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Abstract—Remaining useful life (RUL) of an asset or system
is defined as the length from the current time and operating
state to the end of the useful life. It is of paramount importance
for safety-critical industries such as aviation and lies in the
heart of prognostics and health management (PHM). This paper
investigates the usage of automated machine learning (AutoML)
for RUL estimation, based on using classical machine learning
algorithms for regression. The data is pre-processed by extracting
statistical features from expanding windows of the signal in order
to uncover the degradation that has been accumulating from the
early life of the system or after an overhaul. We evaluate our
methodology on the widely-used C-MAPSS dataset and compare
our approach to the state-of-the-art deep neural networks (DNNs)
and classical machine learning algorithms. The experimental
results show that AutoML outperforms or is comparable to
traditional machine learning techniques and standard neural
networks, while being outperformed by specifically designed
neural networks on datasets with multiple fault mode and
operating conditions. These results show that with the correct
pre-processing automated machine learning is able to accurately
estimate the RUL, which implies that such approaches can be
industrially deployed.

I. INTRODUCTION

Prognostics and health management (PHM) is a methodol-
ogy that aims at minimizing maintenance costs and predicting
when a failure could occur by the assessment, prognosis,
diagnosis, and health management of engineered systems [1].
The core of PHM is failure prognostics. This refers specifically
to the phase involved with predicting future behavior and the
systems useful lifetime left in terms of current operating state
and the scheduling of required maintenance actions to maintain
system health [2]. This useful lifetime left is often called the
remaining useful lifetime (RUL) [1], the estimated time to
failure (ETTF) or remnant life [3], and is defined as the length
from the current time and operating state to the end of the
useful life [4]. The notice of pending equipment failure, allows
for sufficient lead-time so that necessary decisions, personnel,
equipment and spare parts can be organized and deployed, thus
minimizing both equipment downtime and repair costs.

By leveraging RUL estimation, industries, such as
aerospace, can improve maintenance schedules to avoid catas-
trophic failures and consequently save lives and costs [5]. The
industry has to also assure that its asset utilization is optimum
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by guaranteeing a timely - but not premature - maintenance.
This ensures that the aircraft and its installed parts spend
maximum time in service and are not exchanged prematurely.

The estimation of the RUL can be done in various ways.
Model-based, data-driven and hybrid methods are the most
prominent approaches [1], and in general all methods make
some use of the sensor data of the equipment and/or mainte-
nance history. Model-based methods (or physics-based meth-
ods) rely on an established mathematical model of the system
in question and as a result call for a thorough understanding of
the system’s physics and processes, which can be prohibitively
costly in terms of time and money. Data-driven methods are,
on the other hand, relatively easier to develop as they do not
call for (a lot of) expert knowledge, but they require large
amounts of data. Lastly, hybrid (or fusion) methods leverage
the advantages of the two previous methods, while trying
to minimize their limitations. The previous make data-driven
approaches available to a wider audience.

Most data-driven approaches either fall under the category
of classic machine learning algorithms (such as random forests
(RF)) or the more recently proposed deep neural networks
(DNNs). In both cases, though, the estimation of the RUL
is a challenging problem. The remaining useful life is not
merely a target variable that can be predicted from sensor
measurements, but more of a variable that needs to be inferred
from a longer trend of degradation patterns and when those
begin to occur. Main challenges of this problem, thus, lie in
pre-processing the data and defining the target RUL variable
for training efficient machine learning models. In addition,
one needs to decide which learning algorithm to use from the
vast number of options. The selection of a learning scheme,
however, implicitly requires that the researcher (or end-user) is
aware, able and has the time to make this choice. The design
choices of the algorithm and its hyperparameters, next to the
choices that need to be made during pre-processing, make
this task challenging for end-users. This, often, leads also to
selecting an algorithm a-priori or selecting one from a limited
list of algorithms, during preliminary experiments. This can
result in overlooking learning schemes that could potentially
give good or comparable results and direct us to more suitable
learning algorithms for the problem at hand.

This motivates our main research question: Can we auto-
matically select a high-performing machine learning pipeline
for the estimation of the RUL which can result in comparable



or better results compared to the current techniques. More
specifically, our contributions are as follows:
• We present a method for estimating the RUL, based on

the use of automatic machine learning (AutoML) [6]
which can automatically generate a suitable pipeline.

• We use a data pre-processing technique that involves
extracting statistical features from expanded windows of
the original (multivariate) time-series.

Our approach is validated on the widely used C-MAPSS
dataset [7].

The rest of the paper is organized as follows. In Section II,
we present related work done in this field and in Section III
we formally define the problem of the RUL estimation. In Sec-
tion IV, the proposed method and its modules are introduced
and in Section V we present the dataset used and discuss the
experimental results. Finally, in Section VI we conclude and
discuss our limitations and our future work.

II. RELATED WORK

The field of PHM has been widely credited in the past
years with numerous contributions from researchers. Industrial
applications as well as the scientific challenge of developing
methods to forecast a failure, have been the driving forces. In
this section, we will present related work in the field. This
collection is by no means exhaustive as the amount of work
in this field is vast. In this study, we discuss only data-driven
approaches and refer the interested reader to [1] and [8] for a
more thorough overview of scientific work on PHM.

The use of classic machine learning algorithms is a great
example of data-driven methods. In [9] the authors make use
of a multi-layer perceptron (MLP), support vector regression
(SVR), and relevance vector regression (RVR) in order to
estimate the RUL, by feeding the learning algorithms with
every time-step. However, this neglects some useful temporal
information that could improve prediction performance. To
address this issue, the authors of [5] utilize a fixed time
window to enclose multivariate data points sampled at con-
secutive time-steps. This means that during every specific
time-step, multivariate data points within the window that
covers the current time-step and its several preceding time-
steps are fed into the prediction models used (such as support
vector machines (SVM), least absolute shrinkage and selection
operator (LASSO) regression, k-nearest neighbor regression
(KNR), gradient boosting (GB), random forests (RF)).

To cope with potentially highly non-linear relationships, the
use of deep neural networks (DNNs) has also been introduced
in the field of PHM. In [9], the authors present the first attempt
for estimating the RUL using CNN-based regression (for CNN
see [10]). The deep architecture allows the network to learn
features that provide a higher-level abstract representation of
low-level sensor signals, by employing the convolution and
pooling layers to capture the salient patterns of the sensor
signals at different time scales. However, considering that
the collected machinery features are usually from different
sensors, the relationship between the spatially neighboring
features is not significant. In [11], Li et al. addresses this

issue by proposing to use 1-dimensional convolution filters
in their CNN. Zhang et al. [12] investigated the use of CNN
with extended time window to tackle the RUL estimation
problem under varying operating conditions. Furthermore, to
improve the prognostic robustness and avoid the sensitivity to
the abnormal data, CNN and extreme gradient boosting (XGB)
are fused with model averaging (CNN-XGB). Long short
term memory networks (LSTM; see [10]) are other widely
used approaches in PHM. They, generally, differ from CNNs
in that LSTMS belong to the broader category of recurrent
neural networks (RNNs). They are designed to effectively
process sequential data (such as time-series data) by leveraging
their temporal nature. In [13] and [14], the authors developed
an LSTM network for the estimation of RUL. In a similar
manner, the method proposed in [15] uses an LSTM and
proposes a dynamic differential technology to extract inter-
frame information to cope with complex operating conditions.
Authors of [16] investigate the effect of unsupervised pre-
training in RUL predictions utilizing a semi-supervised setup
to extract degradation related features from raw unlabeled
training data automatically. The results suggest that unsuper-
vised pre-training is a promising feature in RUL predictions
subject to multiple operating conditions and fault modes.

These recent studies have made a great contribution to the
field of PHM. However, the design choices of the algorithm
and its hyperparameters, next to the choices that need to be
made during pre-processing, make this task challenging are of-
ten selected a-priori. This can lead to the overlooking of some
techniques, that could potentially give good or comparable
results. In this work, we present an approach for estimating
the RUL, based on the use of automatic machine learning
(AutoML) [6] which can suggest to us a suitable pipeline. As
a first step towards automatically selecting a machine learning
pipeline, in this study we are only using classic machine
learning algorithms in the generated pipelines.

III. PROBLEM DEFINITION

The estimation of the remaining useful life (RUL) is of
paramount importance for safety-critical industries, such as
aviation, and lies in the heart of prognostics and health
management (PHM) [1]. The RUL of an asset or system is
defined as the length from the current time and operating state
to the end of the useful life [4]. Because the adjective useful is
subjective, the previous definition can be extended to the time
when the extent of deviation or degradation of the performance
from its expected normal operating conditions exceeds a pre-
defined threshold [17], when the system needs to be repaired
or retracted. Based on this, we can define the RUL at time
t ∈ R≥0 as:

RUL(t) = inf{s ∈ R≥0 : s ≥ t ∧ 1{CI(s)∈S{}} − t ,

where 1 is the indicator function, CI represents a user-specified
condition index defined at every time-step, and S is a user-
defined system operational envelope, outside of which (S{) the
system must be repaired or maintained.



IV. PROPOSED METHOD

The proposed framework is summarized in Figure 1. We
start by pre-processing the data, removing any redundant
signals and normalizing the remaining sensor values, before
transforming the data using an expanding window. After
the expanding window transformation, we extract features
from each expanded window and construct the RUL-targets
(or labels) needed, in order to approach this problem as a
regression problem. The previous steps result in a tuple of
(features, target/labels): 〈f1, . . . , fn, t〉 where each fi is a
feature and t is the target/label, that will be used by the
learning algorithm. The next step involves feature selection,
to remove any redundant features from the created dataset.
Finally, we feed the transformed dataset into an automatic
machine learning module, which will use the data in order
to automatically suggest a pipeline that will efficiently solve
the task at hand.

A. Pre-processing

Given a set of training instances (or units) U , for each
instance u ∈ U we consider multivariate time-series of sensor
readings Xu = [x1,x2, . . . ,xT (u)]

T ∈ Rm×T (u), with T (u)
time-steps where the last time-step corresponds to the end-
of-life (EoL) of the unit u. Each point xt ∈ Rm is an m-
dimensional vector corresponding to readings from m sensors
at time-instance t.

Sensor selection is an initial step of pre-processing mul-
tivariate time-series data. It involves filtering the available
data from sensor measurements which, for example, either
do not exhibit any correlation with the target or have strong
correlations with other sensors. In the latter case, we usually
discard some of the correlated features. Furthermore, even
if no correlation is present but the sensors do not exhibit
any variation, it is often the case that these features can be
discarded as they do not add any valuable information. What is
more, having a large number of sensors is not always beneficial
for training models as it increases that chance of overfitting.

Pre-processing also involves normalizing the available data,
in order to mitigate any effect that different ranges of values
or large deviations can have in the subsequent learning phase.
Two of the most often used normalization methods are Z-
normalization and Min-max normalization:
• Z-normalization (or standardization): This normalization

transforms the data into having 0 mean and unit variance
as: x′ = (x− µ)/σ;

• Min-max normalization (or rescaling): This normalization
maps the range of the data into [0, 1] or more generally
into [a, b] as: x′ = a+ (x−min(S))(b−a)

max(S)−min(S) ,

where S is a feature (e.g., a sensor), x, x′ are the value and
the transformed value of the feature S, and µ, σ are the mean
and standard deviation of S, respectively. In addition, a, b are
the lower and upper bounds of the projection, and min(S),
max(S), are the minimum value and maximum value of S,
respectively. Normalization is applied on every sensor/feature
independently.

As a next step, for each Xu, we start by taking the first
w time-steps (sensor readings) and perform what we call an
expanding window transformation. We do this, by expanding
a window of size w from the initial time-step (t = 0), until
we reach the last time-step. In Algorithm 1, we describe this
transformation.

In general time-series problems, the aim is to forecast
future time-steps based on the recent history or predict/identify
anomalous recordings. These problems can rely on a moving
or rolling window in the recent time from when we would
like to make a prediction. The RUL estimation, however, is
an intrinsically more complicated task. We are dealing with
(usually) multi-variate, non-stationary data, where degradation
has been accumulating due to usage. Thus, all previous time-
steps can be relevant for the problem at hand. The reason for
using an expanding window, rather than a moving or rolling
window, is that RUL at a particular time-step reflects not
only the degradation at that time-step or its w previous time-
steps. Instead, it carries also the degradation that has been
accumulating from the early stages of the unit’s usage or after
an overhaul, assuming that there are no major maintenance
steps.

Algorithm 1: Expanding window algorithm
Data: Xu, w // Sensor measurements, window size
Result: Wu // List of expanded windows of unit u
Wu ← ∅; T (u)← |Xu|; increment size← w;
for i← 1 to T (u) do

if increment size < T(u) then
Wu

i ←Xu[0 : increment size];
Wu ←Wu ∪Wu

i ;
increment size← increment size + w;

else if increment size ≥ T(u) then
Wu ←Wu ∪Xu; break;

end
Return Wu

B. Target-RUL Construction

We would like to tackle this problem as a regression prob-
lem. However, one of the main challenges of RUL estimation
is the lack of ground-truth values [9]. In the majority of
cases, the only available data are the data from the sensor
measurements. These data, though, are not labeled with any
information regarding the RUL, such as maintenance times.
The latter is important and needed for the training procedure
as it caries important information that will allow the learner
to uncover rules that estimate the RUL given sensor measure-
ments. There are two popular ways to create these, namely
linear and piece-wise linear [9]. The former interprets the RUL
in the strictest sense, as time to failure. Thus, every time-step
is mapped to a value equal to EoL− t, where t is the current
time-step. This approach, however, implies that the health of
the system degrades linearly with usage [9], reflecting the fact
that initially the degradation is negligible and after a specific
point in time it becomes more evident (see Figure 2 for an
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example). The point after which the RUL degrades linearly is
called the reflection point [14].

This way we can construct a RUL curve for each u ∈ U . We
do this by mapping each expanding window Wu

i to a Y u
i ∈ N

representing the RUL at the end of that window, for every
i = 1, . . . , ku, where ku = |Wu|.
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Fig. 2. Toy example of a piece-wise linear RUL target function. The reflection
point is at time cycle 125.

With the previous steps, the original data is transformed
into a tuple (W,Y ), with W = ∪u∈UWu ⊆ Rm×T , Y =
∪u∈UY u ∈ Nn×1, n =

∑
u∈U ku, T = max{T (u) : u ∈ U}.

C. Feature Extraction

Feature extraction is the process of extracting a set of new
features from the original features through functional map-
pings that will be used as input in the learning algorithm [18].
Without informative features, it is not possible to train a
model that generalizes well, but if relevant features can be
extracted, then even a simple method can show remarkable
results [19]. In addition, in this particular method, feature
extraction allows to translate data from different window sizes
(expanding window) into feature vectors of the same size,
which is needed for the learner.

In this study, the feature extraction F uses the expanding
windows Wu

i of each unit as input and constructs a d-
dimensional (d is the number of features) real-valued feature
vector, F : A ⊆ RT×m → Rd: ∀(u, i), Wu

i 7→ F (Wu
i ) .

Thus, each tuple (u, i) results in a feature vector which can
be denoted as F (u,i). This feature vector represents the input
for the feature selection phase.

D. Feature Selection

The feature selection phase deals with the selection of rele-
vant features from the, possibly massive, number of extracted
features of the input data. It does this while reducing effects
from noise or irrelevant variables and still providing good pre-
diction results for the task at hand [20]. Feature selection can
allow for shorter training times. It also increases generalization
by reducing overfitting and makes the models simpler by using
those features that are relevant for the model construction
phase. Furthermore, it allows for a better understanding of
the data [20]. Numerous feature selection methods have been
proposed, which can be divided into (i) wrapper methods, (ii)
embedded methods and (iii) filter methods [20].

With the aforementioned steps, the RUL estimation task
turns into a regression problem, where input data corresponds
to the statistical features from each expanded window and the
respective labels are the generated RUL values.

The next step is to automatically find an optimal pipeline
for our transformed data. This way, a machine learning al-
gorithm can learn from the statistical features when the end
of life is approaching. This assumption is based on the fact
that degraded signals must manifest statistical properties that
reflect the state of the unit.

E. Automatic Modeling

Automated machine learning (AutoML) deals with the
automation of the process of applying machine learning to
real-world problems. In general, AutoML covers the complete
pipeline from processing the raw data to the deployment of
the model, and it was proposed as an artificial intelligence-
based solution to the ever-growing challenges of applying
machine learning in an efficient manner [6]. In more de-
tail, AutoML aims to solve the so-called CASH problem,
standing for combined algorithm selection and hyperparameter
optimization [21]. This is essentially the task of choosing
the right machine learning model for the dataset at hand,
along with the right pre-processing method(s) and the various
hyperparameters of all involved components in the pipeline,
without requiring human intervention [6].

AutoML systems, however, do not support the pre-
processing steps that we introduced in the previous paragraphs.
This is why it is important to bring the original raw data into
a form that can be processed further by an AutoML system.
AutoML can, furthermore, target various stages of the machine



learning process from pre-processing to model selection and
hyperparameter optimization.

V. EXPERIMENTAL SETUP AND RESULTS

We are interested to see if the use of AutoML for automati-
cally selecting a pipeline, in combination with using statistical
embeddings from expanding windows in the pre-processing
phase, yield better or comparable results to existing methods
of RUL estimation. Experiments, dataset and comparison to
state-of-the-art methods are described in this section.

A. Data

In this study, we use the widely used C-MAPSS benchmark
dataset [7]. The dataset was released in 2008 [17] and it has
been used in the field of PHM ever since, in order to develop
techniques and methods for estimating the RUL [8], [22]. It is
a simulated turbofan engine degradation dataset from NASA’s
Prognostics Centre of Excellence1. The dataset consists of four
subsets: FD001, FD002, FD003, and FD004. Each of these
datasets is arranged in an n× 26 matrix where n corresponds
to the number of data points (samples) in each unit and 26
is the number of columns/features. Each row is a snapshot of
data taken during a single operating time cycle. Regarding
the 26 features, the 1st represents the engine number, the
2nd represents the operational cycle number. Features 3 − 5
represent the operational settings, and columns 6−26 represent
the 21 sensor values. Engine performance can be significantly
affected by the three operating settings. More information
about these 21 sensors can be found in [23]. What is more,
each subset exhibits a different number of faults (see Table I).

Each of these subsets are further split into training set and
test set (see Table I for details). For each engine trajectory
within the training sets, the last data entry corresponds to the
end-of-life (EoL) of the engine, i.e., the moment the engine
is declared unhealthy or in failure status. The test sets contain
data up to some time before the failure and the aim here is to
predict the RUL for each of the test engines.

These multivariate time-series are from a different engine
i.e., the data can be considered to be from a fleet of engines,
of the same type though, and each trajectory is assumed to be
the life-cycle of an engine. Every engine starts with different
degrees of initial wear and manufacturing variation which is
unknown to the user. This wear and variation is considered
normal, i.e., it is not considered a fault condition.

To compare the model performance on the test data, we
need some objective performance measures. In this study, we
used two measures: the Scoring function S (also known as
Timeliness in literature), and the Root Mean Square Error
(RMSE) [9], [11], [13], [14], [16]. We introduce them below
(n denotes the number of samples):
• The Scoring function S (see also [17]), is defined as:

S =

{∑n
i=1(exp(−di/13)− 1) if di < 0∑n
i=1(exp(di/10)− 1) if di ≥ 0

1https://ti.arc.nasa.gov/tech/dash/groups/pcoe/

• RMSE (root mean squared error) is defined as RMSE =√
1/n

∑n
i=1 d

2
i , where di = ˆRULi−RULi, ˆRULi is the

estimated RUL and RULi is the ground truth RUL for
instance (engine) i, respectively.

The scoring function S penalizes more an overestimation
than an underestimation. The scoring algorithm is asymmetric
around the true time of failure, such that late predictions are
more heavily penalized than early predictions. In both cases,
the penalty grows exponentially with increasing error. The
asymmetric preference is controlled by parameters 13 and 10
in the scoring function, as introduced in [17]. This is logical,
as an overestimation of the RUL for a turbofan engine can
have catastrophic results.

TABLE I
CMAPSS DATASET DETAILS

Data-Set FD001 FD002 FD003 FD004
Train trajectories 100 260 100 249
Test trajectories 100 259 100 248
Operating conditions 1 6 1 6
Fault conditions 1 1 2 2
Max train trajectory (cycles) 362 378 525 543
Min train trajectory (cycles) 128 128 145 128
Max test trajectory (cycles) 303 367 475 486
Min test trajectory (cycles) 31 21 38 19
Training samples 20631 53759 24720 61249

B. Experimental Setup

The experiments2 were executed on 64 cores of 2 Intel R©

Xeon R© Gold 6142 CPU, 2.60GHz and 256GB of DDR4
memory. Source code has been developed in Python V3.6.93.

1) Pre-processing: Following the steps of Section IV
we start by selecting relevant sensors. In detail, sensors
1, 5, 6, 10, 16, 18, and 19 in subsets FD001 and FD003 ex-
hibit constant sensor measurements throughout the engine’s
lifetime. Constant sensor measurements do not provide any
useful degradation information for determining the RUL [16].
In addition, these subsets operate under a single operating
condition. Thus, the three operational settings are dropped. In
this view the sensor measurements retained for subsets FD001
and FD003 are 2, 3, 4, 7, 8, 9, 11, 12, 13, 14, 15, 17, 20 and 21.
As a result, 14 sensor measurements out of the total 21 are
used as the raw input features, as in [11], [16], [24]. Subsets
FD002 and FD004 are more complex due to more operating
conditions, making it more challenging for the algorithm to
detect degradation patterns in the input data. Thus, for these
subsets we decided to retain all three operational settings
and all sensor measurements, as in [16]. We continue by
pre-processing the data by Z-normalizing (standardizing) the
sensor values of the training set and using the learnt parameters
to standardize the test set. Next, we apply the expanding
window transformation on the data. Typically, a larger window
size results in less samples, but allows for a greater overview of

2The source code of the experiments can be found at https://github.com/
MariosKef/automated-rul .

3We used tsfresh(0.17.0), TPOT(0.11.7), scikit-learn(0.24.1), pandas(1.1.5),
numpy(1.19.5).



the degradation process as there is more information available
for the target RUL. A smaller window size results in less
information being available to map to the respective RUL
target, but allows for more samples. As a result, it is also more
computationally expensive. To ease the computational burden
we use a window size w = 10 in this study. Regarding RUL-
target construction, we use the piece-wise linear approach, as
we consider it to reflect more accurately a degradation of a tur-
bofan engine [24], since these machines are designed to sustain
multiple cycles and excessive loads and stress. Furthermore,
this is still the most common approach in literature [16]. The
values of the initial, constant, RUL were selected from [16],
and the reflection point is selected as EoL/2 [14].

TABLE II
HYPERPARAMETERS USED IN THE EXPERIMENTS

Hyperparameter FD001 FD002 FD003 FD004
Window size (w) 10 10 10 10
Initial RUL 115 135 125 135
Reflection point EoL/2 EoL/2 EoL/2 EoL/2
Generations 10 10 10 10
Population size 20 20 20 20
CV 5 5 5 5
Objective Score S Score S Score S Score S

2) Feature Extraction: In the feature extraction phase,
we use the tsfresh pipeline (Time Series Feature extraction
based on scalable hypothesis tests) [25], since one of our
main research questions concerns statistical embeddings of the
signal in question and specifically if they can reflect the degra-
dation process. Tsfresh extracts 63 time series characterization
methods (e.g., auto-correlation, kurtosis, skewness). By tak-
ing different parameterizations (i.e., different time lags when
calculating the auto-correlation) for each feature function, it
computes 794 features for each time-series4. The use of tsfresh
allows extraction of a multitude of features by non-experts
and it allows for the identification of features that might be
more informative from traditional ones in a given field. tsfresh
has been applied with EfficientFCParameters as its extracted
features list to reduce the computational cost. The rest of the
input parameters are left in their default settings 5.

3) Feature Selection: In the subsequent step, we select the
relevant features for the overall regression task, in order to re-
duce the massive number of extracted features in F (Wu

i ). We
decided to use a filter method for this phase, in order to select
a subset of features independently from the learning scheme.
We check the significance of all extracted features from the
previous step to the target RUL values. We return a possibly
reduced feature matrix only containing relevant features for the
subsequent steps. For this step tsfresh.select features, which
calculates the feature significance of a real-valued feature to
a real-valued target as a p-value, using Kendalls tau. The

4See https://tsfresh.readthedocs.io/en/latest/text/list\ of\ features.html, for
a complete list of features.

5https://tsfresh.readthedocs.io/en/latest/\ modules/tsfresh/feature\
extraction/extraction.html$\#$extract\ features

algorithm has been applied with its default settings6.
4) Automatic Modeling: We approach this regression prob-

lem without the use of an a-priori selected pipeline, aiming
to automatically identify the pipeline that gives the best
cross-validated score on the training set. To tackle this, we
used TPOT (Tree-based Pipeline Optimization Tool) [6], [26].
Based on genetic programming (GP) [27], TPOT develops and
optimizes machine learning pipelines in an automatic manner.
The pipeline’s operators (pre-processing, feature selection,
models) with the respective hyperparameters are combined
in a pipeline. Based on GP the whole sequence and each
operator are evolved, optimizing a performance metric. TPOT
is designed for Pareto optimization, in order to optimize the
pipeline according to a performance measure (e.g., accuracy,
MSE) and simultaneously minimize its complexity. Compared
to basic machine learning approaches, TPOT is considered
efficient and competitive [26], [28]. We used a population
size of 20 for all datasets and evolved the pipelines for 10
generations. The TPOT default settings, 5-fold cross validation
and maximum evaluation time of 5 minutes, were used.
Lastly, we should note here that TPOT allows for different
scoring functions to be defined and used as an objective in
its optimization process during training. We performed our
experiments using the Scoring function S in TPOT during
the training process. The remaining hyperparameters used in
TPOT were kept in their default setting7. In Table II we show
all the hyperparameters used in this study and their values.

5) Baseline: We also performed a baseline experiment in
order to evaluate our main ideas and the pre-processing. Our
baseline disregards the temporal aspect of the problem at hand
and as a result no expanding window transformation takes
place or feature extraction. Moreover, since this is a time
agnostic method, we also decided not to use the piece-wise
linear function for the RUL construction, but instead the linear
scheme. We also did not use feature selection prior to using
TPOT like in the proposed method, as we did not extract
features. All other pre-processing remains the same (sensor
selection, standardization of sensor values). The transformed
dataset is fed again in an AutoML learning scheme. We use
this baseline in order to to show the benefits of using the
expanding window and the statistical features together with
the specific RUL construction in an AutoML setting.

C. Results

After TPOT terminates, it returns the optimal pipeline with
respect to its cross-validated score. The optimal pipeline is
then applied to the test data. The test data have also been
transformed in the feature extraction phase just like the train-
ing data. However, the test data do not undergo an expanding
window transformation prior to the feature extraction phase,
because we are interested in estimating the RUL of the test
instance and therefore statistical features extracted from the

6https://tsfresh.readthedocs.io/en/latest/\ modules/tsfresh/feature\
selection/selection.html\#select\ features

7http://epistasislab.github.io/TPOT/api/\#regression



entirety of the test recordings are needed to make the pre-
diction. Thus, we make predictions on 100, 259, 100 and 248
test trajectories from all 4 datasets, respectively (see Table I).
Regarding our baseline experiment the inference on the test
set is simply applied to the final time-step of its trajectory.

In Table III we show the results of both of our experiments
(the proposed method and the baseline), on all 4 test datasets.
To mitigate any random artifacts, we ran the experiments 10
times. We chose 10 due to the fact that TPOT is extremely
time consuming. We show both the average and the standard
deviation of the values of Scoring function S and RMSE of
our predictions, as well as the average execution times. In
bold we show that the proposed method has a statistically
significant smaller mean compared to the baseline, both in
terms of the score S and the RMSE, on all 4 of the datasets. We
assessed this by bootstrapping our samples per dataset a total
of 105 times to create sampling distribution of the means. We
then performed a one-sided Wilcoxon signed-rank test with
a significance level of a = 0.01, in order to check if the
sampling distribution of the means of our proposed method
is significantly smaller than the sampling distribution of the
means of the baseline. The resulting p-value is 0.008. We used
a non-parametric test as the sampling distribution of the means
of both experiments is not normal. The specific test was further
selected as it takes into account that we have paired samples,
as both the proposed method and the baseline were evaluated
on exactly the same training and test data.

We further compare our proposed method to some of the
state-of-the-art methods. In more detail, we compare against
selected methods that employ deep neural networks (DNN)
(such as CNN and LSTM) and classic machine learning (such
as random forests (RF), support vector machines (SVM))), and
as such represent the vast majority of employed methods for
this problem. The selected algorithms are good representatives
of their respective categories as they either serve as the
first attempts [9] or have achieved remarkable results [11],
[13], [14], [16]. Regarding the application of classic machine
learning techniques on this problem, since there have not been
many attempts, we report on all of those that to our knowledge
exist (random forest (RF), LASSO regression, support vector
regression (SVR), support vector machine (SVM), gradient
boosting (GB), KNeighbors regressor (KNR), relevance vector
regression (RVR), extra tree regressor (ETR)). In Table IV, in
bold, we show the average results of our proposed method
and the instances it outperforms.

1) Classic Machine Learning: The results show that
the proposed method outperforms the multilayer perceptron
(MLP), support vector regression (SVR), relevance vector
regression (RVR) [9], LASSO regression, SVM and KNR
regression [5] on all 4 datasets both in terms of the score
function S and the RMSE. Moreover, the proposed method
outperforms the RF [5] algorithm in terms of both the score
and RMSE on FD001 and FD002, of RMSE on FD003 and

8In practice, this means that the p-value returned by the software is a very
small float rendering it practically 0.00. Statistically this signifies that the
observed samples can not come from the same distribution.

of score function on FD004. In addition, it outperforms the
GB [5] algorithm on FD002 and in terms of RMSE FD001.
Lastly, it can outperform ETR [5] on all datasets, except
FD004 in terms of RMSE, where it is comparable. In general,
we see that in terms of the score S, the proposed method
outperforms all 9 of the classic machine learning algorithms
considered here, on 2/4 datasets (FD001 and FD002) by
at least 19%9 (on FD001) and outperforms 6/9 of these
algorithms on all 4 datasets, by at least 13.2% (on FD003). In
terms of the RMSE, our proposed method outperforms all 9
of the classic machine learning algorithms considered here, on
1/4 datasets (FD002) by 3.1% and outperforms 6/9 of these
algorithms on all 4 datasets, by at least 1.9% (on FD004).

2) Deep Neural Networks: When compared to DNNs our
method outperforms the first CNN approach [9] on all cases
except on FD004. When compared, however, to LSTM [13],
[14], [16] and a recent CNN approach with 1D convolu-
tion [11] our algorithm is outperformed or comparable in terms
of RMSE. In more detail, our proposed method outperforms
the CNN [9] on FD001, FD002 and FD003 by at least 22.1%
(on FD002) in terms of the score S and by at least 0.6% (on
FD003) in terms of the RMSE. Our method is also comparable
on FD004 in terms of the RMSE. Regarding LSTMs, our
results are comparable to those in [14]. In more detail, our
method outperforms [14] by 1.23% on FD001 in terms of the
score S, by 5% in terms of the RMSE and on FD002 by
0.8% on the score S and by 4.2% in terms of the RMSE. Our
method is also comparable to [14] on FD003 in terms of the
RMSE and the score S and on FD004 in terms of the RMSE.
Furthermore, it outperforms by 1.5% the algorithm of [13] on
FD001 in terms of the RMSE. The proposed method is also
outperformed by the other LSTMs [13], [16] and CNN [11]
by at least 1.5% (on FD002) in terms of the score S and at
least 13.2% in terms of the RMSE (on FD002)10. The reason
is that the usage of advanced LSTM (e.g., using unsupervised
pre-training) and CNN with 1D convolution allow for learning
highly non-linear relationships that might describe the map-
ping between the time-steps and the RUL more accurately,
compared to classic machine learning schemes. This also leads
to more favourable results on FD004 which incorporates 6
operating conditions and 2 fault modes.

From the previous results we can conclude that the usage
of AutoML in combination with extracting statistical features,
can outperform or achieve comparable results when compared
to classic machine learning techniques. When compared to
DNNs, however, our method is comparable or outperformed,
one reason being that DNNs have the ability to learn highly
non-linear relationships that might describe the mapping be-
tween the time-steps and the RUL. What is more, we should

9The percentage of improvement in this case is calculated as PI=1 −
proposed method performance

min(other methods performance) ∗ 100%, since we are interested to see how much
better we perform from the best method (lower is better).

10In this case, the percentage is calculated as 1 −
max(other methods performance)

proposed method performance ∗ 100%, since we are interested to see by
how much the ”worst” (lower is better) of the better methods outperforms
us.



note here that DNNs were not included in our algorithm search
space. Furthermore, using neural architecture search (NAS)
based methods can be useful for this. However, some of these
approaches use very complex handcrafted pipelines (e.g., using
unsupervised pre-training) that cannot be efficiently automated
with current NAS systems. Thus, considering NAS for this
problem is much broader than the scope of this paper.

VI. CONCLUSION

In this study, we presented the first, to our knowledge,
AutoML approach [6] for the estimation of the RUL of
machinery. We investigated the usage of TPOT ( [6], [26])
in automatically selecting a pipeline for this problem, as well
as the usage of statistical embeddings of time-series in the pre-
processing phase, using an expanding window transformation.

We evaluated the proposed method on the widely-used
C-MAPSS dataset [7]. The gathered results show that the
usage of AutoML in combination with extracting statistical
features (embeddings) and constructing the RUL in a piece-
wise linear manner can outperform or achieve comparable
results when compared to classic machine learning techniques
(such as SVR, LASSO, SVM). However, when compared to
deep architectures such as CNN and LSTM, our method is
able to outperform the first CNN approach on 3/4 datasets,
but in general is comparable or is outperformed. This suggests
that the combination of statistical features and classic ML
might not be able to uncover the highly non-linear relationship
between the observed/measured values and the RUL. The
proposed method also allows for a useful direction towards
which classic machine learning algorithms would be more
useful to use, as well as providing the optimal pipeline as
a starting point for further research.

As indicated, a limitation of our approach is the investiga-
tion of only classic ML algorithms (e.g., no neural networks)
and no hyperparameter optimization (e.g., for the window
size).

As a next step, we plan to include neural networks in
the AutoML approach, by means of NAS [29], as well as
investigating effective dimensionality reduction techniques for
the statistical embeddings. Finally, we want to augment this
pipeline by adding a hyperparameter optimization wrapper.
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TABLE III
PERFORMANCE METRICS AND WALL-CLOCK TIME (IN MINUTES) OF THE PROPOSED METHOD AND THE BASELINE. HERE THE Scoring function S HAS

BEEN USED AS THE SCORING FUNCTION IN TPOT (lower is better). IN BOLD, WE SHOW THE OPTIMAL RESULTS.
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