Biophys.,

42, 73–93.

7. Hafner, A.E., Krausser, J., Šarić, A., (2019). Minimal

coarse-grained models for molecular self-organisation in

biology. Curr. Opin. Struct. Biol., 58, 43–52.

8. Pak, A.J., Voth, G.A., (2018). Advances in coarse-grained

modeling of macromolecular complexes. Curr. Opin. Struct.

Biol., 52, 119–126.

9. Ingólfsson, H.I., Lopez, C.A., Uusitalo, J.J., et al.,

(2014). The power of coarse graining in biomolecular

simulations: the power of coarse graining in biomolecular

simulations. Wiley Interdiscip. Rev. Comput. Mol. Sci., 4,

225–248.

10. Dama, J.F., Sinitskiy, A.V., McCullagh, M., et al., (2013).

The theory of ultra-coarse-graining. 1 General principles. J.

Chem. Theory Comput., 9, 2466–2480.

11. Katkar, H.H., Davtyan, A., Durumeric, A.E.P., et al., (2018).

Insights into the cooperative nature of ATP hydrolysis in

actin filaments. Biophys. J., 115, 1589–1602.

12. Rühle, V., Junghans, C., Lukyanov, A., et al., (2009).

Versatile object-oriented toolkit for coarse-graining

applications. J. Chem. Theory Comput., 5, 3211–3223.

13. Nguyen, L.T., Gumbart, J.C., Beeby, M., et al., (2015).

Coarse-grained simulations of bacterial cell wall growth

reveal that local coordination alone can be sufficient to

maintain rod shape. Proc. Natl. Acad. Sci., 112, E3689–

E3698.

14. Wang, J., Wang, W., Kollman, P.A., et al., (2006).

Automatic atom type and bond type perception in

molecular mechanical calculations. J. Mol. Graph. Model.,

25, 247–260.

15. Jo, S., Kim, T., Iyer, V.G., et al., (2008). CHARMM-GUI: a

web-based graphical user interface for CHARMM. J.

Comput. Chem., 29, 1859–1865.

16. Hollingsworth, S.A., Dror, R.O., (2018). Molecular

dynamics simulation for all. Neuron, 99, 1129–1143.

17. Graham, J.A., Essex, J.W., Khalid, S., (2017).

PyCGTOOL: automated generation of coarse-grained

molecular dynamics models from atomistic trajectories. J.

Chem. Inf. Model., 57, 650–656.

18. Damre, M., Marchetto, A., Giorgetti, A., (2019). MERMAID:

dedicated web server to prepare and run coarse-grained

membrane protein dynamics. Nucleic Acids Res., 47,

W456–W461.

19. Qi, Y., Ingólfsson, H.I., Cheng, X., et al., (2015). CHARMM-

GUI Martini Maker for coarse-grained simulations with the

Martini force field. J. Chem. Theory Comput., 11, 4486–

4494.

20. Klein, C., Sallai, J., Jones, T.J., et al. (2016) A hierarchical,

component based approach to screening properties of soft

matter. In Foundations of Molecular Modeling and

Simulation (Snurr, R.Q., Adjiman, C.S., & Kofke, D.A.,

eds.), Singapore, Springer Singapore, pp. 79–92.

https://doi.org/10.1016/j.jmb.2021.166841
https://doi.org/10.1016/j.jmb.2021.166841
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0005
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0005
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0005
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0010
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0010
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0010
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0015
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0015
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0015
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0020
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0020
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0020
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0025
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0025
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0025
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0025
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0030
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0030
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0030
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0035
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0035
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0035
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0040
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0040
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0040
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0045
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0045
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0045
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0045
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0045
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0050
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0050
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0050
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0055
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0055
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0055
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0060
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0060
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0060
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0065
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0065
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0065
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0065
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0065
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0070
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0070
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0070
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0070
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0075
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0075
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0075
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0080
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0080
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0085
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0085
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0085
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0085
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0090
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0090
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0090
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0090
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0095
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0095
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0095
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0095

A.I. Jewett, D. Stelter, J. Lambert, et al. Journal of Molecular Biology 433 (2021) 166841
21. Eastman, P., Swails, J., Chodera, J.D., et al., (2017).

OpenMM 7: Rapid development of high performance

algorithms for molecular dynamics. PLoS Comput. Biol.,

13, e1005659.

22. Plimpton, S., (1995). Fast parallel algorithms for short-

range molecular dynamics. J. Comput. Phys., 117, 1–19.

23. Molinero, V., Moore, E.B., (2009). Water modeled as an

intermediate element between carbon and silicon. J. Phys.

Chem. B, 113, 4008–4016.

24. Gissinger, J.R., Jensen, B.D., Wise, K.E., (2017). Modeling

chemical reactions in classical molecular dynamics

simulations. Polymer, 128, 211–217.

25. Snodin, B.E.K., Randisi, F., Mosayebi, M., et al., (2015).

Introducing improved structural properties and salt

dependence into a coarse-grained model of DNA. J.

Chem. Phys., 142, 234901.

26. Henrich, O., Gutiérrez Fosado, Y.A., Curk, T., et al.,

(2018). Coarse-grained simulation of DNA using LAMMPS:

An implementation of the oxDNA model and its

applications. Eur. Phys. J. E, 41, 57.

27. Racko, D., Benedetti, F., Dorier, J., et al., (2015).

Generation of supercoils in nicked and gapped DNA

drives DNA unknotting and postreplicative decatenation.

Nucleic Acids Res., 43, 7229–7236.

28. Krajina, B.A., Spakowitz, A.J., (2016). Large-scale

conformational transitions in supercoiled DNA revealed by

coarse-grained simulation. Biophys. J., 111, 1339–1349.

29. Wang, X., Llopis, P.M., Rudner, D.Z., (2013). Organization

and segregation of bacterial chromosomes. Nature Rev.

Genet., 14, 191–203.

30. Hong, S.-H., Toro, E., Mortensen, K.I., et al., (2013).

Caulobacter chromosome in vivo configuration matches

model predictions for a supercoiled polymer in a cell-like

confinement. Proc. Natl. Acad. Sci., 110, 1674–1679.
9

31. Ricci, M., Roscioni, O.M., Querciagrossa, L., et al., (2019).

MOLC. A reversible coarse grained approach using

anisotropic beads for the modelling of organic functional

materials. PCCP, 21, 26195–26211.

32. Kuang, H., Gartner III, T.E., Dorneles de Mello, M., et al.,

(2019). ssDNA-amphiphile architecture used to control

dimensions of DNA nanotubes. Nanoscale, 11, 19850–

19861.

33. Goodsell, D.S., Jewett, A., Olson, A.J., et al., (2019).

Integrative modeling of the HIV-1 ribonucleoprotein

complex. PLoS Comput. Biol., 15, e1007150.

34. Sanborn, A.L., Rao, S.S.P., Huang, S.-C., et al., (2015).

Chromatin extrusion explains key features of loop and

domain formation in wild-type and engineered genomes.

Proc. Natl. Acad. Sci., 112, E6456–E6465.

35. Malde, A.K., Zuo, L., Breeze, M., et al., (2011). An

Automated Force Field Topology Builder (ATB) and

Repository: Version 1.0. J. Chem. Theory Comput., 7,

4026–4037.

36. Johnson, G.T., Autin, L., Al-Alusi, M., et al., (2015).

cellPACK: a virtual mesoscope to model and visualize

structural systems biology. Nature Methods, 12, 85–91.

37. Karr, J.R., Sanghvi, J.C., Macklin, D.N., et al., (2012). A

whole-cell computational model predicts phenotype from

genotype. Cell, 150, 389–401.

38. Klein, T., Autin, L., Kozlikova, B., et al., (2018). Instant

construction and visualization of crowded biological envi-

ronments. IEEE Trans. Vis. Comput. Graph, 24, 862–872.

39. Goodsell, D.S., Autin, L., Olson, A.J., (2018). Lattice

models of bacterial nucleoids. J. Phys. Chem. B, 122,

5441–5447.

40. Niven, D.J., McCormick, T.J., Straus, S.E., et al., (2018).

Reproducibility of clinical research in critical care: a scoping

review. BMC Med., 16, 26.

http://refhub.elsevier.com/S0022-2836(21)00035-8/h0105
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0105
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0105
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0105
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0110
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0110
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0115
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0115
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0115
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0120
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0120
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0120
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0125
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0125
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0125
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0125
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0130
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0130
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0130
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0130
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0135
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0135
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0135
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0135
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0140
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0140
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0140
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0145
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0145
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0145
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0150
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0150
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0150
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0150
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0155
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0155
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0155
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0155
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0160
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0160
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0160
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0160
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0165
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0165
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0165
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0170
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0170
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0170
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0170
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0175
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0175
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0175
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0175
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0180
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0180
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0180
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0185
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0185
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0185
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0190
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0190
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0190
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0195
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0195
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0195
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0200
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0200
http://refhub.elsevier.com/S0022-2836(21)00035-8/h0200

	Moltemplate: A Tool for Coarse-Grained Modeling of Complex Biological Matter and Soft Condensed Matter Physics
	Introduction
	Methods
	Overview of moltemplate methods

	Results
	Sample applications
	Simulating DNA superhelicity
	Particles with custom attributes

	Discussion
	User community and usability
	Extensibility
	Reproducibility
	Future directions

	Code availability
	CRediT authorship contribution statement
	ack16
	Acknowledgements
	Author contributions
	Declaration of Competing Interest
	Appendix A Supplementary data
	References

