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Abstract 

 

Article Info  The problem of scheduling flowshop production is one of the most versatile 

problems and is often encountered in many industries. Effective scheduling is 

important because it has a significant impact on reducing costs and increasing 

productivity. However, solving the ordered flowshop scheduling problem with 

the aim of minimizing makespan requires a difficult computation known as 

NP-hard. This research will contribute to the application of combination ACO 

and PSO to minimize makespan in the ordered flowshop scheduling problem. 

The performance of the proposed scheduling algorithm is evaluated by testing 

the data set of 600 ordered flowshop scheduling problems with various 

combinations of job and machine size combinations. The test results show that 

the ACO-PSO algorithm is able to provide a better scheduling solution for the 

scheduling group with small dimensions, namely 76 instances from a total of 

600 inctances and is not good at obtaining makespan in the scheduling group 

with large dimensions. The ACO-PSO algorithm uses execution time which 

increases as the dimension size (multiple jobs and many machines) increases 

in a scheduled instance. 
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1. Introduction  

The flowshop production scheduling problem is one of the most versatile and frequently encountered 

problems in many industries. In ordered flowshop scheduling, the problem is characterized by the following 

two conditions: (1) if the processing time of a job is less than that of another job on some machines, it must 

occur on all machines, and (2) if the processing time of a job on that machine is less than on other machines, 

then it should be the case for all jobs (Khatami et al., 2019). The problem in this scheduling in general is to 

minimize the total completion time of the entire job or called makespan (Fernandez-Viagas et al., 2017); 

(Allahverdi et al., 2018); (Assia et al., 2020). 

Effective scheduling is important because it has a significant impact on reducing costs and increasing 

productivity (Gupta et al., 2020). If proper and effective scheduling is not carried out, it can cause idle time 

on the machine and hamper productivity so that which can cause an increase in product prices (Hossain et 

al., 2014). However, solving an ordered flowshop scheduling problem to minimize makespan requires 

computationally difficult and is known as NP-hard (Khatami et al., 2019). 

Various heuristic algorithms have also been used by researchers, including Widyawati (2018) who has 

applied Ant Colony Optimization (ACO) intending to propose the best schedule that gives the smallest 

makespan in scheduling problems. Particle Swarm Optimization (PSO) is also a solution that is often chosen 

to solve scheduling problems (Muharni et al., 2019). However, in solving combinatorial problems, namely 

in the process of finding the best solution, the resulting solution may be trapped in local optimum 
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conditions. To overcome this problem, this study proposes a makespan optimization solution approach to 

an ordered flowshop scheduling problem that combines the ACO and PSO algorithms. The superiority of 

the hybrid ACO and PSO has been demonstrated by Gao et al. (2019) who studied a hybrid method by 

combining ACO and PSO to solve the problem of efficient mobile path scheduling for mobile agent nodes 

in wireless sensor networks. 

 

2. Method 

Production scheduling is one of the most important activities of the company at the operational level in 

order to remain competitive in winning the consumer market while optimizing its supply chain (Habibi, 

2017). Scheduling classification according to Pinedo (2016) consists of single machine scheduling and 

parallel scheduling. Parallel scheduling is divided into 6, namely: 

a. Scheduling n jobs with identical parallel machines. 

b. Scheduling n jobs with non-identical parallel machines where each machine has the same function 

with a different process. 

c. Scheduling n jobs with unrelated parallel engine development from non-identical parallels. There are 

m parallel machines, machine i to process job j so that the machine speed becomes vij. 

d. Scheduling flowshop and flexible flowshop there are m machines arranged in series where each job 

must be processed on each machine. After the job is done on the first machine, it will be continued 

on the next machine and so on. 

e. Jobshop scheduling and flexible jobshops have m machines where each job has a production flow 

that must be followed. 

f. Openshop scheduling where each job must be reprocessed for each machine. 

Ordered flowshop scheduling problems are a subcategory of classic flowshop scheduling problems, in 

that they have a structured property of processing time that is more common in real-world situations. In 

classic flowshop scheduling problems, job processing times are usually assumed to be independent of each 

other, and independent of machines. Whereas, job processing time in an industrial environment, however, 

may be related to the physical characteristics of the job and/or its machinery (Khatami et al., 2019). 

2.1 Ant Colony Optimization (ACO) 
 Ant Colony Optimization (ACO) is a methodology invented in 1991 by Marco Dorigo. In 1997, Marco 

Dorigo and Gambardella introduced the Ant Colony System. Ant System has been widely implemented in 

combinatorial optimization problems, such as job scheduling, traveling salesman problem, quadratic 

assignment problem, vehicle routing, graph coloring, network routing. Based on the instincts of the ant 

colony, they can find the shortest route on the way from the nest to the places of food sources. Ants can 

cooperate with their colony and exchange information indirectly which is called stigmergy. When traveling 

on a route, ants release some information in the area they are passing, namely pheromones which are 

substances released by ants to detect and respond to the presence of ants. With this pheromone, the ant 

marks the area in its path. The next ant that follows the path will identify the pheromone marked by the 

previous ant and decide with a high probability to follow it and reinforce the chosen path by releasing and 

marking its pheromone. Ant Colony Optimization (ACO) is an algorithm that is often used in solving 

scheduling problems, such as research (Widyawati, 2018) that has implemented ACO intending to propose 

the best schedule that gives the smallest makespan in scheduling problems. 

In solving scheduling problems using the ACO algorithm, 3 stages must be done, namely (Widyawati, 

2018): 

• Parameter Initialization 

• Formation of Ant Paths 
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𝝉𝒊𝒋 = 𝝆. 𝝉𝒊𝒋 + ∆𝝉𝒊𝒋  (6) 

 

2.2 Particle Swarm Optimization (PSO) 

 Like ACO, PSO is classified as a Si-based metaheuristic optimization technique, both of which are 

adopted from socio-psychological principles that affect the social behavior of living things. This means that 

the environment has a big role in living things. Thus the interactions that occur between individuals and 

with their environment can optimize the way of thinking and the development of knowledge from each 

individual. Therefore, ACO and PSO are not just an optimization tool but also a tool that symbolizes the 

interaction of living things and their surrounding environment. 

 PSO is a population-based stochastic optimization technique (fish, bees, birds, etc.), proposed by Russell 

C. Eberhart and James Kennedy in 1995 which was inspired by the social behavior of the movement of 

birds or fish. PSO has many similarities with ACO, which is an algorithm adapted from the biology of ants. 

Both are inspired by social systems or biological systems and the results are obtained from the search for 

optimal values through random generation updates formed from random solutions. So that PSO can be 

applied where ACO can be applied. However, the two mechanisms have differences. PSO uses a one-way 

sharing method. In PSO, only gbest or pbest provide information to others to find the best solution quickly. 

After finding the two best values, update the velocity and position particles with the following equation 

(Tuegeh et al., 2009): 

𝒗𝒊𝒋
𝒌+𝟏 = 𝝎𝒌 ∗ 𝒗𝒊𝒋

𝒌 + 𝒄𝟏 ∗ 𝒓𝒂𝒏𝒅 ∗ (𝒑𝒃𝒆𝒔𝒕𝒊𝒋
𝒌 − 𝒙𝒊𝒋

𝒌 ) + 𝒄𝟐 ∗ 𝒓𝒂𝒏𝒅 ∗ (𝒈𝒃𝒆𝒔𝒕𝒊𝒋
𝒌 − 𝒙𝒊𝒋

𝒌 ) (7) 

𝒙𝒊𝒋
𝒌+𝟏 = 𝒙𝒊𝒋

𝒌 + 𝒗𝒊𝒋
𝒌+𝟏 (8) 

  

Where: 

 𝑣𝑖𝑗
𝑘+1  : is the velocity of the particle 

  𝑥𝑖𝑗
𝑘   : is the current position of the particle (solution) 

  𝑝𝑏𝑒𝑠𝑡𝑖𝑗
𝑘  : the best value belongs to the individual around it 

  𝑔𝑏𝑒𝑠𝑡𝑖𝑗
𝑘  : best value overall 

  𝑟𝑎𝑛𝑑( ) : is a random number between (0,1) 

 𝑐1, 𝑐2  : factors that affect the speed at which the particles move, Usually 𝑐1 = 𝑐2 = 2 
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Figure 1. PSO Flowchart (Xiao et al., 2018) 

2.3 Problem Solving Framework 

 
Figure 2. Problem Solving Framework 

 

3. Results and Discussion 

 The S and L benchmark datasets are ordered flowshop datasets based on the flowshop permutation 

benchmark dataset of 240 Small instances (hereinafter referred to as Benchmark Small Vallada) and 240 

Large instances (hereinafter referred to as Benchmark Large Vallada) compiled by Vallada et al (2015). 

Benchmark data While the T benchmark dataset is an ordered flowshop dataset that is based on the 120 

instances flowshop permutation benchmark dataset (hereinafter referred to as Taillard's Benchmark) 

compiled by Taillard (1993). 
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3.1 Initialize ACO using PSO algorithm 

 The schedule preparation process is carried out in 3 stages; first, initialize the ACO-PSO parameters and 

build a random initial schedule; then second, the schedule is arranged using the PSO algorithm with a 

certain number of iterations and third; The best schedule generated by PSO becomes the initialization of 

ACO which is then processed by the ACO algorithm to obtain the minimum makespan for a certain number 

of iterations. 

To run the ACO and PSO algorithms in this study, the parameters determined at the beginning were 

determined, namely: 

Number of particles or Ants  : 50 particles (ants) 

PSO inertia weight (𝑝0)   : 0.3 

PSO cognitive weight (𝑝1)  : 0.3 

PSO social weight (𝑝2)   : 0.4 

Probability of pheromone evaporation : 1 (pheromone does not evaporate) 

Maximum PSO Iteration   : 100 iterations 

 Inertia weight (𝑝0) is used as a parameter of the PSO algorithm to control the effect of the previous 

particle velocity. If the inertia value is too large, the velocity will continue to increase so that the particle 

will diverge. The particle distance to its optimum value will continue to increase with each iteration. 

Another parameter in the PSO algorithm is the cognitive weight (𝑝1) and social weight (𝑝2), which is the 

acceleration constant that influences the speed of convergence. The value of 𝑝0, 𝑝1, and 𝑝2 is determined at 

the beginning with the provisions of 𝑝0 + 𝑝1 + 𝑝2 = 1. Xue et al (2014) recommend the use of a 

combination of values 𝑝0 = 0.3 , 𝑝1 = 0.3 and 𝑝2 = 0.4, state that gbest is more influential than pbest. The 

number of particles and the number of ants used in each test of this research is fixed, namely 50 particles 

or ants. The number of particles used for PSO is the same as the number of ants used for the ACO algorithm 

because later the initialization of ACO will use the best solution generated from the PSO algorithm. 

 
Table 1. Random Value of Initial Particle Representation on Data S_10_5_1 

Works 
Machine 

1 2 3 4 5 6 7 8 9 10 

1 0.184 0.971 0.865 0.821 0.666 0.860 0.127 0.359 0.011 0.228 

2 0.572 0.350 0.376 0.726 0.573 0.410 0.981 0.643 0.840 0.258 

3 0.593 0.112 0.783 0.031 0.997 0.656 0.414 0.591 0.307 0.359 

4 0.744 0.567 0.717 0.219 0.935 0.506 0.855 0.166 0.911 0.015 

5 0.138 0.858 0.330 0.948 0.736 0.061 0.884 0.001 0.200 0.790 

 
Table 2. Representation of schedule sequence on particle-1 of Table 4.1 

Works 
Machine 

1 2 3 4 5 6 7 8 9 10 

1 4 1 1 2 4 4 1 3 5 5 

2 3 4 4 5 2 2 4 2 1 2 

3 2 5 2 1 3 1 5 5 2 4 

4 1 3 3 4 1 3 2 1 3 3 

5 5 2 5 3 5 5 3 4 4 1 
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3.2 Application of ACO Algorithm with PSO initialization (ACO-PSO Combination) 

3.2.1 Calculating Ordered Flowshop Scheduling Makespan 

The schedule arrangement for each particle is then evaluated by calculating the makespan. For 

example, the makespan will be calculated from the schedule arrangement in Table 2, as follows: 

Machine 1: 

On machine 1, 5 jobs have been sorted, it can be seen that the order of jobs on machine 1 is: 4, 3, 2, 1, 5. 

Assignment i=1, job j=4, on machine r=1: 

Start time    : 𝑠1,1 = 0 

Assignment completion time  : 𝐶1,1 = 𝑠1,1 + 𝑝1,4 = 0 + 19 = 19 

Job completion time   : 𝑧1,4 = 𝑠1,1 +  𝑝1,4 = 0 + 19 = 19 

Assignment i=2, job j=3, on machine r=1: 

Start time   : 𝑠1,2 = 𝐶1,1 = 19 

Completion time  : 𝐶1,2 = 𝑠1,2 + 𝑝1,3 = 19 + 7 = 26 

Assignment i=3, job j=2, on machine r=1: 

Start time    : 𝑠1,3 = 𝐶1,3 = 26 

Completion time   : 𝐶1,2 = 𝑠1,3 + 𝑝1,2 = 26 + 19 = 45 

Assignment i=4, job j=1, on machine r=1: 

Start time    : 𝑠1,4 = 𝐶1,2 = 45 

Completion time   : 𝐶1,1 = 𝑠1,4 + 𝑝1,1 = 45 + 10 = 55 

Assignment i=5, job j=5, on machine r=1: 

Start time    : 𝑠1,5 = 𝐶1,1 = 55 

Completion time   : 𝐶1,5 = 𝑠1,5 + 𝑝1,5 = 55 + 5 = 60 

After all the work is done, the makespan value is obtained. 

3.2.1 Update Schedule Using the ACO-PSO Algorithm 

 

Table 3. The initial position of machine-1 particle-1, compared to 

Pbest and Gbest Particle positions 

 

Particle position 
Process Order 

1 2 3 4 5 

Starting position Job 4 Job 3 Job 2 Job 1 Job 5 

Pbest position Job 4 Job 3 Job 2 Job 1 Job 5 

Gbest position Job 5 Job 1 Job 3 Job 2 Job 4 

 

In Table 3, row 1 shows the initial position of a particle. Next, the matching is done with the Pbest position 

in line 2 and Gbest in line 3. The initial position has the same job processing order as the Pbest position, so 

𝑝𝑝,1  = 𝑝1 = 0,3. The initial position also has a different job processing order from the Gbest position, so 

𝑝𝑔,1  = 0. So we get : 𝑝1,1 = 𝑝0 + 𝑝𝑝,1 + 𝑝𝑔,1 = 0.3 + 0.3 + 0 = 0.6. 

Then a random value of r is built, for example, r = 0.7635 compared to the value of. Because of the value 

of, the starting position of machine 1's schedule sequence is preserved. And so on until the last machine 

(r=10). The position update in iteration 1 is continued for particle i=2 and so on until particle i=50. After 

the schedule preparation using the PSO algorithm reaches the iteration limit, the next step is to process the 

best solution from PSO as ACO initialization. 

 

 

http://infor.seaninstitute.org/index.php/infokum/index


 
http://infor.seaninstitute.org/index.php/infokum/index 

JURNAL INFOKUM,  Volume 9, No. 2,Juni 2021  ISSN : 2302-9706 

 

 INFOKUM is licensed under a Creative Commons Attribution-Non Commercial 4.0  International License 
(CC BY-NC 4.0) 

156 
 

3.3 Discussion 

 To measure the performance of the ACO-PSO approach in finding a schedule arrangement that 

produces the minimum makespan, the test scenario uses benchmark data of 600 schedules with variations 

in dimension sizes. The makespan value obtained by the ACO-PSO algorithm is compared with the 

makespan generated by Taillard (1993) for the Taillard benchmark data set and the makespan generated by 

Vallada et al. (2017) for the Small Vallada and Large Vallada benchmark data sets. The evaluation 

technique used consists of two criteria, namely the number of best solutions obtained (NBest) and the 

average relative percentage deviation (ARPD) to evaluate the performance of the algorithm used in a simple 

system that has been built using MatLab 2016a. The complete ACO-PSO test results in minimizing 

makespan on the Small Vallada benchmark data set can be seen in Appendix 1. The makespan value 

generated by the ACO-PSO scheduling solution in Appendix 1 is then compared with the makespan value 

generated by the NEH algorithm scheduling solution from previous studies ( Vallada et al. 2017) which is 

in appendix 4, to get a comparison of the ARPD and NBest values for each algorithm. 

 The quality of the algorithm performance results indicated by the relative deviation percentage (RPD), 

was obtained using the following formula (Fernandez-Viagas et al., 2017): 

 

𝑹𝑷𝑫 =
𝒛 − 𝒛′

𝒛′
𝒙𝟏𝟎𝟎 (9) 

Where: 

z = the value of the objective function (makespan) of an algorithm used 

z' = the best value of the objective function (makespan) of all the algorithms used 

 

In this study, each dimension of the benchmark data consists of 10 instances, so in summary the number of 

ARPDs is obtained using the formula (Fernandez-Viagas et al., 2017): 

 

𝑨𝑹𝑷𝑫 =
𝒕𝒐𝒕𝒂𝒍 𝑹𝑷𝑫 𝟏𝟎 𝒊𝒏𝒔𝒕𝒂𝒏𝒄𝒆 (𝑠𝑎𝑚𝑒 𝑠𝑖𝑧𝑒)

𝟏𝟎
 (10) 

 

. Table 4. Summary of NBest and ARPD on 3 Benchmark Data Sets 

 Benchmark ACO PSO NEH 

NBest Taillard 30 90 

Small Vallada 46 194 

Large Vallada  0 240 

Total 76 524 

ARPD Taillard  0.31 0.01 

Small Vallada  0.28 0.02 

Large Vallada  0.42 0.00 

Average  0.34 0.01 

 Table 4 shows a summary of the achievements of the ACO-PSO algorithm in minimizing the makespan 

of order flowshop scheduling in the three benchmark data sets, which is compared with the achievements 

of the NEH algorithm from previous studies (Vallada et al, 2017 and Taillard, 1993). 

4. Conclusions 

 The experimental results show that the ACO-PSO algorithm can provide a better scheduling solution in 

the scheduling group with small dimensions of 76 instances out of a total of 600 instances and is not good 

at obtaining makespan in the scheduling group with large dimensions. 
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