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Abstract
Mitochondrial perturbation is a key event in chemical-induced organ toxicities that is incompletely understood. Here, we 
studied how electron transport chain (ETC) complex I, II, or III (CI, CII and CIII) inhibitors affect mitochondrial function-
ality, stress response activation, and cell viability using a combination of high-content imaging and TempO-Seq in HepG2 
hepatocyte cells. CI and CIII inhibitors perturbed mitochondrial membrane potential (MMP) and mitochondrial and cellular 
ATP levels in a concentration- and time-dependent fashion and, under conditions preventing a switch to glycolysis attenuated 
cell viability, whereas CII inhibitors had no effect. TempO-Seq analysis of changes in mRNA expression pointed to a shared 
cellular response to CI and CIII inhibition. First, to define specific ETC inhibition responses, a gene set responsive toward 
ETC inhibition (and not to genotoxic, oxidative, or endoplasmic reticulum stress) was identified using targeted TempO-Seq 
in HepG2. Silencing of one of these genes, NOS3, exacerbated the impact of CI and CIII inhibitors on cell viability, indicat-
ing its functional implication in cellular responses to mitochondrial stress. Then by monitoring dynamic responses to ETC 
inhibition using a HepG2 GFP reporter panel for different classes of stress response pathways and applying pathway and 
gene network analysis to TempO-Seq data, we looked for downstream cellular events of ETC inhibition and identified the 
amino acid response (AAR) as being triggered in HepG2 by ETC inhibition. Through in silico approaches we provide evi-
dence indicating that a similar AAR is associated with exposure to mitochondrial toxicants in primary human hepatocytes. 
Altogether, we (i) unravel quantitative, time- and concentration-resolved cellular responses to mitochondrial perturbation, 
(ii) identify a gene set associated with adaptation to exposure to active ETC inhibitors, and (iii) show that ER stress and an 
AAR accompany ETC inhibition in HepG2 and primary hepatocytes.
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FC  Fold change
FRET  Fluorescence resonance energy transfer
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GFP  Green fluorescent protein
Glu  Glucose
MMP  Mitochondrial membrane potential
GO  Gene Ontology
N.C.  Negative control
NES  Normalized enrichment score
O/N  Overnight
OCR  Oxygen consumption rate
OSR  Oxidative stress response
OXPHOS  Oxidative phosphorylation
padj  Adjusted p value
PBS  Phosphate-buffered Saline
P.C.  Positive control
PCR  Polymerase chain reaction
PI  Propidium iodide
PenStrep  Penicillin–Streptomycin
PHH  Primary human hepatocytes
PVDF  Polyvinylidene difluoride
Rho123  Rhodamine123
RNA  Ribonucleic acid
ROS  Reactive oxygen species
RT  Room temperature
SD  Standard deviation
siRNA  Small interfering RNA
TF  Transcription factor
TG-GATES  Toxicogenomics Project-Genomics Assisted 

Toxicity Evaluation System
TNFa  Tumor necrosis factor alpha
TP  Time point
UPR  Unfolded protein response
WGCNA  Weighted gene correlation network analysis
YFP  Yellow fluorescent protein

Introduction

Accumulating evidence indicates that perturbation of mito-
chondria plays a role in the development of organ toxicity 
(Will and Dykens 2014, Dykens et al. 2007, Dykens and 
Will 2007). Disturbance of mitochondria upon chemical 
exposure has been monitored in the past based on changes 
in major functions of the mitochondria, including mito-
chondrial respiration and mitochondrial membrane poten-
tial (MMP) in both intact cells and isolated mitochondria 
(Porceddu et al. 2012, Rana et al. 2019, Zhang et al. 2009). 
The assay outcomes are predictive for the occurrence and 
potency of the interaction between chemical and target. Nev-
ertheless, assessment of the mitochondrial status alone does 
not cover all toxicity-associated abnormalities sufficiently. 

Unraveling the interaction between mitochondrial perturba-
tion and cellular responses can shed light on the eventual 
chemical-induced adversity at organ level.

Mitochondria are the organelles responsible for energy 
metabolism through oxidative phosphorylation (OXPHOS), 
hormone synthesis and metabolism. Bidirectional signaling 
between mitochondria and the nucleus enables rapid feed-
back concerning the metabolic and energetic needs of both 
compartments (Han et al. 2013, Monaghan and Whitmarsh 
2015, Chandel 2014, Barbour and Turner 2014, Da Cunha 
et al. 2015). During oxidative phosphorylation, electrons flow 
through an electron transport chain (ETC) involving a series 
of enzyme complexes located in the mitochondrial double-
layered membrane, and ultimately, release the energy stored 
in fats and carbohydrates to produce ATP. This process relies 
on an MMP (i.e., a proton gradient leading to concentration 
and charge imbalance across the mitochondrial membrane), 
which is generated by proton pumps including ETC com-
plexes I, III and IV (CI, CIII and CIV). Complex II (CII) 
represents an alternative entry point into the ETC in addition 
to CI, but is itself not a proton pump. CIV transfers the elec-
trons to oxygen (and pumps protons), and complex V (CV) 
is the enzyme that uses the energy that can be extracted from 
the MMP to convert ADP into ATP (Alberts et al. 2002).

Chemicals can perturb mitochondrial functioning via 
direct interaction with mitochondrial targets, or indirect 
via deprivation of building blocks and nutrients (Heiden 
et al. 2009). In general, cells possess an arsenal of adap-
tive stress response mechanisms to cope with toxic insults 
that give rise to among others reactive oxygen species (Sies 
et al. 2017), cytoplasmic unfolded proteins (Ron and Walter 
2007), and DNA damage (Giglia-Mari et al. 2011). In addi-
tion, cells have mitochondrial damage-specific responses 
including upregulation of mitochondrial biogenesis (Jor-
nayvaz and Shulman 2010, Hock and Krali 2009), induc-
tion of mitochondrial-specific unfolded protein response 
(UPR) (Münch 2018, Qureshi et al. 2017), adaptation of 
mitochondrial fission and fusion (Westermann 2010, Youle 
and Bilek 2012), and removal of damaged mitochondria 
by mitophagy (Youle and Narendra 2011, Hamacher-Brady 
and Brady 2016). The outcome of chemical-induced mito-
chondrial perturbation depends on the ability of cells to 
adapt and switch to alternative energy production via gly-
colysis (Merry and Ristow 2016). In the case that the cell 
cannot recover from the mitochondrial insult, apoptosis 
and/or necrosis will be induced to eliminate the damaged 
cells (Bock and Tait 2020). Large numbers of apoptotic or 
necrotic cells will result in tissue damage and ultimately 
organ failure as seen for instance in drug-induced liver 
injury (DILI) (Pessayre et al. 2012).

Combining the assessment of mitochondrial function-
ality with markers for a variety of cellular end points 
will generate information feeding into a mechanistic 
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assessment of mitochondrial-related organ toxicity (van 
der Stel et al. 2020). Especially, time- and concentration-
resolved exposure data can link the various involved pro-
cesses, providing in-depth mechanistic understanding 
and distinguish lethal from adaptive cellular responses to 
chemical exposures.

In this study, we systematically assessed the changes 
in mitochondrial and cellular signaling upon exposure to 
a panel of ETC inhibitors using HepG2 cells. We unravel 
quantitative, time- and concentration-resolved mitochon-
drial and cellular responses to ETC inhibition providing 
mechanistic insight into mitochondrial toxicity. Using 
TempO-Seq, we first studied ETC inhibition-specific 
responses and identify a gene set that is induced selec-
tively upon exposure to ETC CI and CIII inhibitors, which 
could be used to flag compounds for mitochondria-related 
toxicity. Assessment of downstream cellular events of ETC 
inhibition using a HepG2 GFP reporter panel for different 
classes of stress response pathways and applying pathway 
and gene network analysis to TempO-Seq data, we identify 
the amino acid response (AAR) as triggered in HepG2 by 
ETC inhibition. Through in silico approaches we provide 
evidence indicating that a similar AAR is associated with 
exposure to mitochondrial toxicants in primary hepato-
cytes (PHHs).

Materials and methods

Chemicals

All tested chemicals were purchased via the European 
Union Reference Laboratory for alternatives to animal 
testing (Joint Research Centre, Ispra, Italy) and stored 
as stock solutions between 10 and 100 mM in dimethyl 
sulfoxide (DMSO) at − 80 °C until use. Treatment solu-
tions were created in appropriate medium (DMSO 0.1% 
(v/v)) on the day of exposure. The selected chemicals 
included complex I inhibitors capsaicin (Cat. No. M2028), 
deguelin (D0817), fenazaquin (31635), fenpyroximate 
(31684), pyridaben (46047), pyrimidifen (35999), rote-
none (R8875), tebufenpyrad (46438); complex II inhibitors 
carboxin (45371), fenfuram (45486), flutolanil (N12004), 
mepronil (33361), thifluzamide (49792) and complex III 
inhibitors antimycin A (A8674), azoxystrobin (3167), cya-
zofamid (33874), fenamidone (33965), kresoxim-methyl 
(37899), picoxystrobin (33568), pyraclostrobin (33696), 
trifloxystrobin (46477). The included stress model com-
pounds were CDDO-me (Cayman chemical; 11883), 
cisplatin (Ebewe pharma; 95199306), TNFα (R&D Sys-
tem-BioTechne; 210-TA-100) and tunicamycin (Merck; 
T7765). Seahorse experiments in HepG2 and RPTEC cells 

for these compounds have been previously published (van 
der Stel et al. 2020).

Cell culture

HepG2 cells (ATCC; American Type Culture Collection, 
Wesel, Germany) were cultured in Dulbecco’s modified 
Eagle’s medium (DMEM) (Fisher Scientific, 11504496), 
supplemented with 10% (v/v) fetal bovine serum, 25 U/ml 
penicillin and 25 μg/mL streptomycin (FBS; South Ameri-
can, Fisher Scientific, S181L-500 & PenStrep, Fisher Sci-
entific, 15070–063). Maintenance conditions were 37 °C in 
a 5%  CO2 humidified atmosphere.

For experiments under conditions preventing glycolysis, 
medium was either replaced 1 day before the chemical expo-
sures by glucose-free DMEM (Fisher Scientific, 11966–025) 
supplemented with 10 mM galactose (Sigma, G5388-100G) 
and 1 mM sodium pyruvate (Sigma, P2256-100g), or was 
enriched by medium containing 10 mM 2-deoxyglucose 
(Sigma-Aldrich, D8375-5G) at the moment of exposure.

Generation of ATP biosensor cells

ATP dynamics was monitored using HepG2 cells expressing 
ATP biosensors located in the mitochondria (Ateam1.03) 
or cytoplasm (mitAT1.03). For this, cDNA constructs 
were provided by Hiromi Imamura (Precursory Research 
for Embryonic Science, Japan Science and Technology 
Agency) (Imamura et al. 2009) (Suppl. table 1). Constructs 
were introduced into HepG2 cells using lipofectamine2000 
(INT) (Fisher Scientific, 11668–027). 8 µg DNA was com-
bined with 10 µL of lipofectamine2000 in 500 µL serum 
free medium (SFM) to transfect 2*10^6 cells in a 6 cm dish. 
Cells were placed on G418 selection (PAA/Brunschwig 
chemie, P31-011) at 0.25 mg/ml and upon reaching conflu-
ency transferred to 10 cm dishes. Cells were kept on further 
selection at 0.5 mg/ml until colonies started to form. Colo-
nies were picked, expanded and frozen to create a batch for 
usages (Suppl. Figure 1A, B and C). Cells stably expressing 
H2B-RFP and either a CFP or a YFP construct were kindly 
provided by Dr. Y. Zhang, LACDR, Leiden University, NL 
and used to adjust imaging settings (Suppl. Figure 1D). 
Localization of the FRET probes to their respective subcel-
lular compartment (cytoplasm or mitochondria) was vali-
dated by microscopy.

Confocal live cell imaging

Mitochondrial membrane potential: MMP was assessed 
using Rhodamine123 (Rho123, Sigma-Aldrich, R8004) by 
live confocal imaging. HepG2 cells were seeded in 384-
wells μCLEAR® black plate (Greiner Bio-One, 781 091) at 
a density of 10,000 cells/well. Two days after seeding, cells 
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were stained with 200 ng/μL Hoechst 33342 (Life technolo-
gies, H1399) and 1 μM Rho123. After 60–75 min incubation 
at 37 °C the medium was refreshed into complete DMEM 
containing 0.2 μM Rho123, 100 nM propidium iodide (PI) 
(Sigma-Aldrich, P4170) and the desired concentration of the 
test chemicals. The signal intensity of Hoechst, Rho123 and 
PI (excitation wavelength respectively 408, 488 and 561 nm) 
were monitored hourly for 24 h. Note: the 24 h time point 
MMP data, but not the full-time kinetics, have been previ-
ously published (van der Stel 2020). Kinetic MMP data also 
serve as input for the development of a dynamic mathemati-
cal model; Yang et al., manuscript submitted.

GFP-BAC reporters: cellular stress response activation 
was evaluated using HepG2 BAC-GFP reporter cell lines 
(ATF4-GFP, BIP-GFP, CHOP-GFP, P21-GFP, SRXN1-GFP 
and XBP1-GFP) (Wink et al. 2017). Cells were plated in 
384-wells μCLEAR® black plate at a density of 10,000 cells/
well. One day after seeding, cells were O/N stained with 
Hoechst 33342 and the medium was subsequently refreshed 
into complete DMEM containing the desired concentration 
of the test chemical. The signal intensity of Hoechst and 
GFP (408 and 488 nm) were monitored at 24, 48 and 72 h.

Confocal live cell imaging of ATP biosensor: cells stably 
transfected with cytoplasmic or mitochondrial ATP biosen-
sors were seeded in 96-well μCLEAR® black (Greiner Bio-
One, 655090) at a density of 20,000 cells/well. Two days 
post-seeding the cells were exposed to a concentration range 
of the test chemicals. The exposures were performed using 
DMEM without phenol red to improve signal-to-noise ratio 
(DMEM (Thermos Fisher, 12196590), supplemented with 
10% (v/v) FBS, 25 U/mL penicillin, 25 mg/mL streptomy-
cin, 1 mM sodium pyruvate (Fisher Scientific, 11360070) 
and 4 mM l-glutamine (Fisher Scientific, 25030081). The 
signal intensity was monitored live every 5 min starting with 
untreated condition and followed by 2 h exposure with the 
desired test chemical. The ATP biosensors were excited at 
408 nm and the FRET ratio was determined based on the 
emission at 408 and 488 nm.

All imaging was performed using a 20 × objective on a 
Nikon TiE2000 with perfect Focus System, automated-stage, 
and controlled temp/CO2 incubator (Nikon, Amsterdam, The 
Netherlands).

Image analysis for MMP and BAC‑reporter data

Object identification and signal quantification were per-
formed using CellProfiler version 2.1.1 (Kamentsky et al. 
2011). A segmentation module (Di et al. 2012) was used 
to segment nuclei objects based on the Hoechst signal. 
The cytoplasmic area was defined as the area around the 
nucleus to a maximal distance of 10 pixels (12.3 μM) 
or half the distance to the border of a neighboring cell’s 
nucleus. The signal intensity of Rho123, BIP-GFP, 

SRXN1-GFP and XBP1-GFP was quantified as the inte-
grated pixel intensity in the cytoplasmic area. The signal 
intensity of ATF4-GFP, CHOP-GFP and P21-GFP was 
quantified as the integrated pixel intensity in the nuclear 
area. Nuclei were considered PI positive when the overlap 
of the nucleus with a PI object is larger than 10% of the 
nucleus area. All CellProfiler results were stored in HDF5 
files and subsequently the data was extracted for further 
processing and visualization using in-house-developed 
R scripts (run in Rstudio (Boston, USA) (Rstudio Team 
2016)) and the following packages: rhdf5, data.table, plyr, 
dplyr, tydr, ggplot2, reshape2, stringr, shiny, ggvis, gri-
dExtra and doParallel (Dowle and Srinivasan 2021; Wick-
ham 2007, 2011, 2016, 2019, 2020; Wickham et al. 2021; 
Chang and Wickham 2020; Chang et al. 2021; Auguie 
2017, Weston and Microsoft corporation 2020).

Image analysis for ATP biosensor data

The intensity quantification of the 408 and 488 nm emission 
images was performed using Ilastik version 1.1.9 (Berg et al. 
2019, Sommer et al. 2011) and CellProfiler version 2.1.1. 
Background and foreground labels were based on manual 
curation of representative images of the 488 nm images and 
used for the creation of binary images of all conditions using 
Ilastik (Suppl. Figure 1E). The 408 and 488 nm intensity 
was monitored using CellProfiler in the region defined by 
the binary mask created with Ilastik. All CellProfiler results 
were saved as Excel file and further processed in R.

ATPlite assay and analysis

ATP levels were assessed in whole cell lysates or in mito-
chondria after 2 h and 24 h exposures to chemicals. HepG2 
cells were seeded in 96-wells μCLEAR® black plate at a 
density of 20,000 cells/well. The cells were stained with 
Hoechst33342 for 60 min, followed by exposure. 1 h before 
the end of the exposure period the complete well was imaged 
with a 10 × objective and 7 × 6 montage using epifluores-
cence on a Nikon TiE2000 microscope with perfect focus 
system and xy-stage. After elapse of the exposure period, 
ATPlite 1-step Luminescence Assay reagent (PerkinElmer, 
6016731) was added (1:1), followed by 2 min shaking and 
subsequent luminescence assessment using a FluoStar 
Optima plate reader (BMG Labtech). The epi-fluorescent 
pictures were used to normalize the data to the number of 
cells for each condition. Nuclear counting was performed 
using an in-house created macro for ImagePro software 
version 7.01 (Media Cybernetics). The macro performed 
watershed-based intensity segmentation after background 
correction (flatten function and edgefilter). The segmented 
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objects were filtered for size and shape using the following 
parameters: Edgefilter = 3, RemoveNarrowObjects = TRUE, 
Min-area = 15 pixels, Max-area = 4000 pixels, Intensity 
threshold = 1000 and Mean-Intensity = 0.1.

ATP levels in mitochondria

Mitochondrial-specific ATP was assessed after permeabiliz-
ing the cell membranes (Zoeteweij 1994) (supplementary 
Fig. 2F). After the desired exposure period Hanks’ buffer 
(Thermo Fisher 14175053) was supplemented with 5 mM 
HEPES, 250 mM sucrose (Thermo fisher s8600/63), 25 mM 
TRIS, 3 mM EGTA (Sigma-Aldrich 4378), 5 mM  MgCl2 
(Sigma-Aldrich 8266), 5 mM succinate (Sigma-Aldrich 
S2378) and 5 mM glutamate (Sigma-Aldrich G5889) (37 °C, 
pH 7.3). 150 µM digitonin (Sigma-Aldrich D5628) was 
added to permeabilize the cell membranes. After 30–45 s 
exposure, the buffer was replaced by PBS and the ATPlite 
1step Luminescence Assay was performed as described 
above. The membrane permeabilization protocol was 
validated using confocal imaging. For this, cells were co-
stained with Hoechst and 0.5 µM Rho123 and/or 0.05 µM 
Calcein–AM (VWR, 734–1434), to assess mitochondrial 
integrity (digitonin exposure should not affect the Rho123 
intensity; Suppl. Figure 1F and G) and loss of cell membrane 
integrity (digitonin exposure should result in the loss of Cal-
cein-AM signal; Suppl. Figure 1F, H and I). The Hoechst 
(408 nm) and Rho123/Calcein-AM (488 nm) signal intensity 
was monitored live every 10 s just before and after addition 
of digitonin using a 20 × objective on a Nikon TiE2000 with 
perfect focus system, automated-stage, and controlled temp/
CO2 incubator (Nikon, Amsterdam, The Netherlands).

Transcriptomics

HepG2 cells were plated into 96 wells plates (Costar, 3599) at 
a density of 50,000 cells/well. One day post-seeding medium 
was refreshed with complete DMEM containing the test 
chemicals. Plates were sealed with a gas-permeable seal (IST, 
IST-124-080SS). After 24 h exposure, the wells were washed 
once with ice-cold PBS (Sigma, D8537-500 ml), lysed using 
TempO-Seq lysis buffer (Bioclavis) for 15 min at RT, and 
subsequently stored at – 80 °C until shipment to BioClavis 
for TempO-Seq analysis (Yeakley et al. 2017, Limonciel et al. 
2018). TempO-Seq was performed using a panel of probes 
targeting the “S1500 +  + ” gene list established by the EU-
ToxRisk consortium (https:// www. eu- toxri sk. eu), which cov-
ers the S1500 + sentinel gene list from the U.S. Tox21 Federal 
collaboration (Mav et al. 2018) and 587 additional probes 
including genes known to be affected in response to toxic 
insults and tissue relevant markers (Suppl. Table 2).

Expression data were returned by BioClavis as counts per 
probe per treatment. An in-house R script was developed to 

perform count normalization and determine differential gene 
expression. The script includes the following steps: (1) load 
data and metadata, (2) determine library size (total number 
of reads per sample) and remove samples with a library size 
below 100.000 reads, (3) use the DESeq2 function to normal-
ize counts (per probe calculate a ratio = raw counts/geometric 
mean of that probe, after which the median of the raw counts 
of each probe is divided by the median of all probe ratios for a 
treatment, and calculate differentially expressed genes (DEGs) 
considering cell line, treatment, concentration and time point), 
(4) create matrix of all comparisons between vehicle con-
trol and any of the other treatments. The analysis utilized the 
following packages: gridExtra, stringr, ggplot2, pheatmap, 
reshape2, RColorBrewer, plyr, dplyr, tidyr, colorspace, scales, 
data.table, DESeq2, compare, readxl, PoiClaClu, hexbin, 
ggalt, vsn, org.GS.eg.db, annotationDbi (Kolde 2019; Neu-
wirth 2014; Zeileis et al. 2020; Wickham and Bryan 2019; 
Wickham 2019, 2020; Wickham and Seidel 2020; Love et al. 
2014; Murell et al. 2015; Witten 2019, Carr 2021, Rudis et al. 
2017, Huber et al. 2002, Carlson 2019; Pagès et al. 2020).

BMD express analysis: Williams trend test and BMD 
calculations

Input for the BMD express software (version 2.3) (Phillips 
et al. 2019) was the log2 of the normalized data. A Williams 
trend test was used to determine concentration responses 
(10,000 permutations; no filters). The output of the Wil-
liams trend test included a p value per probe per treatment. 
Subsequently bench mark dose (BMD) (Haber et al. 2018) 
values were determined based on the best model fit (lowest 
akaike information criterion (AIC)). The following paramet-
ric models were used to derive dose response curves: power, 
linear, polynomial (2 parametric), Hill, and exponential (2–5 
parametric) (maximum iterations = 250; confidence = 0.095; 
BMR factor = 1SD). The output of the BMD model fitting 
provided a “best model fit” per probe per treatment.

Pathway analysis

Gene ontology (GO)-term enrichment analysis was per-
formed using the GOrilla website (Eden et al. 2009). For 
the analysis, the background file consisted of Ensembl IDs of 
all unique genes in the EU-ToxRisk panel and the significant 
set consisted of genes with p adjusted < 0.05; log2FC thresh-
old of < − 0.58 or > 0.58; Williams trend test p value < 0.05.

Transcription factor (TF) enrichment analysis

A TF enrichment analysis was performed using the DoRo-
thEA tool version 2 (Garcia-Alonso et al. 2018). The log2 
normalized values were used as input for the analysis. For 
genes with multiple probes, an average fold change was 

https://www.eu-toxrisk.eu
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calculated over all probes of the gene and used to determine 
z-scores (compared to DMSO). The Viper package was used 
to determine the TF enrichment including information with 
confidence set ABC (Alvarez et al. 2016). The Viper output 
consisted of a normalized enrichment score (NES) per tran-
scription factor per treatment.

Microarray data of HisOH in HepG2

Microarray results of HepG2 cell exposed to 5 mM HisOH 
for 4 h were used to assess possible similarities in the induc-
tion of signaling pathways between HisOH and ETC inhibi-
tors (Shan 2010). The Affymetrix Human Genome U133 
Plus 2.0 Array was used, and count files were stored at GEO 
(Number: GSE19495). We obtained log2FC and p-adjusted 
values using the GEO2R analysis provided by GEO. Values 
are log2FC of treated HepG2 versus medium control.

TG‑GATES data: gene expression analysis

Primary human hepatocyte (PHH) gene expression data 
was obtained from the open TG-GATES database: “Toxi-
cogenomics Project and Toxicogenomics Informatics Project 
under CC Attribution-Share Alike 2.1 Japan” and processed 
as reported previously (Callegaro et  al. 2021). Briefly, 
microarrays were jointly normalized using the Robust 
Multi-array Average (RMA) method (affy R package) (Gau-
tier et al. 2004) and probes were mapped to gene IDs with 
BrainArray chip description file (CDF) version 20.1 Differ-
ential gene expression analysis was performed by building 
a linear model fit and computing the log-odds of differential 
expression by empirical Bayes moderation (limma R pack-
age) (Ritchie et al. 2015).

Real‑time PCR

HepG2 cells were seeded into 24-well plates (Costar) at a 
density of 200,000 cells/well. Two days post-seeding, the 
medium was changed to complete DMEM containing the 
desired test chemical. After 24 h exposure, the wells were 
washed with PBS and RNA was isolated using the Nucle-
oSpin RNA kit (Marcherey-Nagel, 740955.25) according to 
the manufacturer’s protocol. cDNA was synthesized from 
800 ng RNA per reaction using the RevertAid H Minus First 
Strand cDNA synthesis kit (Thermo Scientific, K1632). 
Real-time PCR was performed using SYBR Green (Applied 
Biosystems, A25742) and KiCqstart SYBR green primers 

(Sigma) (Suppl. Table 3) using the QuantStudio 6 Flex Real-
Time PCR System (ThermoFisher Scientific).

RNA interference

Transient knockdown of desired genes was achieved through 
reverse transfection with siGENOME Smartpool siRNAs 
(50 nM, from Dharmacon GE Healthcare). siRNAs were 
incubated with 0.3% INTERFERin transfection reagent 
(Westburg/PolyPlus, 409-50) for 20 min. Subsequently, cells 
were seeded on top at a density of 23,000 cells per well (in a 
96 wells μCLEAR® black plate). The medium was refreshed 
after 24 h. All follow-up assays were performed 72 h after 
transfection.

Resazurin reduction assay

The cell viability assessment using the resazurin reduc-
tion readout was performed as previously described (Jen-
nings et al. 2007, van der Stel et al. 2020). Briefly, after 
chemical exposure the medium from the cell culture was 
replaced with medium containing 44 µM resazurin. The 
conversion of resazurin to fluorescent resorufin was moni-
tored after 1.5–2 h incubation at 37 °C in 5%  CO2 humidi-
fied atmosphere in a plate reader at excitation/emission 
540/590 nm.

Phenomenological modeling

The phenomenological model for the MMP ( Ψ(t) ) data 
encompasses the following equation:

where a denotes the maximal reduction of the MMP. The 
MMP starts at a value of Ψ(0) = 1 , and when t → ∞ , the 
MMP approaches 1 − a . We consider parameter a to be 
chemical and concentration specific. The parameter τ 
denotes the MMP decay time constant, i.e., for large τ values 
the MMP drops slowly to the minimum (1-a ). We consider 
τ to be only chemical specific, so its value is shared among 
the different concentrations.

We fitted the phenomenological model to the MMP 
data for each compound using the weighted least square 
approach, where τ and a are free parameters to be tuned to 
minimize the cost function as a weighted sum of squared of 
difference between data and model predictions. To obtain a 
global optimum, we utilized 1000 sets of starting values for 
the parameters, which were sampled randomly as positive 
numbers. The resulting estimated a values for all compounds 
were utilized during hierarchical clustering with the ward 
criterion (Ward 1963). Moreover, we studied the relation 
between the sum of the a values for all concentrations of a 

Ψ(t) = a exp

(

−t

�

)

+ (1 − a),

1 http:// brain array. mbni. med. umich. edu/ Brain array/ Datab ase/ Custo 
mCDF/ genom ic_ curat ed_ CDF. asp, HGU133Plus2 array version, vis-
ited 28-6-2021.

http://brainarray.mbni.med.umich.edu/Brainarray/Database/CustomCDF/genomic_curated_CDF.asp
http://brainarray.mbni.med.umich.edu/Brainarray/Database/CustomCDF/genomic_curated_CDF.asp
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compound and corresponding logP value for that compound. 
The logP values were obtained from the PubChem database 
using the python package pubchempy.2

Statistical analysis

The R package DESeq2 was used to calculate the fold 
change compared to vehicle control per condition. The 
fold change values are represented with the standard error. 
p adjusted values per condition were also calculated using 
DESeq2 based on the Wald test and Benjamini Hochberg 
correction. The significance threshold for the gene expres-
sion data was set at p adjusted < 0.05.

A generalized linear model (glm) was used to com-
pare the different variables (average abs log2F for yes/
no in  vivo mitochondrial toxicant + concentration 
(numeric) + time(numeric)) in the TG-GATES PHH dataset 
(package stats (R core team 2018)).

Results

Mitochondrial complex inhibitors differentially 
affect the MMP

To assess the effects of the various ETC inhibitors on the 
MMP dynamics, HepG2 cells were stained with Rho123 
to monitor the MMP over a period of 24 h. The MMP 
decreased in a concentration- and time-dependent manner 
upon exposure to the CI inhibitor rotenone (Fig. 1A, B). A 
concentration range of various mitochondrial CI, CII and 
CIII inhibitors was evaluated for their effect on the MMP 
(Fig. 1C). Most complex I and III inhibitors, except for 
the weak CI inhibitor capsaicin (Delp et al. 2019, van der 
Stel et al. 2020), decreased the MMP in a concentration- 
and time-dependent manner. CII inhibitors, CIII inhibitors 
kresoxim-methyl and trifloxystrobin and the CIII inhibitor/
uncoupler cyazofamid (van der Stel et al. 2020) only weakly 
affected the MMP at the highest concentration. Various 
highly potent CI inhibitors decreased the MMP already 
within the first 2 h of exposure.

To assess whether MMP dynamics were differentially 
perturbed by CI or CIII inhibitors, a phenomenological 
model was built and fitted to the data to capture compound- 
and concentration-dependent features of MMP decay 
(Fig. 1D and Suppl. Figure 2). In this way, we estimated 
the maximal reduction of the MMP (a) that depended on 
the chemical and its concentration. Hierarchical clustering 

using the estimated maximal reduction per compound and 
concentration resulted in two major clusters: potent inhibi-
tors vs chemicals with low potency/no effect (Fig. 1E). 
Based on the maximal reduction it was not possible to dis-
tinguish CI inhibitors from CIII inhibitors. However, per 
group of inhibitors, the maximal MMP reduction clearly 
depended on the lipophilicity (logP) of the inhibitors, 
i.e., the drop in the MMP is highest for compounds with 
high logP values (Fig. 1F). In general, the MMP drop of 
CI inhibitors depended more strongly on the logP value 
than CII and CIII inhibitors (Fig. 1G). In summary, our 
measurements on MMP dynamics suggest that CI and CIII 
inhibitors are more potent than CII inhibitors, and that this 
is in part correlated with the high lipophilicity of specific 
compounds.

Inhibition of glycolysis causes loss of viability 
in the presence of complex I and III, but not complex 
II inhibitors

Like primary liver tissue, HepG2 cells can increase their 
anaerobic non-mitochondrial respiration rate using gly-
colysis and do this more extensively than primary liver 
cells (Rodriguez-Enriquez et al. 2001). We prevented the 
increase in glycolytic rate in response to mitochondrial insult 
by switching the cells from glucose- to galactose-contain-
ing medium or inhibited glycolysis using the competitive 
inhibitor 2-deoxyglucose (2DG) (Marroquin et al. 2007, 
Kamalian et al. 2015, Korga et al. 2019, Pietzke et al. 2014) 
(Fig. 2A). While HepG2 cells tolerated exposure to rotenone 
in glucose-containing medium, preventing the increase in 
glycolytic rates and inhibition of glycolysis itself sensitized 
these cells to adversity caused by CI inhibition as shown by 
propidium iodide staining (Fig. 2B). The use of galactose 
medium sensitized the cells to cell death to a larger extent 
and at earlier time points than the addition of 2DG to the 
medium (Fig. 2C). Perturbation of glycolytic capacity of the 
cell did lead to sensitization to cell death in response to both 
CI and CIII inhibitors, but no difference could be observed 
between the two inhibitor classes other than potency vari-
ability (Fig. 2D). No sensitization of HepG2 to CII inhibi-
tors upon perturbation of the glycolytic capacity using either 
2DG or galactose-containing medium was observed. These 
findings indicate that HepG2 cells can be stimulated to 
largely rely on mitochondrial respiration and under those 
conditions, inhibition of CI or CIII but not of CII reduces 
cell viability.

2 https:// github. com/ mcs07/ PubCh emPy.

https://github.com/mcs07/PubChemPy
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Attenuation of mitochondrial ATP production 
and proliferation in presence of complex I and III, 
but not complex II inhibitors

The ability of HepG2 cells to tolerate ETC inhibition in glu-
cose-containing medium allowed us to study the response to 
CI and CIII inhibitors in more detail at any desired moment 

after exposure. Despite the absence of cell death in glucose-
containing medium (Fig. 2B), cell proliferation was attenu-
ated in a concentration- and time-dependent manner by 
rotenone (Fig. 2E). The observed decrease in proliferation 
correlated to inhibition of MMP (Fig. 2F). Assessment of 
relative cell count upon exposure to the panel of CI, CII and 
CIII inhibitors also confirmed the correlation between a drop 
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Fig. 1  Effect of various agrochemical mitochondrial respiratory chain 
inhibitors on mitochondrial membrane potential dynamics. A Sche-
matic representation of the experimental setup in HepG2 cells. Cells 
were seeded 2  days before exposure. At day 3, cells were stained 
with Hoechst33348 (nuclei) and Rho123 (MMP) followed by chemi-
cal exposure. Upon exposure, cells were monitored every hour for 
24 h. Image panels demonstrate representative snapshots at five time 
points (0, 6, 12, 18 and 24 h) of Rho123 staining in vehicle control 
samples and upon exposure to 0.4  µM rotenone. B Quantification 
of one replicate showing Rho123 intensity over time upon expo-
sure to a concentration range of rotenone as fraction of the vehicle 
control. C Heatmap including the Rho123 intensity over time upon 
exposure to a concentration range of 22 chemicals divided over CI 
(CAP = capsaicin, DEG = deguelin, FZQ = fenazaquin, FPX = fen-
pyroximate, PDB = pyridaben, PMD = pyrimidifen, ROT = rote-
none, TEB = tebufenpyrad), CII (CAR = carboxin, FFM = fen-
furam, FLU = flutolanil, MEP = mepronil, THI = thifluzamide) and 
CIII (AA = antimycin A, AZO = azoxystrobin, CYA = cyazofamid, 
FMD = fenamidone, HYD = hydra-methylnon, KRS = kresoxim-
methyl, PIC = picoxystrobin, PYR = pyraclostrobin, TRI = triflox-

ystrobin) inhibitors. The values represent the geometric mean of four 
biological replicates, which is expressed as fraction of the measure-
ments for the control condition. D Phenomenological model describ-
ing MMP dynamics measured using Rho123. The equation describes 
exponential decay toward a minimal MMP, with τ representing a 
chemical specific MMP decay time constant and a representing the 
maximal reduction of the MMP which is chemical and concentration 
dependent. E Clustering heatmap generated with the Wald algorithm 
showing the estimated a value per compound and per concentration 
for in total 22 complex inhibitors plus the cost and τ value per com-
pound. F Correlation plot comparing the logP value with the sum of 
all determined a values per inhibitor. The logP values were collected 
from PubChem. The correlation line is an ordinary-linear-least square 
regression between logP and the sum of all a values of an inhibitor 
(r2 values: I = 0.899, II = 0.923 and III = 0.770). The Python pack-
age used for the regression line is statsmodels (Seabold and Perktold 
2010). G Estimated regression line slopes (± standard error) for the 
data from F. Colored names (C, E), symbols (F) and error bars (G) 
denote (CI (red), CII (green) or CIII (blue) inhibitors)
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in proliferation and perturbation of the MMP (Fig. 2G left 
panel and Fig. 1C).

Next, the effect of CI and CIII inhibition on ATP con-
centration was evaluated in the cytoplasm and mitochon-
dria using the ATPlite assay. Exposure to both CI (rotenone) 
and CIII (antimycin) inhibitors resulted in a concentration-
dependent decrease of total cytoplasmic ATP levels at 2 h, 
which was still the case at 24 h. (Fig. 2H left two panels). 
The concentration-dependent decrease in ATP levels in the 
mitochondria resembled the pattern observed in the cyto-
plasm (Fig. 2H right two panels). We therefore only exam-
ined the total cytoplasmic ATP for the entire set of CI, CII 
and CIII inhibitors (Fig. 2G right panel). In general, CI and 
CIII inhibitor exposure resulted in a drop in ATP which cor-
related with decreased proliferation. CII inhibitors did not 
exhibit a pronounced concentration-dependent decrease.

Finally, to assess the dynamics of the ATP levels (sum 
of production and degradation) in the cytoplasm and in the 
mitochondria, cell lines were created by stable integration of 
ATP-FRET probes localized in the cytoplasm or mitochon-
dria. These allowed dynamic monitoring of ATP changes 
upon chemical exposure as exemplified using CI (rotenone) 
and III inhibitors (antimycin) (Suppl. Figure 1A–D). Assess-
ment of the temporal dynamics using both ATP-FRET 
probes over a period of 75 min confirmed the concentration-
dependent decrease in ATP (Fig. 2I, Suppl. Figure 2D and 
E). Cytoplasmic ATP levels dropped between the moment 
of exposure and the following 75 min in a concentration-
dependent manner for CI and CIII inhibitors rotenone and 
antimycin. The ATP drop in the mitochondrial compartment 
was much faster than in the cytoplasm and already reached 
a minimum within the first 10 min.

In summary, our measurements demonstrated that expo-
sure to CI and CIII inhibitors in glucose-containing medium 
resulted in a quick concentration-dependent drop in cyto-
plasmic and mitochondrial ATP, which was correlated with 
the inhibition of MMP and, when glycolysis is suppressed, 
by inhibition of cell proliferation.

A gene signature for mitochondrial toxicants

Having established that ETC CI and III inhibitors similarly 
attenuate MMP and mitochondrial ATP production, we 
collected targeted TempO-Seq transcriptomics data using 
the S1500 +  + probe set, which expands the U.S. Tox21 
S1500 + sentinel list with probes targeting genes known to 
be affected in response to toxic insults and tissue-relevant 
markers to further analyze the cellular response toward 
ETC inhibition. A concentration-dependent increase in 
the number of differentially expressed genes (DEGs) was 
observed in response to CI and CIII inhibitors, whereas CII 
inhibitors did not affect overall gene expression (Suppl. Fig-
ure 3A). Notably, the potency difference between the various 

chemicals with respect to the number of DEGs correlated 
inversely with MMP perturbation (Suppl. Figure 3B). To 
evaluate if concentration-dependent regulation of individual 
genes was correlated to the effects of inhibitors on MMP, 
for each probe we determined the benchmark concentration 
(BMC = the lowest concentration at which the probe count 
was changed more than 1 × standard deviation (up or down) 
compared to the control condition). Indeed, accumulation 
plots of all BMC values per probe, measured upon expo-
sure to the various ETC inhibitors, demonstrated an increase 
around the concentration at which also the MMP BMC was 
observed (Suppl. Figure 3C).

We considered whether a signature of unique genes could 
achieve separation between the various mitochondrial com-
plex inhibitors. To enable selection of candidate genes for 
the different complex inhibitors, DEGs were filtered based 
on p-adjusted values, fold change values, and their concen-
tration–response correlation (William’s trend test) (Fig. 3A). 
Thereafter, a group of gene probes (299) was selected that 
was affected by any active ETC inhibitor (inactive = cap-
saicin, carboxin, cyazofamid, mepronil and thifluzamide) 
(Suppl. Figure 3D). We subdivided the probe set across CI, 
CII and CIII inhibitors and defined genes affected specifi-
cally by the CI or CIII inhibitors, respectively, 302 and 193 
probes (Fig. 3B). Using this approach, no genes were identi-
fied that responded to all compounds within one class, but 
not to any compounds of another class (Suppl. Figure 3E 
and F).

While no subclass specific DEGs were found, the indi-
vidual gene expression patterns could still be used to cre-
ate a gene signature for mitochondrial perturbation. We 
subdivided the probe set along “active inhibitors” (CI: 
deguelin, fenpyroximate, pyrimidifen, rotenone, tebufen-
pyrad and CIII: antimycin, azoxystrobin, picoxystrobin, 
pyraclostrobin), “inactive inhibitors” with none to minimal 
effect upon proliferation (capsaicin, carboxin, cyazofa-
mid, mepronil and thifluzamide) and “model compounds” 
(CDDO-me (oxidative stress response), cisplatin (DNA 
damage response), TNFα (inflammation) and tunicamycin 
(unfolded protein response)). This resulted in 382 probes 
affected specifically by one or more active mitochondrial 
toxicants and not by the positive controls or “inactive” inhib-
itors (Fig. 3C). 23 of these 382 probes were affected by all 
individual “active inhibitors” (Fig. 3D). The identified hits 
exhibited a concentration–response relationship upon expo-
sure to the various “active inhibitors” (Fig. 3E) and a BMC 
value which was less than or equal to the BMC values for the 
MMP data (Fig. 3F) and previously determined basal oxygen 
consumption rate (OCR) (van der Stel et al. 2020) (Fig. 3G).

To establish a robust mitochondrial toxicant gene sig-
nature, we selected 7 hits from the 23 probes unique for 
the ETC inhibitor-induced effects upon the mitochondria 
(Table  1). The selection criterion was a log2FC of > 2 
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or < − 2 or a direct link to mitochondria, which would facil-
itate detection when used as biomarker (Suppl. Figure 3G 
and H). To assess the possible involvement of the selected 
signature genes in the modulation of mitochondrial toxicity, 
rotenone treatments were combined with RNA interference. 
We focused on the signature genes that were upregulated 

(CYP3A5, KLHL24, NOS3 or PFKP) and used RNA inter-
ference to address their role. The depletion of PFKP itself 
resulted in a slight reduction of viability while the other siR-
NAs had no effect under non-treated conditions (Fig. 3H). 
NOS3 depletion led to an increased sensitivity toward 
rotenone, suggesting that NOS3 is involved in an adaptive 

H
oe

ch
st

Glucose-containing

Glucose

2DG

Galactose

Galactose-containing Additive = 2DGA

C

Time (h)

H

0 5 10 15 20 25

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

C
el

l d
ea

th
(P

I p
os

tiv
e 

fra
ct

io
n)

Control Rot 10µM

PI

Control Rot 10µM Control Rot 10µM

0 5 10 15 20 25

1.0

1.2

1.4

Time [h]

C
el

l c
ou

nt
 

(n
or

m
 to

 1
st

 T
P

)

Glucose-containing

Time [h]

E G
Capsaicin
Deguelin
Fenazaquin
Fenpyroximate
Pyridaben
Pyrimidifen
Rotenone
Tebufenpyrad
Carboxin
Fenfuram
Flutolanil
Mepronil
Thifluzamide
Antimycin
Azoxystrobin
Cyazofamid
Fenamidone
Hydramethylnon
Kresoxim−methyl
Picoxystrobin
Pyraclostrobin
Trifloxystrobin

Value 
(relative to DMSO)

PI positive fraction 

AT
P

 le
ve

ls
 

(n
or

m
 to

 v
eh

ic
le

 a
nd

 c
ou

nt
)

0 25 50 75
0.7

0.8

0.9

1.0

1.1

0.5
0.05
0.005
0.0005

Conc. [µM]

Concentration [log(M)]

Time [min]

AT
P

 F
R

E
T 

ra
tio

 
(n

or
m

 to
 v

eh
ic

le
)

Cytoplasm

I

0.9

1.0

1.1

Capsaicin
Deguelin
Fenazaquin
Fenpyroximate
Pyridaben
Pyrimidifen
Rotenone
Tebufenpyrad
Carboxine
Fenfuram
Flutolanil
Mepronil
Thifluzamide
Antimycin A
Azoxystrobin
Cyazofamid
Fenamidone
Hydramethylnon
Kresoxim−methyl
Picoxystrobin
Pyraclostrobin
Trifloxystrobin0 5 10 15 20 25

0.000128
0.00064
0.0032
0.016
0.08

0.4

2

10

1

5

DMSO

D

Conc. [µM]

0.000128
0.00064
0.0032
0.016
0.08

0.4

2

10

1

5

DMSO

0.00 0.25 0.50 0.75 1.00
0.75

0.80

0.85

0.90

0.95

1.00

MMP (norm to DMSO)

C
el

l c
ou

nt
 

(n
or

m
 to

 D
M

S
O

)

Glucose-containing

0.000128

0.00064

0.0032
0.016

0.08

0.4-5

10

F

0.00

0.25

0.50

0.75

1.00

DM
SO

Ro
t 1

0µ
M

 

C
el

l d
ea

th
(P

I  
po

si
tiv

e 
fra

ct
io

n)

Glu Gal 2DG

DM
SO

Ro
t 1

0µ
M

 
DM

SO
Ro

t 1
0µ

M
 

B

Mitochondrial

Cytoplasm Mitochondrial

Ti
m

e 
[h

]

-48 -24 0 24

Glucose-containing Galactose-containing Additive = 2DG

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

0

0.2

0.4

0.6

0.8

1

Complex
I
II
III

Conc. [µM]

10

0.000128

Conc. [µM]Glucose-containing

Galactose-containing Additive = 2DG

ATPCount

0 25 50 75 0 25 50 75 0 25 50 75

Complex
I
II
III

Conc. [µM]

10

0.000128

0

0.2

0.4

0.6

0.8

1

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

Rotenone RotenoneAntimycin Antimycin Time [h]
2
24

Rotenone RotenoneAntimycin Antimycin

-5-6-79- 8-5- 01--6-79- 8--10-5-6-79- 8-5- 01--6-79- 8--10



269Archives of Toxicology (2022) 96:259–285 

1 3

response during ETC inhibitor treatment (Fig. 3I). Depletion 
of the other signature genes did not significantly impact on 
rotenone-induced cytotoxicity.

To address whether this seven-gene signature could be 
used in a biomarker approach for flagging of possible mito-
chondrial toxicity liabilities, we evaluated gene expression 
data for exposure to chemicals known to cause DILI and 
available for PHH in the TG-GATES database. A list of 156 
such chemicals was shortened to focus on 23 chemicals with 
mitochondrial liabilities in HepG2 cells (Table 2) (Eakins 
et al. 2016). Four out of the seven selected genes (CDC6, 
DDC, CYP3A5 and KLHL24) were similarly affected in PHH 
as in HepG2 by the chemicals classified as ETC inhibitors 
(Fig. 3J), except for tamoxifen which did not induce major 
changes in any gene measured (data not shown). This gene 
set selected for mitochondrial toxicity via ETC inhibition in 

HepG2 did not separate DILI compounds with from those 
without mitochondrial liabilities in PHH (Fig. 3K).

In summary, using the S1500 +  + probe set, TempO-Seq 
could not distinguish active CI from active CIII compounds. 
However, a gene set was identified whose transcription was 
specifically affected by mitochondrial toxicants (active CI 
and CIII inhibitors that affected MMP, ATP production 
and cell proliferation) and not by other toxicants in HepG2. 
Gene silencing associated one of these genes, NOS3, with 
adversity in HepG2 cells. A subset of this gene set was also 
modulated in response to DILI compounds with confirmed 
ETC inhibitory activity in PHH, but in these cells such a 
response was also seen with certain compounds not classi-
fied as mitochondrial inhibitors.

Pathway and gene network analysis shows ETC 
inhibitors trigger responses affecting proliferation, 
protein homeostasis, and early stress responses

We next moved from the analysis of responses at the indi-
vidual gene level to analysis of gene networks and pathways, 
which may enhance translation across model systems. First, 
we took advantage of previously established weighted gene 
co-expression network analysis (WGCNA) modules for PHH 
comprising ~ 400 gene modules that can be visualized as a 
toxicogenomics map (Callegaro et al. 2021). The ETC inhib-
itor TempO-Seq transcriptomics data obtained in HepG2 was 
projected on these prior established co-expression modules 
and used to calculate module eigengene scores (EGSs) to 
monitor chemical-induced changes in these modules. Con-
centration-dependent up- and downmodulation of various 
modules was observed upon exposure to rotenone and a clear 
overlap was seen in the affected modules upon exposure to 
the highest non-toxic concentration of rotenone (2 µM) and 
antimycin (10 µM) (Fig. 4A). The effects of different ETC 
inhibitors on module eigengenes were highly correlated 
within CI (r2 = 0.836) and CIII inhibitors (r2 = 0.853), but 
not within CII inhibitors (r2 = 0.384) (Fig. 4B, Suppl. Fig-
ure 4A and B). Moreover, effects on module eigengenes of 
CI (rotenone) correlated with the effects of CIII (antimy-
cin) (r2 = 0.791), but not with the effects of CII inhibition 
(mepronil) (r2 = 0.321) (Fig. 4C, Suppl. Figure 4B). In gen-
eral, the S1500 +  + probe set allowed a module coverage of 
30–50% and affected genes per module generally overlapped 
between the exposure to rotenone and antimycin (bold genes 
in the table of Suppl. Figure 4C). Comparing all tested chem-
icals at concentrations just above the BMD of the MMP data 
did in fact show separation between CI and CIII inhibitors 
with the exception of antimycin and azoxystrobin that were 
placed in a CI cluster (Fig. 4D, Suppl. Figure 4D). Of the CII 
inhibitors, mepronil was placed in the CIII cluster. Increas-
ing exposure to the highest non-cytotoxic concentrations that 
far exceeded the effective mitochondrial perturbation level 

Fig. 2  Effect of various agrochemical MRC inhibitors on cell viabil-
ity and ATP levels. A Schematic representation of different culture 
conditions. For all conditions, cells were seeded in glucose-contain-
ing medium 2  days before the chemical exposure. (1) Glucose-con-
taining medium: 2 days after seeding the medium is changed into new 
glucose-containing medium during the exposure. (2) Glucose-con-
taining medium supplemented with 2DG: At the moment of chemi-
cal exposure 10 mM of 2DG was added into the wells. (3) Galactose-
containing medium: Medium is refreshed into galactose-containing 
medium 1  day after seeding. 1  day later the chemical exposure is 
performed in galactose-containing medium. B Representative images 
(of Hoechst and PI) plus PI-positive fraction quantification of HepG2 
cells exposed of 24 h to the vehicle control or 10 µM rotenone in 3 
different medium conditions. C 24  h live cell death measurement 
based on PI positive fraction upon exposure to concentration range 
of rotenone in 3 medium conditions. Values are mean ± SD of 3 
biological replicates. D Heatmap showing PI positive fraction upon 
exposure to concentration ranges of 22 complex inhibitors in three 
medium conditions (glucose-containing, galactose-containing and 
addition of 2DG). Values are a mean of three biological replicates. 
Gray cells in the 2DG medium condition were not tested. E Nuclear 
count data in glucose-containing medium upon exposure to a concen-
tration range of rotenone. Values were normalized to the first time 
point and represent a mean ± SD of 3 biological replicates. F) Cor-
relation plot comparing MMP at 24  h (geometric mean normalized 
to DMSO) to cell ratio between 1st and last time point (normalized to 
DMSO) after exposure to a concentration range of rotenone. Values 
are mean of four biological replicates. Labels represent correspond-
ing concentration in µM. G Heatmap showing total cytoplasmic ATP 
levels and nuclear count ratio between first and last time point after 
exposure to concentration ranges of 22 complex inhibitors in glucose-
containing medium. Values are normalized to vehicle control and rep-
resent a mean ± SD for two biological (ATP levels) or three biological 
(nuclear count) replicates. H Concentration–response curve of total 
ATP levels in the cytoplasm (left two panels) and in mitochondria 
(right two panels) comparing rotenone or antimycin exposure to vehi-
cle control at 2 h and 24 h. Values are normalized to nuclear count 
and represent a biological triplicate ± SD Arrows depict the concen-
trations used in Fig. 2I. I Time response curve of ATP-FRET ratio in 
the cytoplasm (left two panels) and mitochondria (right two panels) 
comparing four indicated concentrations of rotenone or antimycin to 
vehicle control over a period of 2 h. Values are from 1 biological rep-
licate, see supplementary Fig. 2D and E for second biological repli-
cates
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and may cause off-target effects did not enhance CI versus 
CIII separation, but resulted in separation of strong mito-
toxicants versus weak/non-mitotoxicants (Fig. 4E, Suppl. 
Figure 4D). The top ten upregulated modules for CI and III 
inhibitors included seven common modules (Fig. 4F, G and 
Suppl. Figure 4C and 5). These modules were associated 
with oxidative stress (144), signal transduction (149, 158, 
248 and 276), metabolism (147, 149 and 248) and transport 
(149 and 315).

We subsequently analyzed GO term enrichment to 
explore pathways triggered by ETC inhibition. In agree-
ment with the connection to cell proliferation (see Fig. 2F, 
G), GO term enrichment analysis demonstrated enrichment 
for perturbation of cell cycle related pathways upon expo-
sure to all CI and III inhibitors (Fig. 5A), as expected in 
proliferating HepG2 cells. Other GO terms regulated by 
all CI and III inhibitors included responses to stress, orga-
nelle organization and DNA replication. The top up- and 
down regulated genes for these biological processes were 
mapped in Fig. 5B. The response to stress was captured 
by changes in metabolism-related genes (GCLC, PPARD, 
DHRS2, ONECUT1, FABP1) and induction of oxidative 
stress responders (SRXN1, TXNRD1 and HMOX1). The GO 
term organelle organization was mostly driven by changes 
in the expression of genes involved in cell adhesion and 
matrix interaction (including amongst others KRT, CNN1, 
IRAK2, TUBA1B, MMP3, TIMP2). The cell cycle term 
comprised factors involved in the cell cycle itself (including 
e.g., RGCC, DUSP1, PLK3, CDK2, CDC6), growth factor 
responses (IGFBP1, EGFR, FOSL1, TFGB1 and SMAD3), 
DNA replication and related replication control (GADD54B, 
POLE2, BRIP1, RMI1 and FEN1) and regulation of cell 
death and differentiation (including SOX4, MCL1, TRIB3, 
BMF, BRIC5).

Our targeted TempO-Seq probe set was biased toward 
pathways important in toxicology, which could result in 
an increased threshold for identification of toxicity-related 
pathways. We next used transcription factor (TF) enrich-
ment analysis, which combines the target gene expression 
profiles for all measured probes per TF and considers the 
overall direction of the response, rendering the enrichment 
less dependent on the number of probes assessed. Again, TF 
profiles demonstrated a concentration-dependent modulation 
by CI and CIII inhibitors, but not CII ETC inhibitors (Suppl. 
Figure 6). Clustering of the enriched TFs resulted in three 
clusters demonstrating a clear concentration dependency 
based on visual inspection (Fig. 5C and Suppl. Figure 6). 
These three TFs clusters belonged to three major biological 
responses: a cluster of downregulated TFs mostly involved 
in proliferation; a cluster of upregulated TFs involved in 
inflammation and protein homeostasis; and a cluster of 
upregulated TFs involved in early stress responses (Fig. 5C).

Combining TempO‑Seq and high‑content 
imaging indicates that amino acid response (AAR) 
is triggered by complex I and III ETC inhibitors

To allow dynamic monitoring of the effects on cell cycle 
progression, protein homeostasis, and stress responses pre-
dicted by the gene- and pathway analyses mentioned above, 
the expression of P21 (cell cycle arrest), SRXN1 (oxydative 
stress), and ATF4 and CHOP (ER stress) was monitored 

Fig. 3  Predictive gene expression signature for MRC inhibition. A 
Schematic representation of the relationship between panels B–E. All 
plots only include genes with a padj < 0.05, log2FC > or < 0.58 and a 
p value < 0.05 in the Williams trend test. B Plot based on the gene 
expression data of all mitochondrial complex inhibitors and separat-
ing all genes per complex type. Horizontal bars at the left represent 
the total number of DEGs per treatment that meet the filtering crite-
ria. Blue bars represent the group of genes unique for CI or CIII inhi-
bition C Plot based on the gene expression data of all mitochondrial 
complex inhibitors plus all data from the four positive adaptive stress 
controls (60 nM CDDO-me, 1 mg/ml cisplatin, 10 ng/mL TNFα and 
12 µM tunicamycin) and separating all genes active inhibitors, inac-
tive inhibitors and positive adaptive stress controls). Horizontal bars 
at the left represent the total number of DEGs per treatment which 
meet the filtering criteria. Blue bar represents group of genes unique 
for all active complex inhibitors D Subset of 382 genes from panel 
D) separated per active mitochondrial inhibitor. The plot only rep-
resents groups of more than three genes. Horizontal bars at the left 
represent the number of DEGs per treatment which meet the filtering 
criteria and are in the set of 382 probes. Blue bar represents group of 
genes affected by all active inhibitors. E Heatmap with log2FC val-
ues upon exposure to a concentration range of 14 complex inhibitors 
and the positive adaptive stress controls (60 nM CDDO-me, 1 mg/ml 
cisplatin, 10 ng/mL TNFα and 12 µM tunicamycin) of the 23 genes 
affected by all active mitochondrial complex inhibitors and not the 
positive stress responses controls (from panel E). F Plot including per 
treatment (CI and CIII inhibitors) the BMD value of the Rho123 data 
(vertical line) plus the individual BMD value of the 23 probes at 24 h 
chemical exposure. Both BMD values are determined using BMDex-
press software. G Plot including per treatment the BMD value of the 
OCR basal data ((van der Stel 2020), vertical line) plus the individual 
BMD value of the 23 probes. Both BMD values are determined using 
BMDexpress software. H Cellular viability monitored using resazurin 
reduction 72 h after siRNA transfection (CYP3A5, KLHL24, NOS3, 
PFKP or siRNA control: kinase pool (KP)) or negative control con-
dition (mock). I Cellular viability monitored using resazurin reduc-
tion after 72 h siRNA transfection followed by a concentration range 
of rotenone for 24  h (CYP3A5, KLHL24, NOS3, PFKP or siRNA 
control: kinase pool (KP)) or negative control condition (mock). Val-
ues are normalized to treatment control (DMSO). J Log2FC data 
from the TG-GATES database for CDC6, DDC, MPC2, CYP3A5, 
KLHL24, NOS3 and PFPK in PHH upon 24 h exposure to three con-
centrations of DILI-inducing compounds know to also effect the ETC 
(Table 2). K Heatmap with log2FC values from the TG-GATES data-
base for CDC6, DDC, MPC2, CYP3A5, KLHL24, NOS3 and PFPK 
upon 24  h exposure to the highest concentration available for DILI 
compounds classified by Eakins 2016 (Table  2). (* = exceptions are 
with middle concentration, because the highest concentration was 
more than 100-fold the cMax value). In vivo = classification based on 
literature search presented by Eakins 2016 and in vitro = classification 
based on results in HepG2 by Eakins 2016. Gray classification = con-
centration presented in the heatmap is lower than the mitotoxic con-
centration determined by Eakins in HepG2
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using GFP reporter cell lines generated using BAC tech-
nology (Wink et al 2014). Activation of P21 and SRXN1 
was minimal for all inhibitors, but clearly upregulated upon 
exposure to the positive controls (respectively, etoposide 
and DEM) (Fig. 6A, B, Suppl. Figure 7). Exposure to both 
CI and CIII inhibitors, but not CII inhibitors, resulted in a 
concentration-dependent increase in ATF4 (Figs. 5C and 6B, 
Suppl. Figure 7). The transcription factor ATF4 is involved 
in protein homeostasis in the endoplasmic reticulum (ER) 
as well as in mitochondria (Hetz 2012, Melber and Haynes 
2018). To further explore the possible perturbation of pro-
tein homeostasis and the induction of the related unfolded 
protein response (UPR), GFP reporters for BIP (HSPA5), 

CHOP (DDIT3) and XBP1 were monitored. Interestingly, 
XBP1, which is downstream of the UPR sensor IRE1α, was 
unaffected by ETC inhibition at all non-toxic concentrations. 
Moreover, while CHOP was upregulated, BIP, a molecu-
lar chaperone in the ER was downregulated further arguing 
against the induction of a UPR (Fig. 6A, B, Suppl. Figure 7). 
Overall, the concentration-dependent changes observed with 
GFP reporters corroborated the TempO-Seq data (Fig. 6C).

Revisiting four ER stress-related WGCNA modules (13, 
15, 62 and 295; (Callegaro et al. 2021)), in the PHH data 
mentioned above (Fig. 4), supported the observed difference 
between the UPR stress inducer tunicamycin and the ETC 
inhibitors, i.e., deactivation of module 13 (including HSPA5) 

Table 1  Gene selected from ETC inhibitor screen

Table includes information concerning gene name, direction of the transcriptomic change upon ETC inhibitor exposure, full name—function, 
main location in the cell, organs in which the RNA is present. All gene-specific information was collected using genecard.org (Stelzer et  al. 
2016)

Gene Entrez Gene Function Cellular compartment

Upregulation
 ARHGEF12 23,365 Rho guanine Nucleotide exchange factor 12 Process initiated by extracellular stimuli Cytosol, nucleus
 CYP3A5 1577 Cyp enzyme 3A5 Drug metabolism, synthesis of cholesterol, 

steroids and other lipids
Endoplasmic reticulum

 FCER1G 2207 Fc fragment of IgE receptor Ig Allergic reactions Cell membrane
 FEZ2 9637 Fasciculation and elongation protein Zeta 2 Axon bundling and elongation Nucleus
 ITGB5 3693 Integrin subunit beta 5 Cell-surface interaction Cell membrane
 JAK1 3716 Janus kinase 1 Cytokine signal transduction Cytosol, nucleus
 KLHL24 54,800 Kelch-like family member 24 Ubiquitin ligase substrate receptor 

involved, i.e., in keratin stability
Cytosol, nucleus

 NOS3 4846 Nitric oxide synthase 3 Production of signaling molecule nitric 
oxide (NO)

All compartments

 OAS1 4938 2′–5′-Oligoadenylate synthetase 1 RNA degradation Cytosol, nucleus
 PFKP 5214 Phosphofructokinase, platelet Regulation of glycolysis Cytosol

Downregulation
 CDC6 990 Cell division cycle 6 Essential in DNA replication All compartments, except 

for endoplasmic reticu-
lum, endosomes and 
lysosomes

 COPZ1 22,818 COPI coat complex subunit zeta 1 Autophagy Cytosol, Golgi
 DDC 1644 Dopa decarboxylase Involved in the production of dopamine, 

serotonin and tryptamine
Cytosol

 KDELR2 11,014 KDEL endoplasmic reticulum protein 
retention receptor 2

Recycling of proteins between Golgi 
and ER

Endoplasmic reticulum

 MAL2 114,569 Mal, T cell differentiation protein 2 Protein transport Cell membrane
 Brp44/ 

MCP2
25,874 Mitochondrial pyruvate carrier 2 Pyruvate metabolism, TCA cycle Mitochondrion

 PEX3 8504 Peroxisomal biogenesis factor 3 Peroxisome biosynthesis Peroxisome, endoplasmic 
reticulum, nucleus

 PRDX3 10,935 Peroxiredoxin 3 Mitochondrial antioxidant Mitochondria
 TUBG1 7283 Tubulin gamma 1 Microtubules formation Cytoskeleton
 VAPB 9217 VAMP associated protein B And C Trafficking Endoplasmic reticulum, 

Golgi
 WDR61 80,349 WD repeat domain 61 Regulation transcription Cytosol, nucleus
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ated from TG-GATES data. Four panels show the module EGSs upon 
24 h exposure to 4 concentrations of rotenone. Color range from blue 
(negative EGS) to red (positive EGS) and are resigned per map. The 
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to rotenone or antimycin. The modules were selected based on being 
upregulated in both the CI and CIII correlation plot
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and activation of module 15 (including ASNS) was observed 
(Fig. 6D–F). The absence of an expected upregulation of mod-
ule 62 was most likely caused by the lower coverage when 
using the s1500 +  + gene set (10.5%). Interestingly, modules 

15 and 295 are highly enriched for amino acid biosynthe-
sis and transport. The absence of an effect on XBP1 and the 
opposite direction of the response for HSPA5/BIP and ATF4 
did not support UPR activation, but may instead point to 
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nutrient (amino acid) deprivation, which also leads to ATF4 
upregulation (Krall et al. 2021, Ye et al. 2010). Indeed, mRNA 
of the ATF4 target gene ASNS, encoding an enzyme responsi-
ble for aspartate to asparagine conversion that is upregulated 
upon asparagine shortage, showed a fourfold increase upon 
exposure to rotenone and antimycin (Fig. 6G).

To explore similarities between responses to mitochon-
drial toxicants and amino acid deprivation, we analyzed 
previously published gene expression data for HepG2 
exposure to the histidinyl tRNA synthetase inhibitor 
(HisOH) (Shan et al. 2010). HisOH simulates amino acid 
deprivation and activates a response to amino acid star-
vation, termed the amino acid response (AAR). HisOH 
exposure resulted in a similar expression pattern of ATF4 
(upregulation) and HSPA5/BIP (downregulation) as 
observed upon rotenone and antimycin exposure (Fig. 6H). 
In addition, comparisons of the effect on HepG2 RNA 
expression assessed using microarrays for HisOH (Shan 
et al. 2010) and rotenone and antimycin (s1500 +  + ; our 
data) demonstrated strikingly similar directionality with 
only seven to eight genes exhibiting an opposite effect 
upon exposure (Fig. 6I).

Lastly, to further evaluate the AAR in the context of mito-
toxicants in PHH, expression of genes previously shown to 
be involved in AAR (Shan et al. 2010) was evaluated in 
the TG-GATES PHH data for DILI compounds previously 
assessed for mitochondrial perturbing potential (Table 2, 
Fig. 7A) (Eakins et al. 2016). A large proportion of DILI 
compounds with confirmed in vivo and in vitro mitotoxic 
activity affected several of the AAR-related genes. On the 
other hand, most DILI compounds lacking in vivo mito-
toxic activity (some of which had also been associated with 

in vitro mitotoxicity) did not affect AAR-related genes. 
Methapyrilene was a noticeable exception in this group, 
affecting ~ half of the AAR-related genes. Generalized lin-
ear regression modeling showed time- and concentration-
dependent increase in the absolute log2FC for “AAR genes” 
(time, p = 3.74e−05; concentration, p = 3.88e−16) and “all 
genes” (time, p = 1.92e−07; concentration, p = 5.64e−14) 
for confirmed in vivo mitotoxicitants and non-mitotoxicants. 
However, while the average of the absolute log2FC of the 
AAR gene set was significantly higher (p = 0.00685) for 
in vivo mitotoxicants as compared to the other chemicals 
at 2, 8, and 24 h exposure (Fig. 7B; AAR genes), no dif-
ference between in vivo mitotoxicants and other chemicals 
was observed for “all genes” in the microarray (Fig. 7B; all 
genes). This suggested that the AAR represents an early 
response to mitotoxic insults for DILI compounds in both 
HepG2 and PHH. In agreement, exposure to ETC inhibit-
ing DILI compounds in most cases affected the expression 
of genes at the bifurcation between UPR and AAR (ASNS, 
DDIT3/CHOP and HSPA5/BIP) with similar directionality 
in PHH as observed upon mitotoxicant exposure in HepG2, 
further corroborating an AAR in response to ETC inhibition 
(Fig. 7C).

Together, these findings, indicate that active ETC inhibi-
tors trigger cellular signaling pathways including those 
involved in the evolutionary conserved response to amino 
acid starvation, AAR. This response appears to be shared 
between HepG2 and PHH.

Discussion

In this study, we have systematically assessed the perturba-
tion of mitochondrial functioning by a diverse set of agro-
chemicals that target the electron transport chain (ETC) CI, 
CII and CIII and its subsequent cellular consequences. Our 
results indicate that CI inhibiting agrochemicals are most 
potent as mitotoxicants, followed by CIII inhibitors, while 
C II inhibitors hardly have any effect. High throughput tran-
scriptomics approaches were identified to be at least as sen-
sitive as mitochondrial integrity and OCR measurements 
to define biological perturbations by ETC inhibitors. The 
observed transcriptional alterations demonstrated ETC inhi-
bition related effects rather than complex inhibitor specific 
effects. Our data indicate that integration of high-content 
imaging approaches and high throughput transcriptomics 
technology is a powerful approach to provide mechanistic 
weight of evidence to support hazard evaluation of mito-
chondrial toxicants for full safety assessment.

The majority of studies assessing mitochondrial perturba-
tion in high throughput focus on a few early time points using 
direct mitochondrial-related endpoints to identify potential 
mitochondrial toxicants (Shah et al. 2016, Wills et al. 2015, 

Fig. 5  Transcriptional reprogramming after treatment with agrochem-
ical MRC inhibitors. A GO enrichment analysis performed using 
GOrilla software. Genes considered in the analysis demonstrated 
a padj < 0.05, log2FC < or > 0.58 and p value of the William trend 
test < 0.05. The graph only represents GO terms effected by at least 
2 compounds of the CI or CIII inhibitors. The blue bar represents 
CI inhibitors (deguelin, fenpyroximate, pyrimidifen, rotenone and 
tebufenpyrad) and the red bar represents CIII inhibitors (antimycin, 
azoxystrobin, picoxystrobin and pyraclostrobin) B Distribution plot 
of gene expression data upon exposure to 2 µM rotenone. The genes 
are distributed over the eight GO terms affected by all included CI 
and CIII inhibitors. Only the genes having a log2FC < − 2 or < 2 are 
visualized. C Heatmap of three transcription factor enrichment clus-
ters showing normalized enrichment score (NES) upon 24 h exposure 
to concentration range of 14 complex inhibitors, 4 positive controls 
(P.C.) (60  nM CDDO-me, 1  mg/ml cisplatin, 10  ng/mL TNFα and 
12 µM tunicamycin) and vehicle control (N.C.). Complete cluster of 
all transcription factors are shown in Suppl. Figure 4. Transcription 
factor enrichment study was based on the transcription factor finger-
print in the DoRothEA database and using the viper package for the 
enrichment assessment. The used confidence parameter in the DoRo-
thEA data set was ABC. Below heatmap are three tables including 
the transcription factors from the three clusters plus biological func-
tion collected from genecard (https:// www. genec ards. org/) 

◂

https://www.genecards.org/
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Hallinger et al. 2020, Xia et al. 2018, Attene-Ramos et al. 
2015). In contrast, we studied a combination of dynamic 
imaging-based measurements of mitochondrial functioning 
and cellular stress signaling responses to unravel the relation-
ship between mitochondrial perturbation and cellular toxic-
ity. By employing a high-content live cell imaging set-up, the 
temporal dynamics of mitochondrial perturbation were deter-
mined by measuring MMP. Assessment of the MMP dynam-
ics upon exposure to a set of mitochondrial ETC inhibitors 
demonstrated an early onset of concentration-dependent MMP 
depletion for most CI and CIII inhibitors, delayed perturbation 
after hydra-methylnon exposure and no/minimal MMP dis-
ruption for the CII inhibitors. This indicates direct interaction 

for most CI and CIII inhibitors and indirect targeting of the 
mitochondria for hydramethylnon. Evaluation of the estimated 
decay time and maximal MMP reduction did not lead to a 
clear separation of CI and CIII inhibitors. Nevertheless, these 
parameters can be used to study correlations to other chemical 
properties, as was demonstrated by the positive correlation to 
the logP value. Altogether, these findings illustrate added value 
of using image-based temporal measurements of mitochondrial 
functioning to assess mitochondrial perturbation.

The cellular outcome after mitochondrial perturbation 
depends not only on the strength of the perturbation, but 
also on the cellular capacity to adapt to this (partial) loss of 
mitochondrial function. For this purpose, the imaging-based 
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assessment of mitochondrial perturbation was combined 
with a transcriptomic readout focusing on a broad set of 
toxicology-related transcripts (Waldmann et al. 2014, Lim-
onciel et al. 2018). Exposure to both CI and CIII inhibitors 
triggered major and nearly identical changes in this set of 
transcripts in a concentration-dependent manner, indicating 
a generic response upon ETC inhibition instead of com-
plex specific responses. Previous studies have shown that 
mitochondrial-targeting chemicals can be clustered based on 
expression profiles of mRNA subsets (Pearson et al. 2016, 
Simon et al. 2019). Our broad set of transcripts was used to 
study the classification of specific and potent CI and CIII 
inhibitors based on cellular responses upon mitochondrial 
perturbation. This led to the identification of an ETC inhi-
bition specific gene set that included CYP3A5, KLHL24, 
NOS3, PFKP, CDC6, DDC, and MPC2. We verified that 
these genes were not affected by chemicals well known to 
induce stress responses, other than ETC inhibition related 

responses, including DNA damage, reactive oxygen species, 
unfolded proteins and inflammation. Moreover, the BMC 
for the onset of gene expression changes was overall lower 
than the BMC for MMP depletion or OCR decrease. For 
CYP3A5, CDC6 and DDC no direct link to mitochondrial 
perturbation has been reported so far. On the other hand, 
downregulation of PFKP, involved in glycolysis, has been 
reported to result in decreased cellular viability when com-
bined with mitochondrial toxicants (To et al. 2019). KLHL24 
and NOS3 are involved in fatty acid metabolism3 and mito-
chondria biogenesis, respectively (Nisoli and Carruba 2006, 
Nisoli et al. 2004). Inhibition of MCP2, a mitochondrial 
pyruvate transporter, is reported to result in upregulation 
of aerobic glycolysis (Li et al. 2017, Schell et al. 2014). We 
anticipate that the genes in the ETC inhibition specific set 
are part of an adaptive response where cells switch from 
oxidative phosphorylation to glycolysis, increase their fatty 
acid metabolism and support the production of new mito-
chondria. Indeed, in particular NOS3 depletion increased 
the susceptibility of the HepG2 cells to CI inhibition. This 
gene set may serve as a biomarker panel to flag chemicals 
and drugs with ETC perturbing potential in early phase high 
throughput screening using HepG2. However, although reg-
ulation by mitotoxicants of this set is confirmed in PHHs, 
these genes are also sensitive to non-mitotoxicants in this 
system and can therefore not support mechanistic studies 
toward the mode of action of various chemicals in PHHs.

Translation of gene expression markers amongst various 
in vitro models has been proven to be difficult for various 
liver models (Boess et al. 2003). Nonetheless, we assume 
that changes in the expression of groups of genes related 
to the mode of action of toxicants can be detected across 
multiple models. The secondary adaptation response will 
differ depending on the nature of the model being primary 
material or cell line, including for example the glycolytic 
capacity of the model in case of mitochondrial toxicants. 
Toxicity assessment in a tiered testing strategy may start 
with simple models for larger-scale screening to flag toxi-
cants based on model specific markers. Subsequent steps 
may use HepG2 having a more mitochondria-dependent phe-
notype and enhanced metabolic activity (van der Stel et al. 
2020, Hiemstra et al. 2019, Ramaiahgari et al. 2014, Boon 
et al. 2020) by using 3D cell cultures or improved medium or 
the use of HepaRG cells having higher levels of metabolism 
(Gerets et al. 2012).

To gain more quantitative insights into cellular signaling 
triggered by ETC inhibition and to increase the possibility for 
translation across in vitro models, enrichment of pathways 
and gene networks was explored. Interestingly, for both CI 
and CIII inhibitors, the mRNA expression changed for com-
ponents of the cellular response associated with amino acid 

Fig. 6  Effects of various agrochemical MRC inhibitors on cellular 
stress activation: high-content imaging and transcriptomics analysis. 
A Representative pictures of Hoechst and GFP (CHOP-GFP, P21-
GFP and SRXN1-GFP) upon 24 or 72 h exposure to the vehicle con-
trol, rotenone 1 µM and the positive controls (6 µM tunicamycin of 
the CHOP-GFP reporter, 25 µM etoposide for the P21-GFP reporter 
and 0.1 µM DEM for the SRXN1-GFP reporter). B Heatmap of frac-
tion GFP-positive cells for P21-GFP, SRXN1-GFP, CHOP-GFP, BIP-
GFP, ATF4-GFP, and XBP1-GFP upon exposure to a concentration 
range of rotenone, mepronil and antimycin at 24, 48 and 72 h. Posi-
tive control compounds included 6  µM tunicamycin of the CHOP-, 
BIP-, ATF4- and XBP1-GFP reporter, 25 µM etoposide for the P21-
GFP reporter and 0.1  µM diethyl maleate (DEM) for the SRXN1-
GFP reporter. Cells considered as GFP positive demonstrated an inte-
grated GFP intensity of two times the vehicle control. Values are a 
mean of two or three biological replicates. C Concentration response 
curves of the log2FC ± SE for HSPA5, ATF4, DDIT3 and XBP1 
upon exposure to rotenone, mepronil or antimycin. The log2FC value 
of tunicamycin 6 µM is represented as a gray dot. D Table of module 
13, 15, 62 and 295 describing: the percentage coverage when project-
ing the S1500 +  +  + set, pathway enriched pathways of this specific 
module and the genes measured in that particular module (bold: 
log2FC > 0.58 upon exposure to 2 µM rotenone and 10 µM antimy-
cin, underlined: hub gene of this module). The modules were selected 
based on their involvement in the ER stress response (Callegaro et al. 
2021). E Concentration response curves of eigengene scores (EGS) 
per selected module upon 24  h exposure to rotenone, antimycin or 
tunicamycin. F Heatmap of three modules showing Eigengene Scores 
(EGS) upon 24  h exposure to a concentration range of 14 complex 
inhibitors. The modules were selected based on being upregulated 
in both the CI and CIII correlation plot (Suppl. Figure 6A) or being 
identified as ER module by Callegaro et al. (2021). G Concentration 
response curves of the log2FC ± SE for ASNS upon exposure to rote-
none, mepronil or antimycin. The log2FC value of tunicamycin 6 µM 
is represented as a gray dot. H log2FC for ASNS, ATF4, DDIT3, 
HSPA5, XBP1 upon exposure to 5 mM HisOH for 4 h (Shan 2010). 
Multiple bars per gene represent single microarray probes. I Corre-
lation plots of HepG2 cells exposed to 5 mM HisOH for 4 h (Shan 
2010) and non-toxic concentration of rotenone (2 µM) or antimycin A 
(10 µM) for 24 h. Genes are included with a log2F < − 0.58 or > 0.58 
and a p-adjusted value below 0.05

◂

3 https:// amp. pharm. mssm. edu/ archs4/ gene/ KLHL24.

https://amp.pharm.mssm.edu/archs4/gene/KLHL24
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deprivation and related responses (AAR) (Krall et al. 2021, 
Ye et al. 2010, Shan et al. 2010). Analysis of HepG2 BAC 
HSPA5/BIP-GFP, ATF4-GFP and CHOP/DDIT3-GFP report-
ers confirmed the observed mRNA expression changes at the 
protein level. In addition, the gene encoding an aspartate con-
version enzyme that is controlled by the ATF4 transcription 
factor in the AAR, ASNS, is induced after ETC CI or CIII 
inhibition. Pathway analysis showed, as expected for amino 
acid deprivation, significant changes in the cell cycle, which 
was in line with the attenuation of proliferation detected by 
high-content imaging. To strengthen the evidence concern-
ing amino acid deprivation and to support identification of 
additional ETC inhibition induced biology, PHH-specific 
weighted co-regulated gene networks were used, allowing 
the study of cellular adaptation outside the known biological 
context (Callegaro et al. 2021, Sutherland et al. 2018). The 
projection of our HepG2 transcription data on this PHH net-
work identified co-regulated gene modules that were affected 

by mitochondrial ETC perturbation. GO terms related to 
these modules, as anticipated, included metabolism, oxidative 
stress responses and mitochondrial trafficking. In addition, 
assessment of endoplasmic reticulum (ER) stress-enriched 
modules, specifically describing amino acid processes, cor-
roborate the disturbance of protein homeostasis in those cells 
as well. Moreover, we find that genes known to be involved 
in the AAR, in general, are also affected in PHH upon expo-
sure to DILI compounds with mitochondrial liability in vivo. 
This indicates that AAR may represent a conserved response 
to ETC inhibition. This observed metabolic adaptation has 
also been observed in neurons upon mitochondrial toxicity 
caused by exposure to MMP + or by mutations in PINK1 and 
PARKIN (Krug et al. 2014, Celardo et al. 2017). In addition, 
ATF4 and CHOP signaling without a clear UPR response 
has been observed in the context of muscle disorder (Kaspar 
et al. 2021). Notably, the AAR is also linked to the “inte-
grated stress response”, that restores balance after amino acid 
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Fig. 7  Extrapolation of electron transport chain (ETC) inhibitor 
markers to PHH. A Heatmap of 16 genes involved in the amino acid 
response (Shan 2010). The presented values are the log2FC values 
from the TG-GATES database for the selected genes set upon 24  h 
exposure to highest concentration available for DILI compounds clas-
sified by Eakins 2016 (Table 2) (* = exceptions are with middle con-
centration, because the highest concentration was more than 100-fold 
the cMax value). B Box plot of the average of the absolute log2FC 
values of AAR-related genes versus “all genes” for all DILI com-

pounds with versus without in vivo mitotoxicant activity at 2, 8 and 
24  h exposure to the low, middle, and high concentration. P values 
were obtained using a generalized linear model of the average abs 
log2F addressing the following variables: yes/no in  vivo mitochon-
drial toxicant; concentration; time. C Log2FC data from the TG-
GATES database for ASNS, DDIT3 and HSPA5 in PHH upon 24 h 
exposure to three concentrations of DILI-inducing compounds known 
to also effect the ETC (Table 2)
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starvation and other types of cellular stress and involves ATF4 
(Costa-Mattioli and Walter 2020).

Using the ETC inhibitors, we aimed to identify mito-
chondrial-specific markers. The identification of ETC inhi-
bition-relevant genes and pathways upon exposure to various 
drug-induced liver injury (DILI) compounds indicates the 
important role of mitochondria in the occurrence of DILI. 
In this study, only mitochondrial ETC inhibitors for tran-
scriptomics analysis have been used, hence an extension of 
the chemical set is required to evaluate whether other chemi-
cals, targeting mitochondrial citric acid cycle metabolism, 
ion homeostasis and mitochondrial coupling or mitophagy, 
induce a similar generic mitochondrial stress response. Tran-
scriptomic profiling supports besides mitochondrial toxic-
ity marker identification also chemical read across. The two 
rotenoid CI inhibitors in this study, deguelin and rotenone, 
exemplify a transcriptomics-based read across approach. 
Gene co-regulation analysis can strengthen chemical read 
across by clustering based on similar module activity, which 
is less dependent on the expression level of single genes 
(Joseph 2017, Serra et al. 2020). Furthermore, the overall 
change in the transcript profiles demonstrates differences in 
potency between the two rotenoids and the overlap in path-
way enrichment, transcription factor activation and gene net-
work module regulation, underlining the similarities in the 
ETC inhibitor mode of action. To allow the integration of 
mode of action information and, with that, the identification 
of mitochondrial perturbation as primary or secondary event 
in any form of organ toxicity, it is important to enlarge the 
range of time points used to identify markers or to perform 
a biologically driven read across.

To summarize, the mechanisms underlying chemical-
induced mitochondrial perturbation and cellular signal-
ing were studied using high-content imaging and targeted 
transcriptomics. Both technologies are demonstrated to be 
suitable to qualify and quantify the effects of ETC inhibi-
tors on mitochondrial and cellular signaling dynamics. By 
employing pathway and gene network analyses evidence 
is provided for a response to ETC inhibition that involves 
the AAR. We envision a tiered testing strategy where high-
content imaging would identify mitochondrial perturbing 
chemicals, followed by targeted transcriptomic analysis 
which identifies subsequent cellular outcomes. Such an 
approach can provide mechanistic weight of evidence to 
support hazard evaluation of mitochondrial toxicants.
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