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a b s t r a c t

In this paper I introduce the theory of predictive processing as a unifying conceptual

framework to account for the human ability to use and innovate tools. I explain the basic

concepts of predictive processing and illustrate how this framework accounts for the

development of tool use in young infants and for findings in the neuropsychological and

neuroscientific literature. Then, I argue that the predictive processing model needs to be

complemented with a functional-evolutionary perspective, according to which the devel-

opmental and neurocognitive mechanisms should be understood in relation to the adap-

tive function that tools subserve. I discuss cross-cultural and comparative studies on tool

use to illustrate how tools could facilitate a process of cumulative cultural and techno-

logical evolution. Furthermore, I illustrate how central premises of the predictive pro-

cessing framework, such as the notion of Bayesian inference as a general principle and the

role of prediction-error-updating, speak to central debates in evolutionary psychology,

such as the massive modularity hypothesis and the trade-off between exploitation and

innovation. Throughout the paper I make several concrete suggestions for future studies

that could be used to put the predictive processing model of tool use to the test.

© 2021 The Author. Published by Elsevier Ltd. This is an open access article under the CC BY

license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Without any apparent effort on a daily basis we interact with

computers, drink coffee, drive cars and use our smartphones.

These tools have dramatically altered our environment and

our way of living. Over the past decades neuropsychological

studies and neuroscientific research have elucidated the

neurocognitive mechanisms that enable us to use tools in a

goal-directed and flexible fashion. Specifically, the study of

apraxia has been at the heart of traditional neuropsychology

for more than a century. Selective impairments in the ability

to imitate gestures, to mimic tool use or to correctly use tools
v.nl.
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have provided intriguing insight in the neural basis of our

motor system (Park, 2017) and in the neural organization of

conceptual knowledge for action (van Elk, van Schie, &

Bekkering, 2014). Recent review papers have provided a

state-of-the-art overview and have identified key debates in

research on tool use and apraxia (e.g., whether tool use relies

on manipulation knowledge vs reasoning; the role of affor-

dances vs semantics in tool use; etc., see: Lesourd et al., 2018;

Martel, Cardinali, Roy, & Farne, 2016; Osiurak & Badets, 2016;

Reynaud, Lesourd, Navarro, & Osiurak, 2016). In this paper I

propose to integrate basic insights from predictive processing

theory with an evolutionary-psychological framework to
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provide a novel perspective on both the ultimate and the

proximate factors underlying human tool use.

The computational framework of predictive processing is

emerging as an integrative and unifying tool in psychology

and cognitive neuroscience (Clark, 2013; Friston, 2018; Friston

& Kiebel, 2009). For instance, the theory of predictive pro-

cessing has been successfully applied to explain the emer-

gence of hallucinations (Griffin & Fletcher, 2017), self-

recognition (Apps & Tsakiris, 2014), the bodily self (Blanke,

Slater, & Serino, 2015), placebo-effects (Buchel, Geuter,

Sprenger, & Eippert, 2014), automobile driving (Engstr€om

et al., 2018) and action observation (Kilner, Friston, & Frith,

2007). Predictive processing has also been applied to account

for religious and spiritual experiences (van Elk & Aleman,

2017) and for the working of psychedelics, such as LSD and

psilocybin (Carhart-Harris & Friston, 2019). Whereas predic-

tive processing is closely related to embodied and extended

views of cognition (e.g., Allen & Friston, 2018; Clark, 2015), so

far the study of tool use has not been framed in terms of

predictive processing. In this theoretical paper I review how

the predictive processing framework can provide a unifying

framework to account for the proximate mechanisms under-

lying tool use. I will start off by shortly going over the basic

tenets of the predictive processing framework and I exemplify

how predictive processing helps us to understand the devel-

opment of tool use and the neurocognitive mechanisms un-

derlying tool use.

At the same time, I argue that the predictive processing

framework needs to be complemented with an evolutionary

perspective. Following the four questions as postulated by

Tinbergen (1963), predictive processing provides insight in the

proximate mechanisms underlying tool use (i.e., the ontogeny

and mechanism). In contrast, evolutionary psychological ac-

counts help us to better understand the phylogeny and ulti-

mate function of tool use, for instance, the role these abilities

subserved in a process of cumulative cultural evolution and as

a way to shape and extend the human mind. Throughout the

paper I make several concrete suggestions for future studies

that could be used to put the predictive processing model of

tool use to the test.
2. General principles of predictive processing

A basic premise of predictive processing is that our brain

functions like a prediction machine, continuously aiming to

‘explain away’ the incoming sensory input (Clark, 2013). Based

on prior generative models our brain generates top-down

predictions regarding the expected state of the world. In

case of a mismatch between our predictions and the sensory

information, a prediction error signal is generated, resulting in

an updating of our prior models. The brain engages in a pro-

cess of Bayesian inference, whereby priors are used to yield a

generative model, which is updated based on incoming sen-

sory information.

Belief updating occurs in a hierarchical fashion, such that

high level beliefs are used to generate lower-level sensory

predictions (see Fig. 1). In case of a mismatch between
expected and observed sensory input, a prediction error signal

is generated, which is passed on in the hierarchy. This notion

of a generative model is also reflected at a brain level: the

sensory regions of the brain are organized in a hierarchical

fashion, and higher-level brain regions send predictive signals

to lower-level (sensory) regions, which in turn can pass on

bottom-up prediction errors to higher-level regions. Specif-

ically, whereas the superficial pyramidal cells are thought to

encode feedforward prediction error signals, the deeper

infragranular layers represent prior expectations (Bastos et al.,

2012). Next to using exteroceptive sensory signals for belief

updating, the brain also relies on interoceptive signals related

to one’s bodily states for making inferences (Seth, 2013). For

instance, inferring one’s emotional state (e.g., ‘I am angry’)

relies on the integration of feedback-related signals from

one’s heart rate and sweating response typically in associa-

tion with context-specific information of one’s environment.

On the predictive processing view, some predictions are

more precise than others, and some sensory information is

more reliable than other. Accordingly, precision-weighting is

applied to our predictions and sensory input, such that more

reliable signals have a stronger impact on prediction error

updating. Strong and precise priors yield a stronger top-down

effect on sensory perception, than weak and imprecise priors.

This is specifically the case when sensory information is

ambiguous or unreliable (e.g., in the case of sensory depriva-

tion or in a noisy environment). This way, predictive pro-

cessing can account for instance, for placebo-effects, whereby

prior expectations exert a top-down effect on the processing

of sensory signals (e.g., the expectation that an expensive

cream will provide more pain-relief, results in the subjective

experience that the stimulus is less painful; cf., Buchel et al.,

2014). Imprecise coding of predictions can also lead to

altered experiences of agency, as observed for instance in

schizophrenia, in which auditory-verbal hallucinations may

be related to an imprecise coding of self-generated speech

(Griffin & Fletcher, 2017).

In the case of ‘stubborn predictions’, priors may be resis-

tant to prediction error updating, because they are assigned

an extremely high precision. This could be the case for

instance when priors were acquired phylogenetically or

through an extensive process of learning (Yon, de Lange, &

Press, 2019). For instance, the perception of our body is (typi-

cally) constrained by the prior that we only have one body and

our body temperature is constrained to stay within certain

limits to ensure survival. Also, based on our past experiences

we have acquired a strong prior that light comes from above

(Sun & Perona, 1998) or that faces are convex (Hill & Johnston,

2007), which explains our proneness to certain types of illu-

sions (e.g., the hollow face illusion). It has been proposed that

certain psychopathological disorders, such as schizophrenia

or depression, can be understood in terms of maladaptive

priors guiding the patient’s behavior and experiences (Kube,

Schwarting, Rozenkrantz, Glombiewski, & Rief, 2020). In the

case of stubborn priors, prediction error minimization may be

achieved through a process called ‘active inference’, which is

reflected in making changes in the environment such that the

sensory input matches prior predictions (K. Friston, 2010). For

https://doi.org/10.1016/j.cortex.2021.03.014
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Fig. 1 e The central table lists the distinction between the different levels and objects of explanation, resulting in four

different questions that can be asked. The predictive processing framework (upper panel) acts primarily at a proximate level

of explanation, specifying the mechanisms and the development of tool use. According to predictive processing tool use

knowledge is represented in a generative model, instantiating top-down predictive signals to lower-level sensorimotor

cortices, and that is updated through prediction error signaling. These mechanisms can be placed in a broader perspective,

by taking into account the phylogeny and the adaptive value of tool use. Tools contribute to a process of cumulative cultural

evolution (lower panel) and the two central features of this process (imitation vs innovation) may be instantiated through

the process of top-down predictions and prediction error signaling.
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instance, depressive patients may avoid social contacts and

prefer situations of social isolation, because that situation

confirms their prior belief that they are lonely or that people

don’t like their company.

As a specific instance of predictive processing, the free

energy principle states that the brain tries to minimize the

amount of free energy, by reducing the overall state of sur-

prise (Friston, 2010). This can be achieved through a process of

prediction error minimalization and model optimization (e.g.,

reducing the complexity of existing models and selecting

models that minimize overall ‘surprise’). A premise of this

view is that prediction error minimization occurs over a
longer time-scale and that accordingly, the basic processes of

Bayesian inference and belief updating should be considered

from the perspective of the survival of the organism.

An example may help to illustrate the theory of predictive

processing and how it could account for the use of tools.

Suppose you would like to drink coffee from your favorite

coffee mug, which typically stands next to your computer on

your desk. Almost without any effort you grasp the cup and

you bring it towards your mouth to take a sip. In this case you

apply a prior model of the shape of the cup to guide your hand

towards the cup (typically referred to as grip-related or

manipulation knowledge in the tool-use literature) and a

https://doi.org/10.1016/j.cortex.2021.03.014
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subsequent predictive motor plan, guiding your arm and the

cup towards the location of your mouth. This simple action

can be thought of as a process of prediction error miminiza-

tion, such that the expected end-state of the motor system is

comparable to the predicted end state. So far, this account fits

well with earlier computational and Bayesian theories of

motor control (Wolpert, 1997). Note however, that predictive

processing differs from classical top-down models of motor

control, in several ways, for instance through the notion of a

hierarchically organized generative model, the notion of

precision-weighting and the process of active inference.

Going back to the example, now suppose you find yourself

in a different culture in which they serve drinks from a

different type of cups (e.g., small wooden cups without han-

dles). In this case, your hand reaching for and grasping the cup

will yield a prediction error signal: you will mis-reach for the

handle and apply too much force. Your grasping movement

will result in the updating of your prior prediction and the

activation of a different action plan required for drinking (e.g.,

a whole-hand grip with adjusted movement dynamics). Or

suppose that while at home, you would be intently staring at

your screen while trying to drink. In this case your action re-

lies more strongly on proprioceptive information, while pe-

ripheral visual information is down-weighted. The notion of

active inference can be illustrated by going out to the

barkeeper in a coffee shop and asking him for a different type

of cup that better matches your prior model of what a cup

looks like. In that case there is no need to adjust your model,

because you make active changes in the environment such

that the sensory input still matches your predictions.

As such, this example illustrates how the basic principles

of predictive processing can account for performing and

observing tool use actions. Below I will elaborate in more

detail on how predictive processing applies to some central

observations from the tool use literature. The theoretical

framework provides a useful perspective for understanding

the proximate mechanisms underlying the development of

tool use and the neurocognitive mechanisms underlying tool

use. I therefore discuss relevant studies from developmental

psychology, as well as the neurocognitive mechanisms un-

derlying tool use.
3. The development of tool use

Since a long time developmental psychologists have

acknowledged young children’s ability for Bayesian inference

and reasoning (Gopnik & Bonawitz, 2015), and recently a

predictive processing account of cognitive development has

been proposed (Koster, Kayhan, Langeloh,&Hoehl, 2020). This

predictive processing account explains findings obtained with

habituation and violation-of-expectation paradigms, statisti-

cal learning principles and children’s increasing understand-

ing of their physical and social environment. Regarding the

learning of tool use, three central observations stand out,

which fit well with a predictive processing account of the

development of object use.

First, action experience appears to be a driving factor for

infants acquiring a basic sense of mastery of their body, their

environment and their ability to use tools (for review, see: van
Elk et al., 2014). Classical developmental studies show that

infants readily learn the associations between making body

movements and observing the effects in the environment

(Rovee-Collier & Cuevas, 2009). During the first year of life,

infants acquire the basic sensorimotor skills for interaction

with objects, and they learn to pre-shape their hands, for

instance in anticipation of using an object. By the end of the

first-year infants arewell able to pantomime the use of objects

and show a basic ability to interact with everyday objects (e.g.,

drinking from a bottle; grasping food and bring it towards the

mouth). The acquisition of tool use knowledge through action

experience can be framed in a predictive processing frame-

work, according to which efferent copies used to predict the

sensory consequences of one’s actions. A comparator model

allows the child to infer a feeling of agency and control over

one’s actions (van Elk, Rutjens, & van der Pligt, 2015) and

prediction error signaling between predicted and observed

sensory consequences (e.g., moving the cup too low or too

high) allows a refinement of the prior motor programs guiding

the child’s actions (Bays & Wolpert, 2007).

Experience with performing specific actions, in turn, en-

ables infants to better understand and anticipate the actions

observed by others, e.g., predicting that amobile phonewill be

moved towards the ear (Monroy, Gerson, & Hunnius, 2017).

The role of action experience for action understanding has

been framed in terms of predictive processing (Kilner et al.,

2007). On this account the child uses its own prior motor

representations, to constrain and predict the incoming sen-

sory information. Vice versa: observing and imitating the ac-

tions by others is another driving factor underlying tool use

learning in infants. On the predictive processingmodel, action

and perception are two sides of the same coin, both aimed at

minimizing prediction errors between predicted and observed

sensory input (Kilner et al., 2007). Thus, prior models speci-

fying how tools should be used, can be acquired both through

observation, action execution and imitation. For instance, it

has been shown that infants can already anticipate the end-

goal of object-directed actions (e.g., a cup moving towards

the mouth), well before they are able to perform these actions

themselves (Hunnius & Bekkering, 2010). Observing incorrect

or unusual actions in turn can yield a prediction error signal,

which is used to update prior action predictions (Langeloh

et al., 2018). Observing unexpected actions with an object

can also trigger a process of ‘active inference’, reflected in the

subsequent exploration and testing of that object (Stahl &

Feigenson, 2015). Thus, learning through observation is an

important developmental mechanism, which can be under-

stood from the perspective of a shared predictivemodel of tool

use for action observation and execution.

Third, within the first year of life infants acquire the ability

to apply means-ends reasoning which allows them to use

objects in a functional fashion (e.g., pulling a cloth to obtain a

toy; cf., van Elk et al., 2014). This ability relies on being able to

make a distinction between the means and the goals of an

action and to apply technological or means-ends-reasoning to

both performed and observed tool use actions (Osiurak &

Reynaud, 2020). Developmental studies have indicated that

infants from 3 months old already can distinguish between

the goals and the means of an observed action (Sommerville,

Woodward, & Needham, 2005). From a Bayesian perspective

https://doi.org/10.1016/j.cortex.2021.03.014
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the emergence of means-end reasoning can be understood in

terms of the increased use and refinement of a generative

model, which allows one to translate a high-level action

intention into the fine-grained motor skills required for

actually implementing the action (Ridderinkhof, 2014). Vice

versa: based on observed kinematics one can ‘reverse-engi-

neer’ the goal or intention of the action (Kilner et al., 2007). For

instance, when observing grasping movements, 12-month old

infants showed predictive eye-movements towards the end

location of the action (Falck-Ytter, Gredeback, & von Hofsten,

2006). With increased age, children becomemore proficient in

applying the basic principles of Bayesian inference to the use

of objects. For instance, when presented with a Blicket-

detector that could be activated by objects that had the

‘blicket-property’, children of 4-years of age were well able to

reason about the causal power of objectse but even the 2-year

old children showed a basic ability for applying the principles

of Bayesian inference (Gopnik & Sobel, 2000).

In sum, development studies are in line with the view that

from the moment they are born, infants rely on predictive

models that enable them to learn to use basic objects and to

apply means-end reasoning, directly based on their own ex-

periences, as well as through action observation.
4. Neural mechanisms underlying tool use

A central discussion in the neuroscience of tool use, has

focused on the question how conceptual knowledge is repre-

sented in the brain. Based on studies with neuropsychological

patients it has been suggested that conceptual knowledge is

represented in modality-specific brain regions, such as visual,

tactile and motor-related regions (Barsalou, Kyle Simmons,

Barbey, & Wilson, 2003). Information from different modal-

ities is integrated in so-called semantic hub-regions, such as

the anterior temporal lobes, that are involved in representing

conceptual knowledge at a high level of abstraction. The

modality-specific view in turn has been criticized based on the

observation that functional impairments in conceptual

knowledge do not always consistently relate to damage to

specific brain regions (Caramazza & Mahon, 2003). Instead of

the modality-specific view, a network-approach has been

proposed (Mahon & Caramazza, 2011), according to which

conceptual knowledge is represented along different func-

tional brain networks that are constrained by principles of

innate connectivity.

The predictive processing framework can be conceived of

as hitting themiddle-ground betweenmodality-specific views

and network theories of conceptual knowledge, and as such

offers the potential to provide a unifying account of the neural

organization of tool use knowledge (see also: van Elk &

Bekkering, 2018). That is, the predictive processing model

implies that tool use knowledge is instantiated in priormodels

that are hierarchically organized and that these models are

updated through a process of prediction error monitoring.

Indeed, it is commonly observed that the brain is divided in

different functional networks that display strong within-

network connectivity, and that these networks in turn are

organized in a hierarchical fashion along a cortical gradient

from peripheral sensorimotor cortices on the one hand to
highly connected association cortices on the other hand

(Margulies et al., 2016).

This hierarchical organization is also reflected within

cortical networks, such as the somatosensory and the visual

cortex. The motor system, including the primary and sup-

plementary motor cortex, as well as the premotor regions, is

organized in a hierarchical fashion, such that more anterior

areas are involved in representing high-level properties of

planned actions, while more posterior regions are involved in

coding for the low-level properties of actions (Grafton &

Hamilton, 2007; Koechlin & Jubault, 2006). Also at a behav-

ioral level, actions are planned and organized hierarchically

such that lower-level action features are selected based on

high-level action intentions (Rosenbaum, 2009). Furthermore,

conceptual knowledge for conducting actions with tools also

is also organized hierarchically, around the goal-location and

function associated with using objects (van Elk et al., 2014).

These observations fit well with a central assumption of the

predictive processing framework that the brain is a hierar-

chically organized system, involved in a continuous process of

prediction error updating based on high-level predictive sig-

nals and bottom-up input from lower-level regions. The pre-

dictive processing framework is also compatible with early

Bayesian models of motor control (Bays & Wolpert, 2007) that

postulate a central role for optimal estimation of expected

outputs andmonitoring the sensory consequences of planned

actions.

In the neuropsychological literature, a classical distinction

has been made between ideomotor and ideational apraxia

(Buxbaum, 2001; Buxbaum & Saffran, 2002), which are char-

acterized respectively by a loss in the manipulation knowl-

edge and a loss of semantic knowledge for object use

(Heilman, Rothi, & Valenstein, 1982; Johnson-Frey, 2004). In

terms of predictive processing, these deficits could be under-

stood as selective impairments at different levels of the

cortical hierarchy involved in representing stored object

knowledge. Ideomotor apraxia has been associated with

damage in the premotor and supplementary motor cortex,

which have been implicated in the planning and execution of

basic motor movements (Halsband et al., 2001; Wheaton &

Hallett, 2007). In contrast, ideational apraxia may be caused

by more widespread damage in the cortical hierarchy in by

damage to higher-level associative brain regions, such as the

supramarginal gyrus (Gross & Grossman, 2008). In line with

this suggestion, recent studies have demonstrated that

different brain regions are indeed involved in representing

observed actions at different levels of abstraction. For

instance, whereas the premotor cortex was found to encode

actions at a concrete level (e.g., opening a bottle vs a cork-

screw; cf., Wurm & Lingnau, 2015), more posterior regions

were involved in coding actions at a higher level of abstraction

(e.g., opening a bottle or a box; actions involving transitivity;

cf., Wurm, Caramazza,& Lingnau, 2017). Similarly, it has been

found that the lateral occipital temporal cortex (LOTC) repre-

sents objects in terms of the actions that they afford (e.g.,

grasping; manipulating), but not in terms of the shape of the

object (e.g., round vs rectangular shape; cf., Wu, Wang, Wei,

He, & Bi, 2020), also supporting the notion that action fea-

tures for objects are represented in the brain at different levels

of complexity. Thus, on the predictive processing model,

https://doi.org/10.1016/j.cortex.2021.03.014
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selective impairments in different aspects of tool use knowl-

edge can be understood as a selective deficit at different levels

of the generative model that underlies our action planning

with tools.

The predictive processing framework also provides an ac-

count of the mechanisms involved in observing correct or

incorrect actions with tools. It has been found for instance,

that observing incorrect actions yields a stronger activation of

motor-related brain regions (Manthey, Schubotz, & von

Cramon, 2003; Stapel, Hunnius, van Elk, & Bekkering, 2010;

van Elk, Bousardt, Bekkering, & van Schie, 2012), which might

well reflect prediction errors associated with the violation of a

prior prediction regarding the use of an object. An obvious

implication of this view is that neural responses to different

types of action errors (e.g., observing someone applying an

incorrect grip to an object vs observing someone using an

object in a functionally incorrect way) could well reflect the

coding of actions at different levels of abstractness in the

brain’s predictive hierarchy (de Lange, Spronk, Willems, Toni,

& Bekkering, 2008).

Next to providing an integrative account of different find-

ings in the literature, the predictive processing framework

also allows formulating testable predictions to be addressed in

future studies. For instance, the notion of ‘precision weight-

ing’ can be applied to study the relevance of different types of

modality-specific information (e.g., visual, auditory, tactile

proprioceptive) for the successful interaction with objects.

Based on our prior experiences with using objects in different

contexts, it could be expected that information from some

modalities is assigned a higher precision for using specific

objects (e.g., using dumbbells relies more on proprioceptive

and tactile feedback, whereas visual information is crucial for

playing tennis). Systematically manipulating the uncertainty

of the information provided (e.g., by using different levels of

visibility) and measuring EEG beta-power as a proxy for

precision-weighting (Palmer, Auksztulewicz, Ondobaka, &

Kilner, 2019), could provide insight in the relative impor-

tance of the different sensory modalities for tool use

knowledge.

In sum, the predictive processing framework proposes that

the brain is organized in dynamic and hierarchically struc-

tured networks that are each involved in representing tool use

actions at different levels of specificity. The framework also

accounts for the selective deficits observed in neuropsycho-

logical patients, as well as the effects of observing incorrect

actions.
5. A functional-evolutionary perspective

Most research in psychology and neuroscience on tool use,

including the developmental and neurobiological studies

discussed above, tends to focus on the proximal mechanisms

that help us to understand how our human ability to use tools

in a flexible and goal-directed fashion comes about (van Elk

et al., 2014). While highly valuable, this approach could

potentially miss out on complementary perspectives asking

the ‘bigger questions’ related as of why humans use tools at all

and how this ability developed in our remote ancestors. This

somewhat single-sided focus on mechanisms related to tool
use, is especially interesting in light of evolutionary psycho-

logical accounts. For instance, it has been proposed that a

mechanism of high fidelity imitation and innovation, un-

derlies the cumulative cultural evolutionary processes that

provided a major advancement in the development of com-

plex material culture (Richerson & Boyd, 2008). On this ac-

count, the developmental and neural mechanisms underlying

tool use, provide insight in the causal chain enabling a process

of cumulative cultural and technological evolution (for review,

see: Osiurak & Reynaud, 2020).

A useful theoretical approach to place the study of tool use

into context may be found in the four famous questions asked

by Tinbergen (1963) and his distinction between different

explanatory levels (see Fig. 1). At a proximate level, one can

specify the mechanisms through which specific behavior

comes about, as well as the development (ontogeny) of that

behavior, i.e., how the behavior changes throughout the life-

span. The developmental and neurobiological studies that

were reviewed above, can be placed at this explanatory level.

However, at an ultimate level, behavior can be described ac-

cording to its adaptive value (i.e., how does it increase one’s

fitness?), as well as the evolutionary process through which

the behavior came about (i.e., which selective pressures have

shaped the behavior?). These questions can be addressed

from a contemporary perspective (i.e., how does it work

today?), as well as from a historical perspective (i.e., how did it

evolve in the past?).

Typically, different scientific disciplines have focused on

different types of questions. For instance, neuroscience and

neuropsychology, including the predictive processing frame-

work, are primarily concerned with specifying mechanisms;

developmental psychology focuses on the ontogeny of

behavior; evolutionary psychology aims to understand human

behavior in terms of its adaptive value; evolutionary biology

and anthropology focus on the evolutionary process that

might have shaped behavior in the past. Each of these disci-

plines of course also have their own preferred method for

answering these questions, ranging fromusing brain scanners

to comparative studies between species and cultures. How-

ever, in order to obtain a full understanding of the phenom-

enon in question, a complementary perspective is needed,

taking into account each of the four questions. Thus, as

argued elsewhere, a multidisciplinary perspective is needed,

where basic cognitive science approaches are complemented

by cross-cultural, developmental and cross-species studies

(Liebal & Haun, 2018).

Tinbergen’s questions and the different explanatory levels

can be used to place the predictive processing framework in

perspective, by relating the causal mechanisms involved in

tool use to their adaptive value (function) and to the way in

which these mechanisms came about (phylogeny). The pre-

dictive processing model starts from a Bayesian perspective,

whereby incoming information is evaluated in the light of

prior expectations. As outlined above, this view entails the

possibility that priors are based on prior learning experiences,

but also that ‘evolved priors’ are ‘hardwired’ in the brain and

are acquired phylogenetically because they clearly provided

adaptive significance in our ancestral past (for theoretical

integration between evolutionary psychological and predic-

tive processing perspectives, see for instance: Barrett,

https://doi.org/10.1016/j.cortex.2021.03.014
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2014).Cross-cultural developmental and comparative studies

can help us to obtain insight into the relative contribution of

innate motor capacities and the role of learning in tool use.

Discussing these studies sheds light on the phylogeny and the

adaptive value of tool use and thereby speaks to a central

debate within evolutionary psychology, related to the concept

of ‘cumulative cultural evolution’.
6. Predictive processing and cumulative
cultural evolution

The phenomenon of cumulative cultural evolution (CCE) e

also called cumulative technological culture (CCT; Osiurak &

Reynaud, 2020) e refers to the process whereby we continu-

ously build on and expand on inventions made by others. For

instance, even an object as simple as a pencil represents a

high amount of integrated knowledge and innovation: one

needs wood, rubber, charcoal, metal and be able integrate

these materials in an effective design. Each of these sub-

processes relies on a high degree of prior expertise, learning,

cultural transmission and mechanical innovation (e.g., wood-

carving machines). Two key ingredients for cumulative cul-

tural evolution to occur are high-fidelity imitation and inno-

vation (see Fig. 1). First, cultural knowledge has to be reliably

transmitted such that others are able to use this knowledge as

well. For instance, in the case of producing a pencil one has to

learn basic procedures of woodcarving and which materials

lend themselves best for making pencils. Second, in order to

enable innovation, new features need to be added to already

existing designs and subsequently through a process of cul-

tural selection, more adaptive designs will ‘survive’ while

maladaptive innovations will be lost. Take the pencil again:

due to a shortage of wood, one could turn to a different ma-

terial such as plastic for making pencils. Soon however, it

would turn out that plastic pencils are not functional as they

cannot be sharpened. Other innovations, such as an eraser

integrated at the end of the pencil are however more suc-

cessful and will be retained and copied by others as well.

Thus, the first process underlying cumulative cultural

evolution relies on high-fidelity imitation and copying the

behavior observed by others. The last decades an ongoing

discussion has focused on the question if CCE is a uniquely

human ability, or whether it is shared by other species as well.

Some have argued that our ability for diversifying tool design,

cumulative change and high-fidelity social transmission and

imitation is unique to humans (Vaesen, 2012). This mecha-

nism in turn explains the rapid proliferation of the human

species and the vast expansion of human cultural and tech-

nology (Tennie, Call, & Tomasello, 2009). Others have pointed

out that in other species, such as crows or chimpanzees, also a

similar basic capacity for complex tool design and tool use can

be observed (Hunt & Gray, 2003; Vale, Davis, Lambeth,

Schapiro, & Whiten, 2017). This debate strongly hinges on

how CCE is defined and which criteria are applied for oper-

ationalizing CCE (Mesoudi & Thornton, 2018). Core features

such as social learning and the improvement of fitnessmay be

shared with other species; but the ability to recombine and

diversify tools and the propensity for niche-construction may

be uniquely human (Barrett, 2014).
The developmental studies outlined above already indi-

cated that human infants have a deeply engrained tendency

to attend to social information and to learn through action

observation. They rapidly learn the use of novel tools, either

through direct experience, or through observing and imitating

the actions of others. Cross-cultural and comparative studies

elucidate to what extent this ability reflects a general human

propensity and whether it is shared with other species. A re-

view of cross-cultural research on tool use in children shows

that in traditional societies children learn to use novel tools

often spontaneously and unsupervised, indicating that this

ability is in their basic behavioral repertoire (Lancy, 2017). A

recent cross-cultural developmental study also indicates that

young children, aged between 2 and 5 years old, spontane-

ously invented similar tool use behavior as those observed in

great ape populations, indicating that such behaviormay be in

the ‘zone of latent solutions’, i.e., within the general cognitive

and physical abilities of humans and great apes (Neldner et al.,

2020). At the same time, it was found that children from a

Western society, more often found new solutions and suc-

cessfully completed the tool use tasks, compared to children

from a hunter-gatherer community. These studies thus indi-

cate that a process of cultural scaffolding can refine and

expand basic tool use skills (Riede, Johannsen, Hogberg,

Nowell, & Lombard, 2018). This process may well rely on a

general and uniquely human propensity for social learning

and imitation, as other developmental psychological studies

have shown that children from a young age onwards tend to

over-imitate observed actions (Whiten, McGuigan, Marshall-

Pescini, & Hopper, 2009) and have a natural tendency to take

a pedagogical stance when attending to information from

other people (Csibra & Gergely, 2011).

Comparative studies complement the idea that basic tool

use abilities rely on different mechanisms than the use of

more complex technological tools. The capability to interact

with simple tools, such as using rakes and flaking stones, and

to spontaneously infer their use might be phylogenetically old

and shared with other species, suggesting a common neural

homolog (Proffitt et al., 2016). Other species, including wild

chimpanzees and capuchin monkeys are well able to use

stones as hammers, to apply tools in an efficient fashion (i.e.,

planning economical motor actions) and to use the same tool

for different purposes (Osiurak & Reynaud, 2020). However,

more complex tool use that relies on culturally transmitted

knowledge, e.g., such as weaving or bow-and-arrow technol-

ogy, in turn dependsmore strongly on refinedmotor skills and

dedicated neural structures related to action observation,

imitation (Stout & Hecht, 2017) and technological reasoning

(Osiurak & Reynaud, 2020).

Thus, the available developmental, cross-cultural and

comparative studies indicate that human infants and other

species can learn to use basic tools through trial-and-error

learning, while complex tool use likely relies on specialized

neurobiological and psychological mechanisms involved in

social learning, imitation and means-end reasoning. From a

predictive processing perspective, these mechanisms reflect

the ability to rely on more complex and elaborate predictive

models, that can be updated based on both action execution

and action observation Thus, predictive processing accounts

well for the notion of shared action representations as

https://doi.org/10.1016/j.cortex.2021.03.014
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underlying the faithful transmission and imitation of tool use

knowledge (see Fig. 1).

Whereas the imitation and exploitation of existing tool use

knowledge relies on the acquisition of prior models, an

intriguing possibility that could be investigated in future

studies, is whether the second central process associated with

CCE, namely the innovation of tools and technologies (also

called ‘exploration’), could also be accounted for in terms of

predictive processing (see Fig. 1). An obvious candidate

mechanism underlying innovation is the central role of pre-

diction error signaling in updating and revising one’s mental

models. As outlined above, occasionally the observation and

execution of tool use actions will be accompanied by a

mismatch between predicted and observed sensory conse-

quences. These prediction error signals in turn could result in

a refinement of an existing action representation (e.g., a child

learning that a hammer needs to be held with a full grip), or in

the acquisition of a new action representations (e.g., a child

learning that a hammer can also be used to remove rather

than to hammer nails). On this view, erroneous object use or

observing incorrect actions may be accompanied by a state of

‘surprise’ and a subsequent process to reduce the overall

amount of entropy, either by updating one’s action repre-

sentations or through active inference to adjust the sensory

input.
7. Cognitive gadgets and the extended mind

The predictive processing model is compatible with the view

that the brain functions like a domain-general problem-solv-

ing mechanism, as our ancestors had to cope with continu-

ously changing environments and challenges (for discussion

of the massive modularity hypothesis, see: Chiappe &

Gardner, 2012). The human propensity to attend to social in-

formation and to imitate observed actions could rely on

deeply engrained priors or alternatively might have been

shaped through an extensive process of social interaction it-

self (see for instance: Heyes, 2019). That is, next to being a

driving factor enabling cumulative cultural evolution, we need

to acknowledge the possibility that cultural processes them-

selves gave rise to the ‘cognitive gadgets’ that are typically

considered as being innate (e.g., such as our ability to use

language, to engage in mind-reading, to imitate etc.). Training

and learning studies are needed to settle the debate to what

extent the cognitive machinery typically thought to enable

cultural evolution, is itself shaped by cultural learning pro-

cesses (see for instance: Santiesteban et al., 2012).

Relatedly, building on the predictive processing framework

one could conceive of tools and objects as affording possibil-

ities for action in association with a dynamic ‘brain-body-

environment’ system (Bruineberg & Rietveld, 2014). This in-

tegrated perspective takes the classic idea that cognition can

be ‘offloaded’ to the environment (e.g., through the use of

smart objects), one step further by specifying themechanisms

through which the brain selects the relevant affordances. It

has been well-established that tool use extends one’s body

schema (Maravita & Iriki, 2004). Based on input from different

sensory modalities our brain continuously generates a
predictive model of our body (Apps & Tsakiris, 2014), which is

dynamically adjusted in case we use tools for a prolonged

period of time. Next to extending our body scheme, in some

situations the generative model itself may actually extend to

the tools we use, as proposed by 4E accounts of cognition (i.e.,

embodied, embedded, extended and enactive cognition; cf.,

Newen, De Bruin, & Gallagher, 2018). For instance, when

navigating through a new city with our smartphone, this de-

vice can be conceived of as an external predictive memory

representation, that allows us to plan our actions (Clark, 2017).

On this account, the process of cumulative cultural and

technological evolution also ultimately transforms the human

mind itself. Or in terms of predictive processing: tools extend

the brain’s prediction machinery, by allowing more precise

and elaborate predictions to guide our interactions with the

world.
8. Conclusions

In this paper I have highlighted how the theory of predictive

processing provides a domain-general account of the devel-

opment and the neural basis of tool use, thereby allowing to

synthesize existing findings and to generate new and testable

predictions. Evolutionary approaches in turn place insights in

the basic neurocognitive mechanisms underlying tool use in a

broader perspective, by focusing on the phylogeny as well as

the adaptive functions that tool use subserves. Whereas basic

tool use may be shared with other species as well, the ability

to use complex technological tools appears to be uniquely

human and reflects our ability to build on and extend existing

action representations. Ultimately the faithful transmission of

tool use knowledge through shared action representations

enables a process of cumulative cultural evolution. Tools, in

turn, also extend and shape the human mind and prediction

error signaling could underlie this process of cultural

innovation.
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